151
|
Yang AM, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, Bluemel S, Hartmann P, Xu J, Koyama Y, Kisseleva T, Torralba MG, Moncera K, Beeri K, Chen CS, Freese K, Hellerbrand C, Lee SM, Hoffman HM, Mehal WZ, Garcia-Tsao G, Mutlu EA, Keshavarzian A, Brown GD, Ho SB, Bataller R, Stärkel P, Fouts DE, Schnabl B. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 127:2829-2841. [PMID: 28530644 DOI: 10.1172/jci90562] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic liver disease with cirrhosis is the 12th leading cause of death in the United States, and alcoholic liver disease accounts for approximately half of all cirrhosis deaths. Chronic alcohol consumption is associated with intestinal bacterial dysbiosis, yet we understand little about the contribution of intestinal fungi, or mycobiota, to alcoholic liver disease. Here we have demonstrated that chronic alcohol administration increases mycobiota populations and translocation of fungal β-glucan into systemic circulation in mice. Treating mice with antifungal agents reduced intestinal fungal overgrowth, decreased β-glucan translocation, and ameliorated ethanol-induced liver disease. Using bone marrow chimeric mice, we found that β-glucan induces liver inflammation via the C-type lectin-like receptor CLEC7A on Kupffer cells and possibly other bone marrow-derived cells. Subsequent increases in IL-1β expression and secretion contributed to hepatocyte damage and promoted development of ethanol-induced liver disease. We observed that alcohol-dependent patients displayed reduced intestinal fungal diversity and Candida overgrowth. Compared with healthy individuals and patients with non-alcohol-related cirrhosis, alcoholic cirrhosis patients had increased systemic exposure and immune response to mycobiota. Moreover, the levels of extraintestinal exposure and immune response correlated with mortality. Thus, chronic alcohol consumption is associated with an altered mycobiota and translocation of fungal products. Manipulating the intestinal mycobiome might be an effective strategy for attenuating alcohol-related liver disease.
Collapse
Affiliation(s)
- An-Ming Yang
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Tatsuo Inamine
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Peng Chen
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Lirui Wang
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Cristina Llorente
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Sena Bluemel
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Jun Xu
- Department of Surgery, UCSD, La Jolla, California, USA
| | | | | | | | | | - Karen Beeri
- J. Craig Venter Institute, La Jolla, California, USA
| | - Chien-Sheng Chen
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan City, Taiwan
| | - Kim Freese
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Serene Ml Lee
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU Munich, Munich, Germany
| | - Hal M Hoffman
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Digestive Diseases, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Digestive Diseases, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ece A Mutlu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ali Keshavarzian
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gordon D Brown
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Samuel B Ho
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Ramon Bataller
- Liver Center, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Stärkel
- Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | | | - Bernd Schnabl
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
152
|
Wieser V, Adolph TE, Enrich B, Kuliopulos A, Kaser A, Tilg H, Kaneider NC. Reversal of murine alcoholic steatohepatitis by pepducin-based functional blockade of interleukin-8 receptors. Gut 2017; 66:930-938. [PMID: 26858343 PMCID: PMC5531226 DOI: 10.1136/gutjnl-2015-310344] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Alcoholic steatohepatitis is a life-threatening condition with short-term mortality up to 40%. It features hepatic neutrophil infiltration and blood neutrophilia, and may evolve from ethanol-induced breakdown of the enteric barrier and consequent bacteraemia. Signalling through CXCR1/2 G-protein-coupled-receptors (GPCRs), the interleukin (IL)-8 receptors, is critical for the recruitment and activation of neutrophils. We have developed short lipopeptides (pepducins), which inhibit post-ligand GPCR activation precisely targeting individual GPCRs. DESIGN Experimental alcoholic liver disease was induced by administering alcohol and a Lieber-DeCarli high-fat diet. CXCR1/2 GPCRs were blocked via pepducins either from onset of the experiment or after disease was fully established. Hepatic inflammatory infiltration, hepatocyte lipid accumulation and overall survival were assessed as primary outcome parameters. Neutrophil activation was assessed by myeloperoxidase activity and liver cell damage by aspartate aminotransferase and alanine aminotransferase plasma levels. Chemotaxis assays were performed to identify chemoattractant signals derived from alcohol-exposed hepatocytes. RESULTS Here, we show that experimental alcoholic liver disease is driven by CXCR1/2-dependent activation of neutrophils. CXCR1/2-specific pepducins not only protected mice from liver inflammation, weight loss and mortality associated with experimental alcoholic liver disease, but therapeutic administration cured disease and prevented further mortality in fully established disease. Hepatic neutrophil infiltration and triglyceride accumulation was abrogated by CXCR1/2 blockade. Moreover, CXCL-1 plasma levels were decreased with the pepducin therapy as was the transcription of hepatic IL-1β mRNA. CONCLUSIONS We propose that high circulating IL-8 in human alcoholic hepatitis may cause pathogenic overzealous neutrophil activation, and therapeutic blockade via pepducins merits clinical study.
