151
|
Liang Q, Sun X, Raza H, Aslam Khan M, Ma H, Ren X. Fabrication and characterization of quercetin loaded casein phosphopeptides-chitosan composite nanoparticles by ultrasound treatment: Factor optimization, formation mechanism, physicochemical stability and antioxidant activity. ULTRASONICS SONOCHEMISTRY 2021; 80:105830. [PMID: 34800840 PMCID: PMC8605428 DOI: 10.1016/j.ultsonch.2021.105830] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 05/30/2023]
Abstract
Ultrasound treatment was used to successfully prepare Quercetin (Qu)-loaded Casein phosphopeptides (CPP)/chitosan (CS) nanoparticles. Compared with the control, the above ternary nanoparticles with the smallest size (241.27 nm, decreased by 34.32%), improved encapsulation efficiency of Qu (78.55%, increased by 22.12%) when prepared under following conditions: ultrasonic frequency, 20/35/50 kHz; the power density, 80 W/L; the time, 20 min, and the intermittent ratio, 20 s/5s. Electrostatic interactions, hydrogen bonding, and hydrophobic interactions were the main driving forces for nanoparticles formulation, which were strengthened by ultrasound treatment. The compact, homogeneous and spherical composite nanoparticles obtained by sonication were clearly observed by scanning electron microscope and atomic force microscope. The environmental stability (NaCl, pH, exposure time, storage time, and simulated gastrointestinal digestion) and antioxidant activity of the ternary nanoparticles were remarkably enhanced after ultrasonic treatment. Furthermore, the ternary nanoparticles prepared by ultrasound exhibited excellent stability in simulated gastrointestinal digestion. The above results indicate that ultrasound not only increases the loading of the nanoparticles on bioactive substances but also improves the environmental stability and antioxidant activity of the formed nanoparticles. Ultrasound-assisted preparation of nanoparticles loaded with bioactive substances could be well used in the functional food and beverage industry.
Collapse
Affiliation(s)
- Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China
| | - Xinru Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Husnain Raza
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Muhammad Aslam Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
152
|
Bicca DF, Spiazzi CC, Ramalho JB, Soares MB, Cibin FWS. A subchronic low-dose exposure of a glyphosate-based herbicide induces depressive and anxious-like behavior in mice: quercetin therapeutic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67394-67403. [PMID: 34254248 DOI: 10.1007/s11356-021-15402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the possible role of pesticide exposure in contributing to neurological diseases such as depression. Here, we evaluated whether a subchronic low dose of a glyphosate-based herbicide (GBH) could induce alterations in the central nervous system, using the flavonoid quercetin as a therapeutic strategy. Forty mice were divided into four treatment groups: control, GBH, quercetin, and GBH+Quer groups and received 50 mg/kg of GBH solution, 30 mg/kg of quercetin, and/or vehicles for 30 days via gavage. After performing behavioral tests, such as the open field (OF), elevated plus maze (EPM), forced swim test (FST), and sucrose preference test (SPT), the mice were euthanized and their hippocampal tissues were collected to measure the levels of oxidative stress markers such as reactive species (RS), total antioxidant capacity (FRAP), reduced glutathione (GSH), and acetylcholinesterase activity (AChE), as well as for histological evaluation. The GBH group showed anxious and depressive-like behavior in the EPM and FST tests, as well as increased levels of RS and decreased GSH levels in the hippocampus. Quercetin treatment in the GBH+Quer group allowed partial or total improvement in behavioral tests (EPM and FST) and in the levels of oxidative stress markers (RS and GSH). However, the quercetin group showed similar behavior to the GBH group after treatment. The results revealed that oral exposure to a subchronic low dose of GBH was capable of promoting effects on behavior and oxidative stress in the hippocampus of mice. In addition, despite quercetin having a neuroprotective role, caution is needed when considering the possible per se effects of its continuous supplementation.
Collapse
Affiliation(s)
- Diogo Ferreira Bicca
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Cristiano Chiapinotto Spiazzi
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Juliana Bernera Ramalho
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Melina Bucco Soares
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Weber Santos Cibin
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
153
|
Farag MR, Moselhy AAA, El-Mleeh A, Aljuaydi SH, Ismail TA, Di Cerbo A, Crescenzo G, Abou-Zeid SM. Quercetin Alleviates the Immunotoxic Impact Mediated by Oxidative Stress and Inflammation Induced by Doxorubicin Exposure in Rats. Antioxidants (Basel) 2021; 10:antiox10121906. [PMID: 34943009 PMCID: PMC8750303 DOI: 10.3390/antiox10121906] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent against hematogenous and solid tumors with undesirable side effects including immunosuppression. Quercetin (QUR), a natural flavonoid abundant in fruits and vegetables, has a potent antioxidant activity. The aim of the current study was to assess the impact of QUR on DOX-induced hematological and immunological dysfunctions in a rodent model. Randomly grouped rats were treated as follows: control, QUR alone (50 mg/kg for 15 days per os), DOX alone (2.5 mg/kg I/P, three times a week, for two weeks), and co-treated rats with QUR for 15 days prior to and concomitantly with DOX (for two weeks), at the doses intended for groups two and three. DOX alone significantly disrupted the erythrogram and leukogram variables. Serum immunoglobulin (IgG, IgM, and IgE) levels and the activities of catalase (CAT) and superoxide dismutase (SOD) in spleen were declined. The DNA damage traits in spleen were elevated with an upregulation of the expression of the apoptotic markers (p53 and Caspase-3 genes) and the proinflammatory cytokines (IL-6 and TNF-α genes), while the expression of CAT gene was downregulated. These biochemical changes were accompanied by morphological changes in the spleen of DOX-treated rats. Co-treatment with QUR abated most of the DOX-mediated alterations in hematological variables, serum immunoglobulins, and spleen antioxidant status, pro-inflammatory and apoptotic responses, and histopathological alterations. In essence, these data suggest that QUR alleviated DOX-induced toxicities on the bone marrow, spleen, and antibody-producing cells. Supplementation of chemotherapy patients with QUR could circumvent the DOX-induced inflammation and immunotoxicity, and thus prevent chemotherapy failure.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.R.F.); (A.D.C.)
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum 32511, Egypt;
| | - Samira H. Aljuaydi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
- Correspondence: (M.R.F.); (A.D.C.)
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 6012201, Egypt;
| |
Collapse
|
154
|
Rajnochová Svobodová A, Ryšavá A, Čížková K, Roubalová L, Ulrichová J, Vrba J, Zálešák B, Vostálová J. Effect of the flavonoids quercetin and taxifolin on UVA-induced damage to human primary skin keratinocytes and fibroblasts. Photochem Photobiol Sci 2021; 21:59-75. [PMID: 34837635 DOI: 10.1007/s43630-021-00140-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023]
Abstract
The ultraviolet (UV) part of solar radiation can permanently affect skin tissue. UVA photons represent the most abundant UV component and stimulate the formation of intracellular reactive oxygen species (ROS), leading to oxidative damage to various biomolecules. Several plant-derived polyphenols are known as effective photoprotective agents. This study evaluated the potential of quercetin (QE) and its structurally related flavonoid taxifolin (TA) to reduce UVA-caused damage to human primary dermal fibroblasts (NHDF) and epidermal keratinocytes (NHEK) obtained from identical donors. Cells pre-treated with QE or TA (1 h) were then exposed to UVA light using a solar simulator. Both flavonoids effectively prevented oxidative damage, such as ROS generation, glutathione depletion, single-strand breaks formation and caspase-3 activation in NHDF. These protective effects were accompanied by stimulation of Nrf2 nuclear translocation, found in non-irradiated and irradiated NHDF and NHEK, and expression of antioxidant proteins, such as heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and catalase. For most parameters, QE was more potent than TA. On the other hand, TA demonstrated protection within the whole concentration range, while QE lost its protective ability at the highest concentration tested (75 μM), suggesting its pro-oxidative potential. In summary, QE and TA demonstrated UVA-protective properties in NHEK and NHDF obtained from identical donors. However, due to the in vitro phototoxic potential of QE, published elsewhere and discussed herein, further studies are needed to evaluate QE safety in dermatological application for humans as well as to confirm our results on human skin ex vivo and in clinical trials.
Collapse
Affiliation(s)
- Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Kateřina Čížková
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77900, Olomouc, Czech Republic
| | - Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Bohumil Zálešák
- Department of Plastic and Aesthetic Surgery, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic.
| |
Collapse
|
155
|
Demkovych A, Bondarenko Y, Shcherba V, Luchynskyi V, Vitkovskyy V, Machogan V. Quercetin effects on adaptive immune response in experimental periodontitis of bacterial-immune genesis. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e70883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the article was studied the effects of flavonol quercetin on indices of adaptive immune response in experimental animals on the 14th day of the experimental bacterial-immune periodontitis development. Indices of immune protection were determined by the relative number of lymphocytes with CD3+, CD4+, CD8+, CD19+, CD16+ and immunoregulatory index (CD4+ / CD8+) in intact animals and on the 14th day of inflammatory process development in periodontal tissues as well as the therapeutic effects of flavonol quercetin. As a result of the study, characterized changes associated with the activity of both the cell-mediated and humoral-immune response were found, both in the development of experimental periodontitis, and apply of flavonol. In particular, there was an increase in the animal’s blood relative amount of CD8+, CD16+ cells on the 14th day, and content of CD3+, CD4+, CD19+ was decreased. In this case, the immunoregulatory index (CD4+ / CD8+) as an important index of immunological activity was decreased. The apply of flavonol quercetin in the period development of bacterial-immune periodontitis animals functional activity of the T-cell line of the immune system was increased, as evidenced percentage increase of B- and T-cells due to T-helper cells decrease as well as T-killers content during this period of inflammatory reaction in the periodontal complex, in comparison with animals, which were not treated.
