151
|
Deshmukh AS, Peijs L, Beaudry JL, Jespersen NZ, Nielsen CH, Ma T, Brunner AD, Larsen TJ, Bayarri-Olmos R, Prabhakar BS, Helgstrand C, Severinsen MCK, Holst B, Kjaer A, Tang-Christensen M, Sanfridson A, Garred P, Privé GG, Pedersen BK, Gerhart-Hines Z, Nielsen S, Drucker DJ, Mann M, Scheele C. Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine. Cell Metab 2019; 30:963-975.e7. [PMID: 31668873 DOI: 10.1016/j.cmet.2019.10.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Adipokines secreted from white adipose tissue play a role in metabolic crosstalk and homeostasis, whereas the brown adipose secretome is less explored. We performed high-sensitivity mass-spectrometry-based proteomics on the cell media of human adipocytes derived from the supraclavicular brown adipose and from the subcutaneous white adipose depots of adult humans. We identified 471 potentially secreted proteins covering interesting categories such as hormones, growth factors, extracellular matrix proteins, and proteins of the complement system, which were differentially regulated between brown and white adipocytes. A total of 101 proteins were exclusively quantified in brown adipocytes, and among these was ependymin-related protein 1 (EPDR1). EPDR1 was detected in human plasma, and functional studies suggested a role for EPDR1 in thermogenic determination during adipogenesis. In conclusion, we report substantial differences between the secretomes of brown and white human adipocytes and identify novel candidate batokines that can be important regulators of human metabolism.
Collapse
Affiliation(s)
- Atul S Deshmukh
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacqueline L Beaudry
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Naja Z Jespersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carsten H Nielsen
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen 2200, Denmark; Minerva Imaging ApS, Copenhagen 2200, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Andreas D Brunner
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Therese J Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen 2100, Denmark
| | - Bhargav S Prabhakar
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Mai C K Severinsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen 2200, Denmark
| | | | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen 2100, Denmark
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
152
|
Frankl J, Sherwood A, Clegg DJ, Scherer PE, Öz OK. Imaging Metabolically Active Fat: A Literature Review and Mechanistic Insights. Int J Mol Sci 2019; 20:E5509. [PMID: 31694216 PMCID: PMC6862590 DOI: 10.3390/ijms20215509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and functions similar to classical brown and beige adipose tissue in mice. Despite extensive research, human brown/beige fat's role in resistance to obesity in humans has not yet been fully delineated. FDG uptake is the de facto gold standard imaging technique when studying brown adipose tissue, although it has not been rigorously compared to other techniques. We, therefore, present a concise review of established and emerging methods to image brown adipose tissue activity in humans. Reviewed modalities include anatomic imaging with CT and magnetic resonance imaging (MRI); molecular imaging with FDG, fatty acids, and acetate; and emerging techniques. FDG-PET/CT is the most commonly used modality because of its widespread use in cancer imaging, but there are mechanistic reasons to believe other radiotracers may be more sensitive and accurate at detecting brown adipose tissue activity. Radiation-free modalities may help the longitudinal study of brown adipose tissue activity in the future.
Collapse
Affiliation(s)
- Joseph Frankl
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Deborah J. Clegg
- College of Nursing and Health Professions, Drexel University, 10th Floor, Room 1092, 1601 Cherry Street, Mail Stop 10501, Philadelphia, PA 19102, USA;
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| |
Collapse
|
153
|
Brychta RJ, Huang S, Wang J, Leitner BP, Hattenbach JD, Bell SL, Fletcher LA, Perron Wood R, Idelson CR, Duckworth CJ, McGehee S, Courville AB, Bernstein SB, Reitman ML, Cypess AM, Chen KY. Quantification of the Capacity for Cold-Induced Thermogenesis in Young Men With and Without Obesity. J Clin Endocrinol Metab 2019; 104:4865-4878. [PMID: 31150063 PMCID: PMC6733495 DOI: 10.1210/jc.2019-00728] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/24/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Cold exposure increases energy expenditure (EE) and could have a role in combating obesity. To understand this potential, we determined the capacity for cold-induced thermogenesis (CIT), the EE increase above the basal metabolic rate at the individualized coldest tolerable temperature before overt shivering. DESIGN During a 13-day inpatient protocol, we quantitated the EE of 12 lean men and 9 men with obesity at various randomly ordered ambient temperatures in a room calorimeter. Subjects underwent brown fat imaging after exposure to their coldest tolerable temperature. RESULTS CIT capacity was 300 ± 218 kcal/d (mean ± SD) or 17 ± 11% in lean men and 125 ± 146 kcal/d or 6 ± 7% in men with obesity (P = 0.01). The temperature below which EE increased, lower critical temperature (Tlc), was warmer in lean men than men with obesity (22.9 ± 1.2 vs 21.1 ± 1.7°C, P = 0.03), but both had similar skin temperature (Tskin) changes and coldest tolerable temperatures. Whereas lean subjects had higher brown fat activity, skeletal muscle activity increased synchronously with CIT beginning at the Tlc in both groups, indicating that muscle is recruited for CIT in parallel with brown fat, not sequentially after nonshivering thermogenesis is maximal. CONCLUSIONS Despite greater insulation from fat, men with obesity had a narrower range of tolerable cool temperatures available for increasing EE and less capacity for CIT than lean men, likely as a result of greater basal heat production and similar perception to Tskin cooling. Further study of the reduced CIT capacity in men with obesity may inform treatment opportunities for obesity.
Collapse
Affiliation(s)
- Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
- Correspondence and Reprint Requests: Robert J. Brychta, PhD, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Building 10, Room 5-5740, Bethesda, Maryland 20892. E-mail:
| | - Shan Huang
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Juan Wang
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Brooks P Leitner
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jacob D Hattenbach
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah L Bell
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Laura A Fletcher
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rachel Perron Wood
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christopher R Idelson
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Courtney J Duckworth
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Suzanne McGehee
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Amber B Courville
- Nutrition Department, Hatfield Clinical Research Center, National Institutes of Health, Bethesda, Maryland
| | - Shanna B Bernstein
- Nutrition Department, Hatfield Clinical Research Center, National Institutes of Health, Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
154
|
Coolbaugh CL, Damon BM, Bush EC, Welch EB, Towse TF. Cold exposure induces dynamic, heterogeneous alterations in human brown adipose tissue lipid content. Sci Rep 2019; 9:13600. [PMID: 31537877 PMCID: PMC6753098 DOI: 10.1038/s41598-019-49936-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/22/2019] [Indexed: 01/28/2023] Open
Abstract
Brown adipose tissue undergoes a dynamic, heterogeneous response to cold exposure that can include the simultaneous synthesis, uptake, and oxidation of fatty acids. The purpose of this work was to quantify these changes in brown adipose tissue lipid content (fat-signal fraction (FSF)) using fat-water magnetic resonance imaging during individualized cooling to 3 °C above a participant's shiver threshold. Eight healthy men completed familiarization, perception-based cooling, and MRI-cooling visits. FSF maps of the supraclavicular region were acquired in thermoneutrality and during cooling (59.5 ± 6.5 min). Brown adipose tissue regions of interest were defined, and voxels were grouped into FSF decades (0-10%, 10-20%…90-100%) according to their initial value. Brown adipose tissue contained a heterogeneous morphology of lipid content. Voxels with initial FSF values of 60-100% (P < 0.05) exhibited a significant decrease in FSF while a simultaneous increase in FSF occurred in voxels with initial FSF values of 0-30% (P < 0.05). These data suggest that in healthy young men, cold exposure elicits a dynamic and heterogeneous response in brown adipose tissue, with areas initially rich with lipid undergoing net lipid loss and areas of low initial lipid undergoing a net lipid accumulation.
Collapse
Affiliation(s)
- Crystal L Coolbaugh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce M Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Emily C Bush
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Theodore F Towse
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Sciences, Grand Valley State, Allendale, MI, USA
| |
Collapse
|
155
|
Abstract
Transcriptional co-activator Prdm16 controls brown fat development and white fat browning, but how this thermogenic function is modulated post-translationally is poorly understood. Here, we report that Cbx4, a Polycomb group protein, is a SUMO E3 ligase for Prdm16 and that Cbx4-mediated sumoylation of Prdm16 is required for thermogenic gene expression. Cbx4 expression is enriched in brown fat and is induced in adipose tissue by acute cold exposure. Sumoylation of Prdm16 at lysine 917 by Cbx4 blocks its ubiquitination-mediated degradation, thereby augmenting its stability and thermogenic function. Moreover, this sumoylation event primes Prdm16 to be further stabilized by methyltransferase Ehmt1. Heterozygous Cbx4-knockout mice develop metabolic phenotypes resembling those of Prdm16-knockout mice. Furthermore, fat-specific Cbx4 knockdown and overexpression produce remarkable, opposite effects on white fat remodeling. Our results identify a modifying enzyme for Prdm16, and they demonstrate a central role of Cbx4 in the control of Prdm16 stability and white fat browning.
Collapse
Affiliation(s)
- Qingbo Chen
- Department of Molecular, Cell and Cancer Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yong-Xu Wang
- Department of Molecular, Cell and Cancer Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
156
|
Sun L, Verma S, Michael N, Chan SP, Yan J, Sadananthan SA, Camps SG, Goh HJ, Govindharajulu P, Totman J, Townsend D, Goh JPN, Sun L, Boehm BO, Lim SC, Sze SK, Henry CJ, Hu HH, Velan SS, Leow MKS. Brown Adipose Tissue: Multimodality Evaluation by PET, MRI, Infrared Thermography, and Whole-Body Calorimetry (TACTICAL-II). Obesity (Silver Spring) 2019; 27:1434-1442. [PMID: 31301122 PMCID: PMC6899540 DOI: 10.1002/oby.22560] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to compare the associations of positron emission tomography (PET), magnetic resonance (MR), and infrared thermography (IRT) imaging modalities with energy expenditure (EE) after brown adipose tissue (BAT) activation using capsinoid ingestion and cold exposure. METHODS Twenty participants underwent PET-MR, IRT imaging, and whole-body calorimetry after capsinoid ingestion and cold exposure. Standardized uptake values (SUV) and the fat fraction (FF) of the supraclavicular brown adipose tissue regions were estimated. The anterior supraclavicular temperature (Tscv) from IRT at baseline and postintervention was measured. Two-hour post-capsinoid ingestion EE and post-cold exposure EE served as a reference to correlate fluorodeoxyglucose uptake, FF, and Tscv for BAT assessment. IRT images were geometrically transformed to overlay on PET-MR for visualization of the hottest regions. RESULTS The supraclavicular hot spot identified on IRT closely corresponded to the area of maximal fluorodeoxyglucose uptake on PET images. Controlling for body weight, post-cold exposure Tscv was a significant variable associated with EE (P = 0.025). The SUV was significantly inversely correlated with FF (P = 0.012) and significantly correlated with peak of Tscv during cold exposure in BAT-positive participants (P = 0.022). CONCLUSIONS Tscv correlated positively with EE and was also significantly correlated with SUV after cold exposure. Both IRT and MR FF are promising methods to study BAT activity noninvasively.
