151
|
Lima S, Longman RS. A Diamond in the Rough: IgA-Seq Signatures Stratify New Onset IBD. Cell Host Microbe 2021; 29:10-12. [PMID: 33444552 DOI: 10.1016/j.chom.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intestinal immunoglobulin (Ig)A binds to distinct commensals and pathobionts, but do these IgA-coated bacterial communities define clinical characteristics of inflammatory disease? In this issue of Cell Host & Microbe, Shapiro et al. comprehensively analyze IgA-coated bacteria in new onset inflammatory bowel disease (IBD), revealing their potential in guiding precision therapy and diagnostic stratification.
Collapse
Affiliation(s)
- Svetlana Lima
- Division of Gastroenterology and Hepatology, Department of Medicine, Jill Roberts Institute for Research in IBD, Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, USA
| | - Randy S Longman
- Division of Gastroenterology and Hepatology, Department of Medicine, Jill Roberts Institute for Research in IBD, Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
152
|
van Gool MMJ, van Egmond M. IgA and FcαRI: Versatile Players in Homeostasis, Infection, and Autoimmunity. Immunotargets Ther 2021; 9:351-372. [PMID: 33447585 PMCID: PMC7801909 DOI: 10.2147/itt.s266242] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mucosal surfaces constitute the frontiers of the body and are the biggest barriers of our body for the outside world. Immunoglobulin A (IgA) is the most abundant antibody class present at these sites. It passively contributes to mucosal homeostasis via immune exclusion maintaining a tight balance between tolerating commensals and providing protection against pathogens. Once pathogens have succeeded in invading the epithelial barriers, IgA has an active role in host-pathogen defense by activating myeloid cells through divers receptors, including its Fc receptor, FcαRI (CD89). To evade elimination, several pathogens secrete proteins that interfere with either IgA neutralization or FcαRI-mediated immune responses, emphasizing the importance of IgA-FcαRI interactions in preventing infection. Depending on the IgA form, either anti- or pro-inflammatory responses can be induced. Moreover, the presence of excessive IgA immune complexes can result in continuous FcαRI-mediated activation of myeloid cells, potentially leading to severe tissue damage. On the one hand, enhancing pathogen-specific mucosal and systemic IgA by vaccination may increase protective immunity against infectious diseases. On the other hand, interfering with the IgA-FcαRI axis by monovalent targeting or blocking FcαRI may resolve IgA-induced inflammation and tissue damage. This review describes the multifaceted role of FcαRI as immune regulator between anti- and pro-inflammatory responses of IgA, and addresses potential novel therapeutic strategies that target FcαRI in disease. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xlijXy5W0xA
Collapse
Affiliation(s)
- Melissa Maria Johanna van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
153
|
Guo J, Ren C, Han X, Huang W, You Y, Zhan J. Role of IgA in the early-life establishment of the gut microbiota and immunity: Implications for constructing a healthy start. Gut Microbes 2021; 13:1-21. [PMID: 33870860 PMCID: PMC8078773 DOI: 10.1080/19490976.2021.1908101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Colonization and maturation of the gut microbiota (GM) during early life is a landmark event that fundamentally influences the (early) immunity and later-life health of various mammals. This is a delicate, systematic process that is biologically actively regulated by infants and their mothers, where (secretory) IgA, an important regulator of microbes found in breast milk and generated actively by infants, may play a key role. By binding to microbes, IgA can inhibit or enhance their colonization, influence their gene expression, and regulate immune responses. IgA dysfunction during early life is associated with disrupted GM maturation and various microbe-related diseases, such as necrotizing enterocolitis and diarrhea, which can also have a lasting effect on GM and host health. This review discusses the process of early GM maturation and its interaction with immunity and the role of IgA (focusing on milk secretory IgA) in regulating this process. The possible application of this knowledge in promoting normal GM maturation processes and immune education has also been highlighted.
Collapse
Affiliation(s)
- Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenglong Ren
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- Peking University School of Basic Medical Science, Peking University Health Science Centre
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
154
|
Daniel N, Lécuyer E, Chassaing B. Host/microbiota interactions in health and diseases-Time for mucosal microbiology! Mucosal Immunol 2021; 14:1006-1016. [PMID: 33772148 PMCID: PMC8379076 DOI: 10.1038/s41385-021-00383-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/04/2023]
Abstract
During the last 20 years, a new field of research delineating the importance of the microbiota in health and diseases has emerged. Inappropriate host-microbiota interactions have been shown to trigger a wide range of chronic inflammatory diseases, and defining the exact mechanisms behind perturbations of such relationship, as well as ways by which these disturbances can lead to disease states, both remain to be fully elucidated. The mucosa-associated microbiota constitutes a recently studied microbial population closely linked with the promotion of chronic intestinal inflammation and associated disease states. This review will highlight seminal works that have brought into light the importance of the mucosa-associated microbiota in health and diseases, emphasizing the challenges and promises of expending the mucosal microbiology field of research.
Collapse
Affiliation(s)
- Noëmie Daniel
- grid.508487.60000 0004 7885 7602INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université de Paris, Paris, France
| | - Emelyne Lécuyer
- grid.428999.70000 0001 2353 6535Microenvironment & Immunity Unit, Pasteur Institute, INSERM U1224, Paris, France
| | - Benoit Chassaing
- grid.508487.60000 0004 7885 7602INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université de Paris, Paris, France
| |
Collapse
|
155
|
Raskova Kafkova L, Brokesova D, Krupka M, Stehlikova Z, Dvorak J, Coufal S, Fajstova A, Srutkova D, Stepanova K, Hermanova P, Stepankova R, Uberall I, Skarda J, Novak Z, Vannucci L, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z, Sinkora M, Mestecky J, Raska M. Secretory IgA N-glycans contribute to the protection against E. coli O55 infection of germ-free piglets. Mucosal Immunol 2021; 14:511-522. [PMID: 32973324 PMCID: PMC7946640 DOI: 10.1038/s41385-020-00345-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
Abstract
Mucosal surfaces are colonized by highly diverse commensal microbiota. Coating with secretory IgA (SIgA) promotes the survival of commensal bacteria while it inhibits the invasion by pathogens. Bacterial coating could be mediated by antigen-specific SIgA recognition, polyreactivity, and/or by the SIgA-associated glycans. In contrast to many in vitro studies, only a few reported the effect of SIgA glycans in vivo. Here, we used a germ-free antibody-free newborn piglets model to compare the protective effect of SIgA, SIgA with enzymatically removed N-glycans, Fab, and Fc containing the secretory component (Fc-SC) during oral necrotoxigenic E. coli O55 challenge. SIgA, Fab, and Fc-SC were protective, whereas removal of N-glycans from SIgA reduced SIgA-mediated protection as demonstrated by piglets' intestinal histology, clinical status, and survival. In vitro analyses indicated that deglycosylation of SIgA did not reduce agglutination of E. coli O55. These findings highlight the role of SIgA-associated N-glycans in protection. Further structural studies of SIgA-associated glycans would lead to the identification of those involved in the species-specific inhibition of attachment to corresponding epithelial cells.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Diana Brokesova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michal Krupka
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zuzana Stehlikova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Dvorak
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stepan Coufal
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Fajstova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Srutkova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Katerina Stepanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Renata Stepankova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Ivo Uberall
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jozef Skarda
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zdenek Novak
- grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Luca Vannucci
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.418800.50000 0004 0555 4846Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Jiraskova Zakostelska
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Sinkora
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jiri Mestecky
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.265892.20000000106344187Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Milan Raska
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
156
|
Camacho-Morales A, Caba M, García-Juárez M, Caba-Flores MD, Viveros-Contreras R, Martínez-Valenzuela C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. Front Pediatr 2021; 9:744104. [PMID: 34746058 PMCID: PMC8567139 DOI: 10.3389/fped.2021.744104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
The first 1,000 days in the life of a human being are a vulnerable stage where early stimuli may program adverse health outcomes in future life. Proper maternal nutrition before and during pregnancy modulates the development of the fetus, a physiological process known as fetal programming. Defective programming promotes non-communicable chronic diseases in the newborn which might be prevented by postnatal interventions such as breastfeeding. Breast milk provides distinct bioactive molecules that contribute to immune maturation, organ development, and healthy microbial gut colonization, and also secures a proper immunological response that protects against infection and inflammation in the newborn. The gut microbiome provides the most critical immune microbial stimulation in the newborn in early life, allowing a well-trained immune system and efficient metabolic settings in healthy subjects. Conversely, negative fetal programming by exposing mothers to diets rich in fat and sugar has profound effects on breast milk composition and alters the immune profiles in the newborn. At this new stage, newborns become vulnerable to immune compromise, favoring susceptibility to defective microbial gut colonization and immune response. This review will focus on the importance of breastfeeding and its immunological biocomponents that allow physiological immune programming in the newborn. We will highlight the importance of immunological settings by breastfeeding, allowing proper microbial gut colonization in the newborn as a window of opportunity to secure effective immunological response.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Martín García-Juárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | | |
Collapse
|
157
|
Jacob EM, Borah A, Pillai SC, Kumar DS. Inflammatory Bowel Disease: The Emergence of New Trends in Lifestyle and Nanomedicine as the Modern Tool for Pharmacotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2460. [PMID: 33316984 PMCID: PMC7764399 DOI: 10.3390/nano10122460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
The human intestine, which harbors trillions of symbiotic microorganisms, may enter into dysbiosis when exposed to a genetic defect or environmental stress. The naissance of chronic inflammation due to the battle of the immune system with the trespassing gut bacteria leads to the rise of inflammatory bowel disease (IBD). Though the genes behind the scenes and their link to the disease are still unclear, the onset of IBD occurs in young adults and has expanded from the Western world into the newly industrialized countries. Conventional drug deliveries depend on a daily heavy dosage of immune suppressants or anti-inflammatory drugs targeted for the treatment of two types of IBD, ulcerative colitis (UC) and Crohn's disease (CD), which are often associated with systemic side effects and adverse toxicities. Advances in oral delivery through nanotechnology seek remedies to overcome the drawbacks of these conventional drug delivery systems through improved drug encapsulation and targeted delivery. In this review, we discuss the association of genetic factors, the immune system, the gut microbiome, and environmental factors like diet in the pathogenesis of IBD. We also review the various physiological concerns required for oral delivery to the gastrointestinal tract (GIT) and new strategies in nanotechnology-derived, colon-targeting drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (E.M.J.); (A.B.); (S.C.P.)
