151
|
Bishnoi A, Shah S, Jain S, Reddy A, Singh V, Lad D, Vinay K. Management of pain in the inpatient and non-surgical outpatient dermatology settings: A narrative review. Indian J Dermatol Venereol Leprol 2024; 90:742-749. [PMID: 39152887 DOI: 10.25259/ijdvl_331_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/27/2023] [Indexed: 08/19/2024]
Abstract
Pain is frequently encountered in dermatology practice, which impairs the activities of daily living, adds to psychological morbidity, and therefore compromises the quality of life. It ranges from mild to severe in intensity across various dermatoses and requires prompt addressal and treatment. Diseases such as extensive pemphigus vulgaris and Stevens-Johnson syndrome are especially painful and require a multidisciplinary approach with the involvement of a pain specialist in their management. The main pathogenic types of pain include visceral nociceptive, somatic nociceptive, and neuropathic types, the latter two being most relevant in dermatological disorders. Somatic nociceptive pain is often seen in patients of Stevens-Johnson syndrome/ Toxic epidermal necrolysis, epidermolysis bullosa, pemphigus vulgaris, erythema nodosum, and hidradenitis suppurativa, while neuropathic pain is part of the disease process in dermatoses like leprosy, herpes zoster, and dysesthesia syndromes. Therapeutic approaches to pain management include the use of non-opioids (acetaminophen, non-steroidal anti-inflammatory agents), opioids, and non-pharmacological therapies, along with appropriate management of the underlying dermatosis. World Health Organisation (WHO) analgesic ladder remains the most commonly employed guideline for the management of pain, although treatment needs individualisation depending on the nature and severity of pain (acute/chronic), type of dermatosis, and patient factors. There is a paucity of literature pertaining to pain management in dermatology and this topic is often neglected due to a lack of awareness and knowledge of the topic. The present review aims to discuss the pain pathway, various painful conditions in the setting of medical dermatology practice, and their management along with relevant pharmacology of the commonly used analgesics.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shikha Shah
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sejal Jain
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwini Reddy
- Department of Anaesthesiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vaneet Singh
- Department of Opthalmology, Chesterfield Royal Hospital, Calow, Chesterfield, United Kingdom
| | - Deepesh Lad
- Department of Clinical Haematology and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshavamurthy Vinay
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
152
|
Fenech C, Winters BL, Otsu Y, Aubrey KR. Supraspinal glycinergic neurotransmission in pain: A scoping review of current literature. J Neurochem 2024; 168:3663-3684. [PMID: 39075923 DOI: 10.1111/jnc.16191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The neurotransmitter glycine is an agonist at the strychnine-sensitive glycine receptors. In addition, it has recently been discovered to act at two new receptors, the excitatory glycine receptor and metabotropic glycine receptor. Glycine's neurotransmitter roles have been most extensively investigated in the spinal cord, where it is known to play essential roles in pain, itch, and motor function. In contrast, less is known about supraspinal glycinergic functions, and their contributions to pain circuits are largely unrecognized. As glycinergic neurons are absent from cortical regions, a clearer understanding of how supraspinal glycine modulates pain could reveal new pharmacological targets. This review aims to synthesize the published research on glycine's role in the adult brain, highlighting regions where glycine signaling may modulate pain responses. This was achieved through a scoping review methodology identifying several key regions of supraspinal pain circuitry where glycine signaling is involved. Therefore, this review unveils critical research gaps for supraspinal glycine's potential roles in pain and pain-associated responses, encouraging researchers to consider glycinergic neurotransmission more widely when investigating neural mechanisms of pain.
Collapse
Affiliation(s)
- Caitlin Fenech
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yo Otsu
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
153
|
Kim H, Shim WS, Oh U. Anoctamin 1, a multi-modal player in pain and itch. Cell Calcium 2024; 123:102924. [PMID: 38964236 DOI: 10.1016/j.ceca.2024.102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.
Collapse
Affiliation(s)
- Hyungsup Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
154
|
Ashina H, Christensen RH, Hay DL, Pradhan AA, Hoffmann J, Reglodi D, Russo AF, Ashina M. Pituitary adenylate cyclase-activating polypeptide signalling as a therapeutic target in migraine. Nat Rev Neurol 2024; 20:660-670. [PMID: 39256637 DOI: 10.1038/s41582-024-01011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Migraine is a disabling neurological disorder that affects more than one billion people worldwide. The clinical presentation is characterized by recurrent headache attacks, which are often accompanied by photophobia, phonophobia, nausea and vomiting. Although the pathogenesis of migraine remains incompletely understood, mounting evidence suggests that specific signalling molecules are involved in the initiation and modulation of migraine attacks. These signalling molecules include pituitary adenylate cyclase-activating polypeptide (PACAP), a vasoactive peptide that is known to induce migraine attacks when administered by intravenous infusion to people with migraine. Discoveries linking PACAP to migraine pathogenesis have led to the development of drugs that target PACAP signalling, and a phase II trial has provided evidence that a monoclonal antibody against PACAP is effective for migraine prevention. In this Review, we explore the molecular and cellular mechanisms of PACAP signalling, shedding light on its role in the trigeminovascular system and migraine pathogenesis. We then discuss emerging therapeutic strategies that target PACAP signalling for the treatment of migraine and consider the research needed to translate the current knowledge into a treatment for migraine in the clinic.
Collapse
Affiliation(s)
- Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Rune H Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Amynah A Pradhan
- Center for Clinical Pharmacology, Department of Anaesthesiology, Washington University in St Louis, St Louis, MO, USA
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dora Reglodi
- Department of Anatomy, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Veterans Affairs Healthcare System, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Veterans Affairs Healthcare System, Iowa City, IA, USA
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
155
|
Kothari SF, Emborg C, Vase L. Placebo effects in neuropathic pain conditions. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:155-179. [PMID: 39580212 DOI: 10.1016/bs.irn.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Management of neuropathic pain is exceptionally challenging and development of new drugs and ways to optimize treatment effects in clinical practice are needed. Over the last decade, some of the mechanisms underlying placebo effects have been elucidated and some of the insights have the potential to improve the treatment for neuropathic pain. Research suggests that the increasing placebo responses observed in randomized controlled trials (RCTs) for neuropathic pain pose challenges for the development and availability of new effective pain medications. In neuropathic pain, these placebo responses are typically not controlled for the natural history of pain and other confounding factors. Thus, our knowledge about the magnitude and mechanisms of placebo effects in neuropathic pain is sparse. A few mechanistic studies investigating placebo effects by controlling for natural history of pain have found large placebo analgesia effects in neuropathic pain. Psychological factors such as expectations and emotions play a substantial role in inducing the placebo effects. Here, we review placebo effects and the psychological and neurobiological mechanisms contributing to the placebo effects. The knowledge obtained from studies of placebo mechanisms can help improve the information that can be obtained from RCTs and potentially improve development of new pain medications and optimize treatment of neuropathic pain in clinical practice.
Collapse
Affiliation(s)
- Simple Futarmal Kothari
- Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark; Hammel Neurorehabilitation Centre and University Research Clinic, Department of Clinical Medicine, Aarhus University, Hammel, Denmark.
| | - Christina Emborg
- Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Lene Vase
- Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
156
|
Santos AD, Oliveira AS, Carvalho MTB, Barreto AS, Quintans JDSS, Quintans Júnior LJ, Barreto RDSS. H. pectinata (L.) Poit - Traditional uses, phytochemistry and biological-pharmacological activities in preclinical studies: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118478. [PMID: 38909822 DOI: 10.1016/j.jep.2024.118478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE H. pectinata (L.) Poit, popularly known as "sambacaitá" or "canudinho", is a plant endemic to north-eastern Brazil. Its aerial parts, leaves and flowers have traditionally been used to treat gastrointestinal disorders, rhinopharyngitis, nasal congestion, bacterial and fungal infections, fever, colic, inflammation, and pain. AIM OF THE STUDY The aim of this review was to provide information on the botanical characteristics, ethnomedicinal uses, phytochemistry and biological-pharmacological activities of H. pectinata. MATERIALS AND METHODS This systematic review followed the Cochrane Handbook Collaboration and the PRISMA guidelines. The review question was what are the biological-pharmacological activities of H. pectinata presented in non-clinical studies. The search for articles was conducted in the Medline (via PubMed), Embase, Web of Science, Scopus, Virtual Health Library, SciELO, Google Scholar and the Brazilian Digital Library of Theses and Dissertations databases. Two reviewers independently selected the studies that met the inclusion criteria, extracted the data, and assessed the risk of bias of the included studies. RESULTS 39 articles were included in this review, of which 19 reported in vitro experiments, 16 in vivo studies and 4 in vivo and in vitro experiments. H. pectinata is a plant widely used in folk medicine in north-eastern Brazil for the treatment of various ailments, such as respiratory diseases, gastrointestinal disorders, bacterial and fungal infections, and general inflammation. Supporting its popular use, several in vitro and in vivo pharmacological investigations of the essential oil and extract of H. pectinata have demonstrated their anti-inflammatory, antinociceptive, antioxidant, antidepressant, anticancer, hepatoregenerative, healing, and antimicrobial activities. H. pectinata has been reported to contain 75 bioactive constituents, comprising 9 flavonoids, 54 terpenes, and 12 other compounds. CONCLUSION H. pectinata is a plant commonly used in traditional medicine. Phytochemically, it contains several bioactive constituents, including terpenes and flavonoids, and has been shown to have antinociceptive, anti-inflammatory, antimicrobial and antitumour activity, as well as hepatorregenerative and healing effects, and low toxicity.