Collapse
|
156
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
157
|
da Silva SVS, Barboza OM, Souza JT, Soares ÉN, dos Santos CC, Pacheco LV, Santos IP, Magalhães TBDS, Soares MBP, Guimarães ET, Meira CS, Costa SL, da Silva VDA, de Santana LLB, de Freitas Santos Júnior A. Structural Design, Synthesis and Antioxidant, Antileishmania, Anti-Inflammatory and Anticancer Activities of a Novel Quercetin Acetylated Derivative. Molecules 2021; 26:molecules26226923. [PMID: 34834016 PMCID: PMC8623808 DOI: 10.3390/molecules26226923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/01/2023] Open
Abstract
Quercetin (Q) is a bioflavonoid with biological potential; however, poor solubility in water, extensive enzymatic metabolism and a reduced bioavailability limit its biopharmacological use. The aim of this study was to perform structural modification in Q by acetylation, thus, obtaining the quercetin pentaacetate (Q5) analogue, in order to investigate the biological potentials (antioxidant, antileishmania, anti-inflammatory and cytotoxicity activities) in cell cultures. Q5 was characterized by FTIR, 1H and 13C NMR spectra. The antioxidant potential was evaluated against the radical ABTS•+. The anti-inflammatory potential was evaluated by measuring the pro-inflammatory cytokine tumor necrosis factor (TNF) and the production of nitric oxide (NO) in peritoneal macrophages from BALB/c mice. Cytotoxicity tests were performed using the AlamarBlue method in cancer cells HepG2 (human hepatocarcinoma), HL-60 (promyelocytic leukemia) and MCR-5 (healthy human lung fibroblasts) as well as the MTT method for C6 cell cultures (rat glioma). Q and Q5 showed antioxidant activity of 29% and 18%, respectively, which is justified by the replacement of hydroxyls by acetyl groups. Q and Q5 showed concentration-dependent reductions in NO and TNF production (p < 0.05); Q and Q5 showed higher activity at concentrations > 40µM when compared to dexamethasone (20 µM). For the HL-60 lineage, Q5 demonstrated selectivity, inducing death in cancer cells, when compared to the healthy cell line MRC-5 (IC50 > 80 µM). Finally, the cytotoxic superiority of Q5 was verified (IC50 = 11 µM), which, at 50 µM for 24 h, induced changes in the morphology of C6 glioma cells characterized by a round body shape (not yet reported in the literature). The analogue Q5 had potential biological effects and may be promising for further investigations against other cell cultures, particularly neural ones.
Collapse
Affiliation(s)
- Saul Vislei Simões da Silva
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
| | - Orlando Maia Barboza
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
| | - Jéssica Teles Souza
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Cleonice Creusa dos Santos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Luciano Vasconcellos Pacheco
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil; (I.P.S.); (M.B.P.S.)
| | | | - Tatiana Barbosa dos Santos Magalhães
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil; (I.P.S.); (M.B.P.S.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | - Elisalva Teixeira Guimarães
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil; (I.P.S.); (M.B.P.S.)
| | - Cássio Santana Meira
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil; (I.P.S.); (M.B.P.S.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Lourenço Luís Botelho de Santana
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
- Correspondence: or ; Tel.: +55-71-3117-5313
| |
Collapse
|
158
|
Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4393266. [PMID: 34777687 PMCID: PMC8580629 DOI: 10.1155/2021/4393266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules, flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that this natural product has beneficial effects on cancer treatment has boosted the researchers' interest towards more extensive studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.
Collapse
|
159
|
Curry AM, White DS, Donu D, Cen Y. Human Sirtuin Regulators: The "Success" Stories. Front Physiol 2021; 12:752117. [PMID: 34744791 PMCID: PMC8568457 DOI: 10.3389/fphys.2021.752117] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
The human sirtuins are a group of NAD+-dependent protein deacylases. They “erase” acyl modifications from lysine residues in various cellular targets including histones, transcription factors, and metabolic enzymes. Through these far-reaching activities, sirtuins regulate a diverse array of biological processes ranging from gene transcription to energy metabolism. Human sirtuins have been intensely pursued by both academia and industry as therapeutic targets for a broad spectrum of diseases such as cancer, neurodegenerative diseases, and metabolic disorders. The last two decades have witnessed a flood of small molecule sirtuin regulators. However, there remain relatively few compounds targeting human sirtuins in clinical development. This reflects the inherent issues concerning the development of isoform-selective and potent molecules with good drug-like properties. In this article, small molecule sirtuin regulators that have advanced into clinical trials will be discussed in details as “successful” examples for future drug development. Special attention is given to the discovery of these compounds, the mechanism of action, pharmacokinetics analysis, formulation, as well as the clinical outcomes observed in the trials.
Collapse
Affiliation(s)
- Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Dawanna S White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
160
|
Dagher O, Mury P, Noly PE, Fortier A, Lettre G, Thorin E, Carrier M. Design of a Randomized Placebo-Controlled Trial to Evaluate the Anti-inflammatory and Senolytic Effects of Quercetin in Patients Undergoing Coronary Artery Bypass Graft Surgery. Front Cardiovasc Med 2021; 8:741542. [PMID: 34746258 PMCID: PMC8564044 DOI: 10.3389/fcvm.2021.741542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Following an acute coronary syndrome, patients display an elevated inflammatory profile, promoted in part by cellular senescence. For patients requiring a coronary artery bypass (CABG) surgery, exposure to the surgical intervention and cardiopulmonary bypass further exacerbate their residual inflammation. Experimental evidence identified quercetin, a natural senolytic drug, as a cardioprotective agent against inflammatory injuries. The Q-CABG study aims to explore the efficacy of quercetin to reduce inflammation, myocardial injury and senescence in patients undergoing CABG following an acute coronary syndrome. Methods: Q-CABG is a phase II, prospectively registered, randomized, double-blind and placebo-controlled clinical trial. Recruited patients awaiting CABG surgery at the Montreal Heart Institute (n = 100) will be randomly assigned in a 1:1 ratio to receive either quercetin supplementation (500 mg twice daily) or placebo, starting 2 days before surgery and until the seventh postoperative day. The primary endpoint examines the effects of quercetin on blood inflammatory cytokines and markers of myocardial injury and senescence in this patient population. Blood samples will be taken at four time points: baseline, postoperative day 1, postoperative day 4 and at hospital discharge, or after a maximum of seven postoperative days. The secondary endpoint is the assessment of endothelial (dys) function by looking at ex vivo vascular reactivity and mRNA expression of endothelial cells from the wall of discarded segments of internal mammary artery. Discussion: The preventive intake of quercetin supplementation may help limit the vigorous inflammatory response triggered by CABG and subsequent postoperative complications in patients suffering from an acute coronary syndrome. In an exploratory way, quercetin supplementation could also improve endothelial function by eliminating senescent vascular endothelial cells. The results of this trial should provide valuable information regarding a novel approach to improve biological, and potentially clinical, outcomes post CABG. Clinical Trial Registration:ClinicalTrials.gov, Identifier NCT04907253.
Collapse
Affiliation(s)
- Olina Dagher
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pauline Mury
- Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Pierre-Emmanuel Noly
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Annik Fortier
- Montreal Health Innovations Coordinating Center, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Lettre
- Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Eric Thorin
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Michel Carrier
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
161
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
162
|
Zhang YJ, Mu ZL, Deng P, Liang YD, Wu LC, Yang LL, Zhou Z, Yu ZP. 8-Formylophiopogonanone B induces ROS-mediated apoptosis in nasopharyngeal carcinoma CNE-1 cells. Toxicol Res (Camb) 2021; 10:1052-1063. [PMID: 34733490 DOI: 10.1093/toxres/tfab087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of death in the world. It is very important to find drugs with high efficiency, low toxicity, and low side effects for the treatment of cancer. Flavonoids and their derivatives with broad biological functions have been recognized as anti-tumor chemicals. 8-Formylophiopogonanone B (8-FOB), a naturally existed homoisoflavonoids with rarely known biological functions, needs pharmacological evaluation. In order to explore the possible anti-tumor action of 8-FOB, we used six types of tumor cells to evaluate in vitro effects of this agent on cell viability and tested the effects on clone formation ability, scratching wound-healing, and apoptosis. In an attempt to elucidate the mechanism of pharmacological action, we examined 8-FOB-induced intracellular oxidative stress and -disrupted mitochondrial function. Results suggested that 8-FOB could suppress tumor cell viability, inhibit cell migration and invasion, induce apoptosis, and elicit intracellular ROS production. Among these six types of tumor cells, the nasopharyngeal carcinoma CNE-1 cells were the most sensitive cancer cells to 8-FOB treatment. Intracellular ROS production played a pivotal role in the anti-tumor action of 8-FOB. Our present study is the first to document that 8-FOB has anti-tumor activity in vitro and increases intracellular ROS production, which might be responsible for its anti-tumor action. The anti-tumor pharmacological effect of 8-FOB is worthy of further investigation.
