151
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
152
|
de Oliveira LDL, de Alencar Figueiredo LF. Sorghum phytonutrients and their health benefits: A systematic review from cell to clinical trials. J Food Sci 2024; 89:A5-A29. [PMID: 38517029 DOI: 10.1111/1750-3841.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Sorghum is key for global food security due to its genetic variability, resilience, and rich phytonutrient content, which are linked to numerous health benefits. A systematic review assessed the health effects of sorghum by analyzing cell (n = 22), animal (n = 20), and human (n = 7) studies across antioxidant, anti-inflammatory, obesity, cancer, cardiovascular, and diabetes outcomes. This review, involving 42 papers and 177 researchers from 12 countries, collected data from sorghum accessions (acc) and significant effects. Studies used 68 identified and 8 unidentified sorghums, 57% red (n = 20), brown (n = 5), and black (n = 17) pericarp colors, and evaluated whole (n = 31), brans (n = 11), and decorticated grains (n = 2). Colored sorghum, richer in phenolic compounds, especially 3-deoxyanthocyanins and tannins, inhibited cancer cell activities, including proliferation, tumor growth, and ROS activity, and promoted cell cycle arrest and apoptosis. Sorghum elevated HO1 and eNOS expression for cardiovascular, health-reduced platelet aggregation, and modulated platelet microparticles. They also suppressed inflammation markers and decreased lipid accumulation. Animal studies indicated sorghum's potential across antioxidant capacity, cancer and inflammation mitigation, and lipid and glucose metabolism. Translating these findings to human scenarios requires caution, especially considering cell studies do not fully represent polyphenol metabolism. Human studies provided mixed results, indicating antioxidant and potential anti-inflammatory benefits and nuanced effects on glucose and lipid metabolism. The main risks of bias highlighted challenges in quantifying phytonutrients, identifying sorghum acc features, and lack of assessors blinding. Nonetheless, sorghum emerges as a promising functional food for countering chronic diseases in Western diets.
Collapse
Affiliation(s)
- Lívia de Lacerda de Oliveira
- Department of Nutrition, Faculty of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Brasília, Federal District, Brazil
| | | |
Collapse
|
153
|
Ogulur I, Pat Y, Yazici D, Ardicli S, Ardicli O, Mitamura Y, Akdis M, Akdis CA. Epithelial barrier dysfunction, type 2 immune response, and the development of chronic inflammatory diseases. Curr Opin Immunol 2024; 91:102493. [PMID: 39321494 DOI: 10.1016/j.coi.2024.102493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, humans have been increasingly exposed to substances toxic for epithelial cells, including air pollutants, laundry and dishwashers, household chemicals, toothpaste, food additives, microplastics, and nanoparticles, introduced into our daily lives as part of industrialization, urbanization, and modernization. These substances disrupt the epithelial barriers and lead to microbial dysbiosis and cause immune response to allergens, opportunistic pathogens, bacterial toxins, and autoantigens followed by chronic inflammation due to epigenetic mechanisms. Recent evidence from studies on the mechanisms of epithelial barrier damage has demonstrated that even trace amounts of toxic substances can damage epithelial barriers and induce tissue inflammation. Further research in this field is essential for our understanding of the causal substances and molecular mechanisms involved in the initiation of leaky epithelial barriers that cascade into chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
154
|
Sendani AA, Farmani M, Kazemifard N, Ghavami SB, Sadeghi A. Molecular mechanisms and therapeutic effects of natural products in inflammatory bowel disease. CLINICAL NUTRITION OPEN SCIENCE 2024; 58:21-42. [DOI: 10.1016/j.nutos.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
155
|
Chandel J, Naura AS. Dynamics of Inflammatory and Pathological Changes Induced by Single Exposure of Particulate Matter (PM 2.5) in Mice: Potential Implications in COPD. Cell Biochem Biophys 2024; 82:3463-3475. [PMID: 39031246 DOI: 10.1007/s12013-024-01433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive disorder of lungs marked by chronic bronchitis and emphysema. Particulate matter (PM2.5), a major component of air pollution has been correlated with COPD incidence. The present work aimed to understand dynamics of cellular/molecular players behind PM2.5-mediated COPD pathogenesis in mice by conducting dose and time-course studies. Single intratracheal exposure of PM2.5 at a dose of either 100 or 200 μg induced inflammatory response in lungs at 4 days. Time course studies showed that inflammation once triggered by PM2.5 is progressive in nature as reflected by data on BALF inflammatory cells at 7/14 days. Similarly, various cytokines/chemokines (KC/IL-6/TNF-α/IL-1β/G-CSF/MCP-1) peak at either 7 or 14 days. However, inflammation declined sharply at 21 days. Data on LPO/GSH and activities of SOD/Catalase show induction of continuous oxidative stress in lung tissue. Next, enhanced mtROS in the CD11b+ inflammatory cells confirms the redox imbalance in neutrophils/macrophages. A continuous decline in lung function was observed till 28 days. Further, histological analysis of lung tissues at 28 days confirmed the presence of emphysematous lesions, validating the potency of PM2.5 to cause irreversible damage to lungs through complex interplay of various cellular/molecular players which may be exploited as potential preventive/therapeutic targets.
Collapse
Affiliation(s)
- Jitender Chandel
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
156
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
157
|
Zheng H, Zheng H, Wei L, Xue Z, Xu B, Hu M, Yu J, Xie R, Zhang L, Zheng Z, Xie J, Zheng C, Huang C, Lin J, Li P. Risk stratification models incorporating oxidative stress factors to predict survival and recurrence in patients with gastric cancer after radical gastrectomy: A real-world multicenter study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108658. [PMID: 39244978 DOI: 10.1016/j.ejso.2024.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Oxidative stress significantly influences the development and progression of gastric cancer (GC). It remains unreported whether incorporating oxidative stress factors into nomograms can improve the predictive accuracy for survival and recurrence risk in GC patients. METHODS 3498 GC patients who underwent radical gastrectomy between 2009 and 2017 were enrolled and randomly divided into training cohort (TC) and internal validation cohort (IVC). Cox regression analysis model was used to evaluate six preoperative oxidative stress indicators to formulate the Systemic oxidative stress Score (SOSS). Two nomograms based on SOSS was constructed by multivariate Cox regression and validated using 322 patients from another two hospitals. RESULTS A total of 3820 patients were included. The SOSS, composed of three preoperative indicators-fibrinogen, albumin, and cholesterol-was an independent prognostic factor for both overall survival (OS) and disease-free survival (DFS). The two nomograms based on SOSS showed a significantly higher AUC than the pTNM stage (OS: 0.830 vs. 0.778, DFS: 0.824 vs. 0.775, all P < 0.001) and were validated in the IVC and EVC (all P < 0.001). The local recurrence rate, peritoneal recurrence rate, distant recurrence rate and multiple recurrence rate in high-risk group were significantly higher than those in low-risk group (P < 0.05). CONCLUSIONS The two novel nomograms based on SOSS which was a combination score of three preoperative blood indicators, demonstrated outstanding predictive abilities for both survival and recurrence in GC patients with different risk groups, which may potentially improve survival through perioperatively active intervention strategies and individualized postoperatively close surveillance.
Collapse
Affiliation(s)
- Honghong Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - Hualong Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - Linghua Wei
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - Zhen Xue
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - Binbin Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - Minggao Hu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Department of General Surgery, The PLA Navy Anqing Hospital, Anqing, 246000, China
| | - Junhua Yu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China
| | - Rongzhen Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 321000, China
| | - Lingkang Zhang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - Zhiwei Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - Jianwei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China
| | - ChangMing Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China.
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China.
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350000, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350000, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350000, China.
| |
Collapse
|
158
|
Du L, Ding X, Tian Y, Chen J, Li W. Effect of anthocyanins on metabolic syndrome through interacting with gut microbiota. Pharmacol Res 2024; 210:107511. [PMID: 39577753 DOI: 10.1016/j.phrs.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metabolic syndrome, as a complex pathological condition, is caused by a series of pathogenic factors and has become a global public health challenge. Anthocyanins, a natural water-soluble flavonoid pigment, have attracted much attention due to their antioxidant, anti-inflammatory, and anticancer biological activities. After ingestion, a majority of anthocyanins is not directly absorbed but rather reaches the colon. Hence, the exertion of their biological benefits is closely intertwined with the role played by gut microbiota. In this review, we introduce the pathogenesis and intervention methods of metabolic syndrome, as well as the interaction between anthocyanins and gut microbiota. We also discuss the therapeutic potential of anthocyanins through gut microbiota in addressing a range of metabolic syndrome conditions, including obesity, type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, polycystic ovary syndrome, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
159
|
Ye HY, Shang ZZ, Gao X, Zha XQ, Zhang FY, Li QM, Liu J, Luo JP. Dendrobium huoshanense stem polysaccharide exhibits gastroprotective effect via regulating PI3K/AKT, NF-κB and Nrf-2 signaling in high-salt diet-induced gastritis mice. FOOD BIOSCI 2024; 62:105309. [DOI: 10.1016/j.fbio.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
160
|
Pathoor NN, Ganesh PS, Gopal RK. Microbiome interactions: Acinetobacter baumannii biofilms as a co-factor in oral cancer progression. World J Microbiol Biotechnol 2024; 40:398. [PMID: 39612015 DOI: 10.1007/s11274-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Acinetobacter baumannii (A. baumannii) has long been recognized primarily as a hospital-acquired pathogen. However, recent studies have uncovered a potential link between this bacterium and oral cancer, necessitating a deeper exploration of this relationship. This review examines the relevance of A. baumannii biofilms in the context of oral cancer development. By synthesizing current knowledge, we seek to provide a comprehensive understanding of this emerging area of research and identify critical directions for future investigations. The review emphasizes the remarkable adaptability, environmental resilience, and antibiotic resistance of A. baumannii, delves into the molecular mechanisms of biofilm formation, and their potential connection to oral cancer progression. The review also evaluates how biofilm colonization on oral surfaces and medical devices, along with its role in chronic infections, inflammation, and increased antimicrobial resistance, could contribute to creating a microenvironment favourable for tumor development. This review underscores the broader healthcare implications of A. baumannii biofilms, evaluates current strategies for their prevention and eradication, and calls for interdisciplinary research in this emerging field. By shedding light on the complex interactions between A. baumannii biofilms and oral cancer, it aims to stimulate further research and guide the development of new diagnostic, preventive, and therapeutic strategies in both microbiology and oncology.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
161
|
Hao Z, Han Y, Zhao Q, Zhu M, Liu X, Yang Y, An N, He D, Lefai E, Storey KB, Chang H, Xie M. Involvement of Melatonin, Oxidative Stress, and Inflammation in the Protective Mechanism of the Carotid Artery over the Torpor-Arousal Cycle of Ground Squirrels. Int J Mol Sci 2024; 25:12888. [PMID: 39684599 DOI: 10.3390/ijms252312888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hibernating mammals experience severe hemodynamic changes over the torpor-arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear. Morphology, hemodynamic, mitochondrial oxidative stress, and inflammatory factors of the carotid artery were assessed in ground squirrels who were sampled during summer active (SA), late torpor (LT), and interbout arousal (IBA) conditions. Changes were assessed by methods including hematoxylin and eosin staining, color Doppler ultrasound, ELISA, Western blots, and qPCR. Changes in arterial blood and serum melatonin were also measured by blood gas analyzer and ELISA, whereas mitochondrial oxidative stress and inflammation factors of primary vascular smooth muscle cells (VSMCs) were assessed by qPCR. (1) Intima-media carotid thickness, peak systolic velocity (PSV), end diastolic blood flow velocity (EDV), maximal blood flow rate (Vmax) and pulsatility index (PI) were significantly decreased in the LT group as compared with the SA group, whereas there were no difference between the SA and IBA groups. (2) PO2, oxygen saturation, hematocrit and PCO2 in the arterial blood were significantly increased, and pH was significantly decreased in the LT group as compared with the SA and IBA groups. (3) The serum melatonin concentration was significantly increased in the LT group as compared with the SA and IBA groups. (4) MT treatment significantly reduced the elevated levels of LONP1, NF-κB, NLRP3 and IL-6 mRNA expression of VSMCs under hypoxic conditions. (5) Protein expression of HSP60 and LONP1 in the carotid artery were significantly reduced in the LT and IBA groups as compared with the SA group. (6) The proinflammatory factors IL-1β, IL-6, and TNF-α were reduced in the carotid artery of the LT group as compared with the SA and IBA groups. The carotid artery experiences no oxidative stress or inflammatory response during the torpor-arousal cycle. In addition, melatonin accumulates during torpor and alleviates oxidative stress and inflammatory responses caused by hypoxia in vitro in VSMCs from ground squirrels.