Collapse
Affiliation(s)
- Verena Wieser
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Research Laboratory for Gut Inflammation, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria,Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Athan Kuliopulos
- Center for Hemostasis and Thrombosis Research, Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Massachusetts, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Research Laboratory for Gut Inflammation, Medical University Innsbruck, Innsbruck, Austria
| | - Nicole C Kaneider
- Christian Doppler Research Laboratory for Gut Inflammation, Medical University Innsbruck, Innsbruck, Austria,Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
153
|
Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, Gaudin F, Noordine ML, Robert V, Berrebi D, Thomas M, Naveau S, Perlemuter G, Cassard AM. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017; 66:806-815. [PMID: 27890791 DOI: 10.1016/j.jhep.2016.11.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. METHODS Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. RESULTS Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. CONCLUSIONS Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. LAY SUMMARY Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation.
Collapse
Affiliation(s)
- Gladys Ferrere
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Laura Wrzosek
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Frédéric Cailleux
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Williams Turpin
- Division of Gastroenterology, Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Medicine, University of Toronto, ON M5S 1A8, Canada
| | - Virginie Puchois
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Madeleine Spatz
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dragos Ciocan
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dominique Rainteau
- Sorbonne Universités, UPMC Université Paris 6, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France; UMR 7203 Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France; Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Lydie Humbert
- Sorbonne Universités, UPMC Université Paris 6, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France; UMR 7203 Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France
| | - Cindy Hugot
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Françoise Gaudin
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | - Dominique Berrebi
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; AP-HP, Anatomie et de Cytologie Pathologiques, Hôpital Robert Debré, Paris, France
| | - Muriel Thomas
- INRA, UMR 1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Sylvie Naveau
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Gabriel Perlemuter
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Anne-Marie Cassard
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
154
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
155
|
The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry 2017; 7:e1048. [PMID: 28244981 PMCID: PMC5545644 DOI: 10.1038/tp.2017.15] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years, some new processes have been proposed to explain how alcohol may influence behavior, psychological symptoms and alcohol seeking in alcohol-dependent subjects. In addition to its important effect on brain and neurotransmitters equilibrium, alcohol abuse also affects peripheral organs including the gut. By yet incompletely understood mechanisms, chronic alcohol abuse increases intestinal permeability and alters the composition of the gut microbiota, allowing bacterial components from the gut lumen to reach the systemic circulation. These gut-derived bacterial products are recognized by immune cells circulating in the blood or residing in target organs, which consequently synthesize and release pro-inflammatory cytokines. Circulating cytokines are considered important mediators of the gut-brain communication, as they can reach the central nervous system and induce neuroinflammation that is associated with change in mood, cognition and drinking behavior. These observations support the possibility that targeting the gut microbiota, by the use of probiotics or prebiotics, could restore the gut barrier function, reduce systemic inflammation and may have beneficial effect in treating alcohol dependence and in reducing alcohol relapse.