Collapse
Affiliation(s)
- Lijuan Sun
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Sanjay Verma
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Navin Michael
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Siew Pang Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore
- College of Science, Health, and Engineering, La Trobe University, Melbourne, Australia
| | - Jianhua Yan
- Molecular Imaging Precision Medicine Collaborative Innovation Center, Shanxi Medical University, Taiyuan, China
| | - Suresh Anand Sadananthan
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Stefan G Camps
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Hui Jen Goh
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Priya Govindharajulu
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - John Totman
- Clinical Imaging Research Centre, Agency for Science, Technology, and Research, National University of Singapore, Singapore
| | - David Townsend
- Clinical Imaging Research Centre, Agency for Science, Technology, and Research, National University of Singapore, Singapore
| | | | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Bernhard Otto Boehm
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- Imperial College London, London, UK
| | - Su Chi Lim
- Department of Medicine, Khoo Teck Puat Hospital, Singapore
| | - Siew Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Houchun Harry Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Physiology, National University of Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
157
|
Lundström E, Ljungberg J, Andersson J, Manell H, Strand R, Forslund A, Bergsten P, Weghuber D, Mörwald K, Zsoldos F, Widhalm K, Meissnitzer M, Ahlström H, Kullberg J. Brown adipose tissue estimated with the magnetic resonance imaging fat fraction is associated with glucose metabolism in adolescents. Pediatr Obes 2019; 14:e12531. [PMID: 31290284 PMCID: PMC6771901 DOI: 10.1111/ijpo.12531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite therapeutic potential against obesity and diabetes, the associations of brown adipose tissue (BAT) with glucose metabolism in young humans are relatively unexplored. OBJECTIVES To investigate possible associations between magnetic resonance imaging (MRI) estimates of BAT and glucose metabolism, whilst considering sex, age, and adiposity, in adolescents with normal and overweight/obese phenotypes. METHODS In 143 subjects (10-20 years), MRI estimates of BAT were assessed as cervical-supraclavicular adipose tissue (sBAT) fat fraction (FF) and T2* from water-fat MRI. FF and T2* of neighbouring subcutaneous adipose tissue (SAT) were also assessed. Adiposity was estimated with a standardized body mass index, the waist-to-height ratio, and abdominal visceral and subcutaneous adipose tissue volumes. Glucose metabolism was represented by the 2h plasma glucose concentration, the Matsuda index, the homeostatic model assessment of insulin resistance, and the oral disposition index; obtained from oral glucose tolerance tests. RESULTS sBAT FF and T2* correlated positively with adiposity before and after adjustment for sex and age. sBAT FF, but not T2* , correlated with 2h glucose and Matsuda index, also after adjustment for sex, age, and adiposity. The association with 2h glucose persisted after additional adjustment for SAT FF. CONCLUSIONS The association between sBAT FF and 2h glucose, observed independently of sex, age, adiposity, and SAT FF, indicates a role for BAT in glucose metabolism, which potentially could influence the risk of developing diabetes. The lacking association with sBAT T2* might be due to FF being a superior biomarker for BAT and/or to methodological limitations in the T2* quantification.
Collapse
Affiliation(s)
- Elin Lundström
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Joy Ljungberg
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Jonathan Andersson
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Hannes Manell
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden,Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Robin Strand
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Department of Information TechnologyUppsala UniversityUppsalaSweden
| | - Anders Forslund
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden
| | - Peter Bergsten
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden,Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Daniel Weghuber
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Katharina Mörwald
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Fanni Zsoldos
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Kurt Widhalm
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria,Department of PediatricsMedical University of ViennaViennaAustria
| | | | - Håkan Ahlström
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Antaros MedicalBioVenture HubMölndalSweden
| | - Joel Kullberg
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Antaros MedicalBioVenture HubMölndalSweden
| |
Collapse
|
158
|
Estimating the cold-induced brown adipose tissue glucose uptake rate measured by 18F-FDG PET using infrared thermography and water-fat separated MRI. Sci Rep 2019; 9:12358. [PMID: 31451711 PMCID: PMC6710246 DOI: 10.1038/s41598-019-48879-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022] Open
Abstract
Brown adipose tissue (BAT) expends chemical energy to produce heat, which makes it a potential therapeutic target for combating metabolic dysfunction and overweight/obesity by increasing its metabolic activity. The most well-established method for measuring BAT metabolic activity is glucose uptake rate (GUR) measured using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). However, this is expensive and exposes the subjects to potentially harmful radiation. Cheaper and safer methods are warranted for large-scale or longitudinal studies. Potential alternatives include infrared thermography (IRT) and magnetic resonance imaging (MRI). The aim of this study was to evaluate and further develop these techniques. Twelve healthy adult subjects were studied. The BAT GUR was measured using 18F-FDG PET during individualized cooling. The temperatures of the supraclavicular fossae and a control region were measured using IRT during a simple cooling protocol. The fat fraction and effective transverse relaxation rate of BAT were measured using MRI without any cooling intervention. Simple and multiple linear regressions were employed to evaluate how well the MRI and IRT measurements could estimate the GUR. Results showed that both IRT and MRI measurements correlated with the GUR. This suggest that these measurements may be suitable for estimating the cold-induced BAT GUR in future studies.
Collapse
|
159
|
Nirengi S, Wakabayashi H, Matsushita M, Domichi M, Suzuki S, Sukino S, Suganuma A, Kawaguchi Y, Hashimoto T, Saito M, Sakane N. An optimal condition for the evaluation of human brown adipose tissue by infrared thermography. PLoS One 2019; 14:e0220574. [PMID: 31449537 PMCID: PMC6709909 DOI: 10.1371/journal.pone.0220574] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis and is an attractive therapeutic target for combating obesity and related diseases. Human BAT activity has been evaluated by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18FDG-PET/CT) under acute cold exposure, but the method has some serious limitations, including radiation exposure. Infrared thermography (IRT) may be a simple and less-invasive alternative to evaluate BAT activity. In the present study, to establish an optimal condition for IRT, using a thermal imaging camera, skin temperature was measured in the supraclavicular region close to BAT depots (Tscv) and the control chest region (Tc) in 24 young healthy volunteers. Their BAT activity was assessed as the maximal standardized uptake value (SUVmax) by 18FDG-PET/CT. Under a warm condition at 24–27°C, no significant correlation was found between the IRT parameters (Tscv, Tc,, and the difference between Tscv and Tc,, Δtemp) and SUVmax, but 30–120 min after cold exposure at 19°C, Tscv and Δtemp were significantly correlated with SUVmax (r = 0.40–0.48 and r = 0.68–0.76). Δtemp after cold exposure was not affected by mean body temperature, body fatness, and skin blood flow. A lower correlation (r = 0.43) of Δtemp with SUVmax was also obtained when the participant’s hands were immersed in water at 18°C for 5 min. Receiver operating characteristic analysis revealed that Δtemp after 30–60 min cold exposure can be used as an index for BAT evaluation with 74% sensitivity, 92% specificity, and 79% diagnostic accuracy. Thus, IRT may be useful as a simple and less-invasive method for evaluating BAT, particularly for large-scale screening and longitudinal repeat studies.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hitoshi Wakabayashi
- Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | | | - Masayuki Domichi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Shinichi Suzuki
- Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Shin Sukino
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akiko Suganuma
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yaeko Kawaguchi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | | | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- * E-mail:
| |
Collapse
|
160
|
Acosta FM, Martinez-Tellez B, Blondin DP, Haman F, Rensen PCN, Llamas-Elvira JM, Martinez-Nicolas A, Ruiz JR. Relationship between the Daily Rhythm of Distal Skin Temperature and Brown Adipose Tissue 18F-FDG Uptake in Young Sedentary Adults. J Biol Rhythms 2019; 34:533-550. [PMID: 31389278 PMCID: PMC6732824 DOI: 10.1177/0748730419865400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study examines whether the daily rhythm of distal skin temperature (DST) is associated with brown adipose tissue (BAT) metabolism as determined by 18F-fluorodeoxyglucose (18F-FDG) uptake in young adults. Using a wireless thermometer (iButton) worn on the nondominant wrist, DST was measured in 77 subjects (26% male; age 22 ± 2 years; body mass index 25.2 ± 4.8 kg/m2) for 7 consecutive days. The temperatures to which they were habitually exposed over the day were also recorded. The interday stability of DST was calculated from the collected data, along with the intraday variability and relative amplitude; the mean temperature of the 5 and 10 consecutive hours with the maximum and minimum DST values, respectively; and when these hours occurred. Following exposure to cold, BAT volume and mean and peak standardized 18F-FDG uptake (SUVmean and SUVpeak) were determined for each subject via static 18F-FDG positron emission tomography/computed tomography scanning. Relative amplitude and the time at which the 10 consecutive hours of minimum DST values occurred were positively associated with BAT volume, SUVmean, and SUVpeak (p ≤ 0.02), whereas the mean DST of that period was inversely associated with the latter BAT variables (p ≤ 0.01). The interday stability and intraday variability of the DST were also associated (directly and inversely, respectively) with BAT SUVpeak (p ≤ 0.02 for both). All of these associations disappeared, however, when the analyses were adjusted for the ambient temperature to which the subjects were habitually exposed. Thus, the relationship between the daily rhythm of DST and BAT activity estimated by 18F-FDG uptake is masked by environmental and likely behavioral factors. Of note is that those participants exposed to the lowest ambient temperature showed 3 to 5 times more BAT volume and activity compared with subjects who were exposed to a warmer ambient temperature.
Collapse
Affiliation(s)
- Francisco M Acosta
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Pharmacology-Physiology, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Servicio de Medicina Nuclear, Granada, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
161
|
Martinez-Tellez B, Sanchez-Delgado G, Amaro-Gahete FJ, Acosta FM, Ruiz JR. Relationships between cardiorespiratory fitness/muscular strength and 18F-fluorodeoxyglucose uptake in brown adipose tissue after exposure to cold in young, sedentary adults. Sci Rep 2019; 9:11314. [PMID: 31383929 PMCID: PMC6683147 DOI: 10.1038/s41598-019-47918-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
Humans have metabolically active brown adipose tissue (BAT). However, what is the relation between exercise or physical activity with this tissue remains controversial. Therefore, the main aim of the present study is to examine whether cardiorespiratory fitness and muscular strength are associated with brown adipose tissue (BAT) volume and activity after exposure to cold in young, sedentary adults. Cardiorespiratory fitness was determined in 119 young, healthy, sedentary adults (68% women, age 21.9 ± 2.1 years, body mass index 25 ± 4.8 kg/m2) via the maximum treadmill exercise test, and their muscular strength assessed by the handgrip strength test and the 1-repetition maximum bench and leg press tests. Some days later, all subjects were exposed to 2 h of personalized exposure to cold and their cold-induced BAT volume and activity determined by a combination of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and computed tomography scan. Cardiorespiratory fitness was associated with neither the BAT volume nor BAT activity (P ≥ 0.05). However, handgrip strength with respect to lean body mass was positively (though weakly) associated with BAT activity as represented by the 18F-FDG mean standardised uptake value (SUV) (β = 3.595, R2 = 0.039, P = 0.031) and SUVpeak value (β = 15.314, R2 = 0.037, P = 0.035). The above relationships remained after adjusting for several confounders. No other associations were found. Handgrip strength with respect to lean body mass is positively associated with BAT activity (SUVmean and SUVpeak) in young adults after exposure to cold - but only weakly. Further studies are needed to reveal the relationship between muscular fitness and human BAT characteristics.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Medicine, division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
162
|
Tews D, Pula T, Funcke JB, Jastroch M, Keuper M, Debatin KM, Wabitsch M, Fischer-Posovszky P. Elevated UCP1 levels are sufficient to improve glucose uptake in human white adipocytes. Redox Biol 2019; 26:101286. [PMID: 31382214 PMCID: PMC6692062 DOI: 10.1016/j.redox.2019.101286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023] Open
Abstract
Brown adipose tissue (BAT) has been considered beneficial for metabolic health by participating in the regulation of glucose homoeostasis. The browning factors that improve glucose uptake beyond normal levels are still unknown but glucose uptake is not affected in UCP1 knockout mice. Here, we demonstrate in human white adipocytes that basal/resting glucose uptake is improved by solely elevating UCP1 protein levels. Generating human white Simpson-Golabi-Behmel syndrome (SGBS) adipocytes with a stable knockout and overexpression of UCP1, we discovered that UCP1 overexpressing adipocytes significantly improve glucose uptake by 40%. Mechanistically, this is caused by higher glycolytic flux, seen as increased oxygen consumption, extracellular acidification and lactate secretion rates. The improvements in glucose handling are comparable to white-to-brown transitions, as judged by, for the first time, directly comparing in vitro differentiated mouse brown vs white adipocytes. Although no adipogenic, metabolic and mitochondrial gene expressions were significantly altered in SGBS cells, pharmacological inhibition of GLUT1 completely abrogated differences between UCP1+ and control cells, thereby uncovering GLUT1-mediated uptake as permissive gatekeeper. Collectively, our data demonstrate that elevating UCP1 levels is sufficient to improve human white adipocytes as a glucose sink without adverse cellular effects, thus not requiring the adrenergic controlled, complex network of browning which usually hampers translational efforts. Basal glucose uptake in human adipocytes is improved by solely elevating UCP1 levels. Adipogenic, metabolic and mitochondrial gene expressions were not affected by UCP1 overexpression. UCP1-driven increase in glucose uptake is mediated by GLUT1.