| |
Collapse
|
158
|
Xu Z, Takizawa F, Casadei E, Shibasaki Y, Ding Y, Sauters TJC, Yu Y, Salinas I, Sunyer JO. Specialization of mucosal immunoglobulins in pathogen control and microbiota homeostasis occurred early in vertebrate evolution. Sci Immunol 2020; 5:5/44/eaay3254. [PMID: 32034088 DOI: 10.1126/sciimmunol.aay3254] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Although mammalian secretory immunoglobulin A (sIgA) targets mucosal pathogens for elimination, its interaction with the microbiota also enables commensal colonization and homeostasis. This paradoxical requirement in the control of pathogens versus microbiota raised the question of whether mucosal (secretory) Igs (sIgs) evolved primarily to protect mucosal surfaces from pathogens or to maintain microbiome homeostasis. To address this central question, we used a primitive vertebrate species (rainbow trout) in which we temporarily depleted its mucosal Ig (sIgT). Fish devoid of sIgT became highly susceptible to a mucosal parasite and failed to develop compensatory IgM responses against it. IgT depletion also induced a profound dysbiosis marked by the loss of sIgT-coated beneficial taxa, expansion of pathobionts, tissue damage, and inflammation. Restitution of sIgT levels in IgT-depleted fish led to a reversal of microbial translocation and tissue damage, as well as to restoration of microbiome homeostasis. Our findings indicate that specialization of sIgs in pathogen and microbiota control occurred concurrently early in evolution, thus revealing primordially conserved principles under which primitive and modern sIgs operate in the control of microbes at mucosal surfaces.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Elisa Casadei
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yasuhiro Shibasaki
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas J C Sauters
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yongyao Yu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
159
|
Huang J, Huang G, Li X, Hu F, Xie Z, Xiao Y, Luo S, Chao C, Guo K, Wong FS, Zhou Z, Wen L. Altered Systemic and Intestinal IgA Immune Responses in Individuals With Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5899038. [PMID: 32860693 PMCID: PMC7549925 DOI: 10.1210/clinem/dgaa590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Increasing evidence supports the observation that immunoglobulin A (IgA) exerts a critical effect on the susceptibility to autoimmunity by modulating gut homeostasis and subsequent host immunity. We hypothesized that the IgA immunity is altered in individuals with type 1 diabetes. To test our hypothesis, we investigated intestinal, oral, and peripheral IgA immune responses in individuals with type 1 diabetes. METHODS We collected stool, oral cavity, and blood samples from participants diagnosed with type 1 diabetes (within 1 year and more than 1 year) and healthy control individuals. Serum islet autoantibody titers were detected by radioligand assays. IgA-bound bacteria and IgA-expressing B cells were studied by flow cytometry. Oral free IgA level was measured by enzyme-linked immunosorbent assay. Serum and stool free IgA concentrations were determined by immune-turbidimetry method. RESULTS Individuals diagnosed with type 1 diabetes within 1 year had an increased proportion of stool IgA-bound bacteria compared with healthy control individuals. The proportion of stool IgA-bound bacteria was positively associated with glutamic acid decarboxylase autoantibody titer. Moreover, individuals with a longer disease duration displayed a higher level of IgA-bound bacteria than those diagnosed within 1 year. In contrast to healthy control individuals, type 1 diabetes patients had increased serum IgA concentrations. CONCLUSIONS Individuals with type 1 diabetes display altered IgA immunity, especially increased stool IgA-bound bacteria, which is likely to contribute to β-cell autoimmunity and the disease development, and thus, might be considered as a novel therapeutic target for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Chao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Correspondence and Reprint Requests: Li Wen, MD, PhD, Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University S141, TAC 300, Cedar St, New Haven, CT 06520-8020, USA. E-mail: ; or Zhiguang Zhou, MD, PhD, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, 139 Renmin Rd, Changsha, Hunan 410011, China. E-mail:
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
- Correspondence and Reprint Requests: Li Wen, MD, PhD, Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University S141, TAC 300, Cedar St, New Haven, CT 06520-8020, USA. E-mail: ; or Zhiguang Zhou, MD, PhD, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, 139 Renmin Rd, Changsha, Hunan 410011, China. E-mail:
| |
Collapse
|
160
|
Castro-Dopico T, Colombel JF, Mehandru S. Targeting B cells for inflammatory bowel disease treatment: back to the future. Curr Opin Pharmacol 2020; 55:90-98. [PMID: 33166872 PMCID: PMC7894973 DOI: 10.1016/j.coph.2020.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
B cells are critical to immune homeostasis at mucosal surfaces including those of the gastrointestinal tract. B cell-related abnormalities, comprising of a lympho-plasmacytic infiltrate, as well as anti-microbial antibodies, are well reported in patients with inflammatory bowel disease (IBD). However, B cell-targeting is not part of the therapeutic armamentarium in IBD. Recently, driven by the identification of genetic associations between IgG Fc receptors and IBD susceptibility, there has been renewed interest in defining the immunobiology of B cells during mucosal inflammation. Functional studies have demonstrated mechanisms of IgG-mediated disease pathogenesis and deep mucosal immunophenotyping using single cell RNA sequencing has elaborated a significant remodelling of the B cell compartment in IBD. In light of these novel data, here we discuss potential strategies to target B cell immunity in IBD. Finally, we discuss potential risks and pitfalls of these approaches and emphasize on distinguishing between homeostatic and pathological B cell signatures, allowing for a data-based, prudent therapeutic approach.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
161
|
Effects of α-glyceryl monolaurate on growth, immune function, volatile fatty acids, and gut microbiota in broiler chickens. Poult Sci 2020; 100:100875. [PMID: 33516466 PMCID: PMC7936147 DOI: 10.1016/j.psj.2020.11.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to determine the effects of dietary addition of α-glyceryl monolaurate (α-GML) on growth performance, immune function, volatile fatty acids production and cecal microbiota in broiler chickens. A total of 480 1-day-old yellow-feathered broilers were randomly assigned in equal numbers to 4 dietary treatments: basal diet (NCO) or supplementations with 30 mg/kg bacitracin (ANT), 500 mg/kg α-GML, or 1,000 mg/kg α-GML (GML2). And, each treatment contained 8 replicates with 15 chickens per replicate. After supplementation with α-GML, the total BW gain and average daily weight gain of broilers increased significantly (P < 0.05) compared with the broilers on the NCO diet. Moreover, compared with the NCO group, higher levels of immune globulin M and immune globulin Y were observed in both GML groups and the ANT group. Concentrations of acetate, propionate, butyrate, valerate, and isovalerate in GML2 were significantly higher (P < 0.05) than those in the NCO group on day 28. However, acetate, propionate, valerate, and isovalerate concentrations were reduced to significantly (P < 0.05) lower than those in the NCO group on day 56. The abundance and diversity of microbiota were found to be improved in broilers that were supplemented with GML, using operational taxonomic unit and diversity analyses. Furthermore, the GML treatments increased favorable microbiota, particularly acid-producing bacteria, on day 28 and, also, reduced opportunistic pathogens, such as Alistipes tidjanibacter and Bacteroides dorei by day 56. These results suggest that α-GML supplementation modulates cecal microbiota and broiler immunity and improves volatile fatty acid levels during the early growth stages of broilers.