Collapse
|
156
|
Monnig MA. Immune activation and neuroinflammation in alcohol use and HIV infection: evidence for shared mechanisms. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 43:7-23. [PMID: 27532935 PMCID: PMC5250549 DOI: 10.1080/00952990.2016.1211667] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Emerging research points to innate immune mechanisms in the neuropathological and behavioral consequences of heavy alcohol use. Alcohol use is common among people living with HIV infection (PLWH), a chronic condition that carries its own set of long-term effects on brain and behavior. Notably, neurobiological and cognitive profiles associated with heavy alcohol use and HIV infection share several prominent features. This observation raises questions about interacting biological mechanisms as well as compounded impairment when HIV infection and heavy drinking co-occur. OBJECTIVE AND METHOD This narrative overview discusses peer-reviewed research on specific immune mechanisms of alcohol that exhibit apparent potential to compound the neurobiological and psychiatric sequelae of HIV infection. These include microbial translocation, systemic immune activation, blood-brain barrier compromise, microglial activation, and neuroinflammation. RESULTS Clinical and preclinical evidence supports overlapping mechanistic actions of HIV and alcohol use on peripheral and neural immune systems. In preclinical studies, innate immune signaling mediates many of the detrimental neurocognitive and behavioral effects of alcohol use. Neuropsychopharmacological research suggests potential for a feed-forward cycle in which heavy drinking induces innate immune signaling, which in turn stimulates subsequent alcohol use behavior. CONCLUSION Alcohol-induced immune activation and neuroinflammation are a serious health concern for PLWH. Future research to investigate specific immune effects of alcohol in the context of HIV infection has potential to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mollie A. Monnig
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI
| |
Collapse
|
157
|
Gonçalves JL, Lacerda-Queiroz N, Sabino JF, Marques PE, Galvão I, Gamba CO, Cassali GD, de Carvalho LM, da Silva e Silva DA, Versiani A, Teixeira MM, de Faria AMC, Vieira AT, Brunialti-Godard AL. Evaluating the effects of refined carbohydrate and fat diets with acute ethanol consumption using a mouse model of alcoholic liver injury. J Nutr Biochem 2017; 39:93-100. [DOI: 10.1016/j.jnutbio.2016.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/13/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
|
158
|
Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, Keshavarzian A. Alcohol and Gut-Derived Inflammation. Alcohol Res 2017; 38:163-171. [PMID: 28988571 PMCID: PMC5513683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In large amounts, alcohol and its metabolites can overwhelm the gastrointestinal tract (GI) and liver and lead to damage both within the GI and in other organs. Specifically, alcohol and its metabolites promote intestinal inflammation through multiple pathways. That inflammatory response, in turn, exacerbates alcohol-induced organ damage, creating a vicious cycle and leading to additional deleterious effects of alcohol both locally and systemically. This review summarizes the mechanisms by which chronic alcohol intake leads to intestinal inflammation, including altering intestinal microbiota composition and function, increasing the permeability of the intestinal lining, and affecting the intestinal immune homeostasis. Understanding the mechanisms of alcohol-induced intestinal inflammation can aid in the discovery of therapeutic approaches to mitigate alcohol-induced organ dysfunctions.
Collapse
|
159
|
Neupane SP. Neuroimmune Interface in the Comorbidity between Alcohol Use Disorder and Major Depression. Front Immunol 2016; 7:655. [PMID: 28082989 PMCID: PMC5186784 DOI: 10.3389/fimmu.2016.00655] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Bidirectional communication links operate between the brain and the body. Afferent immune-to-brain signals are capable of inducing changes in mood and behavior. Chronic heavy alcohol drinking, typical of alcohol use disorder (AUD), is one such factor that provokes an immune response in the periphery that, by means of circulatory cytokines and other neuroimmune mediators, ultimately causes alterations in the brain function. Alcohol can also directly impact the immune functions of microglia, the resident immune cells of the central nervous system (CNS). Several lines of research have established the contribution of specific inflammatory mediators in the development and progression of depressive illness. Much of the available evidence in this field stems from cross-sectional data on the immune interactions between isolated AUD and major depression (MD). Given their heterogeneity as disease entities with overlapping symptoms and shared neuroimmune correlates, it is no surprise that systemic and CNS inflammation could be a critical determinant of the frequent comorbidity between AUD and MD. This review presents a summary and analysis of the extant literature on neuroimmune interface in the AUD–MD comorbidity.