Collapse
Affiliation(s)
- D Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
| | - T Pula
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - J B Funcke
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - M Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - M Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - K M Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - M Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - P Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
163
|
Geslot A, Bennet A, Hitzel A, Thoulouzan M, Mouly C, Savagner F, Quintyn-Ranty ML, Caron P, Vezzosi D. Weight-loss with activation of brown fat: Suspect pheochromocytoma. ANNALES D'ENDOCRINOLOGIE 2019; 80:314-318. [PMID: 31606198 DOI: 10.1016/j.ando.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/19/2019] [Accepted: 06/16/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Excess catecholamine stimulates heat production in brown adipose tissue (BAT). Activation of BAT can be detected in patients presenting pheochromocytoma. CASE STUDY A 58-year-old female patient sought medical advice due to 13 kg weight loss over 2 years accompanied by sweating and high blood pressure. Thoracic-abdominal-pelvic CT-scan revealed a solid 40 mm mass in the left adrenal compartment with peri-adrenal nodules and a solid 80 mm mass at the lower end of the right kidney. 18FDG-PET scan exhibited intense uptake in the supraclavicular, intercostal, mediastinal, peri-renal, mesenteric, iliac and inguinal spaces. Renal tumor with locoregional infiltration and remote metastases was initially considered. Diagnosis of pheochromocytoma was subsequently confirmed by a 10-fold increase in urinary catecholamine, metanephrine and normetanephrine levels. Left adrenalectomy confirmed the diagnosis of pheochromocytoma, with 3 lymph-node metastases in the adjacent adipose tissue surrounded by brown fat. The patient was clinically asymptomatic with normal blood pressure at 3 months post-surgery. A weight gain of 6 kg was recorded, with normalisation of catecholamines/metanephrine/normetanephrine levels. Bilateral peri-renal infiltration (including the right renal mass) disappeared on CT-scan, and TEP-18-FDG no longer showed hypermetabolism. Recurrent mediastinal metastases were diagnosed 6 months after surgery. CONCLUSION Brown fat activation may mislead diagnosis of pheochromocytoma, suggesting multi-metastatic extra-adrenal tumor, if clinicians are not aware of it.
Collapse
Affiliation(s)
- Aurore Geslot
- Service d'endocrinologie et maladies métaboliques, hôpital Larrey, 24, chemin de Pouvourville, 31059 Toulouse cedex 9, France; Institut Cardiomet, hôpital Rangueil, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - Antoine Bennet
- Service d'endocrinologie et maladies métaboliques, hôpital Larrey, 24, chemin de Pouvourville, 31059 Toulouse cedex 9, France; Institut Cardiomet, hôpital Rangueil, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - Anne Hitzel
- Service de médecine nucléaire, hôpital Purpan, Place Du-Docteur-Baylac, 31059 Toulouse, France
| | - Matthieu Thoulouzan
- Service d'urologie, hôpital Rangueil, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - Céline Mouly
- Service d'endocrinologie et maladies métaboliques, hôpital Larrey, 24, chemin de Pouvourville, 31059 Toulouse cedex 9, France; Institut Cardiomet, hôpital Rangueil, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - Frédérique Savagner
- Service de biochimie, Institut Fédératif de Biologie (IFB), hôpital Purpan, place Du-Docteur-Baylac, 31059 Toulouse, France
| | - Marie-Laure Quintyn-Ranty
- Service d'anatomopathologie, institut universitaire de cancer de Toulouse, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France
| | - Philippe Caron
- Service d'endocrinologie et maladies métaboliques, hôpital Larrey, 24, chemin de Pouvourville, 31059 Toulouse cedex 9, France; Institut Cardiomet, hôpital Rangueil, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - Delphine Vezzosi
- Service d'endocrinologie et maladies métaboliques, hôpital Larrey, 24, chemin de Pouvourville, 31059 Toulouse cedex 9, France; Institut Cardiomet, hôpital Rangueil, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France.
| |
Collapse
|
164
|
Contribution of brown adipose tissue to human energy metabolism. Mol Aspects Med 2019; 68:82-89. [PMID: 31306668 DOI: 10.1016/j.mam.2019.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
The present "obesogenic' environment has favored excessive energy intake resulting in the current obesity epidemic and its associated diseases. The epidemic has incentivized scientists to develop novel behavioral and pharmacological strategies that enhance energy expenditure to compensate for excessive energy intake. Although physical activity is effective to increase total energy expenditure, it is insufficient to induce negative energy balance and weight loss. With the discovery of brown adipose tissue (BAT) in adult humans, BAT activation soon emerged as a potential strategy for elevating energy expenditure. BAT is the only tissue that expresses uncoupling protein 1, conferring on this tissue high thermogenic capacity due to a low efficiency for mitochondrial ATP generation. Potential manipulation of BAT mass and activity has fueled the interest in altering whole-body energy balance through increased energy expenditure. Remarkable advances have been made in quantifying the amount and activity of BAT in humans. Many studies have concluded that the amount of active BAT appears insufficient to induce meaningful increases in energy expenditure. Thus, the majority of studies report that BAT activation does not influence body weight and metabolic control in humans. Strategies to increase BAT mass and/or to potentiate BAT activity seem necessary.
Collapse
|
165
|
Fraum TJ, Crandall JP, Ludwig DR, Chen S, Fowler KJ, Laforest RA, Salter A, Dehdashti F, An H, Wahl RL. Repeatability of Quantitative Brown Adipose Tissue Imaging Metrics on Positron Emission Tomography with 18F-Fluorodeoxyglucose in Humans. Cell Metab 2019; 30:212-224.e4. [PMID: 31230985 DOI: 10.1016/j.cmet.2019.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/01/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Brown adipose tissue (BAT) is a promising target for anti-obesity interventions. This prospective test-retest study assessed the repeatability of several important quantitative BAT metrics. After cold activation, 24 subjects underwent positron emission tomography (PET)/computed tomography (CT) and PET/magnetic resonance imaging (MRI), utilizing 18F-fluorodeoxyglucose. Repeat imaging occurred within 14 days per an identical protocol. BAT volumes were strongly correlated between sessions for PET/CT (intraclass correlation coefficient [ICC], 0.85) and PET/MRI (ICC, 0.82). BAT maximum lean-body-mass-adjusted standardized uptake values (SULmax) were also strongly correlated between sessions for both PET/CT (ICC, 0.74) and PET/MRI (ICC, 0.83). Much longitudinal variability in BAT metrics was likely due to biological factors intrinsic to BAT, whole-body metabolic fluctuations, or temporal differences in cold-activation efficacy, rather than imaging factors. Future studies utilizing these imaging metrics to track the response BAT to interventions should incorporate this variation into sample-size considerations and response criteria.
Collapse
Affiliation(s)
- Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel R Ludwig
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sihao Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn J Fowler
- Department of Radiology, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - Richard A Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amber Salter
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Farrokh Dehdashti
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
166
|
Bonacina M, Albano D, Gazzilli M, Durmo R, Cerudelli E, Bosio G, Bertagna F, Giubbini R. 18F-FDG PET/CT brown fat detection: Differences between adult and pediatric population in a 12 year experience. Rev Esp Med Nucl Imagen Mol 2019. [DOI: 10.1016/j.remnie.2019.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
167
|
Terada E, Ashida K, Ohe K, Sakamoto S, Hasuzawa N, Nomura M. Brown adipose activation and reversible beige coloration in adipose tissue with multiple accumulations of 18F-fluorodeoxyglucose in sporadic paraganglioma: A case report. Clin Case Rep 2019; 7:1399-1403. [PMID: 31360497 PMCID: PMC6637431 DOI: 10.1002/ccr3.2259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022] Open
Abstract
In pheochromocytoma/paraganglioma, nontumorous high 18F-fluorodeoxyglucose accumulations are observed in both beige and brown adipose tissues. Recognizing this feature of 18F-fluorodeoxyglucose accumulation can help physicians make precise diagnoses and help them avoid the pitfalls of a false-positive 18F-fluorodeoxyglucose positron emission tomography result, preventing unnecessary interventions.
Collapse
Affiliation(s)
- Eriko Terada
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Endocrinology and Metabolism, Department of Internal MedicineKurume University School of MedicineKurume, FukuokaJapan
| | - Kenji Ohe
- Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Shohei Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Nao Hasuzawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Endocrinology and Metabolism, Department of Internal MedicineKurume University School of MedicineKurume, FukuokaJapan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Endocrinology and Metabolism, Department of Internal MedicineKurume University School of MedicineKurume, FukuokaJapan
| |
Collapse
|
168
|
Levy SB. Field and laboratory methods for quantifying brown adipose tissue thermogenesis. Am J Hum Biol 2019; 31:e23261. [DOI: 10.1002/ajhb.23261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stephanie B. Levy
- Department of Anthropology CUNY Hunter College New York, New York
- Department of Anthropology Yale University New Haven Connecticut
| |
Collapse
|
169
|
Martinez‐Tellez B, Adelantado‐Renau M, Acosta FM, Sanchez‐Delgado G, Martinez‐Nicolas A, Boon MR, Llamas‐Elvira JM, Martinez‐Vizcaino V, Ruiz JR. The Mediating Role of Brown Fat and Skeletal Muscle Measured by 18 F-Fluorodeoxyglucose in the Thermoregulatory System in Young Adults. Obesity (Silver Spring) 2019; 27:963-970. [PMID: 31006988 PMCID: PMC6594074 DOI: 10.1002/oby.22461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/19/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study aimed to examine whether brown adipose tissue (BAT) or skeletal muscle activity mediates the relationship between personal level of environmental temperature (Personal-ET) and wrist skin temperature (WT). Moreover, we examined whether BAT and skeletal muscle have a mediating role between Personal-ET and WT (as a proxy of peripheral vasoconstriction/vasodilation). METHODS The levels of BAT were quantified by cold-induced 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography scan and measured the Personal-ET and WT by using iButtons (Maxim Integrated, Dallas, Texas) in 75 participants (74.6% women). RESULTS The study found that BAT volume and metabolic activity played a positive and significant role (up to 25.4%) in the association between Personal-ET and WT. In addition, at the coldest temperatures, the participants with lower levels of WT (inducing higher peripheral vasoconstriction) had higher levels of BAT outcomes, whereas in warm temperatures, participants with higher levels of WT (inducing higher peripheral vasodilation) had lower levels of BAT outcomes. The study did not find any mediating role of skeletal muscle activity. CONCLUSIONS BAT volume and metabolic activity play a role in the relationship between Personal-ET and WT. Moreover, the data suggest that there are two distinct phenotypes: individuals who respond better to the cold, both through nonshivering thermogenesis and peripheral vasoconstriction, and individuals who respond better to the heat.