Collapse
Affiliation(s)
- Ziwei Hao
- Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Qi Zhao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Minghui Zhu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Dinglin He
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
162
|
Jang CH, Chung YC, Lee A, Hwang YH. Hydroethanolic Extract of Polygonum aviculare L. Mediates the Anti-Inflammatory Activity in RAW 264.7 Murine Macrophages Through Induction of Heme Oxygenase-1 and Inhibition of Inducible Nitric Oxide Synthase. PLANTS (BASEL, SWITZERLAND) 2024; 13:3314. [PMID: 39683107 DOI: 10.3390/plants13233314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Polygonum aviculare L. (PAL), commonly known as knotgrass, has been utilized as a traditional folk medicine across Asian, African, Latin American and Middle Eastern countries to treat various inflammatory diseases, including arthritis and airway inflammation. Numerous medicinal herbs exert anti-inflammatory and antioxidative effects that are mediated through the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of nuclear factor kappa B (NF-κB). However, the underlying molecular mechanisms linking the antioxidative and anti-inflammatory effects remain poorly understood. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that catalyzes heme degradation, ultimately leading to the production of carbon monoxide (CO). Elevated levels of CO have been correlated with the decreased level of inducible nitric oxide synthase (iNOS). In this study, we examined whether HO-1 plays a key role in the relationship between the antioxidative and anti-inflammatory properties of PAL. The anti-inflammatory and antioxidative activities of PAL in an in vitro system were evaluated by determining NF-κB activity, antioxidant response element (ARE) activity, pro-inflammatory cytokine and protein levels, as well as antioxidant protein levels. To examine whether HO-1 inhibition interfered with the anti-inflammatory effect of PAL, we measured nitrite, reactive oxygen species, iNOS, and HO-1 levels in RAW 264.7 murine macrophages pre-treated with Tin protoporphyrin (SnPP, an HO-1 inhibitor). Our results demonstrated that PAL increased ARE activity and the Nrf2-regulated HO-1 level, exerting antioxidative activities in RAW 264.7 macrophages. Additionally, PAL reduced cyclooxygenase-2 (COX-2) and iNOS protein levels by inactivating NF-κB in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Further investigation using the HO-1 inhibitor revealed that HO-1 inhibition promoted iNOS expression, subsequently elevating nitric oxide (NO) generation in LPS-activated RAW 264.7 macrophages treated with PAL compared to those in the macrophages without the HO-1 inhibitor. Overall, our findings suggest that HO-1 induction by PAL may exert anti-inflammatory effects through the reduction of the iNOS protein level. Hence, this study paves the way for further investigation to understand molecular mechanisms underlying the antioxidative and anti-inflammatory activities of medicinal herbs.
Collapse
Affiliation(s)
- Chan Ho Jang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
- Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
- Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| |
Collapse
|
163
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
164
|
Konaré MA, Dougnon J, Togola I, Traoré N, Diarra N, Karembé M. Therapeutic and antioxidant properties of Acridocarpus monodii Arène & Jaeger, an endemic plant of Dogon Country in Mali. Sci Rep 2024; 14:28656. [PMID: 39562803 PMCID: PMC11577076 DOI: 10.1038/s41598-024-78405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
Acridocarpus monodii Arène & Jaeger is an endemic plant species to the ''Dogon Country'' in Mali. This species is highly popular in Dogon ethnic groups, but no scientific data on its medicinal and biochemical properties are available in Mali. This work aimed to list its medicinal uses and assess its phytochemical composition and antioxidant power. An ethnobotanical investigation based on semi structured questionnaire was used to identify the traditional uses of A. monodii among the local population in three villages (Ireli, Youdiou and Yon-biré) inside ''Dogon country'' in Mali. The phytochemical composition was determined using qualitative tests, while the antioxidant potency was performed using 2,2-diphenyl-1-picryhydazyl (DPPH) and phosphomolybdate (TAC) tests. A total of 45 people were interviewed, the majority of whom were male (82.20%) and over 52 years of age. A. monodii is used to treat a dozen pathologies or diseases, dominated by malaria (71.10%), yellow fever (24.40%) and dysuria (20%). Although, all parts of this species are used to treat these pathologies, leaves (88.90%) were the most coveted followed by roots (37.80%). The use of these parts was significantly (p = 0.016 < 0.05) associated with the educational levels of the respondents (77.70%), who coveted primarily roots and barks, and thus constituted a threat to the species. These medicinal recipes derived from these organs were mostly prepared as decoctions, before being administered by oral (100%) or bath (82.20%) routes. Extracts of A. monodii were found to contain various biocompounds, especially a high quantity of flavonoids and polyphenols and demonstrated increased in vitro antioxidant inhibitory effects. The decoction extracts showed the highest content of phenolic compounds (109.82 ± 2.36 mg GAE/g). The strongest activity for the DPPH free radical scavenging were recorded by the decoction with IC50 = 107.41 ± 4.25 µg/mL and the hydroethanolic macerate with 107.31 ± 9.28 µg/mL. But, based on the results from of TAC test, the antioxidant capacity was higher for the hydroethanolic macerate 42.85 ± 2.59 mg EQ/g than those of the decoction 19.27 ± 0.93 mg EQ/g. This is the first scientific report on the therapeutic use of A. monodii within ''Dogon country'' in Mali. This work highlights its medicinal, phytochemical and biochemical properties and therefore contributes to its improved valorization. These results demonstrated that A. monodii is a promising species for the discovery of novel medicines.
Collapse
Affiliation(s)
- Mamadou A Konaré
- Laboratory of Food Biochemistry and Natural Substances, University of Sciences, Techniques and Technologies of Bamako (USTTB), BP: E 3206, Bamako, Mali.
| | - Joudy Dougnon
- Laboratory of Food Biochemistry and Natural Substances, University of Sciences, Techniques and Technologies of Bamako (USTTB), BP: E 3206, Bamako, Mali
| | - Issiaka Togola
- Laboratory of Food Biochemistry and Natural Substances, University of Sciences, Techniques and Technologies of Bamako (USTTB), BP: E 3206, Bamako, Mali
| | - Nah Traoré
- Laboratory of Natural Substances Chemistry, University of Sciences, Techniques and Technologies of Bamako (USTTB), BP: E 3206, Bamako, Mali
| | - Nouhoum Diarra
- Laboratory of Food Biochemistry and Natural Substances, University of Sciences, Techniques and Technologies of Bamako (USTTB), BP: E 3206, Bamako, Mali
| | - Moussa Karembé
- Laboratory of Tropical Ecology, University of Sciences, Techniques and Technologies of Bamako, BP: E 3206, Bamako, Mali
| |
Collapse
|
165
|
Cossu V, Bertola N, Fresia C, Sabatini F, Ravera S. Redox Imbalance and Antioxidant Defenses Dysfunction: Key Contributors to Early Aging in Childhood Cancer Survivors. Antioxidants (Basel) 2024; 13:1397. [PMID: 39594539 PMCID: PMC11590913 DOI: 10.3390/antiox13111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Survival rates for childhood cancer survivors (CCS) have improved, although they display a risk for early frailty due to the long-term effects of chemo/radiotherapy, including early aging. This study investigates antioxidant defenses and oxidative damage in mononuclear cells (MNCs) from CCS, comparing them with those from age-matched and elderly healthy individuals. Results show impaired antioxidant responses and increased oxidative stress in CCS MNCs, which exhibited uncoupled oxidative phosphorylation, leading to higher production of reactive oxygen species, similar to metabolic issues seen in elderly individuals. Key antioxidant enzymes, namely glucose-6-phosphate dehydrogenase, hexose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, showed reduced activity, likely due to lower expression of nuclear factor erythroid 2-related factor 2 (Nrf2). This imbalance caused significant damage to lipids, proteins, and DNA, potentially contributing to cellular dysfunction and a higher risk of cancer recurrence. These oxidative and metabolic dysfunctions persist over time, regardless of cancer type or treatment. However, treatment with N-acetylcysteine improved Nrf2 expression, boosted antioxidant defenses, reduced oxidative damage, and restored oxidative phosphorylation efficiency, suggesting that targeting the redox imbalance could enhance long-term CCS health.
Collapse
Affiliation(s)
- Vanessa Cossu
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Nadia Bertola
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Chiara Fresia
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy; (C.F.); (F.S.)
| | - Federica Sabatini
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy; (C.F.); (F.S.)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| |
Collapse
|
166
|
Singai C, Pitchakarn P, Taya S, Wongpoomchai R, Wongnoppavich A. Genotoxic and Anti-Genotoxic Assessments of Fermented Houttuynia cordata Thunb. Leaf Ethanolic Extract and Its Anti-Cancer Effect in a Dual-Organ Carcinogenesis Model of Colon and Liver in Rats. Foods 2024; 13:3645. [PMID: 39594061 PMCID: PMC11594090 DOI: 10.3390/foods13223645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The incidence of multiple-organ cancers has recently increased due to simultaneous exposure to various environmental carcinogens. Houttuynia cordata Thunb. (H. cordata) is recognized for its many health benefits, including its anti-cancer properties. The fermentation of its leaves has been shown to significantly enhance the bioflavonoid content and its bioactivities. This study aimed to evaluate the effectiveness of fermented H.cordata leaf (FHCL) extracts against combined carcinogens and investigate the underlying mechanisms. The crude ethanolic extract of FHCL was partitioned to obtain hexane- (HEX), dichloromethane- (DCM), ethyl acetate- (ETAC), butanol- (nBA), and residue fractions. The crude ethanolic extract (200-250 μg/mL) and the DCM fraction (50 μg/mL) significantly reduced NO production in RAW264.7 macrophages. In addition, the crude extract and the DCM and ETAC fractions showed anti-genotoxicity against aflatoxin B1 and 2-amino-3,4-dimethylimidazo [4,5-f]quinoline (MeIQ) in Salmonella typhimurium assays (S9+). Despite demonstrating genotoxicity in the Salmonella mutation assay (with and without S9 activation), oral administration of the crude extract at 500 mg/kg of body weight (bw) for 40 days in rats did not induce micronucleated hepatocytes, indicating that the extract is non-genotoxic in vivo. Moreover, the crude extract significantly decreased Phase I but increased Phase II xenobiotic-metabolizing enzyme activities in the rats. Next, the anti-cancer effects of FHCL were evaluated in a dual-organ carcinogenesis model of the colon and liver in rats induced by 1,2-dimethylhydrazine (DMH) and diethylnitrosamine (DEN), respectively. The crude extract significantly reduced not only the number and size of glutathione S-transferase placental form positive foci in the liver (at doses of 100 and 500 mg/kg bw) but also the number of aberrant crypt foci in rat colons (at 500 mg/kg bw). Furthermore, FHCL significantly reduced the expression of proliferating cell nuclear antigen (PCNA) in the colon (at 100 and 500 mg/kg bw) and liver (at 500 mg/kg bw) of the treated rats. In conclusion, FHCL exhibits significant preventive properties against colon and liver cancers in this dual-organ carcinogenesis model. Its mechanisms of action may involve anti-inflammatory effects, the prevention of genotoxicity, the modulation of xenobiotic-metabolizing enzymes, and the inhibition of cancer cell proliferation. These findings support the use of FHCL as a natural supplement for preventing cancer.