Collapse
Affiliation(s)
- Adenilson Dos Santos
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Alan Santos Oliveira
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - André Sales Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo José Quintans Júnior
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Rosana de Souza Siqueira Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil.
| |
Collapse
|
157
|
Lu YY, Lin CY, Lu CC, Tsai HP, Wang WT, Zhang ZH, Wu CH. Bleomycin triggers chronic mechanical nociception by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals. Brain Res Bull 2024; 217:111081. [PMID: 39277019 DOI: 10.1016/j.brainresbull.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Chronic pain is a universal public health problem with nearly one third of global human involved, which causes significant distressing personal burden. After painful stimulus, neurobiological changes occur not only in peripheral nervous system but also in central nervous system where somatosensory cortex is important for nociception. Being an ion channel, transient receptor potential vanilloid 1 (TRPV1) act as an inflammatory detector in the brain. Thymic stromal lymphopoietin (TSLP) is a potent neuroinflammation mediator after nerve injury. Bleomycin is applied to treat dermatologic diseases, and its administration elicits local painful sensation. However, whether bleomycin administration can cause chronic pain remains unknown. In the present study, we aimed to investigate how mice develop chronic pain after receiving repeated bleomycin administration. In addition, the relevant neurobiological brain changes after noxious stimuli were clarified. C57BL/6 mice aged five- to six-weeks were randomly classified into two group, PBS (normal) group and bleomycin group which bleomycin was intradermally administered to back five times a week over a three-week period. Calibrated forceps testing was used to measure mouse pain threshold. Western blots were used to assess neuroinflammatory response; immunofluorescence assay was used to measure the status of neuron apoptosis, glial reaction, and neuro-glial communication. Bleomycin administration induced mechanical nociception and activated both TRPV1 and TSLP/TSLPR/pSTAT5 signals in mouse somatosensory cortex. Through these pathways, bleomycin not only activates glial reaction but also causes neuronal apoptosis. TRPV1 and TSLP/TSLPR/pSTAT5 signaling had co-labeled each other by immunofluorescence assay. Taken together, our study provides a new chronic pain model by repeated intradermal bleomycin injection by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chia-Yang Lin
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chun-Ching Lu
- Department of Orthopaedics and Traumatology, National Yang Ming Chiao Tung University Hospital, Yilan 260006, Taiwan; Department of Orthopaedics, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Wei-Ting Wang
- National Defense Medical Center, Department of Radiology, Tri-Service General Hospital, Taipei City 114202, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei 050700, PR China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
158
|
Liao C, Zhang W. Nerve decompression for diabetic peripheral neuropathy with nerve entrapment: a narrative review. Ther Adv Neurol Disord 2024; 17:17562864241265287. [PMID: 39411723 PMCID: PMC11475385 DOI: 10.1177/17562864241265287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/12/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes which primarily affects the sensory nervous system. Pain is the most common complaint that prompts patients to seek medical advice. With various presentations and intricate pathological mechanisms, diabetic peripheral neuropathic pain is currently the most crucial and challenging aspect of managing diabetic complications. As a heterogeneous disorder, there is no medication or treatment modality that is effective for all types of DPN and its associated neuropathic pain. Peripheral nerve decompression provides a new option for treating patients with diabetic peripheral neuropathic pain in the lower extremities. However, the clinical applicability of nerve decompression has been debated since it was first proposed. This review discusses the theoretical basis of nerve decompression, the clinical indications, and the progress of basic research based on the pathological mechanisms and nerve impairment patterns of diabetic peripheral neuropathic pain. The heterogeneity of DPN patients is summarized in terms of three aspects: complex pathophysiological mechanisms, multilevel nervous system involvement, and various nerve impairment properties. Identifying the presence of nerve entrapment among complex pathophysiological mechanisms is the key to successful outcomes. Tinel signs, focal pain, mechanical allodynia, and two-point discrimination were reported to be prognostic factors for good surgical outcomes, and their predictive ability might stem from their association with the early stage of entrapment neuropathy.
Collapse
Affiliation(s)
- Chenlong Liao
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Shanghai Zhizaoju Road, Huangpu District, Shanghai 200011, China
| |
Collapse
|
159
|
Chen D, Zhang Y, Zhou Y, Liang Z. Association of Short-term Pain and Chronic Pain Intensity With Cardiometabolic Multimorbidity Progression: A Multistate Markov Model Analysis. Anesth Analg 2024:00000539-990000000-00973. [PMID: 39383101 DOI: 10.1213/ane.0000000000007228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
BACKGROUND The impact of pain intensity on the progression trajectories of cardiometabolic multimorbidity (CMM) is not well understood. We attempted to dissect the relationship of short-term pain (STP) and chronic pain intensity with the temporal progression of CMM. METHODS We conducted a prospective cohort study based on the UK Biobank participants. Incident cases of cardiometabolic diseases (CMDs) were identified based on self-reported information and multiple health-related records in the UK Biobank. CMM was defined as the occurrence of at least 2 CMDs, including heart failure (HF), ischemic heart disease (IHD), stroke, and type 2 diabetes (T2D). The pain intensity was categorized into 5 levels based on pain duration and the number of sites involved, including chronic widespread pain (CWSP), chronic multilocation pain (CMLP), chronic single-location pain (CSLP), STP, and free-of-pain (FOP). Multistate models were used to assess the impact of pain intensity on the CMM trajectories from enrollment to initial cardiometabolic disease (ICMD), subsequently to CMM, and ultimately to death. RESULTS A total of 429,145 participants were included. Over the course of a 12.8-year median follow-up, 13.1% (56,137/429,145) developed ICMD, 19.6% (10,979/56,137) further progressed to CMM, and a total of 5.3% (22,775/429,145) died. Compared with FOP, CMLP (hazard ratio [HR], 1.11; 95% confidence interval [CI], 1.06-1.17) and CWSP (HR, 1.26; 95% CI, 1.13-1.42) elevated the risk of transitioning from ICMD to CMM. STP (HR, 0.89; 95% CI, 0.82-0.96), CSLP (HR, 0.88; 95% CI, 0.82-0.95), and CMLP (HR, 0.87; 95% CI, 0.81-0.93) lowered the risk of transition from ICMD to mortality, and STP also reduced the risk of transition from enrollment to mortality (HR, 0.94; 95% CI, 0.89-0.98). The results of disease-specific transitions revealed that the influence of pain intensity varied across transitional stages. Specifically, CMLP and CWSP heightened the risk of conversion from T2D or IHD to CMM, whereas only CWSP substantially elevated the transition risk from HF to CMM. CONCLUSIONS Our results highlighted reductions in chronic pain may mitigate both the onset and progression of CMM, potentially having an important impact on future revisions of cardiometabolic and pain-related guidelines.
Collapse
Affiliation(s)
- Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Yi Zhou
- Department of Third Research, Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Zhisheng Liang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
160
|
do Nascimento AM, Marques RB, Roldão AP, Rodrigues AM, Eslava RM, Dale CS, Reis EM, Schechtman D. Exploring protein-protein interactions for the development of new analgesics. Sci Signal 2024; 17:eadn4694. [PMID: 39378285 DOI: 10.1126/scisignal.adn4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain-containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
Collapse
Affiliation(s)
- Alexandre Martins do Nascimento
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Rauni Borges Marques
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Interunit Graduate Program in Bioinformatics, University of São Paulo, SP 05508-000, Brazil
| | - Allan Pradelli Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Rodrigo Mendes Eslava
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Camila Squarzoni Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Eduardo Moraes Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
161
|
Lindquist KA, Mecklenburg J, Hovhannisyan AH, Ruparel S, Akopian AN. Investigating Mechanically Activated Currents from Trigeminal Neurons of Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616876. [PMID: 39416195 PMCID: PMC11482751 DOI: 10.1101/2024.10.06.616876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Introduction Pain sensation has predominantly mechanical modalities in many pain conditions. Mechanically activated (MA) ion channels on sensory neurons underly responsiveness to mechanical stimuli. The study aimed to address gaps in knowledge regarding MA current properties in higher order species such as non-human primates (NHP; common marmosets), and characterization of MA currents in trigeminal (TG) neuronal subtypes. Methods We employed patch clamp electrophysiology and immunohistochemistry (IHC) to associate MA current types to different marmoset TG neuronal groups. TG neurons were grouped according to presumed marker expression, action potential (AP) width, characteristic AP features, after-hyperpolarization parameters, presence/absence of AP trains and transient outward currents, and responses to mechanical stimuli. Results Marmoset TG were clustered into 5 C-fiber and 5 A-fiber neuronal groups. The C1 group likely represent non-peptidergic C-nociceptors, the C2-C4 groups resembles peptidergic C-nociceptors, while the C5 group could be either cold-nociceptors or C-low-threshold-mechanoreceptors (C-LTMR). Among C-fiber neurons only C4 were mechanically responsive. The A1 and A2 groups are likely A-nociceptors, while the A3-A5 groups probably denote different subtypes of A-low-threshold-mechanoreceptors (A-LTMRs). Among A-fiber neurons only A1 was mechanically unresponsive. IHC data was correlated with electrophysiology results and estimates that NHP TG has ∼25% peptidergic C-nociceptors, ∼20% non-peptidergic C-nociceptors, ∼30% A-nociceptors, ∼5% C-LTMR, and ∼20% A-LTMR. Conclusion Overall, marmoset TG neuronal subtypes and their associated MA currents have common and unique properties compared to previously reported data. Findings from this study could be the basis for investigation on MA current sensitizations and mechanical hypersensitivity during head and neck pain conditions.