Collapse
Affiliation(s)
- Borja Martinez‐Tellez
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | | | - Francisco M. Acosta
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| | - Guillermo Sanchez‐Delgado
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| | - Antonio Martinez‐Nicolas
- Chronobiology Laboratory, Department of Physiology, College of BiologyMare Nostrum Campus, University of Murcia, Instituto Universitario de Investgiación e Envegecimiento (IUIE), Instituto Murciano de Investigación Biosanitaria (IMIB)‐ArrixacaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento SaludableMadridSpain
| | - Mariëtte R. Boon
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jose M. Llamas‐Elvira
- Nuclear Medicine ServiceVirgen de las Nieves University HospitalGranadaSpain
- Nuclear Medicine DepartmentBiohealth Research Institute in GranadaGranadaSpain
| | - Vicente Martinez‐Vizcaino
- Health and Social Research Center, Castilla‐La Mancha UniversityCuencaSpain
- Faculty of Health SciencesAutonomous University of ChileTalcaChile
| | - Jonatan R. Ruiz
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| |
Collapse
|
170
|
Motiani P, Teuho J, Saari T, Virtanen KA, Honkala SM, Middelbeek RJ, Goodyear LJ, Eskola O, Andersson J, Löyttyniemi E, Hannukainen JC, Nuutila P. Exercise training alters lipoprotein particles independent of brown adipose tissue metabolic activity. Obes Sci Pract 2019; 5:258-272. [PMID: 31275600 PMCID: PMC6587322 DOI: 10.1002/osp4.330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION New strategies for weight loss and weight maintenance in humans are needed. Human brown adipose tissue (BAT) can stimulate energy expenditure and may be a potential therapeutic target for obesity and type 2 diabetes. However, whether exercise training is an efficient stimulus to activate and recruit BAT remains to be explored. This study aimed to evaluate whether regular exercise training affects cold-stimulated BAT metabolism and, if so, whether this was associated with changes in plasma metabolites. METHODS Healthy sedentary men (n = 11; aged 31 [SD 7] years; body mass index 23 [0.9] kg m-2; VO2 max 39 [7.6] mL min-1 kg-1) participated in a 6-week exercise training intervention. Fasting BAT and neck muscle glucose uptake (GU) were measured using quantitative [18F]fluorodeoxyglucose positron emission tomography-magnetic resonance imaging three times: (1) before training at room temperature and (2) before and (3) after the training period during cold stimulation. Cervico-thoracic BAT mass was measured using MRI signal fat fraction maps. Plasma metabolites were analysed using nuclear magnetic resonance spectroscopy. RESULTS Cold exposure increased supraclavicular BAT GU by threefold (p < 0.001), energy expenditure by 59% (p < 0.001) and plasma fatty acids (p < 0.01). Exercise training had no effect on cold-induced GU in BAT or neck muscles. Training increased aerobic capacity (p = 0.01) and decreased visceral fat (p = 0.02) and cervico-thoracic BAT mass (p = 0.003). Additionally, training decreased very low-density lipoprotein particle size (p = 0.04), triglycerides within chylomicrons (p = 0.04) and small high-density lipoprotein (p = 0.04). CONCLUSIONS Although exercise training plays an important role for metabolic health, its beneficial effects on whole body metabolism through physiological adaptations seem to be independent of BAT activation in young, sedentary men.
Collapse
Affiliation(s)
- P. Motiani
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Teuho
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of Medical PhysicsTurku University HospitalTurkuFinland
| | - T. Saari
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - K. A. Virtanen
- Turku PET CentreUniversity of TurkuTurkuFinland
- Institute of Public Health and Clinical NutritionUniversity of Eastern Finland (UEF)KuopioFinland
| | | | - R. J. Middelbeek
- Section on Integrative Physiology and MetabolismJoslin Diabetes Center, Harvard Medical SchoolBostonMAUSA
- Division of EndocrinologyDiabetes and Metabolism, Beth Israel Deaconess Medical CenterBostonMAUSA
| | - L. J. Goodyear
- Section on Integrative Physiology and MetabolismJoslin Diabetes Center, Harvard Medical SchoolBostonMAUSA
| | - O. Eskola
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Andersson
- Section of Radiology, Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | - E. Löyttyniemi
- Department of BiostatisticsUniversity of TurkuTurkuFinland
| | | | - P. Nuutila
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of Endocrinology, Turku PET CentreTurku University HospitalTurkuFinland
| |
Collapse
|
171
|
Martinez-Tellez B, Garcia-Rivero Y, Sanchez-Delgado G, Xu H, Amaro-Gahete FJ, Acosta FM, Rensen PCN, Boon MR, Llamas-Elvira JM, Ruiz JR. Supraclavicular skin temperature measured by iButtons and 18F-fluorodeoxyglucose uptake by brown adipose tissue in adults. J Therm Biol 2019; 82:178-185. [PMID: 31128645 DOI: 10.1016/j.jtherbio.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023]
Abstract
Currently, 18 [F]-Fluorodeoxyglucose (18F-FDG) in combination with a positron emission tomography/computed tomography (PET/CT) scan analysis is the most commonly used method to quantify human BAT volume and activity. However, this technique presents several drawbacks which negatively affect participant's health. The aim of the present work is to determine whether supraclavicular skin temperature can be used as an indirect marker of cold-induced BAT and skeletal muscle 18F-FDG uptake in adults, while taking into account body composition. We performed a personalized cooling protocol just before an 18F-FDG-PET/CT scan, and we measured supraclavicular skin temperature before (in warm conditions) and after the cooling protocol in 88 adults (n = 57 women, mean age: 21.9 ± 2.1 years old, body mass index: 24.5 ± 4.3 km/m2). We found that supraclavicular skin temperature at the warm and cold periods was weakly and positively associated with BAT activity (SUVmean and SUVpeak: β = 3.000; R2 = 0.072; P = 0.022 and β = 2.448; R2 = 0.060; P = 0.021), but not with skeletal muscle 18F-FDG uptake, after controlling for body composition. We performed further analyses and the positive associations persisted only in the group of women. In conclusion, supraclavicular skin temperature in warm and cold conditions seems to be related with cold-induced 18F-FDG uptake by BAT only in women, although the low explained variance of these associations means that there are other factors involved in the supraclavicular skin temperature.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Yolanda Garcia-Rivero
- Nuclear Medicine Department, "Virgen de las Nieves" University Hospital, Granada, Spain; Biohealth Research Institute in Granada (ibs.GRANADA), Nuclear Medicine Department, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose M Llamas-Elvira
- Nuclear Medicine Department, "Virgen de las Nieves" University Hospital, Granada, Spain; Biohealth Research Institute in Granada (ibs.GRANADA), Nuclear Medicine Department, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
172
|
Martinez-Tellez B, Perez-Bey A, Sanchez-Delgado G, Acosta FM, Corral-Perez J, Amaro-Gahete FJ, Alcantara JMA, Castro-Piñero J, Jimenez-Pavon D, Llamas-Elvira JM, Ruiz JR. Concurrent validity of supraclavicular skin temperature measured with iButtons and infrared thermography as a surrogate marker of brown adipose tissue. J Therm Biol 2019; 82:186-196. [PMID: 31128647 DOI: 10.1016/j.jtherbio.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Brown adipose tissue (BAT) thermogenic activity is commonly assessed with a positron emission tomography with computed tomography scan (PET/CT). This technique has several limitations and alternative techniques are needed. Supraclavicular skin temperature measured with iButtons and infrared thermography (IRT) has been proposed as an indirect marker of BAT activity. We studied the concurrent validity of skin temperature measured with iButtons vs. IRT and the association of supraclavicular skin temperature measured with iButtons and IRT with BAT. We measured skin temperature upon a shivering threshold test with iButtons and IRT in 6 different regions in 12 participants (n = 2 men). On a separate day, we determined supraclavicular skin temperature with an iButton and IRT after 2 h of a personalized cooling protocol. Thereafter, we quantified BAT volume and activity by PET/CT. We observed that the absolute differences between the devices were statistically different from 0 (all P < 0.05) after the shivering threshold test. Moreover, we did not find any association between supraclavicular skin temperature measured with iButtons or IRT and BAT 18F-FDG activity (r = -0.213; P = 0.530 and r = -0.079; P = 0.817). However, we observed a negative association of supraclavicular skin temperature measured by IRT with BAT 18F-FDG volume (r = -0.764; P = 0.006), but not with supraclavicular skin temperature measured with iButtons (r = -0.546; P = 0.082). In light of these results, we concluded that the measurement of skin temperature obtained by iButtons and IRT are not comparable. Furthermore, it seems that supraclavicular skin temperature is not associated with BAT 18F-FDG activity, but it appears to be negatively associated with BAT 18F-FDG volume in the case of IRT.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain; Department of Medicine, Division of Endocrinology, And Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Alejandro Perez-Bey
- Galeno Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Juan Corral-Perez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education, Sciences, University of Cádiz, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jose Castro-Piñero
- Galeno Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
| | - David Jimenez-Pavon
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education, Sciences, University of Cádiz, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Service, "Virgen de las Nieves" University Hospital, Granada, Spain; Nuclear Medicine Service, Biohealth Research Institute (ibs. GRANADA), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
173
|
Repeatability of brown adipose tissue measurements on FDG PET/CT following a simple cooling procedure for BAT activation. PLoS One 2019; 14:e0214765. [PMID: 30995248 PMCID: PMC6469763 DOI: 10.1371/journal.pone.0214765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Brown Adipose Tissue (BAT) is present in a significant number of adult humans and can be activated by exposure to cold. Measurement of active BAT presence, activity, and volume are desirable for determining the efficacy of potential treatments intended to activate BAT. The repeatability of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) measurements of BAT presence, activity, and volume under controlled conditions has not been extensively studied. Eleven female volunteers underwent double baseline FDG PET imaging performed following a simple, regional cold intervention intended to activate brown fat. The cold intervention involved the lightly-clothed participants intermittently placing their feet on a block of ice while sitting in a cooled room. A repeat study was performed under the same conditions within a target of two weeks. FDG scans were obtained and maximum standardized uptake value adjusted for lean body mass (SULmax), CT Hounsfield units (HU), BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were determined according to the Brown Adipose Reporting Criteria in Imaging STudies (BARCIST) 1.0. A Lin’s concordance correlation (CCC) of 0.80 was found for BMV between test and retest imaging. Intersession BAT SULmax was significantly correlated (r = 0.54; p < 0.05). The session #1 mean SULmax of 4.92 ± 4.49 g/mL was not significantly different from that of session #2 with a mean SULmax of 7.19 ± 7.34 g/mL (p = 0.16). BAT SULmax was highly correlated with BMV in test and retest studies (r ≥ 0.96, p < 0.001). Using a simplified ice-block cooling method, BAT was activated in the majority (9/11) of a group of young, lean female participants. Quantitative assessments of BAT SUL and BMV were not substantially different between test and retest imaging, but individual BMV could vary considerably. Intrasession BMV and SULmax were strongly correlated. The variability in estimates of BAT activity and volume on test-retest with FDG should inform sample size choice in studies quantifying BAT physiology and support the dynamic metabolic characteristics of this tissue. A more sophisticated cooling method potentially may reduce variations in test-retest BAT studies.