Collapse
Affiliation(s)
- Ya-Jing Zhang
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Zhen-Lin Mu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Yi-Dan Liang
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Li-Chuan Wu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Ling-Ling Yang
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, 310000, P. R. China
| | - Zheng-Ping Yu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
163
|
Palmieri A, Bassetti B, Ballini R, Ciceri D, Allegrini P. A Practical and Efficient Conversion of Luteolin into Luteoloside. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1531-2385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA new practical and efficient preparation of the flavonoid luteoloside is reported in an excellent overall yield of 40% via a four-step synthetic approach.
Collapse
Affiliation(s)
- Alessandro Palmieri
- Green Chemistry Group, School of Sciences and Technology, Chemistry Division, University of Camerino
| | - Benedetta Bassetti
- Green Chemistry Group, School of Sciences and Technology, Chemistry Division, University of Camerino
| | - Roberto Ballini
- Green Chemistry Group, School of Sciences and Technology, Chemistry Division, University of Camerino
| | | | | |
Collapse
|
164
|
Zhou W, Zhu Z, Xiao X, Li C, Zhang L, Dang Y, Ge G, Ji G, Zhu M, Xu H. Jiangzhi Granule attenuates non-alcoholic steatohepatitis by suppressing TNF/NFκB signaling pathway-a study based on network pharmacology. Biomed Pharmacother 2021; 143:112181. [PMID: 34649337 DOI: 10.1016/j.biopha.2021.112181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023] Open
Abstract
Jiangzhi Granule is a commonly used traditional Chinese medicine for treating non-alcoholic fatty liver disease. However, its key ingredients and underlying mechanisms for attenuating nonalcoholic steatohepatitis (NASH) remain unclear. To address this issue, UPLC-TOF-MS based chemical profiling, network pharmacology and animal experimental validation were employed. First, a total of 56 main ingredients of Jiangzhi Granule and 38 ingredients in the blood and liver (after oral administration) were identified. Then, 170 potential targets of the absorbed ingredients and 50 targets of NASH were identified, and 10 overlapped genes were identified as candidate targets of Jiangzhi Granule for NASH treatment. A Jiangzhi Granule-ingredients-targets-disease network was constructed using Cytoscape software, which included eight main ingredients (such as emodin, resveratrol and quercetin) and 10 candidate targets (such as TNF, IL6 and CCL2). Functional enrichment indicated that the candidate targets were enriched in multiple pathways (such as the TNF signaling pathway). Furthermore, a NASH mice model was constructed and intervened with Jiangzhi Granule. The results revealed that Jiangzhi Granule could ameliorate NASH characteristics, such as histopathological changes and liver cholesterol level. Meanwhile, Jiangzhi Granule significantly decreased the mRNA and protein expression of TNFα in NASH mice liver, suppressed NFκB activation, and inhibited the expression of macrophage activation marker F4/80 and M1-type polarization marker CD11b/CD11c. ELISA assay indicated that Jiangzhi Granule reduced pro-inflammatory cytokines (including TNFα, IL-1β and IL-6) in the liver. Collectively, our results suggested that Jiangzhi Granule could attenuate NASH by suppressing TNF/NFκB signaling mediated macrophage M1-type polarization.
Collapse
Affiliation(s)
- Wenjun Zhou
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ziye Zhu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaoli Xiao
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chunlin Li
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Mingzhe Zhu
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
165
|
Souza KS, Moreira LS, Silva BT, Oliveira BPM, Carvalho AS, Silva PS, Verri WA, Sá-Nakanishi AB, Bracht L, Zanoni JN, Gonçalves OH, Bracht A, Comar JF. Low dose of quercetin-loaded pectin/casein microparticles reduces the oxidative stress in arthritic rats. Life Sci 2021; 284:119910. [PMID: 34453939 DOI: 10.1016/j.lfs.2021.119910] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022]
Abstract
AIMS Quercetin has been investigated as an agent to treat rheumatoid arthritis. At high doses it improves inflammation and the antioxidant status of arthritic rats, but it also exerts mitochondriotoxic and pro-oxidant activities. Beneficial effects of quercetin have not been found at low doses because of its chemical instability and low bioavailability. In the hope of overcoming these problems this study investigated the effects of long-term administration of quercetin-loaded pectin/casein microparticles on the oxidative status of liver and brain of rats with adjuvant-induced arthritis. MAIN METHODS Particle morphology was viewed with transmission electron microscopy and the encapsulation efficiency was measured indirectly by X-ray diffraction. Quercetin microcapsules (10 mg/Kg) were orally administered to rats during 60 days. Inflammation indicators and oxidative stress markers were measured in addition to the respiratory activity and ROS production in isolated mitochondria. KEY FINDINGS Quercetin was efficiently encapsulated inside the polymeric matrix, forming a solid amorphous solution. The administration of quercetin microparticles to arthritic rats almost normalized protein carbonylation, lipid peroxidation, the levels of reactive oxygen species as well as the reduced glutathione content in both liver and brain. The paw edema in arthritic rats was not responsive, but the plasmatic activity of ALT and the mitochondrial respiration were not affected by quercetin, indicating absence of mitochondriotoxic or hepatotoxic actions. SIGNIFICANCE Quercetin-loaded pectin/casein microcapsules orally administered at a low dose improve oxidative stress of arthritic rats without a strong anti-inflammatory activity. This supports the long-term use of quercetin as an antioxidant agent to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Kaiany S Souza
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Lucas S Moreira
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Bruna Thais Silva
- Department of Morphological Sciences, University of Maringá, PR, Brazil
| | - Byanca P M Oliveira
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Amarilis S Carvalho
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Patrícia S Silva
- Department of Chemical Engineering, State University of Maringa, PR, Brazil
| | - Waldiceu A Verri
- Post-Graduation Program of Experimental Pathology, State University of Londrina, PR, Brazil
| | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringa, PR, Brazil.
| |
Collapse
|
166
|
Pagaza-Straffon EC, Mezo-González CE, Chavaro-Pérez DA, Cornejo-Garrido J, Marchat LA, Benítez-Cardoza CG, Anaya-Reyes M, Ordaz-Pichardo C. Tabebuia rosea (Bertol.) DC. ethanol extract attenuates body weight gain by activation of molecular mediators associated with browning. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
167
|
Sotiropoulou M, Katsaros I, Vailas M, Lidoriki I, Papatheodoridis GV, Kostomitsopoulos NG, Valsami G, Tsaroucha A, Schizas D. Nonalcoholic fatty liver disease: The role of quercetin and its therapeutic implications. Saudi J Gastroenterol 2021; 27:319-330. [PMID: 34810376 PMCID: PMC8656328 DOI: 10.4103/sjg.sjg_249_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease, affecting almost one-third of the general population and 75% of obese patients with type 2 diabetes. The aim of this article is to review the current evidence concerning the role of quercetin, a natural compound and flavonoid, and its possible therapeutic effects on this modern-day disease. Despite the fact that the exact pathophysiological mechanisms through which quercetin has a hepatoprotective effect on NAFLD are still not fully elucidated, this review clearly demonstrates that this flavonoid has potent antioxidative stress action and inhibitory effects on hepatocyte apoptosis, inflammation, and generation of reactive oxygen species, factors which are linked to the development of the disease. NAFLD is closely associated with increased dietary fat consumption, especially in Western countries. The hepatoprotective effect of quercetin against NAFLD merits serious consideration and further validation by future studies.
Collapse
Affiliation(s)
- Maria Sotiropoulou
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Ioannis Katsaros
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Michail Vailas
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Irene Lidoriki
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - George V Papatheodoridis
- Department of Gastroenterology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Schizas
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
168
|
Thin film microextraction based on Co3O4@GO-Nylon‐6 polymeric membrane to extract morin and quercetin and determining them through high performance liquid chromatography-ultraviolet detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
169
|
Islam BU, Suhail M, Khan MK, Zughaibi TA, Alserihi RF, Zaidi SK, Tabrez S. Polyphenols as anticancer agents: Toxicological concern to healthy cells. Phytother Res 2021; 35:6063-6079. [PMID: 34679214 DOI: 10.1002/ptr.7216] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Polyphenols are a group of diverse chemical compounds present in a wide range of plants. Various biological properties such as antiallergic, antiviral, antibacterial, anticarcinogenic, antiinflammatory, antithrombotic, vasodilatory, and hepatoprotective effect of different polyphenols have been reported in the scientific literature. The major classes of polyphenols are flavonoids, stilbenoids, lignans, and polyphenolic acids. Flavonoids are a large class of food constituents comprising flavones, isoflavanones, flavanones, flavonols, catechins, and anthocyanins sub-classes. Even with seemingly broad biological activities, their use is minimal clinically. Among the other concurrent problems such as limited bioavailability, rapid metabolism, untargeted delivery, the toxicity associated with these polyphenols has been a topic of concern lately. These polyphenols have been reported to result in different forms of toxicity that include organ toxicity, genotoxicity, mutagenicity, cytotoxicity, etc. In the present article, we have tried to unravel the toxicological aspect of these polyphenols to healthy cells. Further high-quality studies are needed to establish the clinical efficacy and toxicology concern leading to further exploration of these polyphenols.