Collapse
|
162
|
Oweidat A, Kalagara H, Sondekoppam RV. Current concepts and targets for preventing the transition of acute to chronic postsurgical pain. Curr Opin Anaesthesiol 2024; 37:588-596. [PMID: 39087396 DOI: 10.1097/aco.0000000000001424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW It is estimated that approximately a third of patients undergoing certain surgeries may report some degree of persistent pain postoperatively. Chronic postsurgical pain (CPSP) reduces quality of life, is challenging to treat, and has significant socio-economic impact. RECENT FINDINGS From an epidemiological perspective, factors that predispose patients to the development of CPSP may be considered in relation to the patient, the procedure or, the care environment. Prevention or management of transition from acute to chronic pain often need a multidisciplinary approach beginning early in the preoperative period and continuing beyond surgical admission. The current concepts regarding the role of central and peripheral nervous systems in chronification of pain may provide targets for future therapies but, the current evidence seems to suggest that a multimodal analgesic approach of preventive analgesia along with a continued follow-up and treatment after hospital discharge may hold the key to identify and manage the transitioning of acute to chronic pain. SUMMARY A comprehensive multidisciplinary approach with prior identification of risk factors, minimizing the surgical insult and a culture of utilizing multimodal analgesia and continued surveillance beyond the period of hospitalization is an important step towards reducing the development of chronic pain. A transitional pain service model may accomplish many of these goals.
Collapse
Affiliation(s)
- Adeeb Oweidat
- Department of Anesthesia, University of Iowa Healthcare, Iowa City, Iowa
| | - Hari Kalagara
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
163
|
Chiu IM, Sokol CL. Neuroimmune recognition of allergens. Curr Opin Immunol 2024; 90:102458. [PMID: 39213825 PMCID: PMC11423315 DOI: 10.1016/j.coi.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Interactions between the nervous system and the immune system play crucial roles in initiating and directing the type 2 immune response. Sensory neurons can initiate innate and adaptive type 2 immunity through their ability to detect allergens and promote dendritic cell and mast cell responses. Neurons also indirectly promote type 2 inflammation through suppression of type 1 immune responses. Type 2 cytokines promote neuronal function by directly activating or sensitizing neurons. This positive neuroimmune feedback loop may not only enhance allergic inflammation but also promote the system-wide responses of aversion, anaphylaxis, and allergen polysensitization that are characteristic of allergic immunity.
Collapse
Affiliation(s)
- Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
164
|
Nierula B, Stephani T, Bailey E, Kaptan M, Pohle LMG, Horn U, Mouraux A, Maess B, Villringer A, Curio G, Nikulin VV, Eippert F. A multichannel electrophysiological approach to noninvasively and precisely record human spinal cord activity. PLoS Biol 2024; 22:e3002828. [PMID: 39480757 PMCID: PMC11527246 DOI: 10.1371/journal.pbio.3002828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024] Open
Abstract
The spinal cord is of fundamental importance for integrative processing in brain-body communication, yet routine noninvasive recordings in humans are hindered by vast methodological challenges. Here, we overcome these challenges by developing an easy-to-use electrophysiological approach based on high-density multichannel spinal recordings combined with multivariate spatial-filtering analyses. These advances enable a spatiotemporal characterization of spinal cord responses and demonstrate a sensitivity that permits assessing even single-trial responses. To furthermore enable the study of integrative processing along the neural processing hierarchy in somatosensation, we expand this approach by simultaneous peripheral, spinal, and cortical recordings and provide direct evidence that bottom-up integrative processing occurs already within the spinal cord and thus after the first synaptic relay in the central nervous system. Finally, we demonstrate the versatility of this approach by providing noninvasive recordings of nociceptive spinal cord responses during heat-pain stimulation. Beyond establishing a new window on human spinal cord function at millisecond timescale, this work provides the foundation to study brain-body communication in its entirety in health and disease.
Collapse
Affiliation(s)
- Birgit Nierula
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tilman Stephani
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Emma Bailey
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Lisa-Marie Geertje Pohle
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Burkhard Maess
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Curio
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Vadim V. Nikulin
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
165
|
Lee SH, Bonifacio F, Prudente AS, Choi YI, Roh J, Adjafre BL, Park CK, Jung SJ, Cunha TM, Berta T. STING recognition of viral dsDNA by nociceptors mediates pain in mice. Brain Behav Immun 2024; 121:29-42. [PMID: 39025416 DOI: 10.1016/j.bbi.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Pain is often one of the initial indicators of a viral infection, yet our understanding of how viruses induce pain is limited. Immune cells typically recognize viral nucleic acids, which activate viral receptors and signaling, leading to immunity. Interestingly, these viral receptors and signals are also present in nociceptors and are associated with pain. Here, we investigate the response of nociceptors to nucleic acids during viral infections, specifically focusing on the role of the viral signal, Stimulator of Interferon Genes (STING). Our research shows that cytosolic double-stranded DNA (dsDNA) from viruses, like herpes simplex virus 1 (HSV-1), triggers pain responses through STING expression in nociceptors. In addition, STING agonists alone can elicit pain responses. Notably, these responses involve the direct activation of STING in nociceptors through TRPV1. We also provided a proof-of-concept showing that STING and TRPV1 significantly contribute to the mechanical hypersensitivity induced by HSV-1 infection. These findings suggest that STING could be a potential therapeutic target for relieving pain during viral infections.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Fabio Bonifacio
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Y I Choi
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Beatriz Lima Adjafre
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung Jun Jung
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
166
|
Zhao Y, Zhang Z, Gou D, Li P, Yang T, Niu Z, Simon JP, Guan X, Li X, He C, Dong S. Intrathecal administration of MCRT produced potent antinociception in chronic inflammatory pain models via μ-δ heterodimer with limited side effects. Biomed Pharmacother 2024; 179:117389. [PMID: 39243426 DOI: 10.1016/j.biopha.2024.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
An important goal in the opioid field is to discover effective analgesic drugs with minimal side effects. MCRT demonstrated potent antinociceptive effects with limited side effects, making it a promising candidate. However, its pharmacological properties and how it minimizes side effects remain unknown. Various mouse pain and opioid side effect models were used to evaluate the antinociceptive properties and safety at the spinal level. The targets of MCRT were identified through cAMP measurement, isolated tissue assays, and pharmacological experiments. Immunofluorescence was employed to visualize protein expression. MCRT displayed distinct antinociceptive effects between acute and chronic inflammatory pain models due to its multifunctional properties at the μ opioid receptor (MOR), µ-δ heterodimer (MDOR), and neuropeptide FF receptor 2 (NPFFR2). Activation of NPFFR2 reduced MOR-mediated antinociception, leading to bell-shaped response curves in acute pain models. However, activation of MDOR produced more effective antinociception in chronic inflammatory pain models. MCRT showed limited tolerance and opioid-induced hyperalgesia in both acute and chronic pain models and did not develop cross-tolerance to morphine. Additionally, MCRT did not exhibit addictive properties, gastrointestinal inhibition, and effects on motor coordination. Mechanistically, peripheral chronic inflammation or repeated administration of morphine and MCRT induced an increase in MDOR in the spinal cord. Chronic administration of MCRT had no apparent effect on microglial activation in the spinal cord. These findings suggest that MCRT is a versatile compound that provides potent antinociception with minimal opioid-related side effects. MDOR could be a promising target for managing chronic inflammatory pain and addressing the opioid crisis.
Collapse
MESH Headings
- Animals
- Injections, Spinal
- Chronic Pain/drug therapy
- Receptors, Opioid, mu/metabolism
- Mice
- Male
- Inflammation/drug therapy
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Disease Models, Animal
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Mice, Inbred C57BL
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Morphine/administration & dosage
- Morphine/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Hyperalgesia/drug therapy
- Humans
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
Collapse
Affiliation(s)
- Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Dingnian Gou
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pengtao Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jerine Peter Simon
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xuyan Guan
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xinyu Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chunbo He
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
167
|
Hu N, Liu J, Luo Y, Li Y. A comprehensive review of traditional Chinese medicine in treating neuropathic pain. Heliyon 2024; 10:e37350. [PMID: 39296122 PMCID: PMC11407996 DOI: 10.1016/j.heliyon.2024.e37350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Neuropathic pain (NP) is a common, intractable chronic pain caused by nerve dysfunction and primary lesion of the nervous system. The etiology and pathogenesis of NP have not yet been clarified, so there is a lack of precise and effective clinical treatments. In recent years, traditional Chinese medicine (TCM) has shown increasing advantages in alleviating NP. Our review aimed to define the therapeutic effect of TCM (including TCM prescriptions, TCM extracts and natural products from TCM) on NP and reveal the underlying mechanisms. Literature from 2018 to 2024 was collected from databases including Web of Science, PubMed, ScienceDirect, Google academic and CNKI databases. Herbal medicine, Traditional Chinese medicines (TCM), neuropathic pain, neuralgia and peripheral neuropathy were used as the search terms. The anti-NP activity of TCM is clarified to propose strategies for discovering active compounds against NP, and provide reference to screen anti-NP drugs from TCM. We concluded that TCM has the characteristics of multi-level, multi-component, multi-target and multi-pathway, which can alleviate NP through various pathways such as anti-inflammation, anti-oxidant, anti-apoptotic pathway, regulating autophagy, regulating intestinal flora, and influencing ion channels. Based on the experimental study and anti-NP mechanism of TCM, this paper can offer analytical evidence to support the effectiveness in treating NP. These references will be helpful to the research and development of innovative TCM with multiple levels and multiple targets. TCM can be an effective treatment for NP and can serve as a treasure house for new drug development.
Collapse
Affiliation(s)
- Naihua Hu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Jie Liu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yong Luo
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
168
|
Kim J, Gim S, Yoo SBM, Woo CW. A computational mechanism of cue-stimulus integration for pain in the brain. SCIENCE ADVANCES 2024; 10:eado8230. [PMID: 39259795 PMCID: PMC11389792 DOI: 10.1126/sciadv.ado8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
The brain integrates information from pain-predictive cues and noxious inputs to construct the pain experience. Although previous studies have identified neural encodings of individual pain components, how they are integrated remains elusive. Here, using a cue-induced pain task, we examined temporal functional magnetic resonance imaging activities within the state space, where axes represent individual voxel activities. By analyzing the features of these activities at the large-scale network level, we demonstrated that overall brain networks preserve both cue and stimulus information in their respective subspaces within the state space. However, only higher-order brain networks, including limbic and default mode networks, could reconstruct the pattern of participants' reported pain by linear summation of subspace activities, providing evidence for the integration of cue and stimulus information. These results suggest a hierarchical organization of the brain for processing pain components and elucidate the mechanism for their integration underlying our pain perception.