Collapse
Affiliation(s)
- Chonikarn Singai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (R.W.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (R.W.)
| | - Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (R.W.)
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (R.W.)
| |
Collapse
|
167
|
Mady MS, Elsayed HE, Tawfik NF, Moharram FA. Volatiles extracted from Melaleuca Rugulosa (Link) Craven leaves: comparative profiling, bioactivity screening, and metabolomic analysis. BMC Complement Med Ther 2024; 24:394. [PMID: 39538246 PMCID: PMC11562704 DOI: 10.1186/s12906-024-04683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Melaleuca species (family Myrtaceae) are characterized by their wide-ranging applications as antimicrobials and in skin-related conditions. Herein, we estimated the volatile profile and biological significance of M. rugulosa (Link) leaves for the first time supported by a dereplication protocol. MATERIALS AND METHODS Volatile components were extracted using hydrodistillation (HD), supercritical fluid (SF), and headspace (HS) techniques and identified using GC/MS. The variations among the three extracts were assessed using principal component analysis and orthogonal partial least square discriminant analysis (OPLS-DA). The extracted volatiles were tested for radical scavenging activity, anti-aging, and anti-hyperpigmentation potential. Finally, disc diffusion and broth microdilution assays were implemented to explore the antibacterial capacity against Streptococcus pyogenes, Staphylococcus aureus, Clostridium perfringens, and Pseudomonas aeruginosa. RESULTS The yield of the SF technique (0.8%) was three times higher than HD. GC/MS analysis revealed that the oxygenated compounds are the most proponents in the three extracts being 95.93% (HD), 80.94% (HS), and 48.4% (SF). Moreover, eucalyptol (1,8-cineol) represents the major component in the HD-EO (89.60%) and HS (73.13%) volatiles, while dl-α-tocopherol (16.27%) and α-terpineol (11.89%) represent the highest percentage in SF extract. Regarding the bioactivity profile, the HD-EO and SF-extract showed antioxidant potential in terms of oxygen radical absorbance capacity, and β- carotene assays, while exerting weak activity towards DPPH. In addition, they displayed potent anti-elastase and moderate anti-collagenase activities. The HD-EO exhibited potent anti-tyrosinase activity, while the SF extract showed a moderate level compared to tested controls. OPLS-DA and dereplication studies predicted that the selective antibacterial activity of HD-EO to S. aureus was related to eucalyptol, while SF extract to C. perfringens was related to α-tocopherol. CONCLUSIONS M. rugulosa leaves are considered a vital source of bioactive volatile components that are promoted for controlling skin aging and infection. However, further safety and clinical studies are recommended.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Nashwa F Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
168
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
169
|
Yu B, Zeng W, Zhou Y, Li N, Liang Z. Characterization and Bioactive Metabolite Profiling of Streptomyces sp. Y009: A Mangrove-Derived Actinomycetia with Anticancer and Antioxidant Potential. Microorganisms 2024; 12:2300. [PMID: 39597689 PMCID: PMC11596135 DOI: 10.3390/microorganisms12112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Microorganisms from poorly explored environments are promising sources for the development of novel drugs. In our continuous efforts to screen for mangrove actinomycetes that produce metabolites with potential pharmaceutical applications, Streptomyces sp. Y009 was isolated from mangrove sediments in Guangxi, China. The phenotypic, physiological, biochemical, and phylogenetic characteristics of this strain were investigated. Analysis of phylogenetic and 16S rRNA gene sequences showed that it had the highest sequence similarity to Streptomyces thermolilacinus NBRC 14274 (98.95%). Further, the Y009 extract exhibited antioxidant activity, as indicated by DPPH and superoxide dismutase assays. The extract showed broad-spectrum and potent anticancer potential against six human cancer cell lines, with IC50 values ranging from 5.61 to 72.15 μg/mL. Furthermore, the selectivity index (SI) demonstrated that the Y009 extract exhibited less toxicity toward normal cell lines in comparison to the lung cancer cell line (A549) and hepatoma cell line (HepG2). GC-MS analysis revealed that the extract contained some biologically important secondary metabolites, mainly cyclic dipeptides and esters, which might be responsible for the antioxidant and anticancer properties. 3-Isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione (28.32%) was the major chemical compound available in the extract. The effect on cancer cells was then confirmed using nuclear staining and in silico docking. This study suggests that further exploration of the bioactive compounds of the newly isolated strain may be a promising approach for the development of novel chemopreventive drugs.
Collapse
Affiliation(s)
| | | | | | - Nan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (B.Y.)
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (B.Y.)
| |
Collapse
|
170
|
Khan S, Ali A, Warsi MS, Waris S, Raza A, Ali SA, Mustafa M, Moinuddin, Siddiqui SA, Mahmood R, Habib S. Hepatocellular carcinoma antibodies preferably identify nitro-oxidative-DNA lesions induced by 4-Chloro-orthophenylenediamine and DEANO. Sci Rep 2024; 14:27620. [PMID: 39528573 PMCID: PMC11554667 DOI: 10.1038/s41598-024-75649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The widespread use of oxidative hair colouring cosmetics threatens public health. Phenylenediamine derivatives serve as the main pigment in permanent hair colours. They interact with biological macromolecules, altering their functional and structural physiology. The study aimed to investigate the effect of a typical synthetic hair dye pigment, 4-Chloro-orthophenylenediamine (4-Cl-OPD), under a nitrating environment of DEANO on the calf thymus DNA molecule. The results showed single-stranded regions, base/sugar-phosphate backbone alterations, molecular changes, and nitro-oxidative lesions. These modifications are referred to as neo-epitopes on the DNA molecule. IgGs from cancer patients with a history of permanent hair dye use were screened for the recognition of neo-epitopes on DNA molecules. Hepatocellular carcinoma IgG showed the highest binding with 56% inhibition in the competition ELISA. The immune complex formation was observed through electrophoretic mobility shift assay. In conclusion, synthetic hair dye users are likely to present with heightened immunological triggers under elevated nitric oxide levels. The study reports chronic hair dye exposure as one of the factors responsible for altering the intricacies of the DNA's microarchitectural structure and inducing neo-epitopes on the molecule. The physiological status of NO may define the susceptibility towards 4-Cl-OPD and humoral response in hair dye users. Persistent nitro-oxidative stress due to 4-Cl-OPD and NO may induce a heightened immune response against neoepitopes in the nitro-oxidatively modified DNA. Therefore, chronic hair dye exposure may be identified as a risk to human health. These findings may contribute to a better understanding and reinforcement of hair dye as one of the modifiable risk factors responsible for the pro-inflammatory carcinogenic environment.
Collapse
Affiliation(s)
- Shifa Khan
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Sana Waris
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Ali Raza
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Syed Amaan Ali
- Department of Periodontics and Community Dentistry, ZA Dental College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Shahid Ali Siddiqui
- Department of Radiation, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
171
|
Kremsky I, Pergerson R, Justinen S, Stanbouly S, Willey J, Fuller CA, Takahashi S, Vitaterna MH, Bouxsein M, Mao X. Artificial Gravity Attenuates the Transcriptomic Response to Spaceflight in the Optic Nerve and Retina. Int J Mol Sci 2024; 25:12041. [PMID: 39596110 PMCID: PMC11593819 DOI: 10.3390/ijms252212041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The development of eye pathology is a serious concern for astronauts who spend time in deep space. Microgravity is a major component of the spaceflight environment which could have adverse effects on ocular health. The use of centrifugation to exert forces that partially or fully mimic Earth-level gravity in space is a possible countermeasure to mitigate the effects of microgravity on the eye. Therefore, we subjected mice on the International Space Station (ISS) to microgravity (0 G) or artificial gravity by centrifugation at 0.33 G, 0.67 G, and 1 G, and then performed RNA sequencing (RNA-seq) on optic nerve and retinal tissue after returning them to Earth alive. We find that the microgravity environment induces transcriptomic changes in the optic nerve and retina consistent with an increased oxidative stress load, inflammation, apoptosis, and lipid metabolic stress. We also find that adding artificial gravity on board the ISS attenuates the transcriptomic response to microgravity in a dose-dependent manner. Such attenuation may effectively protect from and mitigate spaceflight-induced detrimental effects on ocular tissue.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (R.P.); (S.J.); (S.S.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Reyna Pergerson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (R.P.); (S.J.); (S.S.)
| | - Stephen Justinen
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (R.P.); (S.J.); (S.S.)
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (R.P.); (S.J.); (S.S.)
| | - Jeffrey Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Charles A. Fuller
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA;
| | - Mary Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02215, USA;
| | - Xiaowen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (R.P.); (S.J.); (S.S.)
| |
Collapse
|
172
|
Li S, Jin J, Zhang W, Cao Y, Qin H, Wang J, Yu J, Wang W. Association of weight-adjusted waist index with all-cause and cause-specific mortality among cancer survivors: a cohort study of the NHANES 1999-2018. Front Endocrinol (Lausanne) 2024; 15:1422071. [PMID: 39574952 PMCID: PMC11578743 DOI: 10.3389/fendo.2024.1422071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Background Obesity is becoming more widely acknowledged as a chronic illness that raises the risk of oncogenesis. This inquiry aimed to look into the correlation between cancer patient mortality and obesity, as measured by the weight-adjusted waist index (WWI). Methods We used continuous data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018 as the benchmark, with a follow-up validity period of December 31, 2019. First, we assessed the correlation between WWI and the all-cause and cause-specific execution of cancer sufferers using multivariable Cox proportional hazards models. Second, a smoothed curve fit was utilized to examine the relationship between WWI and both cause-specific and all-cause mortality in cancer patients. Lastly, we analyzed the relationship between WWI and both cause-specific and all-cause mortality in cancer patients, to find out if this link held across the population subgroup evaluation and impact analyses were used as well during the last step. Results With a median follow-up of 87.8 months, 1,547 (34.7%) of the 4,463 cancer patients had deceased. Among them, 508 (11.4%) succumbed to cancer, while 322 (7.2%) passed away due to cardiovascular disease. Multivariate Cox proportional hazards model of mortality among cancer patients revealed an all-cause mortality hazard ratio [HR=1.13; 95% CI (1.04, 1.23)] and cardiovascular mortality [HR=1.39; 95% CI (1.16, 1.67)]. Furthermore, for each unit increase in WWI, all-cause mortality was significantly higher in male cancer survivors than in female cancer survivors. Conclusions Our study reveals substantial correlations between WWI and all-cause and cardiovascular mortality in US cancer survivors, helping to identify cancer survivors at higher risk of death and thus potentially guiding targeted interventions.
Collapse
Affiliation(s)
- Shi Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Jin
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wenshun Zhang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ying Cao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Haiyun Qin
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jianguang Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiaxiang Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wenping Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
173
|
Hashimoto H, Okazaki T, Honkura Y, Ren Y, Ngamsnae P, Hisaoka T, Koshiba Y, Suzuki J, Ebihara S, Katori Y. Nrf2 Deficiency Exacerbates the Decline in Swallowing and Respiratory Muscle Mass and Function in Mice with Aspiration Pneumonia. Int J Mol Sci 2024; 25:11829. [PMID: 39519380 PMCID: PMC11546094 DOI: 10.3390/ijms252111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Aspiration pneumonia exacerbates swallowing and respiratory muscle atrophy. It induces respiratory muscle atrophy through three steps: proinflammatory cytokine production, caspase-3 and calpain, and then ubiquitin-proteasome activations. In addition, autophagy induces swallowing muscle atrophy. Nrf2 is the central detoxifying and antioxidant gene whose function in aspiration pneumonia is unclear. We explored the role of Nrf2 in aspiration pneumonia by examining swallowing and respiratory muscle mass and function using wild-type and Nrf2-knockout mice. Pepsin and lipopolysaccharide aspiration challenges caused aspiration pneumonia. The swallowing (digastric muscles) and respiratory (diaphragm) muscles were isolated. Quantitative RT-PCR and Western blotting were used to assess their proteolysis cascade. Pathological and videofluoroscopic examinations evaluated atrophy and swallowing function, respectively. Nrf2-knockouts showed exacerbated aspiration pneumonia compared with wild-types. Nrf2-knockouts exhibited more persistent and intense proinflammatory cytokine elevation than wild-types. In both mice, the challenge activated calpains and caspase-3 in the diaphragm but not in the digastric muscles. The digastric muscles showed extended autophagy activation in Nrf2-knockouts compared to wild-types. The diaphragms exhibited autophagy activation only in Nrf2-knockouts. Nrf2-knockouts showed worsened muscle atrophies and swallowing function compared with wild-types. Thus, activation of Nrf2 may alleviate inflammation, muscle atrophy, and function in aspiration pneumonia, a major health problem for the aging population, and may become a therapeutic target.