Collapse
|
174
|
Bonacina M, Albano D, Gazzilli M, Durmo R, Cerudelli E, Bosio G, Bertagna F, Giubbini R. 18F-FDG PET/CT brown fat detection: Differences between adult and pediatric population in a 12 year experience. Rev Esp Med Nucl Imagen Mol 2019; 38:224-228. [PMID: 30987886 DOI: 10.1016/j.remn.2019.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE To analyze epidemiological and anthropometric features of patients with brown adipose tissue (BAT) activation detected by fluorine18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). MATERIAL AND METHODS From 2005 to 2017, 818 18F-FDG PET/CT studies positive for BAT detection were retrospectively included, 742 examinations performed on the adult population and 76 PET/CT on the pediatric population. A Chi-squared test was performed to compare features distribution between the adult and pediatric patients. RESULTS Adults showed a higher rate of BAT detection in females (79% vs. 61%, P<0.001) and in hyperglycaemic patients (>100mg/dL) (24% vs. 16%, P=0.02), no significant difference was found with regard to overweight patients (BMI>25kg/m2) (22% vs. 20%, P=.55). Considering females only, the adults showed a higher rate of BAT detection both in hyperglycaemic (83% vs. 42%, P<0.001) and overweight patients (80% vs. 67%, P=0.005). In both populations BAT activation happened more frequently in cold seasons; there was no significant distribution difference with regard to season of birth (P=0.2). CONCLUSIONS Sex, glycemia and BMI play a major role in predicting BAT activation, with significant differences between adults and pediatric patients. Cold exposure is confirmed as an important predicting factor, while season of birth is not significant.
Collapse
Affiliation(s)
- M Bonacina
- Nuclear Medicine, Spedali Civili Brescia, Brescia, Italia.
| | - D Albano
- Nuclear Medicine, Spedali Civili Brescia, Brescia, Italia
| | - M Gazzilli
- Nuclear Medicine, Spedali Civili Brescia, Brescia, Italia
| | - R Durmo
- Nuclear Medicine, Spedali Civili Brescia, Brescia, Italia
| | - E Cerudelli
- Nuclear Medicine, Spedali Civili Brescia, Brescia, Italia
| | - G Bosio
- Nuclear Medicine, Spedali Civili Brescia, Brescia, Italia
| | - F Bertagna
- Nuclear Medicine, University of Brescia and Spedali Civili Brescia, Brescia, Italia
| | - R Giubbini
- Nuclear Medicine, University of Brescia and Spedali Civili Brescia, Brescia, Italia
| |
Collapse
|
175
|
Gashi G, Madoerin P, Maushart CI, Michel R, Senn JR, Bieri O, Betz MJ. MRI characteristics of supraclavicular brown adipose tissue in relation to cold-induced thermogenesis in healthy human adults. J Magn Reson Imaging 2019; 50:1160-1168. [PMID: 30945366 DOI: 10.1002/jmri.26733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has been proposed as a target to treat obesity and metabolic disease. Currently, 18 F-Fluordeoxyglucose positron emission tomography (FDG-PET) is the standard for BAT-imaging. MRI might be a promising alternative, as it is not associated with ionizing radiation, offers a high resolution, and allows to discriminate different types of soft tissue. PURPOSE We sought to evaluate whether supraclavicular BAT (scBAT) volume, fat-fraction (FF), and relaxation rate (R2*) determined by MRI can predict its metabolic activity, which was assessed by measurement of cold-induced thermogenesis (CIT). STUDY TYPE Prospective cohort study. SUBJECTS Twenty healthy volunteers (9 female, 11 male), aged 18-47 years, with a body mass index (BMI) of 18-30 kg/m2 . FIELD STRENGTH/SEQUENCE Multiecho gradient MRI for water-fat separation was used on a 3T device to measure the FF and T2 * of BAT. ASSESSMENT Prior to imaging, CIT was determined by measuring the difference in energy expenditure (EE) during warm conditions and after cold exposure. Volume, FF, and R2* of scBAT was assessed and compared with CIT. In 11 participants, two MRI sessions with and without cold exposure were performed and the dynamic changes in FF and R2* assessed. STATISTICAL TESTS Linear regression was used to evaluate the relation of MRI measurements and CIT. P-values below 0.05 were considered significant; data are given as mean ± SD. RESULTS R2* correlated positively with CIT (r = 0.64, R2 = 0.41 P = 0.0041). Volume and FF did not correlate significantly with CIT. After mild cold exposure EE increased significantly (P = 0.0002), with a mean CIT of 147 kcal/day. The mean volume of scBAT was 72.4 ± 38.4 ml, mean FF was 74.3 ± 5.8%, and the mean R2* (1/T2 *) was 33.5 ± 12.7 s-1 . DATA CONCLUSION R2* of human scBAT can be used to estimate CIT. FF of scBAT was not associated with CIT. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1160-1168.
Collapse
Affiliation(s)
- Gani Gashi
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Philipp Madoerin
- Department of Radiology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Claudia I Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Regina Michel
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Jaël-Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Department of Radiology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
176
|
Richard MA, Blondin DP, Noll C, Lebel R, Lepage M, Carpentier AC. Determination of a pharmacokinetic model for [ 11C]-acetate in brown adipose tissue. EJNMMI Res 2019; 9:31. [PMID: 30919091 PMCID: PMC6437247 DOI: 10.1186/s13550-019-0497-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background [11C]-acetate positron emission tomography is used to assess oxidative metabolism in various tissues including the heart, tumor, and brown adipose tissue. For brown adipose tissue, a monoexponential decay model is commonly employed. However, no systematic assessment of kinetic models has been performed to validate this model or others. The monoexponential decay model and various compartmental models were applied to data obtained before and during brown adipose tissue activation by cold exposure in healthy men. Quality of fit was assessed visually and by analysis of residuals, including the Akaike information criterion. Stability and accuracy of compartmental models were further assessed through simulations, along with sensitivity and identifiability of kinetic parameters. Results Differences were noted in the arterial input function between the warm and cold conditions. These differences are not taken into account by the monoexponential decay model. They are accounted for by compartmental models, but most models proved too complex to be stable. Two and three-tissue models with no more than four distinct kinetic parameters, including blood volume fraction, provided the best compromise between fit quality and stability/accuracy. Conclusion For healthy men, a three-tissue model with four kinetic parameters, similar to a heart [11C]-palmitate model seems the most appropriate based on model stability and its ability to describe the main [11C]-acetate pathways in BAT cells. Further studies are required to validate this model in women and people with metabolic disorders. Electronic supplementary material The online version of this article (10.1186/s13550-019-0497-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Anne Richard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Denis P Blondin
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Christophe Noll
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Réjean Lebel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Martin Lepage
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - André C Carpentier
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
177
|
Thuzar M, Law WP, Dimeski G, Stowasser M, Ho KKY. Mineralocorticoid antagonism enhances brown adipose tissue function in humans: A randomized placebo-controlled cross-over study. Diabetes Obes Metab 2019; 21:509-516. [PMID: 30225967 DOI: 10.1111/dom.13539] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 02/04/2023]
Abstract
AIM To investigate whether mineralocorticoid (MC) antagonism enhances brown adipose tissue (BAT) function in humans. MATERIALS AND METHODS In a randomized double-blind, cross-over designed trial, 10 healthy adults (two men, eight women) underwent 2 weeks of spironolactone (100 mg/d) treatment and placebo, with an intervening 2-week wash-out period. BAT function was assessed in response to cooling and to a mixed meal. Metabolic activity was measured by fluoro-deoxyglucose (FDG) uptake (maximal standardized uptake value, SUVmax ) using PET-CT. Thermogenic activity was measured by skin temperatures overlying supraclavicular (SCL) BAT depots using infrared thermography. Postprandial metabolism was measured by energy production rate (EPR) and lipid synthesis using indirect calorimetry. RESULTS During cooling, BAT metabolic activity (SUV 6.30 ± 2.16 vs 3.98 ± 1.34; P < 0.05) and volume (54.9 ± 22.8 vs 21.6 ± 11.8 cm3 ; P < 0.05) were significantly higher, and mean SCL temperature decreased by a smaller degree (-0.3°C°± 0.2°C vs -0.9°C ± 0.2°C; P = 0.05) with spironolactone treatment. A mixed meal increased SCL temperature and EPR. The postprandial rise in SCL temperature (+0.4°C ± 0.1°C vs +0.1°C ± 0.1°C; P < 0.05) but not in EPR was greater during spironolactone treatment. Postprandial lipid synthesis occurred in three participants with placebo but in none with spironolactone treatment (P = 0.06). CONCLUSION MC antagonism enhanced human BAT function in response to cooling and to a meal during which lipid synthesis was suppressed. As postprandial EPR comprises energy dissipated as heat and energy required to store nutrients, the reduction in lipid synthesis during MC antagonism is a probable consequence of concurrent stimulation of BAT thermogenesis. The shift in energy usage from storage to heat dissipation indicates that MC antagonists may have therapeutic benefit for obesity.
Collapse
Affiliation(s)
- Moe Thuzar
- Department of Endocrinology and Diabetes, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Weikiat Phillip Law
- Department of Molecular Imaging, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Goce Dimeski
- Department of Chemical Pathology, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Ken K Y Ho
- Department of Endocrinology and Diabetes, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland and Translational Research Institute, Brisbane, Australia
| |
Collapse
|
178
|
Preliminary investigation of brown adipose tissue assessed by PET/CT and cancer activity. Skeletal Radiol 2019; 48:413-419. [PMID: 30215105 PMCID: PMC6345160 DOI: 10.1007/s00256-018-3046-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/10/2018] [Accepted: 08/09/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the role of brown adipose tissue (BAT) in cancer activity. MATERIALS AND METHODS The study group comprised 142 patients (121 female, 21 male; mean age, 49 ± 16 years) who underwent F18-FDG PET/CT (PET/CT) for staging or surveillance of cancer and who were BAT-positive on PET/CT. BAT volume by PET/CT, abdominal (visceral and subcutaneous) fat and paraspinous muscle cross-sectional areas (CSA) were assessed. Groups with and without active cancer on PET/CT were compared using a two-sided paired t test. Linear regression analyses between BAT and body composition parameters were performed. RESULTS There were 62 patients (54 female, eight male) who had active cancer on PET/CT and 80 patients (67 female, 13 male) without active cancer. Groups were similar in age and BMI (p ≥ 0.4), abdominal fat and muscle CSA, fasting glucose, and outside temperature at time of scan (p ≥ 0.2). Patients who had active cancer on PET/CT had higher BAT volume compared to patients without active cancer (p = 0.009). In patients without active cancer, BAT was positively associated with BMI and abdominal fat depots (r = 0.46 to r = 0.59, p < 0.0001) while there were no such associations in patients with active cancer (p ≥ 0.1). No associations between BAT and age or muscle CSA were found (p ≥ 0.1). CONCLUSIONS BAT activity is greater in patients with active cancer compared to age-, sex-, and BMI-matched BAT-positive patients without active cancer, suggesting a possible role of BAT in cancer activity.