Collapse
Affiliation(s)
- Jungwoo Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Suhwan Gim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Seng Bum Michael Yoo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Department of Neurosurgery and McNair Scholar Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| |
Collapse
|
169
|
Xing Y, Yang K, Lu A, Mackie K, Guo F. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0160. [PMID: 39282019 PMCID: PMC11395709 DOI: 10.34133/cbsystems.0160] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Personalized pain medicine aims to tailor pain treatment strategies for the specific needs and characteristics of an individual patient, holding the potential for improving treatment outcomes, reducing side effects, and enhancing patient satisfaction. Despite existing pain markers and treatments, challenges remain in understanding, detecting, and treating complex pain conditions. Here, we review recent engineering efforts in developing various sensors and devices for addressing challenges in the personalized treatment of pain. We summarize the basics of pain pathology and introduce various sensors and devices for pain monitoring, assessment, and relief. We also discuss advancements taking advantage of rapidly developing medical artificial intelligence (AI), such as AI-based analgesia devices, wearable sensors, and healthcare systems. We believe that these innovative technologies may lead to more precise and responsive personalized medicine, greatly improved patient quality of life, increased efficiency of medical systems, and reducing the incidence of addiction and substance use disorders.
Collapse
Affiliation(s)
- Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Albert Lu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
- Culver Academies High School, Culver, IN 46511, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
170
|
García-Domínguez M. Chronic pain in the elderly: Exploring cellular and molecular mechanisms and therapeutic perspectives. FRONTIERS IN AGING 2024; 5:1477017. [PMID: 39328834 PMCID: PMC11424521 DOI: 10.3389/fragi.2024.1477017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Chronic pain is a debilitating condition frequently observed in the elderly, involving numerous pathological mechanisms within the nervous system. Diminished local blood flow, nerve degeneration, variations in fiber composition, alterations in ion channels and receptors, accompanied by the sustained activation of immune cells and release of pro-inflammatory cytokines, lead to overactivation of the peripheral nervous system. In the central nervous system, chronic pain is strongly associated with the activation of glial cells, which results in central sensitization and increased pain perception. Moreover, age-related alterations in neural plasticity and disruptions in pain inhibitory pathways can exacerbate chronic pain in older adults. Finally, the environmental influences on the development of chronic pain in the elderly must be considered. An understanding of these mechanisms is essential for developing novel treatments for chronic pain, which can significantly improve the quality of life for this vulnerable population.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
171
|
Lian N, Li F, Zhou C, Yin Y, Kang Y, Luo K, Lui S, Li T, Lu P. Protein phosphatase 2Cm-regulated branched-chain amino acid catabolic defect in dorsal root ganglion neurons drives pain sensitization. Acta Neuropathol Commun 2024; 12:147. [PMID: 39256776 PMCID: PMC11385486 DOI: 10.1186/s40478-024-01856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Maladaptive changes of metabolic patterns in the lumbar dorsal root ganglion (DRG) are critical for nociceptive hypersensitivity genesis. The accumulation of branched-chain amino acids (BCAAs) in DRG has been implicated in mechanical allodynia and thermal hyperalgesia, but the exact mechanism is not fully understood. This study aimed to explore how BCAA catabolism in DRG modulates pain sensitization. Wildtype male mice were fed a high-fat diet (HFD) for 8 weeks. Adult PP2Cmfl/fl mice of both sexes were intrathecally injected with pAAV9-hSyn-Cre to delete the mitochondrial targeted 2 C-type serine/threonine protein phosphatase (PP2Cm) in DRG neurons. Here, we reported that BCAA catabolism was impaired in the lumbar 4-5 (L4-L5) DRGs of mice fed a high-fat diet (HFD). Conditional deletion of PP2Cm in DRG neurons led to mechanical allodynia, heat and cold hyperalgesia. Mechanistically, the genetic knockout of PP2Cm resulted in the upregulation of C-C chemokine ligand 5/C-C chemokine receptor 5 (CCL5/CCR5) axis and an increase in transient receptor potential ankyrin 1 (TRPA1) expression. Blocking the CCL5/CCR5 signaling or TRPA1 alleviated pain behaviors induced by PP2Cm deletion. Thus, targeting BCAA catabolism in DRG neurons may be a potential management strategy for pain sensitization.
Collapse
Affiliation(s)
- Nan Lian
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fangzhou Li
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yan Yin
- Department of Pain Management, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yi Kang
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Kaiteng Luo
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- West China Hospital, Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, Sichuan, China.
| | - Peilin Lu
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- West China Hospital, Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
172
|
Suárez-Suárez C, González-Pérez S, Márquez-Miranda V, Araya-Duran I, Vidal-Beltrán I, Vergara S, Carvacho I, Hinostroza F. The Endocannabinoid Peptide RVD-Hemopressin Is a TRPV1 Channel Blocker. Biomolecules 2024; 14:1134. [PMID: 39334900 PMCID: PMC11430712 DOI: 10.3390/biom14091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Neurotransmission is critical for brain function, allowing neurons to communicate through neurotransmitters and neuropeptides. RVD-hemopressin (RVD-Hp), a novel peptide identified in noradrenergic neurons, modulates cannabinoid receptors CB1 and CB2. Unlike hemopressin (Hp), which induces anxiogenic behaviors via transient receptor potential vanilloid 1 (TRPV1) activation, RVD-Hp counteracts these effects, suggesting that it may block TRPV1. This study investigates RVD-Hp's role as a TRPV1 channel blocker using HEK293 cells expressing TRPV1-GFP. Calcium imaging and patch-clamp recordings demonstrated that RVD-Hp reduces TRPV1-mediated calcium influx and TRPV1 ion currents. Molecular docking and dynamics simulations indicated that RVD-Hp interacts with TRPV1's selectivity filter, forming stable hydrogen bonds and van der Waals contacts, thus preventing ion permeation. These findings highlight RVD-Hp's potential as a therapeutic agent for conditions involving TRPV1 activation, such as pain and anxiety.
Collapse
Affiliation(s)
- Constanza Suárez-Suárez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Sebastián González-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Isabel Vidal-Beltrán
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Sebastián Vergara
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Ingrid Carvacho
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
173
|
Joshi PR, Adhikari S, Onah C, Carrier C, Judd A, Mack M, Baral P. Lung-innervating nociceptor sensory neurons promote pneumonic sepsis during carbapenem-resistant Klebsiella pneumoniae lung infection. SCIENCE ADVANCES 2024; 10:eadl6162. [PMID: 39241063 PMCID: PMC11378917 DOI: 10.1126/sciadv.adl6162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes Gram-negative lung infections and fatal pneumonic sepsis for which limited therapeutic options are available. The lungs are densely innervated by nociceptor sensory neurons that mediate breathing, cough, and bronchoconstriction. The role of nociceptors in defense against Gram-negative lung pathogens is unknown. Here, we found that lung-innervating nociceptors promote CRKP pneumonia and pneumonic sepsis. Ablation of nociceptors in mice increased lung CRKP clearance, suppressed trans-alveolar dissemination of CRKP, and protected mice from hypothermia and death. Furthermore, ablation of nociceptors enhanced the recruitment of neutrophils and Ly6Chi monocytes and cytokine induction. Depletion of Ly6Chi monocytes, but not of neutrophils, abrogated lung and extrapulmonary CRKP clearance in ablated mice, suggesting that Ly6Chi monocytes are a critical cellular population to regulate pneumonic sepsis. Further, neuropeptide calcitonin gene-related peptide suppressed the induction of reactive oxygen species in Ly6Chi monocytes and their CRKP-killing abilities. Targeting nociceptor signaling could be a therapeutic approach for treating multidrug-resistant Gram-negative infection and pneumonic sepsis.
Collapse
Affiliation(s)
- Prabhu Raj Joshi
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sandeep Adhikari
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem Onah
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Camille Carrier
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Abigail Judd
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthias Mack
- Department of Nephrology, Regensburg University Medical Center, Regensburg 93042, Germany
| | - Pankaj Baral
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
174
|
Pan LLH, Chen SP, Ling YH, Wang YF, Lai KL, Liu HY, Chen WT, Huang WJ, Coppola G, Treede RD, Wang SJ. Salivary Testosterone Levels and Pain Perception Exhibit Sex-Specific Association in Healthy Adults But Not in Patients With Migraine. THE JOURNAL OF PAIN 2024; 25:104575. [PMID: 38788888 DOI: 10.1016/j.jpain.2024.104575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
This study investigated the sex-specific associations between pain perception and testosterone levels in healthy controls (HCs) and patients with migraine. Male and female HCs and migraine patients were recruited. A series of questionnaires were completed by the participants to evaluate their psychosocial profiles, which included data on mood, stress, and sleep quality. Heat pain thresholds and suprathreshold pain ratings at 45 °C (referred to as the pain perception score [PPS]) were assessed using the Thermode system. Salivary testosterone levels were analyzed using a commercial enzyme-linked immunosorbent assay kit. A total of 88 HCs (men/women: 41/47, age: 29.9 ± 7.7 years) and 75 migraine patients (men/women: 30/45, age: 31.1 ± 7.7 years) completed all assessments. No significant differences were observed in either the psychosocial profiles or heat pain thresholds and PPSs between the sexes in the control and migraine groups. A positive correlation between testosterone levels and PPSs was identified in the male controls (r = .341, P = .029), whereas a negative correlation was identified in the female controls (r = -.407, P = .005). No such correlations were identified in the migraine group. This study confirms that a negative association is present between PPSs and testosterone levels in female controls, which is in line with the findings that testosterone is associated with reduced pain perception. Our study is the first to demonstrate a sex-specific association between PPSs and testosterone levels in HCs. Moreover, this study also revealed that the presence of migraine appears to disrupt this association. PERSPECTIVE: This study revealed that testosterone levels demonstrate opposite associations with pain perception in healthy men and women. However, the presence of migraine appears to disrupt this sex-specific association.