Collapse
Affiliation(s)
- Hikaru Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
| | - Tatsuma Okazaki
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (S.E.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yuzhuo Ren
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (S.E.)
| | - Peerada Ngamsnae
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (S.E.)
| | - Takuma Hisaoka
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yasutoshi Koshiba
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (S.E.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
174
|
Chen A, Huang H, Fang S, Hang Q. ROS: A "booster" for chronic inflammation and tumor metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189175. [PMID: 39218404 DOI: 10.1016/j.bbcan.2024.189175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Reactive oxygen species (ROS) are a group of highly active molecules produced by normal cellular metabolism and play a crucial role in the human body. In recent years, researchers have increasingly discovered that ROS plays a vital role in the progression of chronic inflammation and tumor metastasis. The inflammatory tumor microenvironment established by chronic inflammation can induce ROS production through inflammatory cells. ROS can then directly damage DNA or indirectly activate cellular signaling pathways to promote tumor metastasis and development, including breast cancer, lung cancer, liver cancer, colorectal cancer, and so on. This review aims to elucidate the relationship between ROS, chronic inflammation, and tumor metastasis, explaining how chronic inflammation can induce tumor metastasis and how ROS can contribute to the evolution of chronic inflammation toward tumor metastasis. Interestingly, ROS can have a "double-edged sword" effect, promoting tumor metastasis in some cases and inhibiting it in others. This article also highlights the potential applications of ROS in inhibiting tumor metastasis and enhancing the precision of tumor-targeted therapy. Combining ROS with nanomaterials strategies may be a promising approach to enhance the efficacy of tumor treatment.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng 224006, China; Department of Laboratory Medicine, Yancheng Clinical Medical College of Jiangsu University, Yancheng 224006, China
| | - Sumeng Fang
- School of Mathematics, Tianjin University, Tianjin 300350, China
| | - Qinglei Hang
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, Suining 221200, China; Key Laboratory of Jiangsu Province University for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou 225009, China; Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
175
|
Guillot AJ, Martínez-Navarrete M, Giner RM, Recio MC, Santos HA, Cordeiro AS, Melero A. Cyanocobalamin-loaded dissolving microneedles diminish skin inflammation in vivo. J Control Release 2024; 375:537-551. [PMID: 39299488 DOI: 10.1016/j.jconrel.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Inflammatory diseases of the skin have a considerable high prevalence worldwide and negatively impact the patients' quality of life. First-line standard therapies for these conditions inherently entail important side effects when used long-term, particularly complicating the management of chronic cases. Therefore, there is a need to develop novel therapeutic strategies to offer reliable alternative treatments. Abnormally high reactive oxygen species (ROS) levels are characteristic of this kind of illnesses, and therefore a reasonable therapeutic goal. Cyanocobalamin, also known as Vitamin B12, possesses notable antioxidant and ROS-scavenging properties which could make it a possible therapeutic alternative. However, its considerable molecular weight restricts passive diffusion through the skin and forces the use of an advanced transdermal delivery system. Here, we present several prototypes of Cyanocobalamin-loaded Dissolving Microarray Patches (B12@DMAPs) with adequate mechanical properties to effectively penetrate the stratum corneum barrier, allowing drug deposition into the skin structure. Ex vivo penetration and permeability studies noted an effective drug presence within the dermal skin layers; in vitro compatibility studies in representative cell skin cell lines such as L929 fibroblasts and HaCaT keratinocytes ensured their safe use. The in vivo efficacy of the selected prototype was tested in a delayed-type hypersensitivity murine model that mimics an inflammatory skin process. Several findings such as a reduction of MPO-related photon emission in a bioluminescence study, protection against histological damage, and decrease of inflammatory cytokines levels point out the effectivity of B12@DMAPs to downregulate the skin inflammatory environment. Overall, B12@DMAPs offer a cost-effective translational alternative for improving patients' skin healthcare.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen. Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Rosa Maria Giner
- Department of Pharmacology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Maria Carmen Recio
- Department of Pharmacology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Helder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen. Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical, Health and Social Care Innovations, De Montfort University, The Gateway LE1 9BH, Leicester, United Kingdom.
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
176
|
Ma N, Liu X, Zhao L, Liu Y, Peng X, Ma D, Ma L, Kiyama R, Dong S. Bisphenol P induces increased oxidative stress in renal tissues of C57BL/6 mice and human renal cortical proximal tubular epithelial cells, resulting in kidney injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175159. [PMID: 39094650 DOI: 10.1016/j.scitotenv.2024.175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Bisphenol P (BPP) has been detected in human biological samples; however studies on its nephrotoxicity are scarce. Given the susceptibility of kidneys to endocrine-disrupting chemicals, there is an urgent need to investigate the renal toxicity of BPP. This study aimed to evaluate the effects of different concentrations of BPPs on the kidneys of C57BL/6 mice and elucidate the underlying mechanisms of renal damage using a combination of mouse renal transcriptomic data and human renal proximal tubular epithelial cells (HK-2). Mice were exposed to BPP (0, 0.3, 30, 3000 μg/kg bw/d) via gavage for 5 weeks. Renal injury was assessed based on changes in body and kidney weights, serum renal function indices, and histopathological examination. Transcriptomic analysis identified differentially expressed genes and pathways, whereas cellular assays were used to measure cell viability, reactive oxygen species (ROS), apoptosis, and the expression of key genes and proteins. The results show that BPP exposure induces renal injury, as evidenced by increased body weight, abnormal renal function indices, and renal tissue damage. Transcriptomic analysis revealed alterations in genes and pathways related to oxidative stress, p53 signaling, autophagy, and apoptosis. Cellular experiments confirmed that BPP induces oxidative stress and apoptosis. Furthermore, BPP exposure significantly inhibits autophagy, potentially exacerbating apoptosis and contributing to kidney injury. Treatment with a ROS inhibitor (N-Acetylcysteine, NAC) mitigated BPP-induced autophagy inhibition and apoptosis, implicating oxidative stress as a key factor. BPP exposure may lead to renal injury through excessive ROS accumulation, oxidative stress, inflammatory responses, autophagy inhibition, and increased apoptosis. The effects of NAC highlight the role of oxidative stress in BPP-induced nephrotoxicity. These findings enhance our understanding of BPP-induced nephrotoxicity and underscore the need to control BPP exposure to prevent renal disease. This study emphasized the importance of evaluating the safety of new Bisphenol A analogs, including BPP, in environmental toxicology.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Xia Liu
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Lining Zhao
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Yue Liu
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Xinyi Peng
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Dan Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Lei Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Ryoiti Kiyama
- Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan
| | - Sijun Dong
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
177
|
Huang S, Xie K, Li X, Xu X, Chen P. The role of the STING inflammatory pathway in hepatic damage in psoriasis with type 2 diabetes mellitus. Arch Med Sci 2024; 20:1426-1441. [PMID: 39649265 PMCID: PMC11623156 DOI: 10.5114/aoms/183672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 12/10/2024] Open
Abstract
Introduction Studies have suggested a potential association between patients who have both psoriasis and diabetes and liver damage. However, the exact nature of this link has not yet been fully established. The objective of the current study was to examine the potential exacerbation of liver damage due to the coexistence of psoriasis and type 2 diabetes mellitus (T2DM) and to explore the impact of interferon gene stimulating factor (STING) on related damage. Material and methods Four patient groups were recruited: normal individuals, individuals with diabetes, those with psoriasis, and those with both diabetes and psoriasis. Relevant indicators were collected to facilitate the investigation. Furthermore, a mouse model of psoriasis combined with T2DM was established. The expression levels of STING and inflammatory factors downstream of the pathway were detected in both the skin and liver tissues of the model mice. Results Based on our findings, patients with both psoriasis and T2DM exhibit abnormal liver function and increased STING expression in the skin (p < 0.05). In the in vivo experiments, liver tissues from model mice exhibited significantly elevated expression of STING and its downstream inflammatory factors, including NF-κB p65, interferon-β, interleukin (IL)-17A, and IL-23 (p < 0.05). The STING inhibitor-treated group displayed reduced skin damage and improved liver histopathology (p < 0.05). Conclusions The findings of the current study indicate that the STING inflammatory pathway is upregulated in the liver tissues of individuals with psoriasis and T2DM.
Collapse
Affiliation(s)
- Shulin Huang
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| | - Kun Xie
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| | - Xiaohong Li
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| | - Xiangjin Xu
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| | - Pin Chen
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| |
Collapse
|
178
|
Yu R, Lin X, Peng F, Liu C, Ning Y, Wu S, Shen S, Zhang L, He X. Combined association between dietary antioxidant quality score and leisure-time physical activity on sleep pattern in cancer survivors: a cross-sectional study of National Health and Nutrition Examination Surveys database. Br J Nutr 2024; 133:1-12. [PMID: 39449626 PMCID: PMC11946034 DOI: 10.1017/s0007114524001831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024]
Abstract
This study aimed to explore the combined association between the dietary antioxidant quality score (DAQS) and leisure-time physical activity on sleep patterns in cancer survivors. Data of cancer survivors were extracted from the National Health and Nutrition Examination Surveys database in 2007-2014 in this cross-sectional study. Weighted multivariable logistic regression models were used to estimate OR and 95 % CI for the association of DAQS and leisure-time physical activity on sleep patterns. The combined association was also assessed in subgroups of participants based on age and use of painkillers and antidepressants. Among the eligible participants, 1133 had unhealthy sleep patterns. After adjusting for covariates, compared with low DAQS level combined with leisure-time physical activity level < 600 MET·min/week, high DAQS level combined with leisure-time physical activity ≥ 600 MET·min/week was associated with lower odds of unhealthy sleep patterns (OR = 0·41, 95 % CI: 0·23, 0·72). Additionally, the association of high DAQS level combined with high leisure-time physical activity with low odds of unhealthy sleep patterns was also significant in < 65 years old (OR = 0·30, 95 % CI: 0·13, 0·70), non-painkiller (OR = 0·39, 95 % CI: 0·22, 0·71), non-antidepressant (OR = 0·49, 95 % CI: 0·26, 0·91) and antidepressant (OR = 0·11, 95 % CI: 0·02, 0·50) subgroups. DAQS and leisure-time physical activity had a combined association on sleep patterns in cancer survivors. However, the causal associations of dietary nutrient intake and physical activity with sleep patterns in cancer survivors need further clarification.