Collapse
|
162
|
Pröbstel AK, Zhou X, Baumann R, Wischnewski S, Kutza M, Rojas OL, Sellrie K, Bischof A, Kim K, Ramesh A, Dandekar R, Greenfield AL, Schubert RD, Bisanz JE, Vistnes S, Khaleghi K, Landefeld J, Kirkish G, Liesche-Starnecker F, Ramaglia V, Singh S, Tran EB, Barba P, Zorn K, Oechtering J, Forsberg K, Shiow LR, Henry RG, Graves J, Cree BAC, Hauser SL, Kuhle J, Gelfand JM, Andersen PM, Schlegel J, Turnbaugh PJ, Seeberger PH, Gommerman JL, Wilson MR, Schirmer L, Baranzini SE. Gut microbiota-specific IgA + B cells traffic to the CNS in active multiple sclerosis. Sci Immunol 2020; 5:5/53/eabc7191. [PMID: 33219152 DOI: 10.1126/sciimmunol.abc7191] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023]
Abstract
Changes in gut microbiota composition and a diverse role of B cells have recently been implicated in multiple sclerosis (MS), a central nervous system (CNS) autoimmune disease. Immunoglobulin A (IgA) is a key regulator at the mucosal interface. However, whether gut microbiota shape IgA responses and what role IgA+ cells have in neuroinflammation are unknown. Here, we identify IgA-bound taxa in MS and show that IgA-producing cells specific for MS-associated taxa traffic to the inflamed CNS, resulting in a strong, compartmentalized IgA enrichment in active MS and other neuroinflammatory diseases. Unlike previously characterized polyreactive anti-commensal IgA responses, CNS IgA cross-reacts with surface structures on specific bacterial strains but not with brain tissue. These findings establish gut microbiota-specific IgA+ cells as a systemic mediator in MS and suggest a critical role of mucosal B cells during active neuroinflammation with broad implications for IgA as an informative biomarker and IgA-producing cells as an immune subset to harness for therapeutic interventions.
Collapse
Affiliation(s)
- Anne-Katrin Pröbstel
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. .,Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Xiaoyuan Zhou
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan Baumann
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sven Wischnewski
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Kutza
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON M5S 18A, Canada
| | - Katrin Sellrie
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Antje Bischof
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kicheol Kim
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akshaya Ramesh
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ravi Dandekar
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ariele L Greenfield
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan D Schubert
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jordan E Bisanz
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Stephanie Vistnes
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Khashayar Khaleghi
- Department of Immunology, University of Toronto, Toronto, ON M5S 18A, Canada
| | - James Landefeld
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gina Kirkish
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Valeria Ramaglia
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sneha Singh
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Edwina B Tran
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick Barba
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey Zorn
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johanna Oechtering
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Karin Forsberg
- Department of Clinical Science, Neurosciences, Umeå University, 90185 Umeå, Sweden
| | - Lawrence R Shiow
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Graves
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Jeffrey M Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, 90185 Umeå, Sweden
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | | | - Michael R Wilson
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lucas Schirmer
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Sergio E Baranzini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. .,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.,Graduate Program in Bioinformatics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
163
|
Abstract
In this issue, Kabbert et al. (https://doi.org/10.1084/jem.20200275) show that intestinal antibodies from healthy subjects or patients with Crohn's disease cross-target diverse but distinct communities of the gut microbiota through a mechanism involving somatic hypermutation but not germline-encoded polyreactivity.
Collapse
Affiliation(s)
- Emilie K. Grasset
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Andrea Cerutti
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY
- Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
164
|
Lee AYS, Lin MW. Polymeric IgA paraprotein on agarose gel electrophoresis immunofixation identifies a unique subset of IgA myeloma patients. Clin Chim Acta 2020; 512:112-116. [PMID: 33127346 DOI: 10.1016/j.cca.2020.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVES On agarose gel electrophoresis, IgA paraprotein has a tendency to polymerise and form multiple bands on immunofixation. We decided to investigate if there are any differences in clinical parameters with monomeric vs. polymeric IgA paraprotein multiple myeloma (MM) patients. METHODS During an 18-month retrospective and prospective cross-sectional audit review period at one Australian laboratory, we identified 92 IgA MM patients that were divided up according to monomeric or polymeric IgA paraproteins based on their appearance on IFE. Medical and pathology records were reviewed for demographic details, and laboratory data to examine for end-organ manifestations of MM. RESULTS After correcting for age, polymeric IgA MM patients had a greater degree of proteinuria and hence, higher incidence of hypogammaglobulinaemia. The patients tended to have a higher quantity of paraprotein as well. No difference in mortality was seen. CONCLUSIONS Our study is the first to stratify IgA MM patients according to the laboratory appearance of their paraprotein and may hold important prognostic and predictive clues for these patients.
Collapse
Affiliation(s)
- Adrian Y S Lee
- Department of Immunopathology, NSW Pathology and Institute of Clinical Pathology and Medical Research, Westmead Hospital, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Ming-Wei Lin
- Department of Immunopathology, NSW Pathology and Institute of Clinical Pathology and Medical Research, Westmead Hospital, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
165
|
Nowosad CR, Mesin L, Castro TBR, Wichmann C, Donaldson GP, Araki T, Schiepers A, Lockhart AAK, Bilate AM, Mucida D, Victora GD. Tunable dynamics of B cell selection in gut germinal centres. Nature 2020; 588:321-326. [PMID: 33116306 PMCID: PMC7726069 DOI: 10.1038/s41586-020-2865-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Germinal centers (GCs), structures normally associated with B cell immunoglobulin (Ig) hypermutation and development of high-affinity antibodies upon infection or immunization, are present in gut-associated lymphoid organs of humans and mice under steady state. Gut-associated (ga)GCs can support antibody responses to enteric infections and immunization1. However, whether B cell selection and antibody affinity maturation can take place in face of the chronic and diverse antigenic stimulation characteristic of steady-state gaGCs is less clear2–8. Combining multicolor “Brainbow” fate-mapping and single-cell Ig sequencing, we find that 5–10% of gaGCs from specific pathogen-free (SPF) mice contained highly-dominant “winner” clones at steady state, despite rapid turnover of GC B cells. Monoclonal antibodies (mAbs) derived from these clones showed increased binding to commensal bacteria compared to their unmutated ancestors, consistent with antigen-driven selection and affinity maturation. Frequency of highly-selected gaGCs was markedly higher in germ-free (GF) than in SPF mice, and winner B cells in GF gaGCs were enriched in public IgH clonotypes found across multiple individuals, indicating strong B cell receptor (BCR)-driven selection in the absence of microbiota. Vertical colonization of GF mice with a defined microbial consortium (Oligo-MM12) did not eliminate GF-associated clonotypes, yet induced a concomitant commensal-specific, affinity-matured B cell response. Thus, positive selection can take place in steady-state gaGCs, at a rate that is tunable over a wide range by the presence and composition of the microbiota.
Collapse
Affiliation(s)
- Carla R Nowosad
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Christopher Wichmann
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Mucosal Immunology Group, Department of Pediatrics, University Medical Center Rostock, Rostock, Germany
| | - Gregory P Donaldson
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Tatsuya Araki
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | | | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
166
|
Hepworth MR, Greenhalgh AD, Cook PC. B cells on the brain: meningeal IgA and a novel gut-brain firewall. Immunol Cell Biol 2020; 99:17-20. [PMID: 33107992 DOI: 10.1111/imcb.12412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023]
Abstract
Fitzpatrick et al. describe how IgA secretion by B cells and plasma cells in the mengines is crucial for protection against microbial invasion into the brain and the CNS.
Collapse
Affiliation(s)
- Matthew R Hepworth
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Andrew D Greenhalgh
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology at The University of Exeter, University of Exeter, Exeter, UK
| |
Collapse
|
167
|
Heo M, Chenon G, Castrillon C, Bibette J, Bruhns P, Griffiths AD, Baudry J, Eyer K. Deep phenotypic characterization of immunization-induced antibacterial IgG repertoires in mice using a single-antibody bioassay. Commun Biol 2020; 3:614. [PMID: 33106526 PMCID: PMC7589517 DOI: 10.1038/s42003-020-01296-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Antibodies with antibacterial activity need to bind to the bacterial surface with affinity, specificity, and sufficient density to induce efficient elimination. To characterize the anti-bacterial antibody repertoire, we developed an in-droplet bioassay with single-antibody resolution. The assay not only allowed us to identify whether the secreted antibodies recognized a bacterial surface antigen, but also to estimate the apparent dissociation constant (KD app) of the interaction and the density of the recognized epitope on the bacteria. Herein, we found substantial differences within the KD app/epitope density profiles in mice immunized with various species of heat-killed bacteria. The experiments further revealed a high cross-reactivity of the secreted IgG repertoires, binding to even unrelated bacteria with high affinity. This application confirmed the ability to quantify the anti-bacterial antibody repertoire and the utility of the developed bioassay to study the interplay between bacteria and the humoral response.