Collapse
Affiliation(s)
- Badar Ul Islam
- Department of Biochemistry, J N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Kaleem Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed F Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
170
|
Hosseinpour-Moghadam R, Rabbani S, Mahboubi A, Tabatabai SA, Haeri A. Prevention of abdominal adhesion by a polycaprolactone/phospholipid hybrid film containing quercetin and silver nanoparticles. Nanomedicine (Lond) 2021; 16:2449-2464. [PMID: 34670404 DOI: 10.2217/nnm-2021-0209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
Aim: To develop quercetin-loaded poly(caprolactone) (PCL)/soybean phosphatidylcholine (PC) films coated with silver (Ag) to prevent the formation of postoperative adhesions (POA). Materials & methods: Films were prepared using the solvent casting method, coated with Ag, and underwent in vitro tests. In vivo studies were conducted employing an animal model of sidewall defect and cecum abrasion. Results: Films showed sustained release behavior of quercetin and Ag. Coating films with Ag improved their antimicrobial activity. In vivo studies confirmed superior antiadhesion properties of films compared with the control groups evaluated by gross observation, histochemical staining and immunohistochemistry analyses. Conclusion: Ag-Q-PCL-PC films are a potential candidate to prevent POA by acting as a sustained release delivery system and physical barrier.
Collapse
Affiliation(s)
- Reza Hosseinpour-Moghadam
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, 14155-6153, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran
| |
Collapse
|
171
|
Lin MC, Liu CC, Liao CS, Ro JH. Neuroprotective Effect of Quercetin during Cerebral Ischemic Injury Involves Regulation of Essential Elements, Transition Metals, Cu/Zn Ratio, and Antioxidant Activity. Molecules 2021; 26:molecules26206128. [PMID: 34684707 PMCID: PMC8538157 DOI: 10.3390/molecules26206128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral ischemia results in increased oxidative stress in the affected brain. Accumulating evidence suggests that quercetin possesses anti-oxidant and anti-inflammatory properties. The essential elements magnesium (Mg), zinc (Zn), selenium (Se), and transition metal iron (Fe), copper (Cu), and antioxidants superoxide dismutase (SOD) and catalase (CAT) are required for brain functions. This study investigates whether the neuroprotective effects of quercetin on the ipsilateral brain cortex involve altered levels of essential trace metals, the Cu/Zn ratio, and antioxidant activity. Rats were intraperitoneally administered quercetin (20 mg/kg) once daily for 10 days before ischemic surgery. Cerebral ischemia was induced by ligation of the right middle cerebral artery and the right common carotid artery for 1 h. The ipsilateral brain cortex was homogenized and the supernatant was collected for biochemical analysis. Results show that rats pretreated with quercetin before ischemia significantly increased Mg, Zn, Se, SOD, and CAT levels, while the malondialdehyde, Fe, Cu, and the Cu/Zn ratio clearly decreased as compared to the untreated ligation subject. Taken together, our findings suggest that the mechanisms underlying the neuroprotective effects of quercetin during cerebral ischemic injury involve the modulation of essential elements, transition metals, Cu/Zn ratio, and antioxidant activity.
Collapse
Affiliation(s)
- Ming-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Correspondence: (M.-C.L.); (J.-H.R.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (J.-H.R.)
| | - Chien-Chi Liu
- Department of Nursing, National Taichung University of Science and Technology, Taichung 404336, Taiwan;
| | - Chin-Sheng Liao
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 407211, Taiwan;
| | - Ju-Hai Ro
- Department of Pharmacy, Chung-Kang Branch, Cheng-Ching Hospital, Taichung 407211, Taiwan
- Correspondence: (M.-C.L.); (J.-H.R.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (J.-H.R.)
| |
Collapse
|
172
|
Masek A, Olejnik O. Aging Resistance of Biocomposites Crosslinked with Silica and Quercetin. Int J Mol Sci 2021; 22:ijms221910894. [PMID: 34639234 PMCID: PMC8509444 DOI: 10.3390/ijms221910894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 01/13/2023] Open
Abstract
This research focuses on revealing the double role of quercetin accompanied by silica in epoxidized natural rubber. A crosslinking ability with antioxidative properties exists and reveals the dependence of these functions on quercetin content. Here, the aging resistance of self-healable biocomposites was analyzed. The self-healing properties were presented in our previous work. The stabilizing effect of quercetin applied as a crosslinking agent has been studied in epoxidized natural rubber with a 50 mol% of epoxidation (ENR-50). Some of five -OH moiety groups existing in the quercetin structure are able to react with epoxy rings of ENR-50 and cure this elastomer, whereas other free hydroxyl groups can donate the hydrogen molecule to a radical molecule, stabilizing it. The aging resistance of prepared composites was estimated by mechanical tests conducted before and after different types of aging, as well as by differences in color and surface energy between aged and un-aged samples. Changes within the oxygen function, which occurred as a result of the aging process, were observed using FT-IR absorbance spectroscopy. Furthermore, the impact of quercetin content on composites’ thermal stability was investigated by thermogravimetry (TGA). According to the results, a proper dose of quercetin can act as a crosslinker and antioxidant in ENR-50 at the same time.
Collapse
|
173
|
Wang K, Deng Y, Zhang J, Cheng B, Huang Y, Meng Y, Zhong K, Xiong G, Guo J, Liu Y, Lu H. Toxicity of thioacetamide and protective effects of quercetin in zebrafish (Danio rerio) larvae. ENVIRONMENTAL TOXICOLOGY 2021; 36:2062-2072. [PMID: 34227734 DOI: 10.1002/tox.23323] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Quercetin is a flavonoid compound with a variety of biological properties that is widely distributed throughout the plant kingdom. Studies have found that quercetin has anti-inflammatory, antioxidant, and liver-protective effects, while thioacetamide (TAA) can cause inflammation and liver damage in zebrafish larvae. The purpose of this study was to evaluate whether quercetin can prevent TAA-induced inflammation and liver damage in zebrafish larvae and to investigate the molecular mechanisms involved. Zebrafish Tg transgenic lines were used as the experimental animals. Behavioral, oxidative stress level, proliferative antigen chromogenic antibody, and western blot analyses were carried out on zebrafish larvae in the control group and groups treated with TAA and 12 μM quercetin. The results indicated that quercetin promoted the development of zebrafish larvae damaged by TAA, exhibited antioxidant and anti-inflammatory properties, and promoted cell proliferation. Quercetin reduced the expression of p53 protein in zebrafish larvae injured by TAA, resulting in decreased levels of Bax and increased levels of Bcl-2. The findings suggested quercetin has antiapoptotic action. Quercetin reduced the expression of DKK1 and DKK2 genes related to the Wnt signaling pathway in zebrafish larvae damaged by TAA and increased the expression of Lef1 and wnt2bb. Quercetin may regulate the development of zebrafish larvae damaged by TAA through the Wnt signaling pathway. This study provides the scientific basis for the development and utilization of quercetin and the development of new related drugs.
Collapse
Affiliation(s)
- Kexin Wang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Bo Cheng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yong Huang
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yunlong Meng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Keyuan Zhong
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Huiqiang Lu
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| |
Collapse
|
174
|
Papakyriakopoulou P, Manta K, Kostantini C, Kikionis S, Banella S, Ioannou E, Christodoulou E, Rekkas DM, Dallas P, Vertzoni M, Valsami G, Colombo G. Nasal powders of quercetin-β-cyclodextrin derivatives complexes with mannitol/lecithin microparticles for Nose-to-Brain delivery: In vitro and ex vivo evaluation. Int J Pharm 2021; 607:121016. [PMID: 34411652 DOI: 10.1016/j.ijpharm.2021.121016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Quercetin, a flavonoid with possible neuroprotective action has been recently suggested for the early-stage treatment of Alzheimer's disease. The low solubility and extended first pass effect render quercetin unsuitable for oral administration. Alternatively, brain targeting is more feasible with nasal delivery, by-passing, non-invasively, Blood-Brain Barrier and ensuring rapid onset of action. Aiming to increase quercetin's disposition into brain, nasal powders consisting of quercetin-cyclodextrins (methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin) lyophilizates blended with spray-dried microparticles of mannitol/lecithin were prepared. Quercetin's solubility at 37 °C and pH 7.4 was increased 19-35 times when complexed with cyclodextrins. Blending lyophilizates in various ratios with mannitol/lecithin microparticles, results in powders with improved morphological characteristics as observed by X-ray Diffraction and Scanning Electron Microscopy analysis. In vitro characterization of these powders using Franz cells, revealed rapid dissolution and permeation 17 (methyl-β-cyclodextrin) to 48 (hydroxypropyl-β-cyclodextrin) times higher than that of pure quercetin. Ex vivo powders' transport across rabbit nasal mucosa was found more efficient in comparison with the pure Que. The overall better performance of quercetin-hydroxypropyl-β-cyclodextrin powders is confirmed by ex vivo experiments revealing amount of quercetin permeated ranging from 0.03 ± 0.01 to 0.22 ± 0.05 μg/cm2 for hydroxypropyl-β-cyclodextrin and 0.022 ± 0.01 to 0.17 ± 0.04 μg/cm2 for methyl-β-cyclodextrin powders, while the permeation of pure quercetin was negligible.
Collapse
Affiliation(s)
- Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Konstantina Manta
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Christina Kostantini
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Italy
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Eirini Christodoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Dimitrios M Rekkas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Paraskevas Dallas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Maria Vertzoni
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece.