Collapse
Affiliation(s)
- Rong Yu
- Department of Nursing, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital), Jiangsu Institute of Cancer Research, Nanjing210009, Jiangsu Province, People’s Republic of China
| | - Xiaonv Lin
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical University, Beijing100050, People’s Republic of China
| | - Fanyu Peng
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital), Jiangsu Institute of Cancer Research, Nanjing210009, Jiangsu Province, People’s Republic of China
| | - Chunli Liu
- Department of Outpatient, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital), Jiangsu Institute of Cancer Research, Nanjing210009, Jiangsu Province, People’s Republic of China
| | - Yun Ning
- Department of Medical, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital), Jiangsu Institute of Cancer Research, Nanjing210009, Jiangsu Province, People’s Republic of China
| | - Suya Wu
- Department of Nursing, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital), Jiangsu Institute of Cancer Research, Nanjing210009, Jiangsu Province, People’s Republic of China
| | - Siwen Shen
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital), Jiangsu Institute of Cancer Research, Nanjing210009, Jiangsu Province, People’s Republic of China
| | - Liuliu Zhang
- Department of Nursing, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital), Jiangsu Institute of Cancer Research, Nanjing210009, Jiangsu Province, People’s Republic of China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital), Jiangsu Institute of Cancer Research, Nanjing210009, Jiangsu Province, People’s Republic of China
| |
Collapse
|
179
|
Caporossi D, Lancha AH, Coletti D. Inflammation: The Beauty or the Beast? Vitamins, Nutritional Supplements, Antioxidant Therapy, and Modulators of Inflammation as Therapeutic Interventions. Nutrients 2024; 16:3630. [PMID: 39519463 PMCID: PMC11547834 DOI: 10.3390/nu16213630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of inflammation in disease development is now well known not only for acute states but also for chronic pathologies [...].
Collapse
Affiliation(s)
- Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, 00135 Rome, Italy;
| | - Antonio Herbert Lancha
- Experimental Surgery (LIM 26), Laboratory of Clinical Investigation, School of Medicine, University of Sao Paulo, Avenida Doutor Arnaldo 455, São Paulo 05508-030, SP, Brazil;
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Biological Adaptation and Ageing (B2A), Institut de Biologie Paris-Seine, Sorbonne Université, CNRS UMR 8256, Inserm U1164, 75005 Paris, France
| |
Collapse
|
180
|
Zhao G, Xie Y, Lei X, Guo R, Cui N. mTOR aggravated CD4 + T cell pyroptosis by regulating the PPARγ-Nrf2 pathway in sepsis. Int Immunopharmacol 2024; 140:112822. [PMID: 39096877 DOI: 10.1016/j.intimp.2024.112822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by a dysregulated host response to infection. CD4+T cell reduction is crucial to sepsis-induced immunosuppression. Pyroptosis, a programmed necrosis, is concerned with lymphocytopenia. Peroxisome proliferator-activated receptor gamma (PPARγ) regulated by upstream mTOR, exerts anti-pyroptosis effects. To investigate the potential effects of mTOR-PPARγ on sepsis-induced CD4+T cell depletion and the underlying mechanisms, we observed mTOR activation and pyroptosis with PPARγ-Nrf suppression through cecal ligation and puncture (CLP) sepsis mouse model. Further mechanism research used genetically modified mice with T cell-specific knockout mTOR or Tuberous Sclerosis Complex1 (TSC1). It revealed that mTOR mediated CD4 + T cell pyroptosis in septic mice by negatively regulating the PPARγ-Nrf2 signaling pathway. Taken together, mTOR-PPARγ-Nrf2 signaling mediated the CD4+ T cell pyroptosis in sepsis, contributing to CD4+T cell depletion and immunosuppression.
Collapse
Affiliation(s)
- Guoyu Zhao
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yawen Xie
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xianli Lei
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Ran Guo
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Na Cui
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
181
|
Ojo OA, Adeyemo TR, Iyobhebhe M, Adams MD, Asaleye RM, Evbuomwan IO, Abdurrahman J, Maduakolam-Aniobi TC, Nwonuma CO, Odesanmi OE, Ojo AB. Beta vulgaris L. beetroot protects against iron-induced liver injury by restoring antioxidant pathways and regulating cellular functions. Sci Rep 2024; 14:25205. [PMID: 39448782 PMCID: PMC11502780 DOI: 10.1038/s41598-024-77503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Beta vulgaris L. is a root vegetable that is consumed mainly as a food additive. This study aimed to describe the protective effect of B. vulgaris on Fe2+-mediated oxidative liver damage through in vitro, ex vivo, and in silico studies to establish a strong rationale for its protective effect. To induce oxidative damage, we incubated the livers of healthy male rats with 0.1 mM FeSO4 to induce oxidative injury and coincubated them with an aqueous extract of B. vulgaris root (BVFE) (15-240 µg/mL). Induction of liver damage significantly (p < .05) decreased the levels of GSH, SOD, CAT, and ENTPDase activities, with a corresponding increase in MDA and NO levels and Na+/K+ ATPase, G6 Pase, and F-1,6-BPase enzyme activities. BVFE treatment (p < .05) reduced these levels and activities to almost normal levels, with the most prominent effects observed at 240 µg/mL BVFE. An HPLC investigation revealed sixteen compounds in BVFE, with quercetin being the most abundant. Chlorogenic acid and iso-orientation showed the highest binding affinities for G6 Pase and Na+/K + ATPase, respectively. These findings suggest that B. vulgaris can protect against Fe2+-mediated liver damage by suppressing oxidative stress and cholinergic and purinergic activities while regulating gluconeogenesis. Overall, the hepatoprotective activity of this extract might be driven by the synergistic effect of the identified compounds and their probable interactions with target proteins.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria.
| | | | | | - Moses Dele Adams
- Clinical Biochemistry, Phytopharmacology and Biochemical Toxicology Research Laboratory (CBPBT-RL), Department of Biochemistry, Baze University, Abuja, Nigeria
| | | | | | | | | | | | | | - Adebola Busola Ojo
- Department of Environmental Management and Toxicology, University of Ilesa, Ilesa, Nigeria
| |
Collapse
|
182
|
Zhou L, Xu X, Li Y, Zhang S, Xie H. Association between dietary antioxidant levels and diabetes: a cross-sectional study. Front Nutr 2024; 11:1478815. [PMID: 39507906 PMCID: PMC11539854 DOI: 10.3389/fnut.2024.1478815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Background The onset and progression of diabetes mellitus (DM) is strongly linked to oxidative stress. Previous studies have highlighted the protective effects of individual dietary antioxidants against diabetes. However, the relationship between a comprehensive combination of dietary antioxidants and diabetes has rarely been examined. Therefore, this study assessed the association between various dietary antioxidant intake levels and diabetes among US adults and further investigated potential associations using the Composite Dietary Antioxidant Index (CDAI). Methods The study employed data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2011 and 2018 for cross-sectional analysis. Dietary information was obtained from two 24-h dietary recall interviews. The CDAI was calculated using intakes of six dietary antioxidants from the dietary information. Multifactorial logistic regression models were employed to investigate the association of different dietary antioxidants and CDAI with DM. The relationship between CDAI and DM was further explored using subgroup analyses and restricted cubic spline curves. Results A total of 7,982 subjects (mean age 47.32 ± 16.77 years; 48.50% male and 51.50% female) were included in this study. In the multivariate-adjusted single antioxidant model, vitamin C intake was significantly and negatively associated with diabetes prevalence (P for trend = 0.047), while zinc intake demonstrated a potential trend toward reduced diabetes risk (P for trend = 0.088). This association was similarly observed in the multivariate-adjusted model for the Composite Dietary Antioxidant Index (CDAI) in the female population (p = 0.046). Conclusion Intake of vitamin C was negatively associated with DM prevalence. Additionally, CDAI was found to reduce the risk of DM in the female population.
Collapse
Affiliation(s)
| | | | | | | | - Hong Xie
- School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
183
|
Yang S, Jian J, Zhao X, Wang L, Chen Z, Liu X. Causal Association of Adipose Tissue with Bladder Cancer and the Mediating Effects of Circulating Metabolites: A Mendelian Randomization Study. J Cancer 2024; 15:6521-6530. [PMID: 39668829 PMCID: PMC11632975 DOI: 10.7150/jca.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024] Open
Abstract
Background: Previous studies have indicated that there is an association between obesity and bladder cancer (BCa). However, the relationship between fat distribution, which is more representative of the risk of obesity, and BCa remains unclear. This study aimed to investigate the causal relationship between fat distribution and BCa, and the mediating role of circulating metabolites. Methods: The necessary data were obtained from a large Genome-Wide Association Studies (GWAS) database. Two-sample and two-step Mendelian randomization (MR) analyses were performed to investigate the association between fat distribution and BCa, as well as the mediating effect of circulating metabolites. The inverse variance weighted (IVW) method was the main analysis method. Heterogeneity tests, horizontal pleiotropy analyses, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) tests, and leave-one-out analyses were performed to assess the stability of the results. Results: The IVW method indicated that abdominal subcutaneous adipose tissue adjusted for body mass index (BMI) and height (ASATadj) and abdominal subcutaneous/gluteofemoral adipose tissue (ASAT/GFAT) increased the risk of BCa. The odds ratio (OR) for ASATadj was 1.78 (95% CI=1.27-2.50, p=0.001) and that for ASAT/GFAT was 1.64 (95% CI=1.01-2.66, p=0.047). Furthermore, two-step MR analysis revealed that the effect of ASAT/GFAT on BCa was mediated by valine (proportion mediated: 7.13%, 95% CI = 3.57%-10.69%, p=0.045). Conclusions: Our research shows that, unlike most studies which focus on visceral fat, ASAT also impacts human health by increasing the risk of BCa, with the blood metabolite valine involved in this process. Monitoring and reducing ASAT accumulation can help reducce the disease burden of BCa.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
184
|
Nájera-Martínez M, Lara-Vega I, Avilez-Alvarado J, Pagadala NS, Dzul-Caamal R, Domínguez-López ML, Tuszynski J, Vega-López A. The Generation of ROS by Exposure to Trihalomethanes Promotes the IκBα/NF-κB/p65 Complex Dissociation in Human Lung Fibroblast. Biomedicines 2024; 12:2399. [PMID: 39457711 PMCID: PMC11505202 DOI: 10.3390/biomedicines12102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Disinfection by-products used to obtain drinking water, including halomethanes (HMs) such as CH2Cl2, CHCl3, and BrCHCl2, induce cytotoxicity and hyperproliferation in human lung fibroblasts (MRC-5). Enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) modulate these damages through their biotransformation processes, potentially generating toxic metabolites. However, the role of the oxidative stress response in cellular hyperproliferation, modulated by nuclear factor-kappa B (NF-κB), remains unclear. Methods: In this study, MRC-5 cells were treated with these compounds to evaluate reactive oxygen species (ROS) production, lipid peroxidation, phospho-NF-κB/p65 (Ser536) levels, and the activities of SOD, CAT, and GPx. Additionally, the interactions between HMs and ROS with the IκBα/NF-κB/p65 complex were analyzed using molecular docking. Results: Correlation analysis among biomarkers revealed positive relationships between pro-oxidant damage and antioxidant responses, particularly in cells treated with CH2Cl2 and BrCHCl2. Conversely, negative relationships were observed between ROS levels and NF-κB/p65 levels in cells treated with CH2Cl2 and CHCl3. The estimated relative free energy of binding using thermodynamic integration with the p65 subunit of NF-κB was -3.3 kcal/mol for BrCHCl2, -3.5 kcal/mol for both CHCl3 and O2•, and -3.6 kcal/mol for H2O2. Conclusions: Chloride and bromide atoms were found in close contact with IPT domain residues, particularly in the RHD region involved in DNA binding. Ser281 is located within this domain, facilitating the phosphorylation of this protein. Similarly, both ROS interacted with the IPT domain in the RHD region, with H2O2 forming a side-chain oxygen interaction with Leu280 adjacent to the phosphorylation site of p65. However, the negative correlation between ROS and phospho-NF-κB/p65 suggests that steric hindrance by ROS on the C-terminal domain of NF-κB/p65 may play a role in the antioxidant response.