Collapse
Affiliation(s)
- Millie Heo
- 'Laboratoire Colloïdes et Matériaux Divisés' (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, F-75005, Paris, France
| | - Guilhem Chenon
- 'Laboratoire Colloïdes et Matériaux Divisés' (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, F-75005, Paris, France
| | - Carlos Castrillon
- Unit of Antibodies in Therapy and Pathology, Institute Pasteur, UMR1222 INSERM, F-75015, Paris, France
- 'Laboratoire de Biochimie' (LBC), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, F-75005, Paris, France
| | - Jérôme Bibette
- 'Laboratoire Colloïdes et Matériaux Divisés' (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, F-75005, Paris, France
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Institute Pasteur, UMR1222 INSERM, F-75015, Paris, France
| | - Andrew D Griffiths
- 'Laboratoire de Biochimie' (LBC), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, F-75005, Paris, France
| | - Jean Baudry
- 'Laboratoire Colloïdes et Matériaux Divisés' (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, F-75005, Paris, France
| | - Klaus Eyer
- 'Laboratoire Colloïdes et Matériaux Divisés' (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, F-75005, Paris, France.
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
168
|
Yu Y, Wang Q, Huang Z, Ding L, Xu Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front Immunol 2020; 11:567941. [PMID: 33123139 PMCID: PMC7566178 DOI: 10.3389/fimmu.2020.567941] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.
Collapse
Affiliation(s)
- Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liguo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
169
|
Jamwal DR, Laubitz D, Harrison CA, da Paz VF, Cox CM, Wong R, Midura-Kiela M, Gurney MA, Besselsen DG, Setty P, Lybarger L, Bhattacharya D, Wilson JM, Ghishan FK, Kiela PR. Intestinal Epithelial Expression of MHCII Determines Severity of Chemical, T-Cell-Induced, and Infectious Colitis in Mice. Gastroenterology 2020; 159:1342-1356.e6. [PMID: 32589883 PMCID: PMC9190026 DOI: 10.1053/j.gastro.2020.06.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal epithelial cells (IECs) provide a barrier that separates the mucosal immune system from the luminal microbiota. IECs constitutively express low levels of major histocompatibility complex (MHC) class II proteins, which are upregulated upon exposure to interferon gamma. We investigated the effects of deleting MHCII proteins specifically in mice with infectious, dextran sodium sulfate (DSS)-, and T-cell-induced colitis. METHODS We disrupted the histocompatibility 2, class II antigen A, beta 1 gene (H2-Ab1) in IECs of C57BL/6 mice (I-AbΔIEC) or Rag1-/- mice (Rag1-/-I-AbΔIEC); we used I-AbWT mice as controls. Colitis was induced by administration of DSS, transfer of CD4+CD45RBhi T cells, or infection with Citrobacter rodentium. Colon tissues were collected and analyzed by histology, immunofluorescence, xMAP, and reverse-transcription polymerase chain reaction and organoids were generated. Microbiota (total and immunoglobulin [Ig]A-coated) in intestinal samples were analyzed by16S amplicon profiling. IgA+CD138+ plasma cells from Peyer's patches and lamina propria were analyzed by flow cytometry and IgA repertoire was determined by next-generation sequencing. RESULTS Mice with IEC-specific loss of MHCII (I-AbΔIEC mice) developed less severe DSS- or T-cell transfer-induced colitis than control mice. Intestinal tissues from I-AbΔIEC mice had a lower proportion of IgA-coated bacteria compared with control mice, and a reduced luminal concentration of secretory IgA (SIgA) following infection with C rodentium. There was no significant difference in the mucosal IgA repertoire of I-AbΔIEC vs control mice, but opsonization of cultured C rodentium by SIgA isolated from I-AbΔIEC mice was 50% lower than that of SIgA from mAbWT mice. Fifty percent of I-AbΔIEC mice died after infection with C rodentium, compared with none of the control mice. We observed a transient but significant expansion of the pathogen in the feces of I-AbΔIEC mice compared with I-AbWT mice. CONCLUSIONS In mice with DSS or T-cell-induced colitis, loss of MHCII from IECs reduces but does not eliminate mucosal inflammation. However, in mice with C rodentium-induced colitis, loss of MHCII reduces bacterial clearance by decreasing binding of IgA to commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Deepa R. Jamwal
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | | | | | - Christopher M. Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Rachel Wong
- Department of Immunobiology, University of Arizona, Tucson, Arizona
| | | | | | | | - Prashanth Setty
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Lonnie Lybarger
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Jean M. Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, Arizona,Department of Immunobiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
170
|
He JW, Zhou XJ, Lv JC, Zhang H. Perspectives on how mucosal immune responses, infections and gut microbiome shape IgA nephropathy and future therapies. Am J Cancer Res 2020; 10:11462-11478. [PMID: 33052226 PMCID: PMC7545987 DOI: 10.7150/thno.49778] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
Infections have been considered to play a critical role in the pathogenesis of IgA nephropathy (IgAN) because synpharyngitic hematuria is a common feature in IgAN. However, how infections participate in this process is still debated. More recent studies have also revealed that the alteration of the gut microbiome exerts a profound effect on host immune responses, contributing to the etiology or progression of autoimmunity. Considering IgA as the first line of defense against bacterial and viral antigens, this review evaluates the relationships among intestinal infections, gut microbiome, and IgA for a better understanding of the pathogenesis of IgAN. Moreover, as a prototype of IgA immunity, we provide detailed clarification of IgAN pathogenesis to shed light on other diseases in which IgA plays a role. Finally, we discuss potential therapies focusing on microbes and mucosal immune responses in IgAN.
Collapse
|
171
|
Abundance and nuclear antigen reactivity of intestinal and fecal Immunoglobulin A in lupus-prone mice at younger ages correlate with the onset of eventual systemic autoimmunity. Sci Rep 2020; 10:14258. [PMID: 32868790 PMCID: PMC7458927 DOI: 10.1038/s41598-020-71272-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Our recent studies, using (SWRxNZB)F1 (SNF1) mice, showed a potential contribution of the gut microbiota and pro-inflammatory immune responses of the gut mucosa to systemic autoimmunity in lupus. Here, using this mouse model, we determined the abundance and the nAg reactivity of IgA antibody produced in the intestine under lupus susceptibility. Intestinal lymphoid tissues from SNF1 mice, females particularly, showed significantly higher frequencies of nAg (dsDNA and nucleohistone) reactive IgA producing B cells compared to B6 females. Most importantly, younger age fecal IgA -abundance and -nAg reactivity of lupus-prone mice showed a positive correlation with eventual systemic autoimmunity and proteinuria onset. Depletion of gut microbiota in SNF1 mice resulted in the diminished production of IgA in the intestine and the nAg reactivity of these antibodies. Overall, these observations show that fecal IgA features, nuclear antigen reactivity particularly, at preclinical stages/in at-risk subjects could be predictive of autoimmune progression.
Collapse
|
172
|
Huang X, Yang W, Yao S, Bilotta AJ, Lu Y, Zhou Z, Kumar P, Dann SM, Cong Y. IL-21 Promotes Intestinal Memory IgA Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:1944-1952. [PMID: 32859726 DOI: 10.4049/jimmunol.1900766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
The role of IL-21, produced mainly by Th17 cells and T follicular helper cells, has been intensively investigated in B cell differentiation and Ab class switch. However, how IL-21 regulates memory IgA+ B cell development and memory IgA responses in the intestines is still not completely understood. In this study, we found the total IgA+ B cells as well as CD38+CD138-IgA+ memory B cells were significantly increased in intestinal lamina propria (LP) of TCRβxδ-/- mice after transfer of microbiota Ag-specific Th17 cells but not Th1 cells. Although IL-21R-/- mice or IL-17R-/- mice showed decreased Ag-specific memory IgA production in the intestines upon infection with Citrobacter rodentium, the percentage of IgA+CD38+CD138- memory B cells in Peyer's patches and LP was decreased only in IL-21R-/- mice, but not in IL-17R-/- mice, after reinfection with C. rodentium compared with wild-type mice. Blockade IL-21 in vivo suppressed intestinal C. rodentium-specific IgA production as well as IgA+CD38+CD138- memory B cells in Peyer's patches and LP. Furthermore, IL-21 significantly induced B cell IgA production in vitro, with the increased expression of genes related with class-switching and memory B cell development, including Aicda, Ski, Bmi1, and Klf2. Consistently, Aicda and Ski expression was decreased in B cells of IL-21R-/- mice after C. rodentium reinfection. In conclusion, our study demonstrated that IL-21 promotes intestinal memory IgA B cell development, possibly through upregulating differentiation-related and class switching-related genes, indicating a potential role of IL-21 in memory IgA+ B cell responses in the intestines.