Collapse
Affiliation(s)
- Sudan Prasad Neupane
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway; Norwegian Centre for Addiction Research (SERAF), University of Oslo, Oslo, Norway
| |
Collapse
|
160
|
Lelouvier B, Servant F, Païssé S, Brunet AC, Benyahya S, Serino M, Valle C, Ortiz MR, Puig J, Courtney M, Federici M, Fernández-Real JM, Burcelin R, Amar J. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. Hepatology 2016; 64:2015-2027. [PMID: 27639192 DOI: 10.1002/hep.28829] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/21/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED The early detection of liver fibrosis among patients with nonalcoholic fatty liver disease (NAFLD) is an important clinical need. In view of the suggested role played by bacterial translocation in liver disease and obesity, we sought to investigate the relationship between blood microbiota and liver fibrosis (LF) in European cohorts of patients with severe obesity. We carried out a cross-sectional study of obese patients, well characterized with respect to the severity of the NAFLD, in the cohort FLORINASH. This cohort has been divided into a discovery cohort comprising 50 Spanish patients and then in a validation cohort of 71 Italian patients. Blood bacterial DNA was analyzed both quantitatively by 16S ribosomal DNA (rDNA) quantitative polymerase chain reaction and qualitatively by 16S rDNA targeted metagenomic sequencing and functional metagenome prediction. Spanish plasma bile acid contents were analyzed by liquid chromatography/mass spectrometry. The 16S rDNA concentration was significantly higher in patients of the discovery cohort with LF. By 16S sequencing, we found specific differences in the proportion of several bacterial taxa in both blood and feces that correlate with the presence of LF, thus defining a specific signature of the liver disease. Several secondary/primary bile acid ratios were also decreased with LF in the discovery cohort. We confirmed, in the validation cohort, the correlation between blood 16S rDNA concentration and LF, whereas we did not confirm the specific bacterial taxa signature, despite a similar trend in patients with more-severe fibrosis. CONCLUSION Changes in blood microbiota are associated with LF in obese patients. Blood microbiota analysis provides potential biomarkers for the detection of LF in this population. (Hepatology 2016;64:2015-2027).
Collapse
Affiliation(s)
| | | | | | - Anne-Claire Brunet
- Vaiomer SAS, Labège, France.,IMT, Université Paul Sabatier, Toulouse, France
| | | | | | | | - Maria Rosa Ortiz
- Department of Diabetes, Endocrinology, and Nutrition, IDIBGI, Girona, Spain - CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josep Puig
- Department of Radiology, IDI, IDIBGI, Girona, Spain
| | | | - Massimo Federici
- Department of Systems Medicine and Center for Atherosclerosis, University of Rome "Tor Vergata", Rome, Italy
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, IDIBGI, Girona, Spain - CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rémy Burcelin
- Vaiomer SAS, Labège, France.,INSERM U1048, I2MC, Toulouse, France
| | - Jacques Amar
- Vaiomer SAS, Labège, France.,INSERM U1048, I2MC, Toulouse, France.,Rangueil Hospital, Department of Therapeutics, Toulouse, France
| |
Collapse
|
161
|
Zeng T, Zhang CL, Xiao M, Yang R, Xie KQ. Critical Roles of Kupffer Cells in the Pathogenesis of Alcoholic Liver Disease: From Basic Science to Clinical Trials. Front Immunol 2016; 7:538. [PMID: 27965666 PMCID: PMC5126119 DOI: 10.3389/fimmu.2016.00538] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) encompasses a spectrum of liver injury ranging from steatosis to steatohepatitis, fibrosis, and finally cirrhosis. Accumulating evidences have demonstrated that Kupffer cells (KCs) play critical roles in the pathogenesis of both chronic and acute ALD. It has become clear that alcohol exposure can result in increased hepatic translocation of gut-sourced endotoxin/lipopolysaccharide, which is a strong M1 polarization inducer of KCs. The activated KCs then produce a large amount of reactive oxygen species (ROS), pro-inflammatory cytokines, and chemokines, which finally lead to liver injury. The critical roles of KCs and related inflammatory cascade in the pathogenesis of ALD make it a promising target in pharmaceutical drug developments for ALD treatment. Several drugs (such as rifaximin, pentoxifylline, and infliximab) have been evaluated or are under evaluation for ALD treatment in randomized clinical trials. Furthermore, screening pharmacological regulators for KCs toward M2 polarization may provide additional therapeutic agents. The combination of these potentially therapeutic drugs with hepatoprotective agents (such as zinc, melatonin, and silymarin) may bring encouraging results.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Mo Xiao