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Italy
| |
Collapse
|
175
|
Rodrigo R, Prieto JC, Aguayo R, Ramos C, Puentes Á, Gajardo A, Panieri E, Rojas-Solé C, Lillo-Moya J, Saso L. Joint Cardioprotective Effect of Vitamin C and Other Antioxidants against Reperfusion Injury in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Molecules 2021; 26:molecules26185702. [PMID: 34577176 PMCID: PMC8468345 DOI: 10.3390/molecules26185702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Percutaneous coronary intervention (PCI) has long remained the gold standard therapy to restore coronary blood flow after acute myocardial infarction (AMI). However, this procedure leads to the development of increased production of reactive oxygen species (ROS) that can exacerbate the damage caused by AMI, particularly during the reperfusion phase. Numerous attempts based on antioxidant treatments, aimed to reduce the oxidative injury of cardiac tissue, have failed in achieving an effective therapy for these patients. Among these studies, results derived from the use of vitamin C (Vit C) have been inconclusive so far, likely due to suboptimal study designs, misinterpretations, and the erroneous conclusions of clinical trials. Nevertheless, recent clinical trials have shown that the intravenous infusion of Vit C prior to PCI-reduced cardiac injury biomarkers, as well as inflammatory biomarkers and ROS production. In addition, improvements of functional parameters, such as left ventricular ejection fraction (LVEF) and telediastolic left ventricular volume, showed a trend but had an inconclusive association with Vit C. Therefore, it seems reasonable that these beneficial effects could be further enhanced by the association with other antioxidant agents. Indeed, the complexity and the multifactorial nature of the mechanism of injury occurring in AMI demands multitarget agents to reach an enhancement of the expected cardioprotection, a paradigm needing to be demonstrated. The present review provides data supporting the view that an intravenous infusion containing combined safe antioxidants could be a suitable strategy to reduce cardiac injury, thus improving the clinical outcome, life quality, and life expectancy of patients subjected to PCI following AMI.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- Correspondence:
| | - Juan Carlos Prieto
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Rubén Aguayo
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Cristóbal Ramos
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Ángel Puentes
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Abraham Gajardo
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| |
Collapse
|
176
|
Eisvand F, Tajbakhsh A, Seidel V, Zirak MR, Tabeshpour J, Shakeri A. Quercetin and its role in modulating endoplasmic reticulum stress: A review. Phytother Res 2021; 36:73-84. [PMID: 34528309 DOI: 10.1002/ptr.7283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is the place where proteins and lipids are biosynthesized and where transmembrane proteins are folded. Both pathological and physiological situations may disturb the function of the ER, resulting in ER stress. Under stress conditions, the cells initiate a defensive procedure known as the unfolded protein response (UPR). Cases of severe stress lead to autophagy and/or the induction of cell apoptosis. Many studies implicate ER stress as a major factor contributing to many diseases. Therefore, the modulation of ER stress pathways has become an attractive therapeutic target. Quercetin is a plant-derived metabolite belonging to the flavonoids class which presents a range of beneficial effects including anti-inflammatory, cardioprotective, anti-oxidant, anti-obesity, anti-carcinogenic, anti-atherosclerotic, anti-diabetic, anti-hypercholesterolemic, and anti-apoptotic activities. Quercetin also has anti-cancer activity, and can be used as an adjuvant to decrease resistance to cancer chemotherapy. Furthermore, the effect of quercetin can be increased with the help of nanotechnology. This review discusses the role of quercetin in the modulation of ER stress (and related diseases) and provides novel evidence for the beneficial use of quercetin in therapy.
Collapse
Affiliation(s)
- Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
177
|
Evaluation of bioactive properties of Pleurotus ostreatus mushroom protein hydrolysate of different degree of hydrolysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
178
|
Wei Y, Fu J, Wu W, Ma P, Ren L, Yi Z, Wu J. Quercetin Prevents Oxidative Stress-Induced Injury of Periodontal Ligament Cells and Alveolar Bone Loss in Periodontitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3509-3522. [PMID: 34408403 PMCID: PMC8366957 DOI: 10.2147/dddt.s315249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023]
Abstract
Purpose Emerging evidence has indicated that oxidative stress (OS) contributes to periodontitis. Periodontal ligament cells (PDLCs) are important for the regeneration of periodontal tissue. Quercetin, which is extracted from fruits and vegetables, has strong antioxidant capabilities. However, whether and how quercetin affects oxidative damage in PDLCs during periodontitis remains unknown. The aim of this study was to assess the effects of quercetin on oxidative damage in PDLCs and alveolar bone loss in periodontitis and underlying mechanisms. Materials and Methods The tissue block culture method was used to extract human PDLCs (hPDLCs). First, a cell counting kit 8 (CCK-8) assay was used to identify the optimal concentrations of hydrogen peroxide (H2O2) and quercetin. Subsequently, a 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe, RT-qPCR, Western blotting and other methods were used to explore the effects of quercetin on OS in hPDLCs and the underlying mechanism. Finally, quercetin was administered to mice with periodontitis through gavage, and the effect of quercetin on the level of OS and alveolar bone resorption in these mice was observed by immunofluorescence, microcomputed tomography (micro-CT), hematoxylin and eosin staining (H&E) staining and so on. Results Quercetin at 5 μM strongly activated NF-E2-related factor 2 (NRF2) signaling, alleviated oxidative damage and enhanced the antioxidant capacity of hPDLCs. In addition, quercetin reduced cellular senescence and protected the osteogenic ability of hPDLCs. Finally, quercetin activated NRF2 signaling in the periodontal ligaments, reduced the OS level of mice with periodontitis, and slowed the absorption of alveolar bone in vivo. Conclusion Quercetin can increase the antioxidant capacity of PDLCs and reduce OS damage by activating the NRF2 signaling pathway, which alleviates alveolar bone loss in periodontitis.
Collapse
Affiliation(s)
- Yu Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Jiayao Fu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Wenjing Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Pengfei Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Le Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Zimei Yi
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Junhua Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| |
Collapse
|
179
|
Kampa RP, Sęk A, Szewczyk A, Bednarczyk P. Cytoprotective effects of the flavonoid quercetin by activating mitochondrial BK Ca channels in endothelial cells. Biomed Pharmacother 2021; 142:112039. [PMID: 34392086 DOI: 10.1016/j.biopha.2021.112039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial potassium channels have been implicated in cytoprotective mechanisms. Activation of the mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channel is important for protecting brain tissue against stroke damage as well as heart tissue against ischemia damage. In this paper, we examine the effect of the natural flavonoid quercetin as an activator of the mitoBKCa channel. Quercetin has a beneficial effect on many processes in the human body and interacts with many receptors and signaling pathways. We found that quercetin acts on mitochondria as a mitoBKCa channel opener. The activation observed with the patch-clamp technique was potent and increased the channel open probability from approximately 0.35 to 0.95 at + 40 mV in the micromolar concentration range. Moreover, quercetin at a concentration of 10 µM protected cells by reducing damage from treatment factors (tumor necrosis factor α and cycloheximide) by 40%, enhancing cellular migration and depolarizing the mitochondrial membrane. Moreover, the presence of quercetin increased the gene expression and protein level of the mitoBKCa β3 regulatory subunit. The observed cytoprotective effects suggested the involvement of BKCa channel activation. Additionally, the newly discovered mitoBKCa activator quercetin elucidates a new mitochondrial pathway that is beneficial for vascular endothelial cells.
Collapse
Affiliation(s)
- Rafał Paweł Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.
| |
Collapse
|
180
|
Gok I. Functional Potential of Several Turkish Fermented Traditional Foods: Biotic Properties, Bioactive Compounds, and Health Benefits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1962340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ilkay Gok
- Faculty of Applied Sciences, Gastronomy Department, Istanbul Okan University, Tuzla, Istanbul, Turkey
| |
Collapse
|
181
|
Oyewopo AO, Adeleke O, Johnson O, Akingbade A, Olaniyi KS, Areola ED, Tokunbo O. Regulatory effects of quercetin on testicular histopathology induced by cyanide in Wistar rats. Heliyon 2021; 7:e07662. [PMID: 34401560 PMCID: PMC8353301 DOI: 10.1016/j.heliyon.2021.e07662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023] Open
Abstract
Several causes of infertility have been identified, and several papers have documented some compounds that cause infertility. One of the compounds reported to be toxic to the reproductive system is cyanide. In the management of infertility, various mechanisms ranging from synthetic drugs, natural products and supplements have been employed. Quercetin is an antioxidant supplement that has been used in the treatment of a variety of ailments. This work is aimed at investigating the role of quercetin in attenuating spermato-toxicity and testicular-histopathology induced by cyanide. Seventy-two (72) male wistar rat (weight 190 g ± 10 g) were divided into nine groups (n = 8) except for groups 4 and 5 with (n = 16). Group 1 (control) received physiological saline while Groups 2 and 3 received 0.5 and 1 mg/kg body weight (bwt) cyanide respectively for 56 days, groups 4 and 5 received 0.5 and 1 mg/kg bwt cyanide respectively for 30 days. At day 30, eight animals were sacrificed from Groups 4 and 5 and the remaining eight (8) rats were subdivided into groups (6 and 7) and were given 20 and 40 mg/kg bwt of quercetin respectively for twenty-six days. Co-administration of cyanide and quercetin at a dose of 0.5 mg/kg cyanide +20 mg/kg quercetin and 1 mg/kg cyanide +40 mg/kg quercetin were given to group 8 and 9 respectively for 56 days. Significant decreases in sperm parameters (count, motile and normal sperm) and increases in malondiadehyde concentration were observed in the cyanide treated groups. Testicular histoarchitecture showed few to no spermatozoa in the lumen of rats treated with cyanide. All these effects were attenuated by quercetin. In conclusion, quercetin regulates testicular histopathology induced by cyanide in Wistar rats. Data from this work suggests potential preventive or therapeutic applications of quercetin for individuals subjected to cyanide environmental pollution.