Collapse
Affiliation(s)
- Xiangsheng Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Wenjing Yang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Suxia Yao
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Yao Lu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Zheng Zhou
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Pawan Kumar
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Sara M Dann
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555; and
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555; .,Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
173
|
Chen C, Li T, Chen G, Chen D, Peng Y, Hu B, Sun Y, Zeng X. Commensal Relationship of Three Bifidobacterial Species Leads to Increase of Bifidobacterium in Vitro Fermentation of Sialylated Immunoglobulin G by Human Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9110-9119. [PMID: 32806107 DOI: 10.1021/acs.jafc.0c03628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sialylated immunoglobulin G (IgG) is an important immunoglobulin in breast milk, but its effect on adult gut microbiota is not yet clear due to digestion by pepsin. Based on our previous IgG protecting study, effects of sialylated IgG on gut microbiota were investigated by in vitro anaerobic fermentation in the present study. It was found that the addition of sialylated IgG could significantly promote the growth of Bifidobacterium. Meanwhile, three bifidobacterial species B. bifidum CCX 19061, Bembidion breve CCX 19041, and B. longum subsp. infantis CCX 19042 were isolated. Furthermore, B. breve CCX 19041 and B. longum subsp. infantis CCX 19042 showed co-culture growth property with B. bifidum CCX 19061 in a sialylated IgG-based medium, which was also supported by changes of free monosaccharides and N-glycan structure. These findings suggest that the increase of Bifidobacterium in vitro fermentation is attributed to the commensal relationship of the three bifidobacterial species by utilizing sugars released from sialylated IgG.
Collapse
Affiliation(s)
- Chunxu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Tianhui Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
174
|
Abstract
PURPOSE OF REVIEW With the emergence of the microbiota as a potential driver of host inflammation, the role of iIgA is becoming increasingly important. This review discusses the current evidence regarding the effects of clinical IgA deficiency on the microbiota, and the possible role of microbial dysbiosis in driving inflammation in PID patients. RECENT FINDINGS The gut microbiota has been investigated in selective IgA deficiency and common variable immunodeficiency, revealing an important role for IgA in maintaining gut microbiota homeostasis, with disparate effects of IgA on symbionts and pathobionts. Although IgA deficiency is associated with microbial translocation and systemic inflammation, this may be partially compensated by adequate IgG and IgM induction in IgA deficiency but not in common variable immunodeficiency. Therapeutic strategies aimed at correction of the microbiota mostly focus on fecal microbiota transplantation. Whether this may reduce systemic inflammation in PID is currently unknown. SUMMARY Clinical IgA deficiency is associated with microbial dysbiosis and systemic inflammation. The evidence for microbiota-targeted therapies in PID is scarce, but indicates that IgA-based therapies may be beneficial, and that fecal microbiota transplantation is well tolerated in patients with antibody deficiency.
Collapse
|
175
|
Methyl-donor supplementation prevents intestinal colonization by Adherent-Invasive E. coli in a mouse model of Crohn's disease. Sci Rep 2020; 10:12922. [PMID: 32737335 PMCID: PMC7395125 DOI: 10.1038/s41598-020-69472-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Deficiencies in methyl-donor molecules (folate, B12 vitamin), DNA methylation alteration and high prevalence of Adherent-Invasive Escherichia coli (AIEC) are frequently observed in Crohn’s disease (CD) patients. AIEC bacteria adhere to the enterocytes through abnormally expressed carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) glycoprotein on host cells. This work aims at studying the relationship between methyl-donor molecules and AIEC-induced intestinal inflammatory response. CEABAC10 mice, a mouse model of CD, were fed a control or Methyl-donor Supplemented diet (MS diet). CEACAM6 promoter was hypermethylated in intestinal epithelial cells from mice fed an MS diet, which was associated with a significant decrease in CEACAM6 expression. Transcriptomic analysis revealed increased expression of anti-microbial peptides, increase in HSP70 gene family expression and a decreased expression of inflammatory marker Calprotectin upon MS diet, associated to a lower ability of AIEC bacteria to colonize gut mucosa. We observed in a cohort of CD patients that serum folate concentration was inversely correlated to Crohn’s disease endoscopic index of severity and to fecal inflammatory markers. This study demonstrates that methyl-donor supplementation through the diet induces a specific intestinal micro-environment limiting pathobiont colonization of the gut. Clinicians may wish to consider methyl-donor supplementation for methyl-donor deficient CD patients.
Collapse
|
176
|
Bunker JJ, Drees C, Watson AR, Plunkett CH, Nagler CR, Schneewind O, Eren AM, Bendelac A. B cell superantigens in the human intestinal microbiota. Sci Transl Med 2020; 11:11/507/eaau9356. [PMID: 31462512 DOI: 10.1126/scitranslmed.aau9356] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/19/2018] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
IgA is prominently secreted at mucosal surfaces and coats a fraction of the commensal microbiota, a process that is critical for intestinal homeostasis. However, the mechanisms of IgA induction and the molecular targets of these antibodies remain poorly understood, particularly in humans. Here, we demonstrate that microbiota from a subset of human individuals encode two protein "superantigens" expressed on the surface of commensal bacteria of the family Lachnospiraceae such as Ruminococcus gnavus that bind IgA variable regions and stimulate potent IgA responses in mice. These superantigens stimulate B cells expressing human VH3 or murine VH5/6/7 variable regions and subsequently bind their antibodies, allowing these microbial organisms to become highly coated with IgA in vivo. These findings demonstrate a previously unappreciated role for commensal superantigens in host-microbiota interactions. Furthermore, as superantigen-expressing strains show an uneven distribution across human populations, they should be systematically considered in studies evaluating human B cell responses and microbiota during homeostasis and disease.
Collapse
Affiliation(s)
- Jeffrey J Bunker
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Christoph Drees
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Andrea R Watson
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Catherine H Plunkett
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Olaf Schneewind
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - A Murat Eren
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA. .,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
177
|
Huus KE, Rodriguez-Pozo A, Kapel N, Nestoret A, Habib A, Dede M, Manges A, Collard JM, Sansonetti PJ, Vonaesch P, Finlay BB. Immunoglobulin recognition of fecal bacteria in stunted and non-stunted children: findings from the Afribiota study. MICROBIOME 2020; 8:113. [PMID: 32718353 PMCID: PMC7385872 DOI: 10.1186/s40168-020-00890-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/05/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Child undernutrition is a global health issue that is associated with poor sanitation and an altered intestinal microbiota. Immunoglobulin (Ig) A mediates host-microbial homeostasis in the intestine, and acutely undernourished children have been shown to have altered IgA recognition of the fecal microbiota. We sought to determine whether chronic undernutrition (stunting) or intestinal inflammation were associated with antibody recognition of the microbiota using two geographically distinct populations from the Afribiota project. Fecal bacteria from 200 children between 2 and 5 years old in Antananarivo, Madagascar, and Bangui, Central African Republic (CAR), were sorted into IgA-positive (IgA+) and IgA-negative (IgA-) populations by flow cytometry and subsequently characterized by 16S rRNA gene sequencing to determine IgA-bacterial targeting. We additionally measured IgG+ fecal bacteria by flow cytometry in a subset of 75 children. RESULTS Stunted children (height-for-age z-score ≤ -2) had a greater proportion of IgA+ bacteria in the fecal microbiota compared to non-stunted controls. This trend was consistent in both countries, despite the higher overall IgA-targeting of the microbiota in Madagascar, but lost significance in each country individually. Two of the most highly IgA-recognized bacteria regardless of nutritional status were Campylobacter (in CAR) and Haemophilus (in both countries), both of which were previously shown to be more abundant in stunted children; however, there was no association between IgA-targeting of these bacteria and either stunting or inflammatory markers. IgG-bound intestinal bacteria were rare in both stunted and non-stunted children, similar to levels observed in healthy populations. CONCLUSIONS Undernourished children carry a high load of intestinal pathogens and pathobionts. Our data suggest that stunted children have a greater proportion of IgA-recognized fecal bacteria. We moreover identify two putative pathobionts, Haemophilus and Campylobacter, that are broadly targeted by intestinal IgA. This study furthers our understanding of host-microbiota interactions in undernutrition and identifies immune-recognized microbes for future study.