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Rui Yang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| |
Collapse
|
162
|
Zhang JD, Zhang FX, Guo LF, Li N, Shan BE. Chronic alcohol administration affects purine nucleotide catabolism in vivo. Life Sci 2016; 168:58-64. [PMID: 27838211 DOI: 10.1016/j.lfs.2016.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/25/2016] [Accepted: 11/09/2016] [Indexed: 02/03/2023]
Abstract
AIMS To investigate the relationship between chronic alcohol administration and purine nucleotide metabolism in vivo. MAIN METHODS Rat models of alcohol dependence and withdrawal were used. The concentrations of uric acid (UAC), urea nitrogen (UREA), creatinine (CREA), and beta-2-microglobulin (β2-M) and creatinine clearance rate (CCR) in plasma were measured. The PLC method was used to detect the absolute content of purine nucleotides in different tissues. Enzymatic activities of adenosine deaminase (ADA), xanthine oxidase (XO), ribose 5-phosphate pyrophosphokinase (RPPPK), glutamine phosphoribosylpyrophosphate amidotransferase (GPRPPAT), hypoxanthine-guanine phosphate ribose transferase (HGPRT), and adenine phosphoribosyltransferase (APRT) in the tissues were analyzed. Real-time PCR was used to determine the relative level of ADA and XO. KEY FINDINGS The renal function of rats with alcohol dependence was normal. Further, the content of purine nucleotides (GMP, AMP, GTP, and ATP) in tissues of the rats was decreased, which indicated that the increased uric acid should be derived from the decomposition of nucleotides in vivo. The activity of XO and ADA increased, and their mRNA expression was enhanced in the alcohol dependence group, but there was no significant difference in the activity of RPPPK and GPRPPAT in the liver, small intestine, and muscle; furthermore, no significant difference in the activity of HGPRT and APRT was observed in the brain. SIGNIFICANCE These results indicate that chronic alcohol administration might enhance the catabolism of purine nucleotides in tissues by inducing gene expression of ADA and XO, leading to elevation of plasma uric acid levels.
Collapse
Affiliation(s)
- J D Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China; Clinical Laboratory, Harrison International Peace Hospital of Hebei Medical University, Hengshui, Hebei 050000, PR China
| | - F X Zhang
- Nursing Department, Hengshui Health School, Hengshui, Hebei 050000, PR China
| | - L F Guo
- Clinical Laboratory, Harrison International Peace Hospital of Hebei Medical University, Hengshui, Hebei 050000, PR China
| | - N Li
- Clinical Laboratory, Harrison International Peace Hospital of Hebei Medical University, Hengshui, Hebei 050000, PR China
| | - B E Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China.
| |
Collapse
|
163
|
Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P, Naqib A, Vitaterna MH, Turek FW, Keshavarzian A. The Circadian Clock Mutation Promotes Intestinal Dysbiosis. Alcohol Clin Exp Res 2016; 40:335-47. [PMID: 26842252 DOI: 10.1111/acer.12943] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/24/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circadian rhythm disruption is a prevalent feature of modern day society that is associated with an increase in pro-inflammatory diseases, and there is a clear need for a better understanding of the mechanism(s) underlying this phenomenon. We have previously demonstrated that both environmental and genetic circadian rhythm disruption causes intestinal hyperpermeability and exacerbates alcohol-induced intestinal hyperpermeability and liver pathology. The intestinal microbiota can influence intestinal barrier integrity and impact immune system function; thus, in this study, we sought to determine whether genetic alteration of the core circadian clock gene, Clock, altered the intestinal microbiota community. METHODS Male Clock(Δ19) -mutant mice (mice homozygous for a dominant-negative-mutant allele) or littermate wild-type mice were fed 1 of 3 experimental diets: (i) a standard chow diet, (ii) an alcohol-containing diet, or (iii) an alcohol-control diet in which the alcohol calories were replaced with dextrose. Stool microbiota was assessed with 16S ribosomal RNA gene amplicon sequencing. RESULTS The fecal microbial community of Clock-mutant mice had lower taxonomic diversity, relative to wild-type mice, and the Clock(Δ19) mutation was associated with intestinal dysbiosis when mice were fed either the alcohol-containing or the control diet. We found that alcohol consumption significantly altered the intestinal microbiota in both wild-type and Clock-mutant mice. CONCLUSIONS Our data support a model by which circadian rhythm disruption by the Clock(Δ19) mutation perturbs normal intestinal microbial communities, and this trend was exacerbated in the context of a secondary dietary intestinal stressor.