Collapse
|
179
|
Osuna-Prieto FJ, Martinez-Tellez B, Sanchez-Delgado G, Aguilera CM, Lozano-Sánchez J, Arráez-Román D, Segura-Carretero A, Ruiz JR. Activation of Human Brown Adipose Tissue by Capsinoids, Catechins, Ephedrine, and Other Dietary Components: A Systematic Review. Adv Nutr 2019; 10:291-302. [PMID: 30624591 PMCID: PMC6416040 DOI: 10.1093/advances/nmy067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human brown adipose tissue (BAT) has attracted clinical interest not only because it dissipates energy but also for its potential capacity to counteract obesity and related metabolic disorders (e.g., insulin resistance and dyslipidemia). Cold exposure is the most powerful stimulus for activating and recruiting BAT, and this stimulatory effect is mediated by the transient receptor potential (TRP) channels. BAT can also be activated by other receptors such as the G-protein-coupled bile acid receptor 1 (GPBAR1) or β-adrenergic receptors. Interestingly, these receptors also interact with several dietary components; in particular, capsinoids and tea catechins appear to mimic the effects of cold through a TRP-BAT axis, and they consequently seem to decrease body fat and improve metabolic blood parameters. This systematic review critically addresses the evidence behind the available human studies analyzing the effect of several dietary components (e.g., capsinoids, tea catechins, and ephedrine) on BAT activity. Even though the results of these studies are consistent with the outcomes of preclinical models, the lack of robust study designs makes it impossible to confirm the BAT-activation capacity of the specified dietary components. Further investigation into the effects of dietary components on BAT is warranted to clarify to what extent these components could serve as a powerful strategy to treat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain; Departments of
- Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain; Departments of
- Department of Medicine, Leiden University Medical Center, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden, Netherlands
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain; Departments of
| | - Concepción M Aguilera
- Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center for Biomedical Research, University of Granada, Granada, Spain
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| | - Jesús Lozano-Sánchez
- Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, Granada, Spain
| | - David Arráez-Román
- Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, Granada, Spain
| | - Antonio Segura-Carretero
- Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain; Departments of
| |
Collapse
|
180
|
Brendle C, Stefan N, Stef I, Ripkens S, Soekler M, la Fougère C, Nikolaou K, Pfannenberg C. Impact of diverse chemotherapeutic agents and external factors on activation of brown adipose tissue in a large patient collective. Sci Rep 2019; 9:1901. [PMID: 30760750 PMCID: PMC6374459 DOI: 10.1038/s41598-018-37924-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022] Open
Abstract
Increased activity of brown adipose tissue (BAT) activity in adults is thought to prevent obesity. Therefore, regulators of BAT activity might serve as anti-obesity therapy in future, but are not investigated thoroughly up to now. In our study, we assessed retrospectively the association of BAT activity with several external factors and diverse chemotherapeutic and immunosuppressive agents in a collective of 702 patients. The patients underwent at least two clinically indicated PET/CT examinations in the course of different oncological and inflammatory diseases. BAT activity was identified according to predefined PET/CT criteria in all examinations. In multivariate analysis, the type of disease, the disease activity and the therapeutic regimen did not influence BAT activity. In contrast, sex and age were confirmed as independent factors for BAT activity. For the association of therapeutic agents with BAT activity, we examined 53 different disease-related agents, which were applied to patients without initial BAT activity between their PET/CT examinations. Out of these, cytarabine therapy was significantly associated with increased new onset of BAT activity. Cytarabine is a therapeutic agent for lymphoma patients. Further targeted studies might investigate the usefulness of Cytarabine serving as possible therapeutic approach against obesity via BAT regulation.
Collapse
Affiliation(s)
- Cornelia Brendle
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany. .,Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Norbert Stefan
- Endocrinology and Diabetology, Department of Internal Medicine, Eberhard Karls University, Otfried-Mueller-Straße 10, 72076, Tuebingen, Germany
| | - Irina Stef
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Sabine Ripkens
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Martin Soekler
- Oncology, Hematology, Clinical Immunology, Rheumatology and Pulmology, Department of Internal Medicine, Eberhard Karls University, Otfried-Mueller-Straße 10, 72076, Tuebingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University, Otfried-Mueller-Straße 14, 72076, Tuebingen, Germany
| | - Konstantin Nikolaou
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Christina Pfannenberg
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| |
Collapse
|
181
|
Peres Valgas da Silva C, Hernández-Saavedra D, White JD, Stanford KI. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. BIOLOGY 2019; 8:biology8010009. [PMID: 30759802 PMCID: PMC6466122 DOI: 10.3390/biology8010009] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The rise in obesity over the last several decades has reached pandemic proportions. Brown adipose tissue (BAT) is a thermogenic organ that is involved in energy expenditure and represents an attractive target to combat both obesity and type 2 diabetes. Cold exposure and exercise training are two stimuli that have been investigated with respect to BAT activation, metabolism, and the contribution of BAT to metabolic health. These two stimuli are of great interest because they have both disparate and converging effects on BAT activation and metabolism. Cold exposure is an effective mechanism to stimulate BAT activity and increase glucose and lipid uptake through mitochondrial uncoupling, resulting in metabolic benefits including elevated energy expenditure and increased insulin sensitivity. Exercise is a therapeutic tool that has marked benefits on systemic metabolism and affects several tissues, including BAT. Compared to cold exposure, studies focused on BAT metabolism and exercise display conflicting results; the majority of studies in rodents and humans demonstrate a reduction in BAT activity and reduced glucose and lipid uptake and storage. In addition to investigations of energy uptake and utilization, recent studies have focused on the effects of cold exposure and exercise on the structural lipids in BAT and secreted factors released from BAT, termed batokines. Cold exposure and exercise induce opposite responses in terms of structural lipids, but an important overlap exists between the effects of cold and exercise on batokines. In this review, we will discuss the similarities and differences of cold exposure and exercise in relation to their effects on BAT activity and metabolism and its relevance for the prevention of obesity and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
182
|
Zhang Y, Hu X, Hu S, Scotti A, Cai K, Wang J, Zhou X, Yang D, Figini M, Pan L, Shangguan J, Yang J, Zhang Z. Non-invasive Imaging Methods for Brown Adipose Tissue Detection and Function Evaluation. ACTA ACUST UNITED AC 2019; 8. [PMID: 31080698 PMCID: PMC6508884 DOI: 10.4172/2165-8048.1000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brown Adipose Tissue (BAT) has a major role in thermoregulation, producing heat by non-shivering thermogenesis. Primarily found in animals and human infants, the presence of significant brown adipose tissue was identified only recently, and its metabolic role in adults was reconsidered. BAT is believed to have an important role in many metabolic diseases, such as obesity and diabetes, and also to be associated with cancer cachexia. Therefore, it is currently a topic of great interest in the research community, and many groups are investigating the mechanisms underlying BAT metabolism in normal and pathological conditions. However, well established non-invasive methods for assessing BAT distribution and function are still lacking. The purpose of this review is to summarize the current state of the art of these methods, with a particular focus on PET, CT and MRI.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaofei Hu
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian Wang
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Xin Zhou
- Department of Cardiology, Pingjin Hospital, Tianjin, China
| | - Ding Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
183
|
Abstract
PURPOSE Brown adipose tissue (BAT) in adult humans has been recently rediscovered and intensively investigated as a new potential therapeutic target for obesity and type 2 diabetes (T2D). However, reliable assessment of BAT mass in vivo represents a considerable challenge. The purpose of this investigation is to demonstrate for the first time that human BAT depots can be imaged with a translocator protein (TSPO)-specific positron emission tomography (PET) tracer [11C]PBR28 under thermoneutral conditions. PROCEDURES In this retrospective analysis, we analyzed the images of three healthy volunteers who underwent PET/magnetic resonance (MR) imaging after injection of 14 m Ci of [11C]PBR28 at room temperature. Thirty-minute static PET images were reconstructed from the data obtained 60-90 min after the injection of the tracer. RESULTS [11C]PBR28 uptake in the neck/supraclavicular regions was identified, which was parallel to the known distribution pattern of human BAT depots. These areas co-localized with the areas of hyperintensity and corresponded to fat on T1-weighted MR images. Standardized uptake value (SUV) was used to quantify [11C]PBR28 signal in BAT depots. The average (± SD) SUV(mean) and SUVmax for BAT depots was 2.13 (± 0.33) and 3.19 (± 0.34), respectively, while the average SUV(mean) for muscle and subcutaneous adipose tissue was 0.79 (± 0.1) and 0.18 (± 0.04), respectively. CONCLUSIONS In this brief article, we provide the first evidence suggesting that [11C]PBR28, a widely available TSPO-specific PET tracer, can be used for imaging human BAT mass under thermoneutral conditions.
Collapse
|
184
|
Abstract
Brown adipokines are regulatory factors secreted by brown and beige adipocytes that exhibit endocrine, paracrine, and autocrine actions. Peptidic and non-peptidic molecules, including miRNAs and lipids, are constituents of brown adipokines. Brown adipose tissue remodeling to meet thermogenic needs is dependent on the secretory properties of brown/beige adipocytes. The association between brown fat activity and a healthy metabolic profile, in relation to energy balance and glucose and lipid homeostasis, is influenced by the endocrine actions of brown adipokines. A comprehensive knowledge of the brown adipocyte secretome is still lacking. Advancements in the identification and characterization of brown adipokines will facilitate therapeutic interventions for metabolic diseases, as these molecules are obvious candidates to therapeutic agents. Moreover, identification of brown adipokines as circulating biomarkers of brown adipose tissue activity may be particularly useful for noninvasive assessment of brown adipose tissue alterations in human pathologies.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain.
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
185
|
Chondronikola M, Sidossis LS. Brown and beige fat: From molecules to physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:91-103. [DOI: 10.1016/j.bbalip.2018.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/11/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
186
|
Abreu-Vieira G, Sardjoe Mishre ASD, Burakiewicz J, Janssen LGM, Nahon KJ, van der Eijk JA, Riem TT, Boon MR, Dzyubachyk O, Webb AG, Rensen PCN, Kan HE. Human Brown Adipose Tissue Estimated With Magnetic Resonance Imaging Undergoes Changes in Composition After Cold Exposure: An in vivo MRI Study in Healthy Volunteers. Front Endocrinol (Lausanne) 2019; 10:898. [PMID: 31998233 PMCID: PMC6964318 DOI: 10.3389/fendo.2019.00898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/09/2019] [Indexed: 01/02/2023] Open
Abstract
Aim: Magnetic resonance imaging (MRI) is increasingly being used to evaluate brown adipose tissue (BAT) function. Reports on the extent and direction of cold-induced changes in MRI fat fraction and estimated BAT volume vary between studies. Here, we aimed to explore the effect of different fat fraction threshold ranges on outcomes measured by MRI. Moreover, we aimed to investigate the effect of cold exposure on estimated BAT mass and energy content. Methods: The effects of cold exposure at different fat fraction thresholding levels were analyzed in the supraclavicular adipose depot of nine adult males. MRI data were reconstructed, co-registered and analyzed in two ways. First, we analyzed cold-induced changes in fat fraction, T2* relaxation time, volume, mass, and energy of the entire supraclavicular adipose depot at different fat fraction threshold levels. As a control, we assessed fat fraction differences of deltoid subcutaneous adipose tissue (SAT). Second, a local analysis was performed to study changes in fat fraction and T2* on a voxel-level. Thermoneutral and post-cooling data were compared using paired-sample t-tests (p < 0.05). Results: Global analysis unveiled that the largest cold-induced change in fat fraction occurred within a thermoneutral fat fraction range of 30-100% (-3.5 ± 1.9%), without changing the estimated BAT volume. However, the largest cold-induced changes in estimated BAT volume were observed when applying a thermoneutral fat fraction range of 70-100% (-3.8 ± 2.6%). No changes were observed for the deltoid SAT fat fractions. Tissue energy content was reduced from 126 ± 33 to 121 ± 30 kcal, when using a 30-100% fat fraction range, and also depended on different fat fraction thresholds. Voxel-wise analysis showed that while cold exposure changed the fat fraction across nearly all thermoneutral fat fractions, decreases were most pronounced at high thermoneutral fat fractions. Conclusion: Cold-induced changes in fat fraction occurred over the entire range of thermoneutral fat fractions, and were especially found in lipid-rich regions of the supraclavicular adipose depot. Due to the variability in response between lipid-rich and lipid-poor regions, care should be taken when applying fat fraction thresholds for MRI BAT analysis.