Collapse
Affiliation(s)
- Adeoye O. Oyewopo
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
- Corresponding author.
| | - Opeyemi Adeleke
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Olawumi Johnson
- Department of Anatomy, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Adebanji Akingbade
- Department of Anatomy, College of Medicine and Health Sciences, Ekiti State University, Ekiti State, Nigeria
| | - Kehinde S. Olaniyi
- Department of Physiology, College of Health Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Emmanuel D. Areola
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Olorunfemi Tokunbo
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| |
Collapse
|
182
|
Ko W, Kim N, Lee H, Woo ER, Kim YC, Oh H, Lee DS. Anti-Inflammatory Effects of Compounds from Cudrania tricuspidata in HaCaT Human Keratinocytes. Int J Mol Sci 2021; 22:ijms22147472. [PMID: 34299094 PMCID: PMC8303187 DOI: 10.3390/ijms22147472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/29/2022] Open
Abstract
The root bark of Cudrania tricuspidata has been reported to have anti-sclerotic, anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and cytotoxic activities. In the present study, the effect of 16 compounds from C. tricuspidata on tumor necrosis factor-α+interferon-γ-treated HaCaT cells were investigated. Among these 16 compounds, 11 decreased IL-6 production and 15 decreased IL-8 production. The six most effective compounds, namely, steppogenin (2), cudraflavone C (6), macluraxanthone B (12), 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3- methoxyxanthone (13), cudraflavanone B (4), and cudratricusxanthone L (14), were selected for further experiments. These six compounds decreased the expression levels of chemokines, such as regulated on activation, normal T cell expressed and secreted (RANTES) and thymus and activation-regulated chemokine (TARC), and downregulated the protein expression levels of intercellular adhesion molecule-1. Compounds 2, 6, 12, 4, and 14 inhibited nuclear factor-kappa B p65 translocation to the nucleus; however, compound 13 showed no significant effects. In addition, extracellular signal regulatory kinase-1/2 phosphorylation was only inhibited by compound 14, whereas p38 phosphorylation was inhibited by compounds 13 and 4. Taken together, the compounds from C. tricuspidata showed potential to be further developed as therapeutic agents to suppress inflammation in skin cells.
Collapse
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
| | - Nayeon Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
| | - Hwan Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea; (Y.-C.K.); (H.O.)
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea; (Y.-C.K.); (H.O.)
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan 54538, Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
- Correspondence: ; Tel.: +82-62-230-6386; Fax: +82-62-222-5414
| |
Collapse
|
183
|
Maleki Dana P, Sadoughi F, Asemi Z, Yousefi B. Anti-cancer properties of quercetin in osteosarcoma. Cancer Cell Int 2021; 21:349. [PMID: 34225730 PMCID: PMC8256549 DOI: 10.1186/s12935-021-02067-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a primary bone tumor. Although it is a rare disease in general, it is the most common primary bone tumor among children. Despite the significant advances made in the field of osteosarcoma treatment, the outcomes of this disease are still unfavorable. Besides, there is still no targeted therapy for osteosarcoma that can be used in clinical settings. Quercetin is a member of the phytochemical family which is used for different diseases including cardiovascular diseases, diabetes, and cancer. Its anti-cancer effects are examined in many types of cancer including breast, colon, lung, prostate, and pancreatic cancers and have shown promising results. Herein, the studies dealing with the antitumor roles of quercetin in osteosarcoma are reviewed in this article. We take a look into quercetin's ability to affect proliferation, apoptosis, invasion, and chemo-resistance of the osteosarcoma cells through regulating protein expression and signaling pathways.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
184
|
Di Emidio G, Falone S, Artini PG, Amicarelli F, D’Alessandro AM, Tatone C. Mitochondrial Sirtuins in Reproduction. Antioxidants (Basel) 2021; 10:antiox10071047. [PMID: 34209765 PMCID: PMC8300669 DOI: 10.3390/antiox10071047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria act as hubs of numerous metabolic pathways. Mitochondrial dysfunctions contribute to altering the redox balance and predispose to aging and metabolic alterations. The sirtuin family is composed of seven members and three of them, SIRT3-5, are housed in mitochondria. They catalyze NAD+-dependent deacylation and the ADP-ribosylation of mitochondrial proteins, thereby modulating gene expression and activities of enzymes involved in oxidative metabolism and stress responses. In this context, mitochondrial sirtuins (mtSIRTs) act in synergistic or antagonistic manners to protect from aging and aging-related metabolic abnormalities. In this review, we focus on the role of mtSIRTs in the biological competence of reproductive cells, organs, and embryos. Most studies are focused on SIRT3 in female reproduction, providing evidence that SIRT3 improves the competence of oocytes in humans and animal models. Moreover, SIRT3 protects oocytes, early embryos, and ovaries against stress conditions. The relationship between derangement of SIRT3 signaling and the imbalance of ROS and antioxidant defenses in testes has also been demonstrated. Very little is known about SIRT4 and SIRT5 functions in the reproductive system. The final goal of this work is to understand whether sirtuin-based signaling may be taken into account as potential targets for therapeutic applications in female and male infertility.
Collapse
Affiliation(s)
- Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
- Correspondence: ; Tel.: +39-(0)-862-433-441
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Paolo Giovanni Artini
- Department of Obstetrics and Gynecology “P. Fioretti”, University of Pisa, 56126 Pisa, Italy;
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| |
Collapse
|
185
|
Kale MB, Bajaj K, Umare M, Wankhede NL, Taksande BG, Umekar MJ, Upaganlawar A. Exercise and Nutraceuticals: Eminent approach for Diabetic Neuropathy. Curr Mol Pharmacol 2021; 15:108-128. [PMID: 34191703 DOI: 10.2174/1874467214666210629123010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy is an incapacitating chronic pathological condition that encompasses a large group of diseases and manifestations of nerve damage. It affects approximately 50% of patients with diabetes mellitus. Autonomic, sensory, and motor neurons are affected. Disabilities are severe, along with poor recovery and diverse pathophysiology. Physical exercise and herbal-based therapies have the potential to decrease the disabilities associated with diabetic neuropathy. Aerobic exercises like walking, weight lifting, the use of nutraceuticals and herbal extracts are found to be effective. Literature from the public domain was studied emphasizing various beneficial effects of different exercises, use of herbal and nutraceuticals for their therapeutic action in diabetic neuropathy. Routine exercises and administration of herbal and nutraceuticals, either the extract of plant material containing the active phytoconstituent or isolated phytoconstituent at safe concentration, have been shown to have promising positive action in the treatment of diabetic neuropathy. Exercise has shown promising effects on vascular and neuronal health and has proven to be well effective in the treatment as well as prevention of diabetic neuropathy by various novel mechanisms, including herbal and nutraceuticals therapy is also beneficial for the condition. They primarily show the anti-oxidant effect, secretagogue, anti-inflammatory, analgesic, and neuroprotective action. Severe adverse events are rare with these therapies. The current review investigates the benefits of exercise and nutraceutical therapies in the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Mayur Bhimrao Kale
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Komal Bajaj
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Mohit Umare
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Nitu L Wankhede
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | | | - Milind Janrao Umekar
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad-42310, Nasik, Maharashtra, India
| |
Collapse
|
186
|
Role of Polyphenols as Antioxidant Supplementation in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5471347. [PMID: 34257802 PMCID: PMC8253632 DOI: 10.1155/2021/5471347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Stroke is the second most common cause of death globally and the leading cause of death in China. The pathogenesis of cerebral ischemia injury is complex, and oxidative stress plays an important role in the fundamental pathologic progression of cerebral damage in ischemic stroke. Previous studies have preliminarily confirmed that oxidative stress should be a potential therapeutic target and antioxidant as a treatment strategy for ischemic stroke. Emerging experimental studies have demonstrated that polyphenols exert the antioxidant potential to play the neuroprotection role after ischemic stroke. This comprehensive review summarizes antioxidant effects of some polyphenols, which have the most inhibition effects on reactive oxygen species generation and oxidative stress after ischemic stroke.
Collapse
|
187
|
Quercetin Protects Human Thyroid Cells against Cadmium Toxicity. Int J Mol Sci 2021; 22:ijms22136849. [PMID: 34202188 PMCID: PMC8268548 DOI: 10.3390/ijms22136849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Various natural compounds have been successfully tested for preventing or counteracting the toxic effects of exposure to heavy metals. In this study, we analyzed the effects of cadmium chloride (CdCl2) on immortalized, non-tumorigenic thyroid cells Nthy-ori-3-1. We investigated the molecular mechanism underlying its toxic action as well as the potential protective effect of quercetin against CdCl2-induced damage. CdCl2 suppressed cell growth in a dose- and time-dependent manner (IC50 value ~10 μM) associated with a decrease in levels of phospho-ERK. In addition, CdCl2 elicited an increase in reactive oxygen species (ROS) production and lipid peroxidation. A significant increase in GRP78, an endoplasmic reticulum (ER) stress-related protein, was also observed. Supplementation of quercetin counteracted the growth-inhibiting action of CdCl2 by recovering ERK protein phosphorylation levels, attenuating ROS overproduction, decreasing MDA content and reducing the expression of GRP78 in cells exposed to CdCl2. Thus, in addition to revealing the molecular effects involved in cadmium-induced toxicity, the present study demonstrated, for the first time, a protective effect of quercetin against cadmium-induced damages to normal thyroid cells.