Collapse
Affiliation(s)
- Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Hsiang Ling
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Feng Wang
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan-Lin Lai
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Yu Liu
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan
| | - William J Huang
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Gianluca Coppola
- Department of Medico‑Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Rolf-Detlef Treede
- Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
175
|
Li Y, Jiang Z, Zuo W, Huang C, Zhao J, Liu P, Wang J, Guo J, Zhang X, Wang M, Lu Y, Hou W, Wang Q. Sexual dimorphic distribution of G protein-coupled receptor 30 in pain-related regions of the mouse brain. J Neurochem 2024; 168:2423-2442. [PMID: 37924265 DOI: 10.1111/jnc.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Sex differences in pain sensitivity have contributed to the fact that medications for curing chronic pain are unsatisfactory. However, the underlying mechanism remains to be elucidated. Brain-derived estrogen participates in modulation of sex differences in pain and related emotion. G protein-coupled receptor 30 (GPR30), identified as a novel estrogen receptor with a different distribution than traditional receptors, has been proved to play a vital role in regulating pain affected by estrogen. However, the contribution of its distribution to sexually dimorphic pain-related behaviors has not been fully explored. In the current study, immunofluorescence assays were applied to mark the neurons expressing GPR30 in male and female mice (in metestrus and proestrus phase) in pain-related brain regions. The neurons that express CaMKIIα or VGAT were also labeled to observe overlap with GPR30. We found that females had more GPR30-positive (GPR30+) neurons in the primary somatosensory (S1) and insular cortex (IC) than males. In the lateral habenula (LHb) and the nucleus tractus solitarius (NTS), males had more GPR30+ neurons than females. Moreover, within the LHb, the expression of GPR30 varied with estrous cycle phase; females in metestrus had fewer GPR30+ neurons than those in proestrus. In addition, females had more GPR30+ neurons, which co-expressed CaMKIIα in the medial preoptic nucleus (mPOA) than males, while males had more than females in the basolateral complex of the amygdala (BLA). These findings may partly explain the different modulatory effects of GPR30 in pain and related emotional phenotypes between sexes and provide a basis for comprehension of sexual dimorphism in pain related to estrogen and GPR30, and finally provide new targets for exploiting new treatments of sex-specific pain.
Collapse
Affiliation(s)
- You Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chenchen Huang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Peizheng Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jingzhi Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
176
|
Abdelaziz MA, Chen WH, Chang YW, Mindaye SA, Chen CC. Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain. PNAS NEXUS 2024; 3:pgae362. [PMID: 39228816 PMCID: PMC11370897 DOI: 10.1093/pnasnexus/pgae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2+) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2+ neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Mohamed Abbas Abdelaziz
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Zoology Department, Faculty of Science, Al-Azhar University Assiut Branch, Assiut 71524, Egypt
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Selomon Assefa Mindaye
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
177
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
178
|
Manske S. The Microbiome's Role in Chronic Pain and Inflammation. Integr Med (Encinitas) 2024; 23:10-15. [PMID: 39355413 PMCID: PMC11441585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Context Pain is a universal experience, one that is meant to protect people from further harm or injury, and chronic pain is prominent worldwide. Inflammation plays a central role in chronic pain. Objective The review intended to examine the epidemiology of chronic pain, the ways in which inflammation contributes to it, and the microbiome's role in it, evaluating the function of the oral microbiome and dietary factors. Results The inflammatory response plays a pivotal role in the transition from acute to chronic pain, with various mediators orchestrating a cascade of events that perpetuate pain signaling and sensitization. The microbiome interacts directly with the immune system and plays a fundamental role in addressing inflammation and chronic pain. Dysbiosis within the gut and oral microbiota can fuel systemic inflammation, exacerbating pain symptoms and influencing pain perception through the gut-brain axis. Additionally, microbial metabolites can influence immune function, reducing or perpetuating inflammation, which can further affect the experience of pain. Dietary factors also contribute significantly to inflammation and pain, and poor nutritional choices can exacerbate immune responses and trigger low-grade inflammation, perpetuating chronic-pain conditions. Conclusions Moving forward, a holistic approach to chronic pain management is imperative, addressing not only the symptoms but also the underlying inflammatory processes and systemic contributors. Embracing interdisciplinary collaboration and personalized treatment tailored to the individual patient's needs will be essential in alleviating chronic pain and improving overall quality of life. Through continued research and clinical innovation, healthcare practitioners can work towards more effective and compassionate care for those living with chronic pain.
Collapse
Affiliation(s)
- Shawn Manske
- Assistant Director of Clinical Education, Biocidin Botanicals, Watsonville CA, USA
| |
Collapse
|
179
|
Wang J, Zhu X, Wu Y. Mer activation ameliorates nerve injury-induced neuropathic pain by regulating microglial polarization and neuroinflammation via SOCS3 in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7037-7050. [PMID: 38639897 DOI: 10.1007/s00210-024-03070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
Accumulating evidence has demonstrated that M1 microglial polarization and neuroinflammation worsen the development of neuropathic pain. However, the mechanisms underlying microglial activation during neuropathic pain remain incompletely understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), which is a member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, plays a crucial role in the regulation of microglial polarization. However, the effect of Mer on microglial polarization during neuropathic pain has not been determined. In this study, western blotting, immunofluorescence analysis, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA) were used to examine the role of Mer in pain hypersensitivity and microglial polarization in rats with chronic constriction injury (CCI) of the sciatic nerve. The results indicated that Mer expression in microglia was prominently increased in the spinal cords of rats subjected to CCI. Furthermore, treatment with recombinant protein S (PS, an activator of Mer) alleviated mechanical allodynia and thermal hyperalgesia, promoted the switch in microglia from the M1 phenotype to the M2 phenotype, and ameliorated neuroinflammation in rats subjected to CCI. However, the use of suppressor of cytokine signalling 3 (SOCS3) siRNA abolished these changes. These results indicated that Mer regulated M1/M2 microglial polarization and neuroinflammation and may be a potential target for treating neuropathic pain.
Collapse
Affiliation(s)
- Jingqiong Wang
- Health Science Center, Yangtze University, JingZhou, Hubei province, China
- HuangGang Central hospital of Yangtze University, HuangGang, Hubei province, China
| | - Xuanzhi Zhu
- HuangGang Central hospital of Yangtze University, HuangGang, Hubei province, China
| | - Yaohua Wu
- HuangGang Central hospital of Yangtze University, HuangGang, Hubei province, China.
| |
Collapse
|
180
|
O'Malley CA, Smith SA, Mauger AR, Norbury R. Exercise-induced pain within endurance exercise settings: Definitions, measurement, mechanisms and potential interventions. Exp Physiol 2024; 109:1446-1460. [PMID: 38985528 PMCID: PMC11363130 DOI: 10.1113/ep091687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Pain can be defined as an unpleasant sensory and emotional experience associated with or resembling that associated with actual or potential tissue damage. Though consistent with this definition, different types of pain result in different behavioural and psychophysiological responses. For example, the transient, non-threatening, acute muscle pain element of exercise-induced pain (EIP) is entirely different from other pain types like delayed onset muscle soreness, muscular injury or chronic pain. However, studies often conflate the definitions or assume parity between distinct pain types. Consequently, the mechanisms through which pain might impact exercise behaviour across different pain subcategories may be incorrectly assumed, which could lead to interventions or recommendations that are inappropriate. Therefore, this review aims to distinguish EIP from other subcategories of pain according to their aetiologies and characteristics, thereby providing an updated conceptual and operational definition of EIP. Secondly, the review will discuss the experimental pain models currently used across several research domains and their relevance to EIP with a focus on the neuro-psychophysiological mechanisms of EIP and its effect on exercise behaviour and performance. Finally, the review will examine potential interventions to cope with the impact of EIP and support wider exercise benefits. HIGHLIGHTS: What is the topic of this review? Considerations for future research focusing on exercise-induced pain within endurance exercise settings. What advances does it highlight? An updated appraisal and guide of research concerning exercise-induced pain and its impact on endurance task behaviour, particularly with reference to the aetiology, measurement, and manipulation of exercise-induced pain.