Collapse
Affiliation(s)
- Gustavo Abreu-Vieira
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Aashley S. D. Sardjoe Mishre
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Jedrzej Burakiewicz
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Laura G. M. Janssen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberly J. Nahon
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jari A. van der Eijk
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Titia T. Riem
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Oleh Dzyubachyk
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew G. Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hermien E. Kan
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Hermien E. Kan
| |
Collapse
|
187
|
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. Handb Exp Pharmacol 2019; 251:299-324. [PMID: 30099625 DOI: 10.1007/164_2018_158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
188
|
Nascimento EBM, van Marken Lichtenbelt WD. In Vivo Detection of Human Brown Adipose Tissue During Cold and Exercise by PET/CT. Handb Exp Pharmacol 2019; 251:283-298. [PMID: 29725775 DOI: 10.1007/164_2018_121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The role of brown adipose tissue (BAT) in non-shivering thermogenesis is well established in animals. BAT is activated following cold exposure, resulting in non-shivering thermogenesis, to ensure a constant body temperature. In mitochondria of brown adipocytes, glucose and fatty acids are used as substrate for uncoupling resulting in heat production. Activated BAT functions as a sink for glucose and fatty acids and this hallmark has designated BAT a target in the fight against metabolic diseases like type 2 diabetes mellitus and obesity. In order to make valid claims regarding BAT activity in humans, BAT activity needs to be quantified. The combination of positron emission tomography (PET) and computer tomography (CT) analysis is currently the most frequently used imaging technique to determine BAT activity in humans. Here, we will discuss the history of PET/CT and radioisotopes used to determine BAT activity in humans. Moreover, we will assess how PET/CT is used to determine BAT activity following cold and exercise.
Collapse
|
189
|
Moonen MP, Nascimento EB, van Marken Lichtenbelt WD. Human brown adipose tissue: Underestimated target in metabolic disease? Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:104-112. [DOI: 10.1016/j.bbalip.2018.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/16/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
|
190
|
Martinez-Tellez B, Sanchez-Delgado G, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, Osuna-Prieto FJ, Perez-Bey A, Jimenez-Pavon D, Llamas-Elvira JM, Gil A, Aguilera CM, Rensen PCN, Ruiz JR. Evidence of high 18 F-fluorodeoxyglucose uptake in the subcutaneous adipose tissue of the dorsocervical area in young adults. Exp Physiol 2018; 104:168-173. [PMID: 30468689 DOI: 10.1113/ep087428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/20/2018] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the central question of this study? In some studies, biopsies have been performed of the subcutaneous adipose tissue in the abdomen, and they failed to find browning markers. Is the abdomen the right place to take biopsies? What is the main finding and its importance? For first time, we observed that the glucose uptake in the dorsocervical subcutaneous adipose tissue is higher in comparison to other areas of subcutaneous adipose tissue. ABSTRACT Neonates have subcutaneous brown adipose tissue (BAT) in the dorsocervical area, and it is thought that these depots gradually disappear with age. Here, we determined that young adults have high 18 F-flurodeoxyglucose (18 F-FDG) uptake in the subcutaneous adipose tissue (SAT) of the dorsocervical area. A total of 133 young adults (age 22 ± 2 years; body mass index 25 ± 5 kg m2 ) were included in the study. We performed a shivering threshold test for every participant. Later, we performed 2 h of personalized cold exposure, immediately before a positron emission tomography/computed tomography scan. We showed that 23 of 133 participants had 18 F-FDG uptake in the dorsocervical area that achieved the criteria to be considered BAT, mainly in women (96%, n = 22 of 23). In the whole sample, the glucose uptake in the SAT of the dorsocervical area was positively correlated with BAT volume and activity located in the supraclavicular area. We showed that the 18 F-FDG uptake of the SAT of the dorsocervical area in humans is different from that of other SAT areas. Future studies are warranted to confirm the brown signature of this tissue.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Analytical Chemistry, University of Granada, Granada, Spain.,Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | - Alejandro Perez-Bey
- Galeno research group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
| | - David Jimenez-Pavon
- MOVE-IT research group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Spain
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Servicio de Medicina Nuclear, Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain.,CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| | - Concepcion M Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain.,CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
191
|
He Y, Liu RX, Zhu MT, Shen WB, Xie J, Zhang ZY, Chen N, Shan C, Guo XZ, Lu YD, Tao B, Sun LH, Zhao HY, Guo R, Li B, Liu SM, Ning G, Wang JQ, Liu JM. The browning of white adipose tissue and body weight loss in primary hyperparathyroidism. EBioMedicine 2018; 40:56-66. [PMID: 30528454 PMCID: PMC6412009 DOI: 10.1016/j.ebiom.2018.11.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Background Parathyroid hormone related protein (PTHrP) triggers white adipose tissue (WAT) browning and cachexia in lung cancer mouse models. It remains unknown whether excessive PTH secretion affects WAT browning and to what extent it contributes to body weight change in primary hyperparathyroidism (PHPT). Methods Using the adeno-associated virus injection, Pth gene over-expressed mice mimicking PHPT were firstly established to observe their WAT browning and body weight alteration. The association between PTH and body weight was investigated in 496 PHPT patients. The adipose browning activities of 20 PHPT and 60 control subjects were measured with PET/CT scanning. Findings Elevated plasma PTH triggered adipose tissue browning, leading to increased energy expenditure, reduced fat content, and finally decreased body weight in PHPT mice. Higher circulating PTH levels were associated with lower body weight (β = −0.048, P = .0003) independent of renal function, serum calcium, phosphorus,and albumin levels in PHPT patients. PHPT patients exhibited both higher prevalence of detectable brown/beige adipose tissue (20% vs 3.3%, P = .03) and increased browning activities (SUV in cervical adipose was 0.77 vs 0.49,P = .02) compared with control subjects. Interpretation Elevated serum PTH drove WAT browning program, which contributed in part to body weight loss in both PHPT mice and patients. These results give insights into the novel pathological effect of PTH and are of importance in understanding the metabolic changes of PHPT. Fund This research is supported by the National Key Research and Development Program of China and National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Yang He
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Rui-Xin Liu
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Min-Ting Zhu
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Wen-Bin Shen
- Department of Nuclear Medicine, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai 200025, China
| | - Jing Xie
- Department of Pathology, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Yin Zhang
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Na Chen
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Xing-Zhi Guo
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Yi-de Lu
- Clinical Laboratory, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai 200025, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Rui Guo
- Department of Nuclear Medicine, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai 200025, China
| | - Si-Min Liu
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Department of Medicine (Endocrinology), The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China.
| | - Ji-Qiu Wang
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China.
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai 200025, China.
| |
Collapse
|
192
|
Association between brown adipose tissue and bone mineral density in humans. Int J Obes (Lond) 2018; 43:1516-1525. [PMID: 30518823 DOI: 10.1038/s41366-018-0261-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brown adipose tissue (BAT) seems to play a role in bone morphogenesis. A negative association has been reported between BAT and bone mineral density (BMD) in women, but not in men. A panel of experts has recently published a set of recommendations for BAT assessment, and thus, to re-address previously reported associations is needed. This study aimed to investigate the association between cold-induced BAT 18F-Fluorodeoxyglucose (18F-FDG) uptake and BMD in young healthy adults. METHODS Ninety-eight healthy adults (68 women; 22 ± 2.2 years old; 24.3 ± 4.5 kg/m2) cold-induced BAT was assessed by means of an 18F-FDG positron emission tomography-computed tomography (PET-CT) scan preceded by a personalized cold stimulation. The cold exposure consisted in 2 h in a mild cold room at 19.5-20 °C wearing a water perfused cooling vest set 4 °C above the individual shivering threshold. Total body and lumbar spine BMD were assessed by a whole-body DXA scan. RESULTS We found no association between BMD and cold-induced BAT volume, mean, and maximal activity (all P > 0.1) in neither young and healthy men nor women. These results remained unchanged when adjusting by height, by body composition, and by objectively assessed physical activity. Sensitivity analyses using the criteria to quantify cold-induced BAT-related parameters applied in previous studies did not change the results. CONCLUSIONS In summary, our study shows that there is no association between cold-induced BAT and BMD in young healthy adults. Moreover, our data support the notion that previously shown associations between BAT and BMD in healthy non-calorically restricted individuals, could be driven by methodological issues related to BAT assessment and/or sample size limitations.
Collapse
|
193
|
Martinez-Tellez B, Xu H, Sanchez-Delgado G, Acosta FM, Rensen PCN, Llamas-Elvira JM, Ruiz JR. Association of wrist and ambient temperature with cold-induced brown adipose tissue and skeletal muscle [18F]FDG uptake in young adults. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1281-R1288. [DOI: 10.1152/ajpregu.00238.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brown adipose tissue (BAT) activity is influenced by the outdoor temperature variation. However, people spend most of their time indoors, especially in colder regions and during cold seasons. Therefore, outdoor temperature is probably not an accurate tool to quantify the exposure of the participants before BAT quantification. We studied the association of wrist and personal environmental temperatures with cold-induced BAT and skeletal muscle [18F]fluorodeoxyglucose ([18F]FDG) uptake in adults. A total of 74 participants wore two iButtons during 7 days to measure wrist temperature (WT) and personal level of environmental temperature (Personal-ET). Thereafter, we performed a 2-h personalized cooling protocol before performing an [18F]FDG-PET/CT scan. WT was negatively associated with BAT volume ( R2 = 0.122; P = 0.002) and BAT activity [standardized uptake value (SUV)peak, R2 = 0.083; P = 0.012]. Moreover, Personal-ET was negatively associated with BAT volume ( R2 = 0.164; P < 0.001), BAT activity (SUVmean and SUVpeak, all R2 ≥ 0.167; P < 0.001), and skeletal muscle activity (SUVpeak, R2 = 0.122; P = 0.002). Interestingly, the time exposed to a certain Personal-ET (16–20°C) positively correlated only with [18F]FDG uptake by BAT (volume and activity; all P ≤ 0.05), whereas the time exposed to 12–15°C positively correlated only with measures of [18F]FDG uptake by skeletal muscle activity (all P ≤ 0.05). This study shows that WT and Personal-ET are associated with [18F]FDG uptake by BAT and skeletal muscle activity in adults within certain temperature thresholds. Moreover, our results suggest that [18F]FDG uptake by human BAT or skeletal muscle can be activated or inhibited in different ranges of ambient temperatures exposures. Results should be taken with caution because the observed associations were relatively weak.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Francisco M. Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Patrick C. N. Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jose M. Llamas-Elvira
- Nuclear Medicine Department, “Virgen de las Nieves” University Hospital, Granada, Spain
- Biohealth Research Institute in Granada, Nuclear Medicine Department, Granada, Spain
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
194
|
van Marken Lichtenbelt WD, Pallubinsky H, Te Kulve M. Modulation of thermogenesis and metabolic health: a built environment perspective. Obes Rev 2018; 19 Suppl 1:94-101. [PMID: 30511507 DOI: 10.1111/obr.12789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023]
Abstract
Lifestyle interventions, obviating the increasing prevalence of the metabolic syndrome, generally focus on nutrition and physical activity. Environmental factors are hardly covered. Because we spend on average more that 90% of our time indoors, it is, however, relevant to address these factors. In the built environment, the attention has been limited to the (assessment and optimization of) building performance and occupant thermal comfort for a long time. Only recently well-being and health of building occupants are also considered to some extent, but actual metabolic health aspects are not generally covered. In this review, we draw attention to the potential of the commonly neglected lifestyle factor 'indoor environment'. More specifically, we review current knowledge and the developments of new insights into the effects of ambient temperature, light and the interaction of the two on metabolic health. The literature shows that the effects of indoor environmental factors are important additional factors for a healthy lifestyle and have an impact on metabolic health.