Collapse
|
188
|
Di Pierro F, Iqtadar S, Khan A, Ullah Mumtaz S, Masud Chaudhry M, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P, Khan S. Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19: Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial. Int J Gen Med 2021; 14:2807-2816. [PMID: 34194240 PMCID: PMC8238537 DOI: 10.2147/ijgm.s318949] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing global pandemic known as COVID-19. Based on the potential antiviral role of quercetin, and on its described anti-blood clotting, anti-inflammatory and antioxidant properties, we hypothesize that subjects with mild COVID-19 treated with Quercetin Phytosome® (QP), a novel bioavailable form of quercetin, may have a shorter time to virus clearance, a milder symptomatology, and higher probabilities of a benign earlier resolution of the disease. Methods In our 2-week, randomized, open-label, and controlled clinical study, we have enrolled 42 COVID-19 outpatients. Twenty-one have been treated with the standard of care (SC), and 21 with QP as add-on supplementation to the SC. Our main aims were to check virus clearance and symptoms. Results The interim results reveal that after 1 week of treatment, 16 patients of the QP group were tested negative for SARS-CoV-2 and 12 patients had all their symptoms diminished; in the SC group, 2 patients were tested SARS-CoV-2 negative and 4 patients had their symptoms partially improved. By 2 weeks, the remaining 5 patients of the QP group tested negative for SARS-CoV-2, whereas in the SC group out of 19 remaining patients, 17 tested negatives by week 2, one tested negative by week 3 and one patient, still positive, expired by day 20. Concerning blood parameters, the add on therapy with QP, reduced LDH (−35.5%), Ferritin (−40%), CRP (−54.8%) and D-dimer (−11.9%). Conclusion QP statistically shortens the timing of molecular test conversion from positive to negative, reducing at the same time symptoms severity and negative predictors of COVID-19.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milan, Italy.,Digestive Endoscopy, Fondazione Poliambulanza, Brescia, Italy
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Amjad Khan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.,University of Health Sciences, Lahore, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | | | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | - Saeed Khan
- Department of Molecular Pathology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
189
|
Li Q, Gao B, Siqin B, He Q, Zhang R, Meng X, Zhang N, Zhang N, Li M. Gut Microbiota: A Novel Regulator of Cardiovascular Disease and Key Factor in the Therapeutic Effects of Flavonoids. Front Pharmacol 2021; 12:651926. [PMID: 34220497 PMCID: PMC8241904 DOI: 10.3389/fphar.2021.651926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 01/30/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, and traditional cardiovascular risk factors cannot fully explain the occurrence of the disease. In recent years, the relationship between gut microbiota and its metabolites and cardiovascular disease has been a hot study topic. The changes in gut microbiota and its metabolites are related to the occurrence and development of atherosclerosis, myocardial infarction, heart failure, and hypertension. The mechanisms by which gut microbiota and its metabolites influence cardiovascular disease have been reported, although not comprehensively. Additionally, following ingestion, flavonoids are decomposed into phenolic acids that are more easily absorbed by the body after being processed by enzymes produced by intestinal microorganisms, which increases flavonoid bioavailability and activity, consequently affecting the onset of cardiovascular disease. However, flavonoids can also inhibit the growth of harmful microorganisms, promote the proliferation of beneficial microorganisms, and maintain the balance of gut microbiota. Hence, it is important to study the relationship between gut microbiota and flavonoids to elucidate the protective effects of flavonoids in cardiovascular diseases. This article will review the role and mechanism of gut microbiota and its metabolites in the occurrence and development of atherosclerosis, myocardial infarction, heart failure, and hypertension. It also discusses the potential value of flavonoids in the prevention and treatment of cardiovascular disease following their transformation through gut microbiota metabolism.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Bing Gao
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Bateer Siqin
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Qian He
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Ru Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiangxi Meng
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Naiheng Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Na Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources and Utilization, Baotou Medical College, Baotou, China
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
190
|
Ren K, Liu H, Guo B, Li R, Mao H, Xue Q, Yao H, Wu S, Bai Z, Wang W. Quercetin relieves D-amphetamine-induced manic-like behaviour through activating TREK-1 potassium channels in mice. Br J Pharmacol 2021; 178:3682-3695. [PMID: 33908633 DOI: 10.1111/bph.15510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Quercetin is a well-known plant flavonoid with neuroprotective properties. Earlier work suggested it may relieve psychiatric disorders, cognition deficits and memory dysfunction through anti-oxidant and/or radical scavenging mechanisms. In addition, quercetin modulated the physiological function of some ion channels. However, the detailed ionic mechanisms of the bioeffects of quercetin remain unknown. EXPERIMENTAL APPROACH Effects of quercetin on neuronal activities in the prefrontal cortex (PFC) and its ionic mechanisms were analysed by calcium imaging using mice bearing a green fluorescent protein, calmodulin, and M13 fusion protein and patch clamp in acute brain slices from C57BL/6 J mice and in HEK 293 cells. The possible ionic mechanism of action of quercetin on D-amphetamine-induced manic-like effects in mice was explored with c-fos staining and the open field behaviour test. KEY RESULTS Quercetin reduced calcium influx triggered by PFC pyramidal neuronal activity. This effect involved increasing the rheobase of neuronal firing through decreasing membrane resistance following quercetin treatment. Spadin, a blocker of TREK-1 potassium channels, also blocked the effect of quercetin on the membrane resistance and neuronal firing. Further, spadin blocked the neuroprotective effects of quercetin. The effects of quercetin on TREK-1 channels could be mimicked by GF109203X, a protein kinase C inhibitor. In vivo, injection of quercetin relieved the manic hyperlocomotion in mice, induced by D-amphetamine. This action was partly alleviated by spadin. CONCLUSION AND IMPLICATIONS TREK-1 channels are a novel target for quercetin, by inhibiting PKC. This action could contribute to both the neuroprotective and anti-manic-like effects.
Collapse
Affiliation(s)
- Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Han Yao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhantao Bai
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
191
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
192
|
Transit and Metabolic Pathways of Quercetin in Tubular Cells: Involvement of Its Antioxidant Properties in the Kidney. Antioxidants (Basel) 2021; 10:antiox10060909. [PMID: 34205156 PMCID: PMC8228652 DOI: 10.3390/antiox10060909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Quercetin is a flavonoid with antioxidant, antiviral, antimicrobial, and anti-inflammatory properties. Therefore, it has been postulated as a molecule with great therapeutic potential. The renoprotective capacity of quercetin against various toxins that produce oxidative stress, in both in vivo and in vitro models, has been shown. However, it is not clear whether quercetin itself or any of its metabolites are responsible for the protective effects on the kidney. Although the pharmacokinetics of quercetin have been widely studied and the complexity of its transit throughout the body is well known, the metabolic processes that occur in the kidney are less known. Because of that, the objective of this review was to delve into the molecular and cellular events triggered by quercetin and/or its metabolites in the tubular cells, which could explain some of the protective properties of this flavonoid against oxidative stress produced by toxin administration. Thus, the following are analyzed: (1) the transit of quercetin to the kidney; (2) the uptake mechanisms of quercetin and its metabolites from plasma to the tubular cells; (3) the metabolic processes triggered in those cells, which affect the accumulation of metabolites in the intracellular space; and (4) the efflux mechanisms of these compounds and their subsequent elimination through urine. Finally, it is discussed whether those processes that are mediated in the tubular cells and that give rise to different metabolites are related to the antioxidant and renoprotective properties observed after the administration of quercetin.