Collapse
Affiliation(s)
- Callum A. O'Malley
- School of Sport, Exercise, and Nutritional SciencesUniversity of ExeterExeterUK
| | - Samuel A. Smith
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - Alexis R. Mauger
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - Ryan Norbury
- Faculty of Sport, Technology, and Health SciencesSt Mary's UniversityTwickenhamUK
| |
Collapse
|
181
|
Crane J, Zhang W, Otte A, Barik S, Wan M, Cao X. Slit3 by PTH-Induced Osteoblast Secretion Repels Sensory Innervation in Spine Porous Endplates to Relieve Low Back Pain. RESEARCH SQUARE 2024:rs.3.rs-4823095. [PMID: 39257984 PMCID: PMC11384799 DOI: 10.21203/rs.3.rs-4823095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
During aging, the spine undergoes degenerative changes, particularly with vertebral endplate bone expansion and sclerosis, that is associated with nonspecific low back pain (LBP). We reported that parathyroid hormone (PTH) treatment could reduce vertebral endplate sclerosis and improve pain behaviors in aging, SM/J and young lumbar spine instability (LSI) mice. Aberrant innervation noted in the vertebral body and endplate during spinal degeneration was reduced with PTH treatment in aging and LSI mice as quantified by PGP9.5+ and CGRP+ nerve fibers, as well as CGRP expression in dorsal root ganglia (DRG). The neuronal repulsion factor Slit3 significantly increased in response to PTH treatment mediated by transcriptional factor FoxA2. PTH type1 receptor (PPR) and Slit3 deletion in osteoblasts prevented PTH-reduction of endplate porosity and improvement in behavior tests, whereas PPR deletion in chondrocytes continued to respond to PTH. Altogether, PTH stimulates Slit3 to repel sensory nerve innervation and provides symptomatic relief of LBP associated with spinal degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Cao
- Johns Hopkins University School of Medicine
| |
Collapse
|
182
|
Qin Y, Chen X, Yu Z, Zhou X, Wang Y, Li Q, Dai W, Zhang Y, Wang S, Fan Y, Xiao J, Su D, Jiao Y, Yu W. Spinal RAMP1-mediated neuropathic pain sensitisation in the aged mice through the modulation of CGRP-CRLR pain signalling. Heliyon 2024; 10:e35862. [PMID: 39224276 PMCID: PMC11367041 DOI: 10.1016/j.heliyon.2024.e35862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Pain sensitivity varies depending on both the state and age of an individual. For example, chronic pain is more common in older individuals, but the underlying mechanisms remain unknown. This study revealed that 18-month-old mice (aged) experienced more severe and long-lasting allodynia and hyperalgesia in the chronic constriction injury (CCI)-induced pain state compared to 2-month-old mice. Interestingly, the aged mice had a higher baseline mechanical pain threshold than the adult mice. The expression of spinal receptor-active modification protein 1 (RAMP1), as a key component and regulator of the calcitonin gene-related peptide (CGRP) receptor for nociceptive transmission from the periphery to the spinal cord, was reduced in the physiological state but significantly increased after CCI in the aged mice compared to the adult mice. Moreover, when RAMP1 was knocked down using shRNA, the pain sensitivity of adult mice decreased significantly, and CCI-induced allodynia in aged mice was reduced. These findings suggest that spinal RAMP1 is involved in regulating pain sensitivity in a state- and age-dependent manner. Additionally, interfering with RAMP1 could be a promising strategy for alleviating chronic pain in older individuals.
Collapse
Affiliation(s)
- Yi Qin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Zhangjie Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Xiaoxin Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yihao Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Qi Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Wanbing Dai
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yizhe Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Sa Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| |
Collapse
|
183
|
Montagnoli TL, Santos AD, Sudo SZ, Gubert F, Vasques JF, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Perspectives on Stem Cell Therapy in Diabetic Neuropathic Pain. Neurol Int 2024; 16:933-944. [PMID: 39311343 PMCID: PMC11417725 DOI: 10.3390/neurolint16050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus-related morbidity and mortality are primarily caused by long-term complications such as retinopathy, nephropathy, cardiomyopathy, and neuropathy. Diabetic neuropathy (DN) involves the progressive degeneration of axons and nerve fibers due to chronic exposure to hyperglycemia. This metabolic disturbance leads to excessive activation of the glycolytic pathway, inducing oxidative stress and mitochondrial dysfunction, ultimately resulting in nerve damage. There is no specific treatment for painful DN, and new approaches should aim not only to relieve pain but also to prevent oxidative stress and reduce inflammation. Given that existing therapies for painful DN are not effective for diabetic patients, mesenchymal stromal cells (MSCs)-based therapy shows promise for providing immunomodulatory and paracrine regulatory functions. MSCs from various sources can improve neuronal dysfunction associated with DN. Transplantation of MSCs has led to a reduction in hyperalgesia and allodynia, along with the recovery of nerve function in diabetic rats. While the pathogenesis of diabetic neuropathic pain is complex, clinical trials have demonstrated the importance of MSCs in modulating the immune response in diabetic patients. MSCs reduce the levels of inflammatory factors and increase anti-inflammatory cytokines, thereby interfering with the progression of DM. Further investigation is necessary to ensure the safety and efficacy of MSCs in preventing or treating neuropathic pain in diabetic patients.
Collapse
Affiliation(s)
- Tadeu Lima Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Aimeé Diogenes Santos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Susumu Zapata Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
| | - Fernanda Gubert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Mauro Paes Leme de Sá
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
184
|
Secondulfo C, Mazzeo F, Pastorino GMG, Vicidomini A, Meccariello R, Operto FF. Opioid and Cannabinoid Systems in Pain: Emerging Molecular Mechanisms and Use in Clinical Practice, Health, and Fitness. Int J Mol Sci 2024; 25:9407. [PMID: 39273354 PMCID: PMC11394805 DOI: 10.3390/ijms25179407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pain is an unpleasant sensory and emotional experience. Adequate pain control is often challenging, particularly in patients with chronic pain. Despite advances in pain management, drug addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies in the field. The substantial progress made over the last decade has revealed genes, signalling pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsivant and ansiolitic effects and supports its potential application in clinical contexts such as cancer, neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain management in clinical practice, health, and fitness.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| | - Grazia Maria Giovanna Pastorino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Child and Adolescent Neuropsychiatry Unit, "San Giovanni di Dio e Ruggi d'Aragona" Hospital, 84131 Salerno, Italy
| | - Antonella Vicidomini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Felicia Operto
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
185
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 PMCID: PMC11967275 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
186
|
Sendetski M, Wedel S, Furutani K, Hahnefeld L, Angioni C, Heering J, Zimmer B, Pierre S, Banica AM, Scholich K, Tunaru S, Geisslinger G, Ji RR, Sisignano M. Oleic acid released by sensory neurons inhibits TRPV1-mediated thermal hypersensitivity via GPR40. iScience 2024; 27:110552. [PMID: 39171292 PMCID: PMC11338150 DOI: 10.1016/j.isci.2024.110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Noxious stimuli activate nociceptive sensory neurons, causing action potential firing and the release of diverse signaling molecules. Several peptides have already been identified to be released by sensory neurons and shown to modulate inflammatory responses and inflammatory pain. However, it is still unclear whether lipid mediators can be released upon sensory neuron activation to modulate intercellular communication. Here, we analyzed the lipid secretome of capsaicin-stimulated nociceptive neurons with LC-HRMS, revealing that oleic acid is strongly released from sensory neurons by capsaicin. We further demonstrated that oleic acid inhibits capsaicin-induced calcium transients in sensory neurons and reverses bradykinin-induced TRPV1 sensitization by a calcineurin (CaN) and GPR40 (FFAR1) dependent pathway. Additionally, oleic acid alleviated zymosan-mediated thermal hypersensitivity via the GPR40, suggesting that the capsaicin-mediated oleic acid release from sensory neurons acts as a protective and feedback mechanism, preventing sensory neurons from nociceptive overstimulation via the GPR40/CaN/TRPV1-axis.
Collapse
Affiliation(s)
- Maksim Sendetski
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Saskia Wedel
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Kenta Furutani
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lisa Hahnefeld
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Carlo Angioni
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Béla Zimmer
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Sandra Pierre
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Alexandra-Maria Banica
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Klaus Scholich
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Sorin Tunaru
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Gerd Geisslinger
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Marco Sisignano
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| |
Collapse
|
187
|
Castejón J, Chen F, Yasoda-Mohan A, Ó Sé C, Vanneste S. Chronic pain - A maladaptive compensation to unbalanced hierarchical predictive processing. Neuroimage 2024; 297:120711. [PMID: 38942099 DOI: 10.1016/j.neuroimage.2024.120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
The ability to perceive pain presents an interesting evolutionary advantage to adapt to an ever-changing environment. However, in the case of chronic pain (CP), pain perception hinders the capacity of the system to adapt to changing sensory environments. Similar to other chronic perceptual disorders, CP is also proposed to be a maladaptive compensation to aberrant sensory predictive processing. The local-global oddball paradigm relies on learning hierarchical rules and processing environmental irregularities at a local and global level. Prediction errors (PE) between actual and predicted input typically trigger an update of the forward model to limit the probability of encountering future PEs. It has been hypothesised that CP hinders forward model updating, reflected in increased local deviance and decreased global deviance. In the present study, we used the local-global paradigm to examine how CP influences hierarchical learning relative to healthy controls. As hypothesised, we observed that deviance in the stimulus characteristics evoked heightened local deviance and decreased global deviance of the stimulus-driven PE. This is also accompanied by respective changes in theta phase locking that is correlated with the subjective pain perception. Changes in the global deviant in the stimulus-driven-PE could also be explained by dampened attention-related responses. Changing the context of the auditory stimulus did not however show a difference in the context-driven PE. These findings suggest that CP is accompanied by maladaptive forward model updating where the constant presence of pain perception disrupts local deviance in non-nociceptive domains. Furthermore, we hypothesise that the auditory-processing based biomarker identified here could be a marker of domain-general dysfunction that could be confirmed by future research.
Collapse
Affiliation(s)
- Jorge Castejón
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Senior MSK Physiotherapist CompassPhysio LTD, Ireland
| | - Feifan Chen
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Colum Ó Sé
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
188
|
Jin D, Yang H, Chen Z, Hong Y, Ma H, Xu Z, Cao B, Fei F, Zhang Y, Wu W, Tang L, Sun R, Wang C, Li J. Effect of the novel anti-NGF monoclonal antibody DS002 on the metabolomics of pain mediators, cartilage and bone. Front Pharmacol 2024; 15:1396790. [PMID: 39188953 PMCID: PMC11345146 DOI: 10.3389/fphar.2024.1396790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
The anti-nerve growth factor antibody class of drugs interrupts signaling by blocking NGF binding to TrkA receptors for the treatment of pain; however, this target class of drugs has been associated with serious adverse effects in the joints during clinical trials. DS002 is a novel anti-nerve growth factor antibody drug independently developed by Guangdong Dashi Pharmaceuticals. The main purpose of this study is to explore the correlation between DS002 and pain as well as cartilage and bone metabolism with the help of metabolomics technology and the principle of enzyme-linked reaction, and to examine whether DS002 will produce serious adverse effects in joints caused by its same target class of drugs, in order to provide more scientific basis for the safety and efficacy of DS002. Our results showed that DS002 mainly affected the metabolism of aromatic amino acids and other metabolites, of which six metabolites, l -phenylalanine, 5-hydroxytryptophan, 5-hydroxytryptamine hydrochloride, 3-indolepropionic acid, kynuric acid, and kynurenine, were significantly altered, which may be related to the effectiveness of DS002 in treating pain. In addition, there were no significant changes in biological indicators related to cartilage and bone metabolism in vivo, suggesting that DS002 would not have a significant effect on cartilage and bone metabolism, so we hypothesize that DS002 may not produce the serious adverse effects in joints caused by its fellow target analogs. Therefore, the Anti-NGF analgesic drug DS002 has the potential to become a promising drug in the field of analgesia, providing pain patients with an efficient treatment option without adverse effects.