Collapse
Affiliation(s)
- Minerva Nájera-Martínez
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| | - Israel Lara-Vega
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| | - Jhonatan Avilez-Alvarado
- Laboratorio de Visión Artificial, Unidad Culhuacán, Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Av. Santa Ana 1000, San Francisco Culhuacán CTM V, Mexico City 04440, Mexico;
| | | | - Ricardo Dzul-Caamal
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, Campeche 24070, Mexico;
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Jack Tuszynski
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| |
Collapse
|
185
|
Chen J, Ye F, Shang K, Li N, Li C, He H. The mendelian randomized study revealed the association of prostatitis with prostate cancer risk. Sci Rep 2024; 14:24643. [PMID: 39428439 PMCID: PMC11491451 DOI: 10.1038/s41598-024-76355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
In recent observational studies, a potential link between prostatitis and prostate cancer (PCa) has been hinted at, yet the causality remains ambiguous. In our endeavor to scrutinize the conceivable causal nexus between prostatitis and PCa, we embarked upon a Mendelian randomization (MR) study. MR circumvents arbitrary groupings by employing genetic variations that have a strong association with the exposure as instrumental variables to infer causal relationships between exposures and outcomes. The etiology of PCa remains elusive. Given that prostatitis and prostate cancer occupy the same anatomical region, MR can more effectively delineate their relationship by mitigating confounding variables. This method can indirectly elucidate disease correlations, thereby contributing to cancer prevention strategies. FinnGen Consortium data were used for the prostatitis genome-wide association study (GWAS), including 74,658 participants. UK biobank baseline data (ncase = 3436, ncontrol = 459574), European Bioinformatics Institute Database (ncase = 79148, ncontrol = 61106), and IEU openGWAS database (ncase = 79148, ncontrol = 61106) were used for PCa outcomes, mostly for European population samples. Data from the GWSAs for prostatitis were compared with data from the three GWASs for PCa, respectively, in an analysis of an MR. Utilizing the inverse variance weighting (IVW) methodology as our primary analytical framework, we delved into a meticulous exploration of the conceivable causal association between prostatitis and PCa. Furthermore, we deployed supplementary methodologies, including Maximum Likelihood, MR-Egger, weighted median, and MR-PRESSO, to thoroughly assess and scrutinize the causality aspect comprehensively. Cochran's Q statistic is employed as a metric to quantify the heterogeneity inherent in instrumental variables. The inverse variance weighted analysis revealed no discernible effect of prostatitis on PCa in the three PCa GWAS databases (odds ratio [OR]: 1.001, 95% Confidence Interval [CI]: 0.999-1.002, p = 0.28), (OR: 1.015, 95% CI: 0.981-1.050, p = 0.40), (OR: 1.015, 95% CI: 0.981-1.050, p = 0.40). Similarly, employing MR-Egger did not yield substantial evidence (OR: 0.999, 95% CI: 0.999-1.002, p = 0.89), (OR: 1.103, 95% CI: 1.006-1.209, p = 0.07), (OR: 1.103, 95% CI: 1.006-1.209, p = 0.07). The weighted median analysis also failed to provide convincing support for the impact of prostatitis on the incidence of PCa (OR: 1.001, 95% CI: 1.000-1.002, p = 0.064), (OR: 0.989, 95% CI: 0.946-1.034, p = 0.64), (OR: 0.989, 95% CI: 0.945-1.036, p = 0.65). The results of the MR showed no causality from prostatitis to PCa.
Collapse
Affiliation(s)
- Jun Chen
- Department of Urology, Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Fan Ye
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Kun Shang
- Department of Urology, Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Ning Li
- Department of Urology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Changjiu Li
- Department of Urology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Huadong He
- Department of Urology, Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China.
- Department of Urology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
186
|
Melhem SA, Saadah LM, Attallah ZS, Mansi IA, Hamed SH, Talib WH. Deciphering angiotensin converting enzyme 2 (ACE2) inhibition dynamics: Carnosine's modulatory role in breast cancer proliferation - A clinical sciences perspective. Heliyon 2024; 10:e38685. [PMID: 39398078 PMCID: PMC11471176 DOI: 10.1016/j.heliyon.2024.e38685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) is a pivotal molecular nexus linking novel coronavirus disease to breast cancer. In-silico investigations have repurposed carnosine for both these conditions based on its potential ACE2 inhibitory properties. Methods Utilizing an ACE2 inhibitor screening kit, we determined the inhibitory range of carnosine doses. Subsequently, we examined the effect of carnosine on ACE2 expression in supernatants from various breast cancer cell lines (MCF-7, MDA-MB-231, and EMT-6). Additionally, we compared ACE2 activity in cell line pellets with and without carnosine and a putative ACE2 activator using a fluorometric activity assay kit. Finally, we performed a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay across overlapping concentrations. Results Carnosine exhibited dose-dependent ACE2 inhibition within the 100-300 mM range. ACE2 expression significantly diminished after exposure to carnosine for 2 and 24 h in MDA-MB-231 and MCF-7 cell lines, respectively. MTT assay unveiled notable antiproliferative effects in MDA-MB-231 (50 % survival at approximately 265 mM) and EMT-6 cell lines (unquantifiable 50 % survival dose). Conversely, the MCF-7 cell line displayed a modest increase in proliferation (Effective concentration 50-186 mM, ∼40 % increased survival). Conclusion This pioneering study delineates evident dose-dependent ACE2 inhibition by carnosine. Moreover, it unveils the modulatory impact of this ACE2 inhibitor in breast cancer cell lines. Carnosine demonstrated a significant antiproliferative effect on aggressive cell lines while sparing luminal cell lines from substantial toxic or proliferative effects.
Collapse
Affiliation(s)
- Sarah A. Melhem
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University. Amman, Jordan
| | - Loai M. Saadah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University. Amman, Jordan
| | - Zeena S. Attallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University. Amman, Jordan
| | - Iman A. Mansi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Saja H. Hamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University. Amman, Jordan
| |
Collapse
|
187
|
Lan Y, Tang H, Lin Z, Huang C, Chen L. Association of oxidative balance score with all-cause mortality among individuals with chronic kidney disease: a cohort study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:160. [PMID: 39407307 PMCID: PMC11481546 DOI: 10.1186/s41043-024-00657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The Oxidative Balance Score (OBS) is employed for evaluating the body's overall level of oxidative stress. This study aimed to investigate the association between OBS and mortality in individuals with chronic kidney disease (CKD) using a cohort study design. METHODS We used data from adult participants(≥ 20 years old) in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. CKD is diagnosed based on the Kidney Disease Improving Global Outcomes (KDIGO) guidelines. OBS, which consists of 16 dietary factors and 4 lifestyle factors, categorized into pro-oxidants and antioxidants, with a total score range of 0 to 40 .The OBS was divided into four quartiles (Q1 to Q4), with Q1 (5-12), Q2 (13-18), Q3 (19-24), and Q4 (25-36). We excluded patients with missing data on OBS, CKD, and key covariates.Cox regression analysis were used to examine the relationship between OBS and all-cause mortality in CKD patients. Sensitivity analyses included subgroup analysis and multiple imputation. RESULTS We included a total of 3,984 patients with CKD. During an average follow-up period of 103 months, 1,263 cases (31.7%) of all-cause mortality were recorded. In the fully adjusted model, compared to Q1 the hazard ratios (HRs) and 95% confidence intervals (CIs) for Q4 were as follows: OBS 0.80 (0.68, 0.95) (p = 0.012), dietary OBS 0.78 (0.66, 0.92) (p = 0.003), and lifestyle OBS 0.83 (0.70, 0.99) (p = 0.038). Our sensitivity analyses further confirmed the robustness of these results. CONCLUSIONS Higher OBS was negatively correlated with all-cause mortality risk in American adults with CKD.
Collapse
Affiliation(s)
- Ying Lan
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, No.82, North Section 2, 2nd Ring Road, Jinniu District, Chengdu, 610081, Sichuan, China
| | - Haoxian Tang
- Department of Cardiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhimei Lin
- Department of Hematology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Chao Huang
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, No.82, North Section 2, 2nd Ring Road, Jinniu District, Chengdu, 610081, Sichuan, China
| | - Lvlin Chen
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, No.82, North Section 2, 2nd Ring Road, Jinniu District, Chengdu, 610081, Sichuan, China.
| |
Collapse
|
188
|
Dai Y, Fan X, Yang Z, Wu L, Zhou X, Fang X, Ge X, Zhao L. Characteristics and correlation of flavor substances and hangover indexes in Chinese baijiu during storage. Curr Res Food Sci 2024; 9:100887. [PMID: 39498460 PMCID: PMC11533564 DOI: 10.1016/j.crfs.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024] Open
Abstract
It is generally believed that there is a great relationship between hangover and the age of Baijiu. However, what factors make Baijiu (stored for a long time) feel better after drinking has not been well explained. In this study, ethanol metabolism, oxidation stress, inflammation and release of inhibitory neurotransmitter were selected as the indicator of hangover. The results showed that the longer the age of Baijiu, the higher the antioxidant and anti-inflammatory levels, the less damage to the liver of mice. In addition, we also found that the longer the age of Baijiu, the faster the ethanol metabolism rate, the smaller the impact on the brain. A correlation analysis on Baijiu ingredients and hangover related indicators was conducted. These results showed that ethyl acetate, n-butanol, n-hexanol, butyl acetate, ethyl octanoate, isovaleric acid, 2-hydroxypropionic acid had a great correlation with all hangover related indicators.
Collapse
Affiliation(s)
- Yuan Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Yanghe Distillery Co. Ltd., Suqian, 223800, Jiangsu Province, China
| | - Xianyu Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Yanghe Distillery Co. Ltd., Suqian, 223800, Jiangsu Province, China
| | - Zhiqing Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Lulu Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Xinhu Zhou
- Jiangsu Yanghe Distillery Co. Ltd., Suqian, 223800, Jiangsu Province, China
| | - Xianying Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Xiangyang Ge
- Jiangsu Yanghe Distillery Co. Ltd., Suqian, 223800, Jiangsu Province, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| |
Collapse
|
189
|
Joshi KR, Devkota HP, Al-Mutairi KA, Sugimura K, Yahara S, Khadka R, Thapa S, Shekh MU, Poudel S, Watanabe T. Therapeutic potential of Leea asiatica: Chemical isolation and validation of ethnomedicinal claims through in vitro and in silico assessment of antioxidant and anti-inflammatory properties. Heliyon 2024; 10:e38074. [PMID: 39386820 PMCID: PMC11462247 DOI: 10.1016/j.heliyon.2024.e38074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Leea asiatica (L.) Ridsdale has been used by different ethnic communities to manage diseased conditions that can be traced to oxidative stress and cellular inflammations but scientific evidences to support the claim are scanty. The objective of this study was to isolate and identify the antioxidants present in the aerial parts of Leea asiatica, perform their molecular docking against proteins to inspect whether the traditional uses of the plant can be validated by an in-silico approach. Quercetin (1), gallic acid (2), kaempferol (3), methyl gallate (4), myricetin 3-O-α-L-rhamnopyranoside (5), (-)-epicatechin-3-O-gallate (6) and (-)-epigallocatechin-3-O-gallate (7) were isolated from the 70 % methanolic extract of the aerial parts. Compounds 2, 4, 6, and 7 are reported for the first time from Leea asiatica. Quercetin (1), gallic acid (2), (-)-epicatechin-3-O-gallate (6) and (-)-epigallocatechin-3-O-gallate (7) showed potent antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Molecular docking with NADPH oxidase and TNF-α revealed that epicatechin-3-O-gallate, epigallocatechin-3-O-gallate and quercetin bound with the least binding energy amongst the isolated compounds as well as standard (Trolox and Prednisolone). By molecular dynamics analysis, epicatechin-3-O-gallate maintained stable conformation with NADPH oxidase and TNF-α and was found to possess good ADMET profile thereby validating the ethnic use of the plant as a medicine in the management of inflammatory conditions by an in vitro and in silico approach.