Collapse
Affiliation(s)
- Kelsey E. Huus
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | | | - Nathalie Kapel
- Laboratoire de coprologie fonctionnelle, APHP.SU, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alison Nestoret
- Laboratoire de coprologie fonctionnelle, APHP.SU, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Azimdine Habib
- Unité des Helminthiases, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Michel Dede
- Laboratoire d’Analyse médicale, Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Amee Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC Canada
| | - Jean-Marc Collard
- Unité de Bactériologie Expérimentale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Current address: Center for Microbes, Development and Health, Institut Pasteur de Shanghai, Shanghai, China
| | - Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Current address: Human and Animal Health Unit, Swiss Tropical and Public Health Institute & University of Basel, Basel, Switzerland
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada
| | | |
Collapse
|
178
|
Li C, Lam E, Perez-Shibayama C, Ward LA, Zhang J, Lee D, Nguyen A, Ahmed M, Brownlie E, Korneev KV, Rojas O, Sun T, Navarre W, He HH, Liao S, Martin A, Ludewig B, Gommerman JL. Early-life programming of mesenteric lymph node stromal cell identity by the lymphotoxin pathway regulates adult mucosal immunity. Sci Immunol 2020; 4:4/42/eaax1027. [PMID: 31862865 DOI: 10.1126/sciimmunol.aax1027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Redundant mechanisms support immunoglobulin A (IgA) responses to intestinal antigens. These include multiple priming sites [mesenteric lymph nodes (MLNs), Peyer's patches, and isolated lymphoid follicles] and various cytokines that promote class switch to IgA, even in the absence of T cells. Despite these backup mechanisms, vaccination against enteric pathogens such as rotavirus has limited success in some populations. Genetic and environmental signals experienced during early life are known to influence mucosal immunity, yet the mechanisms for how these exposures operate remain unclear. Here, we used rotavirus infection to follow antigen-specific IgA responses through time and in different gut compartments. Using genetic and pharmacological approaches, we tested the role of the lymphotoxin (LT) pathway-known to support IgA responses-at different developmental stages. We found that LT-β receptor (LTβR) signaling in early life programs intestinal IgA responses in adulthood by affecting antibody class switch recombination to IgA and subsequent generation of IgA antibody-secreting cells within an intact MLN. In addition, early-life LTβR signaling dictates the phenotype and function of MLN stromal cells to support IgA responses in the adult. Collectively, our studies uncover new mechanistic insights into how early-life LTβR signaling affects mucosal immune responses during adulthood.
Collapse
Affiliation(s)
- Conglei Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Evelyn Lam
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianbo Zhang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Albert Nguyen
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Musaddeque Ahmed
- Department of Medical Biophysics, University of Toronto, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Emma Brownlie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences and Department of Immunology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Rojas
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tian Sun
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - William Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | |
Collapse
|
179
|
Groussin M, Mazel F, Alm EJ. Co-evolution and Co-speciation of Host-Gut Bacteria Systems. Cell Host Microbe 2020; 28:12-22. [DOI: 10.1016/j.chom.2020.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
180
|
Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol 2020; 20:411-426. [PMID: 32005980 DOI: 10.1038/s41577-019-0268-7] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that have co-evolved with the host in a symbiotic relationship. The presence of large numbers of symbionts near the epithelial surface of the intestine poses an enormous challenge to the host because it must avoid the activation of harmful inflammatory responses to the microorganisms while preserving its ability to mount robust immune responses to invading pathogens. In patients with inflammatory bowel disease, there is a breakdown of the multiple strategies that the immune system has evolved to promote the separation between symbiotic microorganisms and the intestinal epithelium and the effective killing of penetrant microorganisms, while suppressing the activation of inappropriate T cell responses to resident microorganisms. Understanding the complex interactions between intestinal microorganisms and the host may provide crucial insight into the pathogenesis of inflammatory bowel disease as well as new avenues to prevent and treat the disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
181
|
The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol 2020; 13:574-583. [PMID: 32157190 DOI: 10.1038/s41385-020-0281-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/04/2023]
Abstract
Eosinophils are granulocytes, typically implicated as end-stage effector cells in type-II immune responses. They are capable of producing a wide array of pre-formed molecules which render them with vast potential to influence a wide variety of processes. Nonetheless, eosinophil research has traditionally focused on their role in anti-helminthic responses and pathophysiological processes in type-II immune disorders, such as allergy and asthma, where eosinophilia is a hallmark phenotype. However, a number of key studies over the past decade have placed this restricted view of eosinophil function into question, presenting additional evidence for eosinophils as critical regulators of various homeostatic processes including immune maintenance, organ development, and tissue regeneration.
Collapse
|
182
|
Chen K, Magri G, Grasset EK, Cerutti A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat Rev Immunol 2020; 20:427-441. [PMID: 32015473 PMCID: PMC10262260 DOI: 10.1038/s41577-019-0261-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Humoral immune responses at mucosal surfaces have historically focused on IgA. Growing evidence highlights the complexity of IgA-inducing pathways and the functional impact of IgA on mucosal commensal bacteria. In the gut, IgA contributes to the establishment of a mutualistic host-microbiota relationship that is required to maintain homeostasis and prevent disease. This Review discusses how mucosal IgA responses occur in an increasingly complex humoral defence network that also encompasses IgM, IgG and IgD. Aside from integrating the protective functions of IgA, these hitherto neglected mucosal antibodies may strengthen the communication between mucosal and systemic immune compartments.
Collapse
Affiliation(s)
- Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Giuliana Magri
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Emilie K Grasset
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain.
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona, Spain.
| |
Collapse
|
183
|
Robinson MJ, Webster RH, Tarlinton DM. How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunol Rev 2020; 296:87-103. [DOI: 10.1111/imr.12895] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marcus J. Robinson
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| | - Rosela H. Webster
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| | - David M. Tarlinton
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| |
Collapse
|
184
|
Cao Y, Wang X, Yang Q, Deng H, Liu Y, Zhou P, Xu H, Chen D, Feng D, Zhang H, Wang H, Zhou J. Critical Role of Intestinal Microbiota in ATF3-Mediated Gut Immune Homeostasis. THE JOURNAL OF IMMUNOLOGY 2020; 205:842-852. [PMID: 32571839 DOI: 10.4049/jimmunol.1901000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/21/2020] [Indexed: 12/26/2022]
Abstract
Secretory Ig A (sIgA) plays an important role in the maintenance of intestinal homeostasis via cross-talk with gut microbiota. The defects in sIgA production could elicit dysbiosis of commensal microbiota and subsequently facilitate the development of inflammatory bowel disease. Our previous study revealed activating transcription factor 3 (ATF3) as an important regulator of follicular helper T (TFH) cells in gut. ATF3 deficiency in CD4+ T cells impaired the development of gut TFH cells, and therefore diminished sIgA production, which increased the susceptibility to murine colitis. However, the potential role of microbiota in ATF3-mediated gut homeostasis remains incompletely understood. In this study, we report that both Atf3-/- and CD4creAtf3fl/fl mice displayed profound dysbiosis of gut microbiota when compared with their littermate controls. The proinflammatory Prevotella taxa, especially Prevotella copri, were more abundant in ATF3-deficient mice when compared with littermate controls. This phenotype was obviously abrogated by adoptive transfer of either TFH cells or IgA+ B cells. Importantly, depletion of gut microbiota dramatically alleviated the severity of colitis in Atf3-/- mice, whereas transfer of microbiota from Atf3-/- mice to wild-type recipients increased their susceptibility to colitis. Collectively, these observations indicate the importance of IgA-microbiota interaction in ATF3-mediated gut homeostasis.
Collapse
Affiliation(s)
- Yingjiao Cao
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangyang Wang
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Deng
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongdong Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Pan Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Haixu Xu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dubo Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; and
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Zhou
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China; .,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
185
|
Berbers RM, Mohamed Hoesein FAA, Ellerbroek PM, van Montfrans JM, Dalm VASH, van Hagen PM, Paganelli FL, Viveen MC, Rogers MRC, de Jong PA, Uh HW, Willems RJL, Leavis HL. Low IgA Associated With Oropharyngeal Microbiota Changes and Lung Disease in Primary Antibody Deficiency. Front Immunol 2020; 11:1245. [PMID: 32636843 PMCID: PMC7318304 DOI: 10.3389/fimmu.2020.01245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Common Variable Immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) are primary antibody deficiencies characterized by hypogammaglobulinemia and recurrent infections, which can lead to structural airway disease (AD) and interstitial lung disease (ILD). We investigated associations between serum IgA, oropharyngeal microbiota composition and severity of lung disease in these patients. In this cross-sectional multicentre study we analyzed oropharyngeal microbiota composition of 86 CVID patients, 12 XLA patients and 49 healthy controls (HC) using next-generation sequencing of the 16S rRNA gene. qPCR was used to estimate bacterial load. IgA was measured in serum. High resolution CT scans were scored for severity of AD and ILD. Oropharyngeal bacterial load was increased in CVID patients with low IgA (p = 0.013) and XLA (p = 0.029) compared to HC. IgA status was associated with distinct beta (between-sample) diversity (p = 0.039), enrichment of (Allo)prevotella, and more severe radiographic lung disease (p = 0.003), independently of recent antibiotic use. AD scores were positively associated with Prevotella, Alloprevotella, and Selenomonas, and ILD scores with Streptococcus and negatively with Rothia. In clinically stable patients with CVID and XLA, radiographic lung disease was associated with IgA deficiency and expansion of distinct oropharyngeal bacterial taxa. Our findings highlight IgA as a potential driver of upper respiratory tract microbiota homeostasis.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Joris M van Montfrans
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Virgil A S H Dalm
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - P Martin van Hagen
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Hae-Won Uh
- Department of Biostatistics and Research Support, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
186
|
He LH, Ren LF, Li JF, Wu YN, Li X, Zhang L. Intestinal Flora as a Potential Strategy to Fight SARS-CoV-2 Infection. Front Microbiol 2020; 11:1388. [PMID: 32582138 PMCID: PMC7295895 DOI: 10.3389/fmicb.2020.01388] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly worldwide, seriously endangering human health. In addition to the typical symptoms of pulmonary infection, patients with COVID-19 have been reported to have gastrointestinal symptoms and/or intestinal flora dysbiosis. It is known that a healthy intestinal flora is closely related to the maintenance of pulmonary and systemic health by regulating the host immune homeostasis. Role of the “gut-lung axis” has also been well-articulated. This review provides a novel suggestion that intestinal flora may be one of the mediators of the gastrointestinal responses and abnormal immune responses in hosts caused by SARS-CoV-2; improving the composition of intestinal flora and the proportion of its metabolites through probiotics, and personalized diet could be a potential strategy to prevent and treat COVID-19. More clinical and evidence-based medical trials may be initiated to determine the strategy.