Collapse
Affiliation(s)
- Dandan Jin
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoyi Yang
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyou Chen
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Hong
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hehua Ma
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhenzhen Xu
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bei Cao
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fei Fei
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuwen Zhang
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Weitao Wu
- Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, China
| | - Lei Tang
- Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, China
| | - Runbin Sun
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Chunhe Wang
- Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, China
| | - Juan Li
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
189
|
Chen C, Niehaus JK, Dinc F, Huang KL, Barnette AL, Tassou A, Shuster SA, Wang L, Lemire A, Menon V, Ritola K, Hantman AW, Zeng H, Schnitzer MJ, Scherrer G. Neural circuit basis of placebo pain relief. Nature 2024; 632:1092-1100. [PMID: 39048016 PMCID: PMC11358037 DOI: 10.1038/s41586-024-07816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.
Collapse
Affiliation(s)
- Chong Chen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fatih Dinc
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
| | - Karen L Huang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander L Barnette
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Andrew Shuster
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrew Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Kimberly Ritola
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W Hantman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mark J Schnitzer
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
190
|
Pagliusi M, Amorim-Marques AP, Lobo MK, Guimarães FS, Lisboa SF, Gomes FV. The rostral ventromedial medulla modulates pain and depression-related behaviors caused by social stress. Pain 2024; 165:1814-1823. [PMID: 38661577 DOI: 10.1097/j.pain.0000000000003257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 04/26/2024]
Abstract
ABSTRACT The rostral ventromedial medulla (RVM) is a crucial structure in the descending pain modulatory system, playing a key role as a relay for both the facilitation and inhibition of pain. The chronic social defeat stress (CSDS) model has been widely used to study stress-induced behavioral impairments associated with depression in rodents. Several studies suggest that CSDS also causes changes related to chronic pain. In this study, we aimed to investigate the involvement of the RVM in CSDS-induced behavioral impairments, including those associated with chronic pain. We used chemogenetics to activate or inhibit the RVM during stress. The results indicated that the RVM is a vital hub influencing stress outcomes. Rostral ventromedial medulla activation during CSDS ameliorates all the stress outcomes, including social avoidance, allodynia, hyperalgesia, anhedonia, and behavioral despair. In addition, RVM inhibition in animals exposed to a subthreshold social defeat stress protocol induces a susceptible phenotype, facilitating all stress outcomes. Finally, chronic RVM inhibition-without any social stress stimulus-induces chronic pain but not depressive-like behaviors. Our findings provide insights into the comorbidity between chronic pain and depression by indicating the involvement of the RVM in establishing social stress-induced behavioral responses associated with both chronic pain and depression.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anna P Amorim-Marques
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sabrina F Lisboa
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
191
|
Xie MX, Rao JH, Tian XY, Liu JK, Li X, Chen ZY, Cao Y, Chen AN, Shu HH, Zhang XL. ATF4 inhibits TRPV4 function and controls itch perception in rodents and nonhuman primates. Pain 2024; 165:1840-1859. [PMID: 38422489 DOI: 10.1097/j.pain.0000000000003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao-Yu Tian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Kun Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Xiao Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Zi-Yi Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Yan Cao
- College of Food Science and Technology, Hainan University, Haikou, China
| | - An-Nan Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Hai-Hua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Long Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
192
|
Li Y, Kong E, Ding R, Chu R, Lu J, Deng M, Hua T, Yang M, Wang H, Chen D, Song H, Wei H, Zhang P, Han C, Yuan H. Hyperglycemia-induced Sirt3 downregulation increases microglial aerobic glycolysis and inflammation in diabetic neuropathic pain pathogenesis. CNS Neurosci Ther 2024; 30:e14913. [PMID: 39123294 PMCID: PMC11315676 DOI: 10.1111/cns.14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Hyperglycemia-induced neuroinflammation significantly contributes to diabetic neuropathic pain (DNP), but the underlying mechanisms remain unclear. OBJECTIVE To investigate the role of Sirt3, a mitochondrial deacetylase, in hyperglycemia-induced neuroinflammation and DNP and to explore potential therapeutic interventions. METHOD AND RESULTS Here, we found that Sirt3 was downregulated in spinal dorsal horn (SDH) of diabetic mice by RNA-sequencing, which was further confirmed at the mRNA and protein level. Sirt3 deficiency exacerbated hyperglycemia-induced neuroinflammation and DNP by enhancing microglial aerobic glycolysis in vivo and in vitro. Overexpression of Sirt3 in microglia alleviated inflammation by reducing aerobic glycolysis. Mechanistically, high-glucose stimulation activated Akt, which phosphorylates and inactivates FoxO1. The inactivation of FoxO1 diminished the transcription of Sirt3. Besides that, we also found that hyperglycemia induced Sirt3 degradation via the mitophagy-lysosomal pathway. Blocking Akt activation by GSK69093 or metformin rescued the degradation of Sirt3 protein and transcription inhibition of Sirt3 mRNA, which substantially diminished hyperglycemia-induced inflammation. Metformin in vivo treatment alleviated neuroinflammation and diabetic neuropathic pain by rescuing hyperglycemia-induced Sirt3 downregulation. CONCLUSION Hyperglycemia induces metabolic reprogramming and inflammatory activation in microglia through the regulation of Sirt3 transcription and degradation. This novel mechanism identifies Sirt3 as a potential drug target for treating DNP.
Collapse
Affiliation(s)
- Yongchang Li
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Erliang Kong
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouHenanChina
| | - Ruifeng Ding
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Ruitong Chu
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Jinfang Lu
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Mengqiu Deng
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Tong Hua
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Mei Yang
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Haowei Wang
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Dashuang Chen
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Honghao Song
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Huawei Wei
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Ping Zhang
- Department of Neurology, Naval Medical Center of PLANaval Medical UniversityShanghaiChina
| | - Chaofeng Han
- Department of Histology and Embryology, Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghaiChina
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
| | - Hongbin Yuan
- Department of Anesthesiology, Shanghai Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
193
|
Favarin A, Becker G, Brum ES, Serafini PT, Marquezin LP, Brusco I, Oliveira SM. Topical diosmetin attenuates nociception and inflammation in a ultraviolet B radiation-induced sunburn model in mice. Inflammopharmacology 2024; 32:2295-2304. [PMID: 38907857 DOI: 10.1007/s10787-024-01507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Burns are a global health problem and can be caused by several factors, including ultraviolet (UV) radiation. Exposure to UVB radiation can cause sunburn and a consequent inflammatory response characterised by pain, oedema, inflammatory cell infiltration, and erythema. Pharmacological treatments available to treat burns and the pain caused by them include nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, antimicrobials and glucocorticoids, which are associated with adverse effects. Therefore, the search for new therapeutic alternatives is needed. Diosmetin, an aglycone of the flavonoid diosmin, has antinociceptive, antioxidant and anti-inflammatory properties. Thus, we evaluated the antinociceptive and anti-inflammatory effects of topical diosmetin (0.01, 0.1 and 1%) in a UVB radiation-induced sunburn model in mice. The right hind paw of the anaesthetised mice was exposed only once to UVB radiation (0.75 J/cm2) and immediately treated with diosmetin once a day for 5 days. The diosmetin antinociceptive effect was evaluated by mechanical allodynia and pain affective-motivational behaviour, while its anti-inflammatory activity was assessed by measuring paw oedema and polymorphonuclear cell infiltration. Mice exposed to UVB radiation presented mechanical allodynia, increased pain affective-motivational behaviour, paw oedema and polymorphonuclear cell infiltration into the paw tissue. Topical Pemulen® TR2 1% diosmetin reduced the mechanical allodynia, the pain affective-motivational behaviour, the paw oedema and the number of polymorphonuclear cells in the mice's paw tissue similar to that presented by Pemulen® TR2 0.1% dexamethasone. These findings indicate that diosmetin has therapeutic potential and may be a promising strategy for treating patients experiencing inflammatory pain, especially those associated with sunburn.
Collapse
Affiliation(s)
- Amanda Favarin
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Patrick Tuzi Serafini
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lara Panazzolo Marquezin
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Indiara Brusco
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Environmental Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Sara Marchesan Oliveira
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
194
|
Tasma Z, Rees TA, Guo S, Tan S, O'Carroll SJ, Faull RLM, Curtis MA, Christensen SL, Hay DL, Walker CS. Pharmacology of PACAP and VIP receptors in the spinal cord highlights the importance of the PAC 1 receptor. Br J Pharmacol 2024; 181:2655-2675. [PMID: 38616050 DOI: 10.1111/bph.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.