Collapse
Affiliation(s)
- Khem Raj Joshi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Khalid Awadh Al-Mutairi
- University of Tabuk, Department of Biology, Faculty of Science, Tabuk, P.O. Box 741, Tabuk, 741, Saudi Arabia
| | - Koji Sugimura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shoji Yahara
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Ravindra Khadka
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
| | - Shankar Thapa
- Department of Pharmacy, Madan Bhandari Academy of Health Sciences, Hetauda, Nepal
| | - Mohammad Ujair Shekh
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
| | - Sandesh Poudel
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
| | - Takashi Watanabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| |
Collapse
|
190
|
Budek M, Nuszkiewicz J, Czuczejko J, Maruszak-Parda M, Wróblewska J, Wojtasik J, Hołyńska-Iwan I, Pawłowska M, Woźniak A, Szewczyk-Golec K. Searching for New Biomarkers of Neuroendocrine Tumors: A Comparative Analysis of Chromogranin A and Inflammatory Cytokines in Patients with Neuroendocrine Tumors. Curr Oncol 2024; 31:6110-6132. [PMID: 39451760 PMCID: PMC11506232 DOI: 10.3390/curroncol31100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) present a diagnostic challenge due to their heterogeneous nature and non-specific clinical manifestations. This study aimed to explore novel biomarkers for NENs. Serum chromogranin A (CgA) levels and a panel of 48 inflammatory cytokines were analyzed in a cohort of 84 NEN patients and 40 healthy controls using enzyme-linked immunosorbent assay (ELISA) and multiplex ELISA. Significant alterations in cytokine levels were observed in the NEN patients compared to the controls, including elevated levels of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, and tumor necrosis factor alpha (TNF-α), and reduced levels of angiogenic factors like platelet-derived growth factor-BB (PDGF-BB) and tumor necrosis factor beta (TNF-β). Notably, cytokines such as growth-regulated alpha protein (GRO-α) and TNF-β demonstrated strong potential as diagnostic markers, with receiver operating characteristic (ROC) curve analyses showing high sensitivity and specificity. Additionally, a positive correlation was found between CgA levels and several inflammatory cytokines, suggesting their synergistic role in tumor progression. These findings highlight the limited reliability of CgA alone as a diagnostic marker and underscore the importance of a multi-marker approach in diagnosing and monitoring NENs. Further research on a larger cohort is necessary to validate these biomarkers and their potential clinical applications.
Collapse
Affiliation(s)
- Marlena Budek
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Jolanta Czuczejko
- Department of Psychiatry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Marta Maruszak-Parda
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Jakub Wojtasik
- Centre for Statistical Analysis, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| |
Collapse
|
191
|
Ihira H, Nakano S, Yamaji T, Katagiri R, Sawada N, Inoue M, Tsugane S, Iwasaki M. Plasma albumin, bilirubin, and uric acid and the subsequent risk of cancer: a case-cohort study in the Japan Public Health Center-based Prospective Study. Am J Epidemiol 2024; 193:1460-1469. [PMID: 38808611 DOI: 10.1093/aje/kwae092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
Several epidemiologic studies have investigated the circulating levels of albumin, bilirubin, and uric acid (UA) in relation to cancer risk; however, they have provided equivocal evidence. In this prospective case-cohort study, we measured the plasma levels of albumin, bilirubin, and UA and investigated their association with cancer incidence in 3584 case patients and 4270 randomly selected participants with a median follow-up of 15.8 years. The adjusted hazard ratios (HRs) and 95% CIs of total cancer for the highest quartile (Q4) versus lowest quartile (Q1) was 0.77 (95% CI, 0.67-0.90; P <.001 for trend) for albumin. This association was attenuated after excluding liver cancer cases with lower plasma albumin levels. Plasma bilirubin levels were positively related to liver cancer but inversely to total cancer after excluding liver cancer with, for Q4 versus Q1, an adjusted HR of 0.86 (95% CI, 0.74-0.99; P = .015 for trend). Plasma UA levels were not dose-responsively associated with total cancer risk. Higher plasma bilirubin levels were associated with a decreased risk of total cancer after excluding liver cancer, which is likely attributed to the antioxidant properties of bilirubin.
Collapse
Affiliation(s)
- Hikaru Ihira
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
| | - Ryoko Katagiri
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
- Department of Nutritional Epidemiology and Shokuiku, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 566-0002, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
| | - Manami Inoue
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
- Division of Prevention Research, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
- International University of Health and Welfare Graduate School of Public Health, Tokyo 107-8402, Japan
| | - Motoki Iwasaki
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo 104-0045, Japan
| |
Collapse
|
192
|
Sorte Gawali KS, Jadhao AN, Ramteke TD, Patil NJ, Sahare H. Evaluation of antioxidant status of lens epithelial cells in cataract patients. Indian J Ophthalmol 2024; 72:1506-1511. [PMID: 39331443 PMCID: PMC11573039 DOI: 10.4103/ijo.ijo_19_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE The main factor that causes cataracts is the increased oxidative stress and imbalance of an antioxidant defense mechanism, which leads to significant changes in the lens microarchitecture. Senile cataract is the most common type of acquired cataracts due to aging. METHODS We carried out a case-control study in the biochemistry department to examine the antioxidant status (catalase and total antioxidant capacity [TAC]) and lipid peroxidation marker, that is, malondialdehyde (MDA) in human lens epithelial cells (HLECs) of different grades of senile cortical, nuclear, and posterior subcapsular cataracts. We collected 150 samples from patients aged 50-90 years. These included 50 samples of cortical cataracts, 50 of nuclear cataracts, and 50 samples of posterior subcapsular cataracts. We measured catalase activity by the Beer method, TAC by the Benzie and Strain method, and protein by the Bradford method. We also estimated TAC in the aqueous extract of HLECs by the ferric reducing ability of plasma (FRAP) method and MDA by the thiobarbituric acid assay method. RESULTS The results of this study showed that the level of catalase enzyme was higher in the first grade of nuclear, posterior subcapsular, and cortical cataracts than in other grades. This suggests that the catalase enzyme activity drops sharply in the second and third grades of these types of cataracts. The same pattern was observed for TAC, which was higher in the first grade of nuclear, posterior subcapsular, and cortical cataracts than in other grades. There were significant differences between catalase and TAC in different grades of cataracts, indicating that as the grading increases, both catalase and TAC decrease. CONCLUSION The results of this study showed that the levels of MDA were higher and the levels of catalase and TAC were lower in patients with more severe cataracts compared to the healthy controls.
Collapse
Affiliation(s)
| | | | | | - Neelam Jayant Patil
- Department of Biochemistry, T.N.M.C. and B.Y.L. Nair Hospital and Charitable Trust Mumbai, Maharashtra, India
| | - Harshal Sahare
- Departments of Vitreo-Retina and Ocular Oncology and Cataract, and Phacorefractive Surgery, Sankara Eye Hospital, Shimoga, Karnataka, India
| |
Collapse
|
193
|
Feunaing RT, Tamfu AN, Gbaweng AJY, Djoko CLT, Ntchapda F, Henoumont C, Laurent S, Talla E, Anouar EH, Zingue S, Dinica RM. 3,3'4-trimethoxy-4'-rutinosylellagic acid and its acetylated derivative: Antioxidant activity and antiproliferative effects on breast cancer cells and molecular docking study. Biomed Pharmacother 2024; 179:117370. [PMID: 39208664 DOI: 10.1016/j.biopha.2024.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancers account for many deaths worldwide and natural compounds and their derivatives are interesting chemotherapeutic agents for cancer drug development. In this study, a natural compound 3,3'4-trimethoxy-4'-rutinosylellagic acid (TR2) and its acetylated derivative 3,3'4-trimethoxy-4'-hexaacetylrutinosylellagic acid (TR22) were evaluated for their antioxidant and anticancer effects against estrogen sensitive (MCF-7) and estrogen non-sensitive (MDA-MB 231) breast adenocarcinoma. In the β-Carotene-linoleic acid assay, DPPH• radical scavenging and CUPRAC assay, the compound TR2 had better activity than the standard α-Tocopherol, while in the ABTS•+ assay, it was more active than both standards α- α-Tocopherol and BHA. Both compounds had good antioxidant effects with TR2 being more active than TR22. Both compounds inhibited growth of breast carcinoma cells when compared to the untreated controls after 72 h. Compound TR22 significantly (p < 0.001) inhibited proliferation of both MCF-7 and MDA-MB 231 breast carcinoma cell lines suggesting that acetylation reaction improves inhibition of breast cancer cells growth. On the contrary, TR2 exhibited better inhibitory effect of clone formation than TR22 suggesting that acetylation reduces the activity in this assay. Both compounds inhibited migration of the cancer cells when compared to the untreated control cells and compound TR2 exhibited greater cellular anti-migration effect than TR22 at the same concentration and after the same period of incubation. Molecular docking studies supplemented the results and revealed that TR2 and TR22 had appreciable interactions with tyrosine kinase with negative binding energies suggesting that they are potent receptor tyrosine kinase inhibitors which can impede on cancer progression.
Collapse
Affiliation(s)
- Romeo Toko Feunaing
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon; Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos University', 47 Domneasca Str., Galati 800008, Romania.
| | - Abel Joel Yaya Gbaweng
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | | | - Fidele Ntchapda
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Celine Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons B-7000, Belgium
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons B-7000, Belgium
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon; Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Ab-dulaziz University, P.O. Box 830 Al-Kharj, Saudi Arabia
| | - Stephane Zingue
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, P.O. Box 1364, Yaounde, Cameroon
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos University', 47 Domneasca Str., Galati 800008, Romania.
| |
Collapse
|
194
|
Siqueira AGS, da Silva NC, de Oliveira EP, Pena GDG. Association of uric acid with length of stay and mortality in pediatric hospitalized population. Clin Nutr ESPEN 2024; 63:234-239. [PMID: 38972035 DOI: 10.1016/j.clnesp.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE Elevated uric acid (UA) levels have been associated with acute and chronic diseases, which could affect the prognosis of pediatric hospitalized patients. However, the association of UA levels with length of hospital stay (LOS) and mortality in hospitalized children and adolescents remains unknown. Therefore, the aim of this study was to evaluate the association of serum UA levels with in-hospital mortality and prolonged LOS in hospitalized children and adolescents. METHODS A retrospective cohort study was conducted, involving 128 patients under 18 years of age, admitted to a tertiary-care hospital between January 2014 and December 2018. UA levels were assessed with an average of 3 days before the in-hospital outcome (discharge or death). Logistic regression was used to determine the association of UA with prolonged LOS (defined as over 30 days of hospitalization), while Cox regression multivariate analysis was employed to assess UA as a predictor of in-hospital mortality. RESULTS UA levels showed an inverse association with prolonged LOS. Specifically, for every 1 mg/dL increase in UA level, the odds of experiencing prolonged LOS decreased by 31% (OR = 0.69; 95% CI: 0.50-0.95). Additionally, individuals with elevated UA levels had lower odds of prolonged LOS (OR = 0.23; 95% CI: 0.08-0.66). However, UA levels were not associated with in-hospital mortality (HR = 1.63; 95% CI: 0.94-2.82). CONCLUSION Serum UA was inversely associated with LOS among children and adolescents, but no association was observed with in-hospital mortality.