Collapse
|
193
|
Nguyen Thu H, Ngo Minh K, Le Thi T, Nguyen Van P. Optimization of extraction of flavonoids from shallot skin using response surface methodology based on multiple linear regression and artificial neural network and evaluation of its xanthine oxidase inhibitory activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
194
|
Nasr M, Al-Karaki R. Nanotechnological Innovations Enhancing the Topical Therapeutic Efficacy of Quercetin: A Succinct Review. Curr Drug Deliv 2021; 17:270-278. [PMID: 32183669 DOI: 10.2174/1567201817666200317123224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/09/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Nanotechnology is currently a hot topic in dermatology and nutraceutical/cosmeceutical delivery, owing to the advantages it provides in terms of enhancing the skin permeation of drugs, as well as increasing their therapeutic efficacy in the treatment of different dermatological diseases. There is also a great interest in the topical delivery of nutraceuticals; which are natural compounds with both therapeutic and cosmetic benefits, in order to overcome the side effects of topically applied chemical drugs. Quercetin is a key nutraceutical with topical antioxidant and anti-inflammatory properties which was reported to be effective in the treatment of different dermatological diseases, however, its topical therapeutic activity is hindered by its poor skin penetration. This review highlights the topical applications of quercetin, and summarizes the nanocarrier-based solutions to its percutaneous delivery challenges.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rawan Al-Karaki
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Mu'tah, Jordan
| |
Collapse
|
195
|
Özsoy S, Becer E, Kabadayı H, Vatansever HS, Yücecan S. Quercetin-Mediated Apoptosis and Cellular Senescence in Human Colon Cancer. Anticancer Agents Med Chem 2021; 20:1387-1396. [PMID: 32268873 DOI: 10.2174/1871520620666200408082026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Quercetin is a flavonol from the flavonoid group of polyphenols, which positively affects human health due to its anti-cancer, anti-inflammatory, anti-microbial and cardioprotective effects. The effects of phenolic compounds, including quercetin, on programmed cell death and cellular senescence, have been the subject of research in recent years. OBJECTIVE In this study, we aimed to investigate the effects of quercetin on cell viability, apoptosis and cellular senescence in primary (Colo-320) and metastatic (Colo-741) colon adenocarcinoma cell lines. METHODS Cytotoxicity was analyzed via MTT assay in Colo-320 and Colo-741 cell lines. After quercetin treatment, cell ularsenescence and apoptosis were evaluated by TUNEL staining, X-Gal staining and indirect peroxidase technique for immunocytochemical analysis of related proteins such as Bax, Bcl-2, caspase-3, Hsp27, Lamin B1, p16, cyclin B1. RESULTS The effective dose for inhibition of cell growth in both cell lines was determined to be 25μg/ml quercetin for 48 hours. Increased Baximmunoreactivityfollowingquercetin treatment was significant in both Colo-320 and Colo-741 cell lines, but decreased Bcl-2 immunoreactivitywas significant only in theColo-320 primary cell line. In addition, after quercetin administration, the number of TUNEL positive cells and, immunoreactivities for p16, Lamin B1 and cyclin B1 in both Colo-320 and Colo-741 cells increased. CONCLUSION Our results suggest that quercetin may only induce apoptosis in primary colon cancer cells. Furthermore, quercetin also triggered senescence in colon cancer cells, but some cells remained alive, suggesting that colon cancer cells might have escaped from senescence.
Collapse
Affiliation(s)
- Serpil Özsoy
- Department of Nutritionand Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Cyprus
| | - Eda Becer
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - Hilal Kabadayı
- Department of Histologyand Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | | | - Sevinç Yücecan
- Department of Nutritionand Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
196
|
Kim JM, Seo SW, Han DG, Yun H, Yoon IS. Assessment of Metabolic Interaction between Repaglinide and Quercetin via Mixed Inhibition in the Liver: In Vitro and In Vivo. Pharmaceutics 2021; 13:pharmaceutics13060782. [PMID: 34071139 PMCID: PMC8224802 DOI: 10.3390/pharmaceutics13060782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/03/2023] Open
Abstract
Repaglinide (RPG), a rapid-acting meglitinide analog, is an oral hypoglycemic agent for patients with type 2 diabetes mellitus. Quercetin (QCT) is a well-known antioxidant and antidiabetic flavonoid that has been used as an important ingredient in many functional foods and complementary medicines. This study aimed to comprehensively investigate the effects of QCT on the metabolism of RPG and its underlying mechanisms. The mean (range) IC50 of QCT on the microsomal metabolism of RPG was estimated to be 16.7 (13.0–18.6) μM in the rat liver microsome (RLM) and 3.0 (1.53–5.44) μM in the human liver microsome (HLM). The type of inhibition exhibited by QCT on RPG metabolism was determined to be a mixed inhibition with a Ki of 72.0 μM in RLM and 24.2 μM in HLM as obtained through relevant graphical and enzyme inhibition model-based analyses. Furthermore, the area under the plasma concentration versus time curve (AUC) and peak plasma concentration (Cmax) of RPG administered intravenously and orally in rats were significantly increased by 1.83- and 1.88-fold, respectively, after concurrent administration with QCT. As the protein binding and blood distribution of RPG were observed to be unaltered by QCT, it is plausible that the hepatic first-pass and systemic metabolism of RPG could have been inhibited by QCT, resulting in the increased systemic exposure (AUC and Cmax) of RPG. These results suggest that there is a possibility that clinically significant pharmacokinetic interactions between QCT and RPG could occur, depending on the extent and duration of QCT intake from foods and dietary supplements.
Collapse
Affiliation(s)
| | | | | | - Hwayoung Yun
- Correspondence: (H.Y.); (I.-S.Y.); Tel.: +82-51-510-2810 (H.Y.); +82-51-510-2806 (I.-S.Y.)
| | - In-Soo Yoon
- Correspondence: (H.Y.); (I.-S.Y.); Tel.: +82-51-510-2810 (H.Y.); +82-51-510-2806 (I.-S.Y.)
| |
Collapse
|
197
|
Romes NB, Abdul Wahab R, Abdul Hamid M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: a review. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1915869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| |
Collapse
|
198
|
Shi T, Bian X, Yao Z, Wang Y, Gao W, Guo C. Quercetin improves gut dysbiosis in antibiotic-treated mice. Food Funct 2021; 11:8003-8013. [PMID: 32845255 DOI: 10.1039/d0fo01439g] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The diversity and activity of the gut microbiota residing in humans and animals are significantly influenced by the diet. Quercetin, one of the representative polyphenols in human diets, possesses a wide range of biological properties. The aim of this study was to investigate the prebiotic effects of quercetin in antibiotic-treated mice. Gut dysbiosis was successfully induced in mice by treatment with an antibiotic cocktail. Gas chromatography and 16S rDNA high-throughput sequencing techniques were used to investigate short-chain fatty acid content and gut microbial diversity and composition. The results showed that quercetin supplementation significantly improved the diversity of the gut bacterial community in antibiotic-treated mice (P < 0.05). Meanwhile, intestinal barrier function was also recovered remarkably as indicated by a decrease in the content of serum d-lactic acid and the activity of serum diamine oxidase (P < 0.05). The length of intestinal villi and mucosal thickness were also significantly increased in response to quercetin treatment (P < 0.05). Furthermore, the production of butyrate in faeces was enhanced significantly in quercetin-treated mice (P < 0.05). In conclusion, quercetin is effective in recovering gut microbiota in mice after antibiotic treatment and may act as a prebiotic in combatting gut dysbiosis.
Collapse
Affiliation(s)
- Tala Shi
- Institute of Environmental and Operational Medicine, Tianjin, China. and Department of Nutrition and Food Hygiene, Binzhou Medical University, Yantai, China
| | - Xiangyu Bian
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Zhanxin Yao
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Yawen Wang
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Weina Gao
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Changjiang Guo
- Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
199
|
Wu Q, Hu Y. Systematic Evaluation of the Mechanisms of Mulberry Leaf (Morus alba Linne) Acting on Diabetes Based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2021; 24:668-682. [PMID: 32928080 DOI: 10.2174/1386207323666200914103719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is one of the most common endocrine metabolic disorder- related diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) have been reported to exert important activities of anti-diabetic. OBJECTIVE In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes. METHODS Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was carried out. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes were used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The biological networks were constructed to analyze the mechanisms as follows: (1) compound-target network; (2) common target-compound network; (3) common targets protein interaction network; (4) compound-diabetes protein-protein interactions (ppi) network; (5) target-pathway network; and (6) compound-target-pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method. RESULTS 17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by the String database. Furthermore, the potential targets were used for GO and pathway enrichment analysis. Eight key active compounds (quercetin, Iristectorigenin A, 4- Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin. CONCLUSION Based on network pharmacology and molecular docking, this study provided an important systematic and visualized basis for further understanding of the synergy mechanism of ML acting on diabetes.
Collapse
Affiliation(s)
- Qiguo Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yeqing Hu
- Department of Pharmacy, Anqing Medical College, Anqing 246052, China
| |
Collapse
|
200
|
Albadrani GM, BinMowyna MN, Bin-Jumah MN, El–Akabawy G, Aldera H, AL-Farga AM. Quercetin prevents myocardial infarction adverse remodeling in rats by attenuating TGF-β1/Smad3 signaling: Different mechanisms of action. Saudi J Biol Sci 2021; 28:2772-2782. [PMID: 34012318 PMCID: PMC8116976 DOI: 10.1016/j.sjbs.2021.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
This study investigated the anti-remodeling and anti-fibrotic and effect of quercetin (QUR) in the remote non-infarcted of rats after myocardial infarction (MI). Rats were divided as control, control + QUR, MI, and MI + QUR. MI was introduced to the rats by ligating the eft anterior descending (LAD) coronary artery. All treatments were given for 30 days, daily. QUR persevered the LV hemodynamic parameters and prevented remote myocardium damage and fibrosis. Also, QUR supressed the generation of ROS, increased the nuclear levels of Nrf2, and enhanced SOD and GSH levels in the LVs of the control and MI model rats. It also reduced angiotensin II, nuclear level/activity of the nuclear factor NF-κβ p65, and protein expression of TGF-β1, α-SMA, and total/phospho-smad3 in the LVs of both groups. Concomitantly, QUR upregulated LV smad7 and BMP7. In conclusion, QUR prevents MI-induced LV remodeling by antioxidant, anti-inflammatory, and anti-fibroticα effects mediated by ROS scavenging, suppressing NF-κβ, and stimulating Nrf-2, Smad7, and BMP7.
Collapse
Affiliation(s)
- Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mona N. BinMowyna
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gehan El–Akabawy
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Hussain Aldera
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Ammar M. AL-Farga
- Biochemistry Department, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|