Collapse
MESH Headings
- Animals
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/agonists
- Humans
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
- Mice
- Rats
- Signal Transduction/drug effects
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
- Cells, Cultured
- Rats, Sprague-Dawley
- Male
- Mice, Inbred C57BL
- Cyclic AMP/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Sarah L Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
195
|
Satbayeva E, Zhumakova S, Khaiitova M, Kemelbekov U, Tursunkhodzhaeva F, Azamatov A, Tursymbek S, Sabirov V, Nurgozhin T, Yu V, Seilkhanov T. Experimental study of local anesthetic and antiarrhythmic activities of fluorinated ethynylpiperidine derivatives. Braz J Med Biol Res 2024; 57:e13429. [PMID: 39082579 PMCID: PMC11290815 DOI: 10.1590/1414-431x2024e13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/02/2024] [Indexed: 08/02/2024] Open
Abstract
The chemical structure of piperidine has a unique ability to combine with other molecular fragments. This fact makes it possible to actively use it as an effective basis for the creation of new drug-like substances. Thus, the aim of the current investigation was to study the acute toxicity, local anesthetic potency, and antiarrhythmic activity of the two new synthesized piperidine derivatives under laboratory codes LAS-286 and LAS-294 (local anesthetic substances). The Bulbring & Wajda animal model and method of determining the nociception threshold during electrical stimulation was used to investigate the action of the substance during infiltration anesthesia. An antiarrhythmic activity was observed by the aconitine-induced rat arrhythmia model. Additionally, these compounds were studied in relation to molecular docking to delineate the structure-activity relationships. The tested piperidine derivatives had a low toxicity in the subcutaneous and intravenous administration routes. The experimental results showed a higher prolonged and pronounced local anesthetic activity for LAS-286 at a 0.5% concentration, compared to the reference preparations. The low dosage of 0.1 mg/kg of LAS-294 demonstrated a pronounced preventive antiarrhythmic effect in 90% of cases on the development of mixed arrhythmia, caused by aconitine. The results of molecular docking confirmed a higher binding affinity of the tested piperidines with the Nav1.4 and Nav1.5 macromolecules. The results of the present study are very promising, because these piperidines have shown a high biological activity, which can suggest a potential therapeutic application in the future.
Collapse
Affiliation(s)
- E.M. Satbayeva
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - S.S. Zhumakova
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
| | - M.D. Khaiitova
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - U.S. Kemelbekov
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
- Research Laboratory of Medicinal Plants, South Kazakhstan Medical Academy, Shymkent, Republic of Kazakhstan
| | - F.M. Tursunkhodzhaeva
- Department of Pharmacology and Toxicology, S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - A.A. Azamatov
- Department of Pharmacology and Toxicology, S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Sh.N. Tursymbek
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - V.Kh. Sabirov
- Laboratory of Structural Chemistry, Tashkent State Technical University, Tashkent, Republic of Uzbekistan
| | - T.S. Nurgozhin
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - V.K. Yu
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
| | - T.M. Seilkhanov
- Laboratory of Engineering Profile NMR Spectroscopy, Shokan Ualikhanov Kokshetau University, Kokshetau, Republic of Kazakhstan
| |
Collapse
|
196
|
Nonaka K, Nakamura M, Noda M, Yamaga T, Jang IS, Akaike N. Synaptic effects of xenon on NMDA receptor-mediated response in rat spinal neuron. Neurosci Lett 2024; 836:137885. [PMID: 38914276 DOI: 10.1016/j.neulet.2024.137885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
To investigate the precise mechanism of xenon (Xe), pharmacologically isolated AMPA/KA and NMDA receptor-mediated spontaneous (s) and evoked (e) excitatory postsynaptic currents (s/eEPSCAMPA/KA and s/eEPSCNMDA) were recorded from mechanically isolated single spinal sacral dorsal commissural nucleus (SDCN) neurons attached with glutamatergic nerve endings (boutons) using conventional whole-cell patch-clamp technique. We analysed kinetic properties of both s/eEPSCAMPA/KA and s/eEPSCNMDA by focal single- and/or paired-pulse electrical stimulation to compare them. The s/eEPSCNMDA showed smaller amplitude, slower rise time, and slower 1/e decay time constant (τDecay) than those of s/eEPSCAMPA/KA. We previously examined how Xe modulates s/eEPSCAMPA/KA, therefore, examined the effects on s/eEPSCNMDA in the present study. Xe decreased the frequency and amplitude of sEPSCNMDA, and decreased the amplitude but increased the failure rate and paired-pulse ratio of eEPSCNMDA without affecting their τDecay. It was concluded that Xe might suppress NMDA receptor-mediated synaptic transmission via both presynaptic and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Kiku Nonaka
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto 861-5598, Japan
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu 41940, Republic of Korea
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto 861-5598, Japan
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu 41940, Republic of Korea
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan.
| |
Collapse
|
197
|
Li Y, Zhang B, Xu J, Jiang X, Jing L, Tian Y, Wang K, Zhang J. Inhibiting the JNK Signaling Pathway Attenuates Hypersensitivity and Anxiety-Like Behavior in a Rat Model of Non-specific Chronic Low Back Pain. J Mol Neurosci 2024; 74:73. [PMID: 39046556 DOI: 10.1007/s12031-024-02252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Low back pain (LBP) has become a leading cause of disability worldwide. Astrocyte activation in the spinal cord plays an important role in the maintenance of latent sensitization of dorsal horn neurons in LBP. However, the role of spinal c-Jun N-terminal kinase (JNK) in astrocytes in modulating pain behavior of LBP model rats and its neurobiological mechanism have not been elucidated. Here, we investigate the role of the JNK signaling pathway on hypersensitivity and anxiety-like behavior caused by repetitive nerve growth factor (NGF) injections in male non-specific LBP model rats. LBP was produced by two injections (day 0, day 5) of NGF into multifidus muscle of the low backs of rats. We observed prolonged mechanical and thermal hypersensitivity in the low backs or hindpaws. Persistent anxiety-like behavior was observed, together with astrocyte, p-JNK, and neuronal activation and upregulated expression of monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 1 (CXCL1) proteins in the spinal L2 segment. Second, the JNK inhibitor SP600125 was intrathecally administrated in rats from day 10 to day 12. It attenuated mechanical and thermal hypersensitivity of the low back or hindpaws and anxiety-like behavior. Meanwhile, SP600125 decreased astrocyte and neuronal activation and the expression of MCP-1 and CXCL1 proteins. These results showed that hypersensitivity and anxiety-like behavior induced by NGF in LBP rats could be attenuated by the JNK inhibitor, together with downregulation of spinal astrocyte activation, neuron activation, and inflammatory cytokines. Our results indicate that intervening with the spinal JNK signaling pathway presents an effective therapeutic approach to alleviating LBP.
Collapse
Affiliation(s)
- Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Bingyu Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Jie Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230000, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China.
| |
Collapse
|
198
|
Bavencoffe A, Zhu MY, Neerukonda SV, Johnson KN, Dessauer CW, Walters ET. Induction of long-term hyperexcitability by memory-related cAMP signaling in isolated nociceptor cell bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603393. [PMID: 39071414 PMCID: PMC11275899 DOI: 10.1101/2024.07.13.603393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator, forskolin, induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 hours later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and indications of reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, and protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. An interesting possibility is that these mechanisms can also be reactivated by re-exposure to inflammatory mediators such as serotonin during subsequent challenges to bodily integrity, "reconsolidating" the cellular memory and thereby extending the duration of persistent nociceptor hyperexcitability.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Michael Y. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Sanjay V. Neerukonda
- Medical Scientist Training Program, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| |
Collapse
|
199
|
Botvinik-Nezer R, Petre B, Ceko M, Lindquist MA, Friedman NP, Wager TD. Placebo treatment affects brain systems related to affective and cognitive processes, but not nociceptive pain. Nat Commun 2024; 15:6017. [PMID: 39019888 PMCID: PMC11255344 DOI: 10.1038/s41467-024-50103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Drug treatments for pain often do not outperform placebo, and a better understanding of placebo mechanisms is needed to improve treatment development and clinical practice. In a large-scale fMRI study (N = 392) with pre-registered analyses, we tested whether placebo analgesic treatment modulates nociceptive processes, and whether its effects generalize from conditioned to unconditioned pain modalities. Placebo treatment caused robust analgesia in conditioned thermal pain that generalized to unconditioned mechanical pain. However, placebo did not decrease pain-related fMRI activity in brain measures linked to nociceptive pain, including the Neurologic Pain Signature (NPS) and spinothalamic pathway regions, with strong support for null effects in Bayes Factor analyses. In addition, surprisingly, placebo increased activity in some spinothalamic regions for unconditioned mechanical pain. In contrast, placebo reduced activity in a neuromarker associated with higher-level contributions to pain, the Stimulus Intensity Independent Pain Signature (SIIPS), and affected activity in brain regions related to motivation and value, in both pain modalities. Individual differences in behavioral analgesia were correlated with neural changes in both modalities. Our results indicate that cognitive and affective processes primarily drive placebo analgesia, and show the potential of neuromarkers for separating treatment influences on nociception from influences on evaluative processes.
Collapse
Affiliation(s)
- Rotem Botvinik-Nezer
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Bogdan Petre
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Marta Ceko
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
200
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603149. [PMID: 39071304 PMCID: PMC11275762 DOI: 10.1101/2024.07.13.603149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuro-immune cell signaling but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal capsaicin via IL-1α cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the same animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by the intradermal (id) Complete Freund's Adjuvant (CFA) model of chronic neuroinflammation that involves ongoing cytokine signaling for days. Ongoing CFA-induced cytokine signaling cascades in skin lead to pronounced edema, and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in skin is required for the full development and week-long time course of heat hypersensitivity induced by id CFA. CaV2.2 channels, by contrast, are not involved in paw edema and mechanical hypersensitivity. CFA induced increases in cytokines in hind paws including IL-6 which was dependent on CaV2.2 channel activity. Using IL-6 specific neutralizing antibodies, we show that IL-6 contributes to heat hypersensitivity and, neutralizing both IL-1α and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| |
Collapse
|