Collapse
Affiliation(s)
- Li-Hong He
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Long-Fei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Jun-Feng Li
- The Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Na Wu
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| |
Collapse
|
187
|
Chen H, Zhang Y, Ye AY, Du Z, Xu M, Lee CS, Hwang JK, Kyritsis N, Ba Z, Neuberg D, Littman DR, Alt FW. BCR selection and affinity maturation in Peyer's patch germinal centres. Nature 2020; 582:421-425. [PMID: 32499646 PMCID: PMC7478071 DOI: 10.1038/s41586-020-2262-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
The antigen-binding variable regions of the B cell receptor (BCR) and of antibodies are encoded by exons that are assembled in developing B cells by V(D)J recombination1. The BCR repertoires of primary B cells are vast owing to mechanisms that create diversity at the junctions of V(D)J gene segments that contribute to complementarity-determining region 3 (CDR3), the region that binds antigen1. Primary B cells undergo antigen-driven BCR affinity maturation through somatic hypermutation and cellular selection in germinal centres (GCs)2,3. Although most GCs are transient3, those in intestinal Peyer's patches (PPs)-which depend on the gut microbiota-are chronic4, and little is known about their BCR repertoires or patterns of somatic hypermutation. Here, using a high-throughput assay that analyses both V(D)J segment usage and somatic hypermutation profiles, we elucidate physiological BCR repertoires in mouse PP GCs. PP GCs from different mice expand public BCR clonotypes (clonotypes that are shared between many mice) that often have canonical CDR3s in the immunoglobulin heavy chain that, owing to junctional biases during V(D)J recombination, appear much more frequently than predicted in naive B cell repertoires. Some public clonotypes are dependent on the gut microbiota and encode antibodies that are reactive to bacterial glycans, whereas others are independent of gut bacteria. Transfer of faeces from specific-pathogen-free mice to germ-free mice restored germ-dependent clonotypes, directly implicating BCR selection. We identified somatic hypermutations that were recurrently selected in such public clonotypes, indicating that affinity maturation occurs in mouse PP GCs under homeostatic conditions. Thus, persistent gut antigens select recurrent BCR clonotypes to seed chronic PP GC responses.
Collapse
Affiliation(s)
- Huan Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Yuxiang Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Adam Yongxin Ye
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Zhou Du
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Mo Xu
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
- The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Cheng-Sheng Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Joyce K Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Nia Kyritsis
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
- The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
188
|
Huang J, Pearson JA, Peng J, Hu Y, Sha S, Xing Y, Huang G, Li X, Hu F, Xie Z, Xiao Y, Luo S, Chao C, Wong FS, Zhou Z, Wen L. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight 2020; 5:135718. [PMID: 32298241 DOI: 10.1172/jci.insight.135718] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
The incidence of type 1 diabetes (T1D) has been increasing among children and adolescents, in which environmental factors, including gut microbiota, play an important role. However, the underlying mechanisms are yet to be determined. Here, we show that patients with newly diagnosed T1D displayed not only a distinct profile of gut microbiota associated with decreased short-chain fatty acids (SCFAs) production, but also an altered IgA-mediated immunity compared with healthy control subjects. Using germ-free NOD mice, we demonstrate that gut microbiota from patients with T1D promoted different IgA-mediated immune responses compared with healthy control gut microbiota. Treatment with the SCFA, acetate, reduced gut bacteria-induced IgA response accompanied by decreased severity of insulitis in NOD mice. We believe our study provides new insights into the functional effects of gut microbiota on inducing IgA immune response in T1D, suggesting that SCFAs might be potential therapeutic agents in T1D prevention and/or treatment.
Collapse
Affiliation(s)
- Juan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China.,Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James A Pearson
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sha Sha
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yanpeng Xing
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Fang Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Chen Chao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
189
|
Ramanan D, Sefik E, Galván-Peña S, Wu M, Yang L, Yang Z, Kostic A, Golovkina TV, Kasper DL, Mathis D, Benoist C. An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell 2020; 181:1276-1290.e13. [PMID: 32402238 DOI: 10.1016/j.cell.2020.04.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ+ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ+ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ+ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.
Collapse
Affiliation(s)
- Deepshika Ramanan
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Esen Sefik
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhen Yang
- Joslin Diabetes Center and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar Kostic
- Joslin Diabetes Center and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tatyana V Golovkina
- Department of Microbiology, Committee on Microbiology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Dennis L Kasper
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
190
|
Fragoso-Saavedra M, Vega-López MA. Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations. J Leukoc Biol 2020; 108:835-850. [PMID: 32392638 DOI: 10.1002/jlb.4mr0320-488r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over 90% of pathogens of medical importance invade the organism through mucosal surfaces, which makes it urgent to develop safe and effective mucosal vaccines and mucosal immunization protocols. Besides, parenteral immunization does not provide adequate protective immunity in mucosal surfaces. Effective mucosal vaccination could protect local and systemic compartments and favor herd immunity. Although various mucosal adjuvants and Ag-delivery systems have been developed, none has filled the gap to control diseases caused by complex mucosal pathogens. Among the strategies to counteract them, recombinant virions from the baculovirus Autographa californica multiple nucleopolyhedrovirus (rAcMNPV) are useful vectors, given their safety and efficacy to produce mucosal and systemic immunity in animal infection models. Here, we review the immunogenic properties of rAcMNPV virions from the perspectives of mucosal immunology and vaccinology. Some features, which are analyzed and extrapolated from studies with different particulate antigens, include size, shape, surface molecule organization, and danger signals, all needed to break the tolerogenic responses of the mucosal immune tissues. Also, we present a condensed discussion on the immunity provided by rAcMNPV virions against influenza virus and human papillomavirus in animal models. Through the text, we highlight the advantages and limitations of this experimental immunization platform.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| | - Marco A Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| |
Collapse
|
191
|
Commensal Bacteria Modulate Immunoglobulin A Binding in Response to Host Nutrition. Cell Host Microbe 2020; 27:909-921.e5. [PMID: 32289261 DOI: 10.1016/j.chom.2020.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/29/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Immunoglobulin (Ig) A controls host-microbial homeostasis in the gut. IgA recognition of beneficial bacteria is decreased in acutely undernourished children, but the factors driving these changes in IgA targeting are unknown. Child undernutrition is a global health challenge that is exacerbated by poor sanitation and intestinal inflammation. To understand how nutrition impacts immune-microbe interactions, we used a mouse model of undernutrition with or without fecal-oral exposure and assessed IgA-bacterial targeting from weaning to adulthood. In contrast to healthy control mice, undernourished mice fail to develop IgA recognition of intestinal Lactobacillus. Glycan-mediated interactions between Lactobacillus and host antibodies are lost in undernourished mice due to rapid bacterial adaptation. Lactobacillus adaptations occur in direct response to nutritional pressure, independently of host IgA, and are associated with reduced mucosal colonization and with bacterial mutations in carbohydrate processing genes. Together these data indicate that diet-driven bacterial adaptations shape IgA recognition in the gut.
Collapse
|
192
|
Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR, Brown EM, Graham DB, Xavier RJ, Moon JJ, Barton GM. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 2020; 364:1179-1184. [PMID: 31221858 DOI: 10.1126/science.aaw7479] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Intestinal adaptive immune responses influence host health, yet only a few intestinal bacteria species that induce cognate adaptive immune responses during homeostasis have been identified. Here, we show that Akkermansia muciniphila, an intestinal bacterium associated with systemic effects on host metabolism and PD-1 checkpoint immunotherapy, induces immunoglobulin G1 (IgG1) antibodies and antigen-specific T cell responses in mice. Unlike previously characterized mucosal responses, T cell responses to A. muciniphila are limited to T follicular helper cells in a gnotobiotic setting, without appreciable induction of other T helper fates or migration to the lamina propria. However, A. muciniphila-specific responses are context dependent and adopt other fates in conventional mice. These findings suggest that, during homeostasis, contextual signals influence T cell responses to the microbiota and modulate host immune function.