Collapse
Affiliation(s)
- W D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Pallubinsky
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands
| | - M Te Kulve
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands.,BBA Binnenmilieu, The Hague, The Netherlands
| |
Collapse
|
195
|
de-Lima-Júnior JC, Souza GF, Moura-Assis A, Gaspar RS, Gaspar JM, Rocha AL, Ferrucci DL, Lima TI, Victório SC, Bonfante ILP, Cavaglieri CR, Pareja JC, Brunetto SQ, Ramos CD, Geloneze B, Mori MA, Silveira LR, Segundo GRS, Ropelle ER, Velloso LA. Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency. EBioMedicine 2018; 39:436-447. [PMID: 30502051 PMCID: PMC6355943 DOI: 10.1016/j.ebiom.2018.11.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Background Inflammation is the most relevant mechanism linking obesity with insulin-resistance and metabolic disease. It impacts the structure and function of tissues and organs involved in metabolism, such as the liver, pancreatic islets and the hypothalamus. Brown adipose tissue has emerged as an important component of whole body energy homeostasis, controlling caloric expenditure through the regulation of non-shivering thermogenesis. However, little is known about the impact of systemic inflammation on the structure and function of brown adipose tissue. Methods The relations between IL10 and mitochondria structure/function and also with thermogenesis were evaluated by bioinformatics using human and rodent data. Real-time PCR, immunoblot, fluorescence and transmission electron microscopy were employed to determine the effect of IL10 in the brown adipose tissue of wild type and IL10 knockout mice. Findings IL10 knockout mice, a model of systemic inflammation, present severe structural abnormalities of brown adipose tissue mitochondria, which are round-shaped with loss of cristae structure and increased fragmentation. IL10 deficiency leads to newborn cold intolerance and impaired UCP1-dependent brown adipose tissue mitochondrial respiration. The reduction of systemic inflammation with an anti-TNFα monoclonal antibody partially rescued the structural but not the functional abnormalities of brown adipose tissue mitochondria. Using bioinformatics analyses we show that in both humans and mice, IL10 transcripts correlate with mitochondrial lipid metabolism and caspase gene expression. Interpretation IL10 and systemic inflammation play a central role in the regulation of brown adipose tissue by controlling mitochondrial structure and function. Fund Sao Paulo Research Foundation grant 2013/07607-8.
Collapse
Affiliation(s)
- José C de-Lima-Júnior
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Gabriela F Souza
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Rodrigo S Gaspar
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; CEPECE - Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil(.)
| | - Joana M Gaspar
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Andréa L Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Danilo L Ferrucci
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil; National Institute of Photonics Applied to Cell Biology (INFABiC), Campinas, São Paulo, Brazil
| | - Tanes I Lima
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Sheila C Victório
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Ivan L P Bonfante
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Claudia R Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP 13083-970, Brazil
| | - José C Pareja
- Laboratory of Investigation in Metabolism and Diabetes (LIMED)/Gastrocentro, Department of Surgery, University of Campinas (UNICAMP), Campinas, SP 13081-970, Brazil
| | - Sérgio Q Brunetto
- Biomedical Engineering Center, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Celso D Ramos
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Department of Radiology, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Bruno Geloneze
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Laboratory of Investigation in Metabolism and Diabetes (LIMED)/Gastrocentro, Department of Surgery, University of Campinas (UNICAMP), Campinas, SP 13081-970, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Gesmar R S Segundo
- Department of Pediatrics, Federal University of Uberlandia, Uberlandia, Brazil
| | - Eduardo R Ropelle
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; CEPECE - Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil(.)
| | - Lício A Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil.
| |
Collapse
|
196
|
Sanchez-Delgado G, Martinez-Tellez B, Garcia-Rivero Y, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, Llamas-Elvira JM, Ruiz JR. Brown Adipose Tissue and Skeletal Muscle 18F-FDG Activity After a Personalized Cold Exposure Is Not Associated With Cold-Induced Thermogenesis and Nutrient Oxidation Rates in Young Healthy Adults. Front Physiol 2018; 9:1577. [PMID: 30505277 PMCID: PMC6250802 DOI: 10.3389/fphys.2018.01577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023] Open
Abstract
Cold induced thermogenesis (CIT) in humans results mainly from the combination of both brown adipose tissue (BAT) and skeletal muscle thermogenic activity. The relative contribution of both tissues to CIT and to cold induced nutrient oxidation rates (CI-NUTox) remains, however, to be elucidated. We investigated the association of BAT and skeletal muscle activity after a personalized cold exposure with CIT and CI-NUTox in 57 healthy adults (23.0 ± 2.4 years old; 25.1 ± 4.6 kg/m2; 35 women). BAT and skeletal muscle (paracervical, sternocleidomastoid, scalene, longus colli, trapezius, parathoracic, supraspinatus, subscapular, deltoid, pectoralis major, and triceps brachii) metabolic activity were assessed by means of a 18Fluorodeoxyglucose positron emission tomography-computed tomography scan preceded by a personalized cold exposure. The cold exposure consisted in remaining in a mild cold room for 2 h at 19.5–20°C wearing a water perfused cooling vest set at 3.8°C above the individual shivering threshold. On a separate day, we estimated CIT and CI-NUTox by indirect calorimetry under fasting conditions for 1 h of personalized cold exposure. There was no association of BAT volume or activity with CIT or CI-NUTox (all P > 0.2). Similarly, the skeletal muscle metabolic activity was not associated either with CIT or CI-NUTox (all P > 0.2). The results persisted after controlling for sex, the time of the day, and the date when CIT was assessed. Our results suggest that human BAT activity and skeletal muscle 18F-FDG activity are not associated to CIT in young healthy adults. Inherent limitations of the available radiotracers for BAT detection and muscle activity quantification may explain why we failed to detect a physiologically plausible association.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yolanda Garcia-Rivero
- Nuclear Medicine Department, "Virgen de las Nieves" University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Departament of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Department, "Virgen de las Nieves" University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
197
|
Villarroya F, Cereijo R, Gavaldà-Navarro A, Villarroya J, Giralt M. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J Intern Med 2018; 284:492-504. [PMID: 29923291 DOI: 10.1111/joim.12803] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many of the comorbidities of obesity, including type 2 diabetes and cardiovascular diseases, are related to the low-grade chronic inflammation of white adipose tissue. Under white adipocyte stress, local infiltration of immune cells and enhanced production of pro-inflammatory cytokines together reduce metabolic flexibility and lead to insulin resistance in obesity. Whereas white adipocytes act in energy storage, brown and beige adipocytes specialize in energy expenditure. Brown and beige activity protects against obesity and associated metabolic disorders, such as hyperglycaemia and hyperlipidaemia. Compared to white fat, brown adipose tissue depots are less susceptible to developing local inflammation in response to obesity; however, strong obesogenic insults ultimately induce a locally pro-inflammatory environment in brown fat. This condition directly alters the thermogenic activity of brown fat by impairing its energy expenditure mechanism and uptake of glucose for use as a fuel substrate. Pro-inflammatory cytokines also impair beige adipogenesis, which occurs mainly in subcutaneous adipose tissue. There is evidence that inflammatory processes occurring in perivascular adipose tissues alter their brown-versus-white plasticity, impair the extent of browning in these depots and favour the local release of vasculature damaging signals. In summary, the targeting of brown and beige adipose tissues by pro-inflammatory signals and the subsequent impairment of their thermogenic and metabolite draining activities appears to represent obesity-driven disturbances that contribute to metabolic syndrome and cardiovascular alterations in obesity.
Collapse
Affiliation(s)
- F Villarroya
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - R Cereijo
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - A Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - J Villarroya
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - M Giralt
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
198
|
Targeted Molecular Magnetic Resonance Imaging Detects Brown Adipose Tissue with Ultrasmall Superparamagnetic Iron Oxide. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3619548. [PMID: 30406134 PMCID: PMC6199858 DOI: 10.1155/2018/3619548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022]
Abstract
The peptide (CKGGRAKDC-NH2) specifically targets the brown adipose tissue (BAT). Here we applied this peptide coupled with polyethylene glycol (PEG)-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to detect BAT in vivo by magnetic resonance imaging (MRI). The peptide was conjugated with PEG-coated USPIO nanoparticles to obtain targeted USPIO nanoprobes. Then the nanoprobes for BAT were evaluated in mice. T2⁎-weighted images were performed, precontrast and postcontrast USPIO nanoparticles. Finally, histological analyses proved the specific targeting. The specificity of targeted USPIO nanoprobes was observed in mice. The T2⁎ relaxation time of BAT in the targeted group decreased obviously compared to the controls (P<0.001). Prussian blue staining and transmission electron microscope confirmed the specific presence of iron oxide. This study demonstrated that peptide (CKGGRAKDC-NH2) coupled with PEG-coated USPIO nanoparticles could identify BAT noninvasively in vivo with MRI.
Collapse
|
199
|
Riis-Vestergaard MJ, Breining P, Pedersen SB, Laustsen C, Stødkilde-Jørgensen H, Borghammer P, Jessen N, Richelsen B. Evaluation of Active Brown Adipose Tissue by the Use of Hyperpolarized [1- 13C]Pyruvate MRI in Mice. Int J Mol Sci 2018; 19:ijms19092597. [PMID: 30200469 PMCID: PMC6164296 DOI: 10.3390/ijms19092597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The capacity to increase energy expenditure makes brown adipose tissue (BAT) a putative target for treatment of metabolic diseases such as obesity. Presently, investigation of BAT in vivo is mainly performed by fluoro-d-glucose positron emission tomography (FDG PET)/CT. However, non-radioactive methods that add information on, for example, substrate metabolism are warranted. Thus, the aim of this study was to evaluate the potential of hyperpolarized [1-13C]pyruvate Magnetic Resonance Imaging (HP-MRI) to determine BAT activity in mice following chronic cold exposure. Cold (6 °C) and thermo-neutral (30 °C) acclimated mice were scanned with HP-MRI for assessment of the interscapular BAT (iBAT) activity. Comparable mice were scanned with the conventional method FDG PET/MRI. Finally, iBAT was evaluated for gene expression and protein levels of the specific thermogenic marker, uncoupling protein 1 (UCP1). Cold exposure increased the thermogenic capacity 3–4 fold (p < 0.05) as measured by UCP1 gene and protein analysis. Furthermore, cold exposure as compared with thermo-neutrality increased iBAT pyruvate metabolism by 5.5-fold determined by HP-MRI which is in good agreement with the 5-fold increment in FDG uptake (p < 0.05) measured by FDG PET/MRI. iBAT activity is detectable in mice using HP-MRI in which potential changes in intracellular metabolism may add useful information to the conventional FDG PET studies. HP-MRI may also be a promising radiation-free tool for repetitive BAT studies in humans.
Collapse
Affiliation(s)
- Mette Ji Riis-Vestergaard
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Peter Breining
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Steen Bønløkke Pedersen
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Christoffer Laustsen
- MR Research Center, Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | | | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Bjørn Richelsen
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| |
Collapse
|
200
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|