Collapse
Affiliation(s)
| | - Nayara Cristina da Silva
- Graduate Program in Health Sciences, Federal University of Uberlandia, Pará Av, 1720, Campus Umuarama, Uberlândia, Minas Gerais 38400-902, Brazil.
| | - Erick P de Oliveira
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Geórgia das Graças Pena
- Graduate Program in Health Sciences, Federal University of Uberlandia, Pará Av, 1720, Campus Umuarama, Uberlândia, Minas Gerais 38400-902, Brazil.
| |
Collapse
|
195
|
Bošković M, Sokolović D, Stanković S, Ristić I, Popović J, Kocić G. The Influence of Removable Complete Denture on Pro-Oxidant Antioxidant Balance and Redox-Sensitive Inflammation Biomarker NF-ĸB in the Oral Cavity: An Interventional Follow-Up Study. Clin Exp Dent Res 2024; 10:e70007. [PMID: 39295455 PMCID: PMC11411146 DOI: 10.1002/cre2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/25/2024] [Accepted: 07/21/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES Oxidative stress, an imbalance between the body's natural antioxidant defenses and the production of reactive oxygen species (ROS), can result in serious oral diseases, including oral cancer, periodontal diseases, and oral lichen planus, through the activation of the redox-sensitive transcription factors and inflammation. The purpose of this study was to assess the potential effects of a removable complete denture on the levels of oxidative stress markers, such as lipid peroxidation (MDA), advanced oxidation protein products (AOPP), and catalase, and the quantitative expression of the redox-sensitive transcription factor NF-κB p65 subunit. MATERIALS AND METHODS This interventional follow-up study enrolled 40 participants of both sexes aged 28-78 years, with a median age of 56 years, where unstimulated saliva was collected before denture placement, immediately after the denture placement, and 24 h, 7 days, and 30 days after the denture placement. The most prominent ROS overproduction was reported on the seventh day (p < 0.05), followed by a significant fall in antioxidative defense. RESULTS The NF-κB p65 subunit, whose expression pattern was highest in the same time period on the seventh day, serves as a signaling molecule for redox imbalance due to ROS production. Over the next 30 days, its levels remained moderately increased compared to the basal value, which may influence pro-inflammatory pathways and the integrity of oral tissue components. These alterations may be induced by the dentures, which can produce high pressures on the supporting tissues or by the synthetic materials used for producing the dentures. CONCLUSION Our research may help to clarify the potential pathways by which oxidative stress and redox-sensitive inflammatory mediators, as well as mechanical and chemical irritants, may serve as risk factors for premalignant lesions in the mouth. Further research on this topic is required to understand the molecular mechanisms behind the relationship between inflammation and oral premalignant lesions caused by mechanical and chemical irritation.
Collapse
Affiliation(s)
- Mirjana Bošković
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Dušan Sokolović
- Department of Biochemistry, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Saša Stanković
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Ivan Ristić
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Jordan Popović
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gotheburg, Goteborg, Goteborg region, Sweden
| | - Gordana Kocić
- Department of Biochemistry, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| |
Collapse
|
196
|
Vančo J, Trávníček Z, Malina T, Hošek J, Dvořák Z. Cellular Effects of Cationic Copper(II) Schiff Base Complexes: Anti-Inflammatory and Antiproliferative Properties. ChemMedChem 2024; 19:e202400214. [PMID: 39031727 DOI: 10.1002/cmdc.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
A series of potassium isothiocyanato-(N-salicylidene-aminoacidato) cuprates (1-5) with the general formula of the monomeric unit K[Cu(sal-aa)(NCS)] ⋅ xH2O (x=0 or 2), containing a Schiff-base ligand (H2sal-aa) derived from natural amino acids such as glycine, DL-α-alanine, DL-valine, DL-phenylalanine and β-alanine, and salicylaldehyde, was screened for in vitro antiradical and major cellular effects against selected cancerous and normal cells. The complexes exhibited strong antioxidant properties against superoxide in vitro and a protective effect on DNA under Fenton-like reaction conditions. Screening of their cellular effects revealed moderate in vitro cytotoxicity against human cancer cell lines (A2780, A2780R and MCF-7), with IC50 values of 25-35 μM, and relatively low toxicity to normal fibroblast MRC-5 cells (with IC50 values>50 μM). Additional experiments performed on A2780 cells revealed that the most potent complex 5 significantly increased the number of A2780 cells arrested in the G2/M phase of the cell cycle and triggered intracellular oxidative stress. The selected flow cytometry experiments (detection of apoptosis/autophagy and activation of caspases 3/7 and depletion of mitochondrial membrane potential) did not reveal the dominant mechanism underlying the cytotoxicity of the complexes but clearly differentiated their molecular effects from those of the reference drug cisplatin. All the complexes exerted anti-inflammatory effects by modulating the levels of the proinflammatory cytokines TNF-α and IL-1β in LPS-activated THP-1 macrophage-like cells. Complex 5 also slightly influenced the activity of the upstream NF-κB transcription factor, while no effect on PPARγ activation was detected.
Collapse
Affiliation(s)
- Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Tomáš Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Jan Hošek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| |
Collapse
|
197
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024; 96:20-41. [PMID: 39233381 PMCID: PMC11579829 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
| | - Yngvar Gundersen
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Kristian Opstad
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of PsychologyUniversity of BergenBergenNorway
| | - Anders Hugoson
- Department of Periodontology, Institute of OdontologyThe Sahlgrenska Academy at University of Gothenburg and School of Health and WelfareGothenburgSweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
198
|
de Oliveira KM, Abboud KY, Radulski DR, Faria BC, Galindo CM, Pereira GS, Stipp MC, Corso CR, de Assis CB, de Lima Martins JN, do Amaral LA, Comar JF, Cordeiro LMC, Acco A. Polysaccharides extracted from tucum-do-cerrado fruits (Bactris setosa Mart) have antineoplastic effects in mice while preserving hepatic gluconeogenesis. Int J Biol Macromol 2024; 278:134590. [PMID: 39127269 DOI: 10.1016/j.ijbiomac.2024.134590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the antitumoral, anti-inflammatory and oxidative effects of polysaccharides from tucum (Bactris setosa, TUC) using the Ehrlich carcinoma as a tumor model. Additionally, the glycogen content, cytochrome P levels, and gluconeogenesis from lactate were assessed in the liver of healthy animals. Tumor-bearing female mice were orally treated with 50 and 100 mg.kg-1 of TUC or vehicle, once a day, or with 1.5 mg.kg-1 methotrexate via i.p., every 3 days, along 21 days. Both doses of TUC reduced the tumor weight and volume. In the tumor tissue, it decreased GSH and IL-1β levels, and increased LPO, NAG, NO and TNF-α levels. The tumor histology showed necrosis and leukocytes infiltration. The metabolic effects of TUC were investigated by measurement of total cytochrome P (CYP) and glycogen in tumor-bearing mice, and by ex vivo liver perfusion on non-bearing tumor male mice, using lactate as gluconeogenic precursor. Metabolically, the hepatic glucose and pyruvate productions, oxygen uptake, and the total CYP concentration were not modified by TUC. Thus, tucum-do-cerrado polysaccharides have antitumor effects through the modulation of oxidative stress and inflammation, without impairing glucose production from lactate in the liver, the main organ responsible for the metabolism of organic and xenobiotic compounds.
Collapse
Affiliation(s)
| | - Kahlile Youseff Abboud
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Bruna Christ Faria
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Luane Aparecida do Amaral
- Postgraduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
199
|
Iannetta A, Zugaro S, Massimini M, Gentile W, Silvestrini T, Fioravanti G, Foschi M, Perugini M, Benedetti E, Della Salda L. Combined effects of glyphosate and chemical hypoxia in zebrafish: A new toxicological point of view. CHEMOSPHERE 2024; 366:143484. [PMID: 39374665 DOI: 10.1016/j.chemosphere.2024.143484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Glyphosate (Gly), a systemic and non-selective post-emergence herbicide used worldwide, has emerged as a pollutant. However, its toxic effects are debated by regulatory authorities. In addition, in the aquatic environment, often the presence of pollutants is associated with a hypoxia condition that could change their toxicological effects. We used zebrafish embryos to evaluate the toxic effects of Gly and its mechanisms in a hypoxic condition chemically induced by cobalt chloride (CoCl2). We found that Gly induced toxicity in a time and concentration-dependent manner. The toxicity of Gly was determined at 96 h post fertilization as a lethal concentration (LC), and LC10, LC20, and LC50 values were 85.7, 97, and 122.9 mg/L, respectively. When Gly was combined with CoCl2 the toxicological endpoints were lower than values referred to the Gly alone indicating the worse effects of chemical hypoxia on Gly toxicity. Histological observations were performed at 25, 50, 75, and 100 mg/L for Gly both alone and in combination with 10 mM CoCl2. Fisher's exact test showed significant differences in the presence of hepatic and gut inflammation at 75 and 100 mg/L of Gly both alone and in combination with CoCl2. To deeply investigate the effects of hypoxia on Gly toxicity we decided to test the lowest dose of Gly, 50 mg/L, alone or in combination with CoCl2 10 mM on liver glycogen storage and oxidative stress. Again the results obtained indicate the worse effects of chemical hypoxia on Gly toxicity. Thus Gly toxicity could be reconsidered in light of the damage it causes to the liver and intestines and its effect in combination with factors that induce chemical hypoxia.
Collapse
Affiliation(s)
- Annamaria Iannetta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Silvana Zugaro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - William Gentile
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Tommaso Silvestrini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Giulia Fioravanti
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Martina Foschi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
200
|
Liu M, Guan G, Wang Y, Lu X, Duan X, Xu X. p-Hydroxy benzaldehyde, a phenolic compound from Nostoc commune, ameliorates DSS-induced colitis against oxidative stress via the Nrf2/HO-1/NQO-1/NF-κB/AP-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155941. [PMID: 39128305 DOI: 10.1016/j.phymed.2024.155941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic idiopathic inflammatory bowel disease (IBD), presents with limited current drug treatment options. Consequently, the search for safe and effective drug for UC prevention and treatment is imperative. Our prior studies have demonstrated that the phenolic compound p-Hydroxybenzaldehyde (HD) from Nostoc commune, effectively mitigates intestinal inflammation. However, the mechanisms underlying HD's anti-inflammatory effects remain unclear. PURPOSE This study delved into the pharmacodynamics of HD and its underlying anti-inflammation mechanisms. METHODS For in vivo experiments, dextran sodium sulfate (DSS)-induced colitis mouse model was established. In vitro inflammation model was established using lipopolysaccharide (LPS)-induced RAW264.7 and bone marrow-derived macrophages (BMDMs). The protective effect of HD against colitis was determined by monitoring clinical symptoms and histological morphology in mice. The levels of inflammatory factors and oxidative stress markers were subsequently analyzed with enzyme-linked immunosorbent assay (ELISA) and biochemical kits. Furthermore, western blotting (WB), immunofluorescence (IF), luciferase reporter gene, drug affinity reaction target stability (DARTS) assay, molecular docking, and molecular dynamics (MD) simulation were used to determine the potential target and molecular mechanism of HD. RESULTS Our findings indicate that HD significantly alleviated the clinical symptoms and histological morphology of colitis in mice, and curtailed the production of pro-inflammatory cytokines, including TNF-α, IL-6, IFN-γ, COX-2, and iNOS. Furthermore, HD stimulated the production of SOD, CAT, and GSH-px, enhanced total antioxidant capacity (T-AOC), and reduced MDA levels. Mechanically, HD augmented the expression of Nrf2, HO-1, and NQO-1, while concurrently downregulating the phosphorylation of p65, IκBα, c-Jun, and c-Fos. ML385 and siNrf2 largely attenuated the protective effect of HD in enteritis mice and RAW 264.7 cells, as well as the promotion of HO-1 expression levels. ZnPP-mediated HO-1 knockdown reversed HD-induced inhibition of colonic inflammation. Luciferase reporter assay and IF assay confirmed the transcriptional activation of Nrf2 by HD. DARTS analysis, molecular docking, and MD results showed high binding strength, interaction efficiency and remarkable stability between Nrf2 and HD. CONCLUSION These outcomes extend our previous research results that HD can combat oxidative stress through the Nrf2/HO-1/NQO-1/NF-κB/AP-1 pathways, effectively alleviating colitis, and propose new targets for HD to protect against intestinal barrier damage.
Collapse
Affiliation(s)
- Meng Liu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Guoqiang Guan
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Yuhui Wang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Xi Lu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Xiaoqun Duan
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China.
| | - Xiaotian Xu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|