Collapse
Affiliation(s)
- Eduard Ansaldo
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Leianna C Slayden
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Krystal L Ching
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Meghan A Koch
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Natalie K Wolf
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory M Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
193
|
Schirmer M, Garner A, Vlamakis H, Xavier RJ. Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 2020; 17:497-511. [PMID: 31249397 DOI: 10.1038/s41579-019-0213-6] [Citation(s) in RCA: 480] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perturbations in the intestinal microbiome are implicated in inflammatory bowel disease (IBD). Studies of treatment-naive patients have identified microbial taxa associated with disease course and treatment efficacy. To gain a mechanistic understanding of how the microbiome affects gastrointestinal health, we need to move from census to function. Bacteria, including those that adhere to epithelial cells as well as several Clostridium species, can alter differentiation of T helper 17 cells and regulatory T cells. Similarly, microbial products such as short-chain fatty acids and sphingolipids also influence immune responses. Metagenomics and culturomics have identified strains of Ruminococcus gnavus and adherent invasive Escherichia coli that are linked to IBD and gut inflammation. Integrated analysis of multiomics data, including metagenomics, metatranscriptomics and metabolomics, with measurements of host response and culturomics, have great potential in understanding the role of the microbiome in IBD. In this Review, we highlight current knowledge of gut microbial factors linked to IBD pathogenesis and discuss how multiomics data from large-scale population studies in health and disease have been used to identify specific microbial strains, transcriptional changes and metabolic alterations associated with IBD.
Collapse
Affiliation(s)
| | - Ashley Garner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
194
|
Jiménez-Avalos JA, Arrevillaga-Boni G, González-López L, García-Carvajal ZY, González-Avila M. Classical methods and perspectives for manipulating the human gut microbial ecosystem. Crit Rev Food Sci Nutr 2020; 61:234-258. [PMID: 32114770 DOI: 10.1080/10408398.2020.1724075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A healthy Human Gut Microbial Ecosystem (HGME) is a necessary condition for maintaining the orderly function of the whole body. Major alterations in the normal gut microbial composition, activity and functionality (dysbiosis) by an environmental or host-related disruptive event, can compromise metabolic, inflammatory, and neurological processes, causing disorders such as obesity, inflammatory bowel disease, colorectal cancer, and depressive episodes. The restore or the maintaining of the homeostatic balance of Gut Microbiota (GM) populations (eubiosis) is possible through diet, the use of probiotics, prebiotics, antibiotics, and even Fecal Microbiota Transplantation (FMT). Although these "classic methods" represent an effective and accepted way to modulate GM, the complexity of HGME requires new approaches to control it in a more appropriate way. Among the most promising emergent strategies for modulating GM are the use of engineered nanomaterials (metallic nanoparticles (NP), polymeric-NP, quantum dots, micelles, dendrimers, and liposomes); phagotherapy (i.e., phages linked with the CRISPR/Cas9 system), and the use of antimicrobial peptides, non-antibiotic drugs, vaccines, and immunoglobulins. Here we review the current state of development, implications, advantages, disadvantages, and perspectives of the different approaches for manipulating HGME.
Collapse
Affiliation(s)
- Jorge Armando Jiménez-Avalos
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Gerardo Arrevillaga-Boni
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | | | - Zaira Yunuen García-Carvajal
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Marisela González-Avila
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
195
|
Nishida S, Horinouchi A, Higashimura Y, Akahori R, Matsumoto K. Cholestyramine, a Bile Acid Sequestrant, Increases Cecal Short Chain Fatty Acids and Intestinal Immunoglobulin A in Mice. Biol Pharm Bull 2020; 43:565-568. [PMID: 31852854 DOI: 10.1248/bpb.b19-00923] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saki Nishida
- Department of Food Science, Ishikawa Prefectural University
| | | | | | - Reina Akahori
- Department of Food Science, Ishikawa Prefectural University
| | | |
Collapse
|
196
|
Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020; 578:527-539. [PMID: 32103191 PMCID: PMC7871366 DOI: 10.1038/s41586-020-2025-2] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex genetic disease that is instigated and amplified by the confluence of multiple genetic and environmental variables that perturb the immune-microbiome axis. The challenge of dissecting pathological mechanisms underlying IBD has led to the development of transformative approaches in human genetics and functional genomics. Here we describe IBD as a model disease in the context of leveraging human genetics to dissect interactions in cellular and molecular pathways that regulate homeostasis of the mucosal immune system. Finally, we synthesize emerging insights from multiple experimental approaches into pathway paradigms and discuss future prospects for disease-subtype classification and therapeutic intervention.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
197
|
IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun 2020; 11:120. [PMID: 31913287 PMCID: PMC6949214 DOI: 10.1038/s41467-019-13992-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Monomeric serum immunoglobulin A (IgA) can contribute to the development of various autoimmune diseases, but the regulation of serum IgA effector functions is not well defined. Here, we show that the two IgA subclasses (IgA1 and IgA2) differ in their effect on immune cells due to distinct binding and signaling properties. Whereas IgA2 acts pro-inflammatory on neutrophils and macrophages, IgA1 does not have pronounced effects. Moreover, IgA1 and IgA2 have different glycosylation profiles, with IgA1 possessing more sialic acid than IgA2. Removal of sialic acid increases the pro-inflammatory capacity of IgA1, making it comparable to IgA2. Of note, disease-specific autoantibodies in patients with rheumatoid arthritis display a shift toward the pro-inflammatory IgA2 subclass, which is associated with higher disease activity. Taken together, these data demonstrate that IgA effector functions depend on subclass and glycosylation, and that disturbances in subclass balance are associated with autoimmune disease. Immunoglobulin A (IgA) has two subclasses, IgA1 and IgA2, but differential effects on inflammation are unclear. Here the authors show that IgA2, when compared with IgA1, has stronger pro-inflammatory functions associated with changed glycosylation and higher disease scores in patients with rheumatoid arthritis.
Collapse
|
198
|
Hoces D, Arnoldini M, Diard M, Loverdo C, Slack E. Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut. Immunology 2020; 159:52-62. [PMID: 31777063 PMCID: PMC6904610 DOI: 10.1111/imm.13156] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Immunology research in the last 50 years has made huge progress in understanding the mechanisms of anti-bacterial defense of deep, normally sterile, tissues such as blood, spleen and peripheral lymph nodes. In the intestine, with its dense commensal microbiota, it seems rare that this knowledge can be simply translated. Here we put forward the idea that perhaps it is not always the theory of immunology that is lacking to explain mucosal immunity, but rather that we have overlooked crucial parts of the mucosal immunological language required for its translation: namely intestinal and bacterial physiology. We will try to explain this in the context of intestinal secretory antibodies (mainly secretory IgA), which have been described to prevent, to alter, to not affect, or to promote colonization of the intestine and gut-draining lymphoid tissues, and where effector mechanisms have remained elusive. In fact, these apparently contradictory outcomes can be generated by combining the basic premises of bacterial agglutination with an understanding of bacterial growth (i.e. secretory IgA-driven enchained growth), fluid handling and bacterial competition in the gut lumen.
Collapse
Affiliation(s)
- Daniel Hoces
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| | - Markus Arnoldini
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| | | | - Claude Loverdo
- Laboratoire Jean PerrinSorbonne Université/CNRSParisFrance
| | - Emma Slack
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| |
Collapse
|
199
|
Abstract
The field of mucosal immunology has, for the last 10 years, been largely dominated by advances in our understanding of the commensal microbiota. Developments of novel experimental methodologies and analysis techniques have provided unparalleled insight into the profound impact the microbiota has on the development and function of the immune system. In this cross-journal review series published in Immunology and Clinical and Experimental Immunology, we aim to summarize the current state of research concerning the interplay between the microbiota and mucosal immunity. In addition, the series examines how the increased understanding of the microbiota is changing the nature of immunological research, both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Calum C. Bain
- Centre for Inflammation ResearchUniversity of EdinburghEdinburghUK
| | - Vuk Cerovic
- Institute of Molecular MedicineRWTH Aachen UniversityAachenGermany
| |
Collapse
|
200
|
Abstract
The field of mucosal immunology has, for the last 10 years, been largely dominated by advances in our understanding of the commensal microbiota. Developments of novel experimental methodologies and analysis techniques have provided unparalleled insight into the profound impact the microbiota has on the development and function of the immune system. In this cross-journal review series published in Immunology and Clinical and Experimental Immunology, we aim to summarize the current state of research concerning the interplay between the microbiota and mucosal immunity. In addition, the series examines how the increased understanding of the microbiota is changing the nature of immunological research, both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- C. C. Bain
- University of Edinburgh Centre for Inflammation ResearchEdinburghUK
| | - V. Cerovic
- Institute of Molecular MedicineRWTH Aachen UniversityAachenGermany
| |
Collapse
|