Collapse
Affiliation(s)
- Robin M Voigt
- Department of Internal Medicine , Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Keith C Summa
- Center for Sleep and Circadian Biology , Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Christopher B Forsyth
- Department of Internal Medicine , Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois.,Department of Biochemistry , Rush University Medical Center, Chicago, Illinois
| | - Stefan J Green
- DNA Services Facility , Research Resources Center, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences , University of Illinois at Chicago, Chicago, Illinois
| | - Phillip Engen
- Department of Internal Medicine , Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Ankur Naqib
- DNA Services Facility , Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Martha H Vitaterna
- Center for Sleep and Circadian Biology , Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Fred W Turek
- Center for Sleep and Circadian Biology , Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Ali Keshavarzian
- Department of Internal Medicine , Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois.,Department of Pharmacology , Rush University Medical Center, Chicago, Illinois.,Division of Pharmacology , Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
164
|
Chlorogenic acid enhances intestinal barrier by decreasing MLCK expression and promoting dynamic distribution of tight junction proteins in colitic rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
165
|
Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:765-76. [PMID: 27012191 DOI: 10.1016/j.ajpath.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD.
Collapse
|
166
|
Yeligar SM, Chen MM, Kovacs EJ, Sisson JH, Burnham EL, Brown LAS. Alcohol and lung injury and immunity. Alcohol 2016; 55:51-59. [PMID: 27788778 DOI: 10.1016/j.alcohol.2016.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Annually, excessive alcohol use accounts for more than $220 billion in economic costs and 80,000 deaths, making excessive alcohol use the third leading lifestyle-related cause of death in the US. Patients with an alcohol-use disorder (AUD) also have an increased susceptibility to respiratory pathogens and lung injury, including a 2-4-fold increased risk of acute respiratory distress syndrome (ARDS). This review investigates some of the potential mechanisms by which alcohol causes lung injury and impairs lung immunity. In intoxicated individuals with burn injuries, activation of the gut-liver axis drives pulmonary inflammation, thereby negatively impacting morbidity and mortality. In the lung, the upper airway is the first checkpoint to fail in microbe clearance during alcohol-induced lung immune dysfunction. Brief and prolonged alcohol exposure drive different post-translational modifications of novel proteins that control cilia function. Proteomic approaches are needed to identify novel alcohol targets and post-translational modifications in airway cilia that are involved in alcohol-dependent signal transduction pathways. When the upper airway fails to clear inhaled pathogens, they enter the alveolar space where they are primarily cleared by alveolar macrophages (AM). With chronic alcohol ingestion, oxidative stress pathways in the AMs are stimulated, thereby impairing AM immune capacity and pathogen clearance. The epidemiology of pneumococcal pneumonia and AUDs is well established, as both increased predisposition and illness severity have been reported. AUD subjects have increased susceptibility to pneumococcal pneumonia infections, which may be due to the pro-inflammatory response of AMs, leading to increased oxidative stress.
Collapse
Affiliation(s)
- Samantha M Yeligar
- Department of Medicine, Emory University and Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Michael M Chen
- Burn and Shock Trauma Research Institute, Alcohol Research Program, Integrative Cell Biology Program, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Elizabeth J Kovacs
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph H Sisson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ellen L Burnham
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lou Ann S Brown
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
167
|
Tilg H, Moschen AR, Szabo G. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 2016; 64:955-65. [PMID: 26773297 DOI: 10.1002/hep.28456] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/09/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Both alcoholic liver disease (ALD) and nonalcoholic fatty liver disease are characterized by massive lipid accumulation in the liver accompanied by inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma in a substantial subgroup of patients. At several stages in these diseases, mediators of the immune system, such as cytokines or inflammasomes, are crucially involved. In ALD, chronic ethanol exposure sensitizes Kupffer cells to activation by lipopolysaccharides through Toll-like receptors, e.g., Toll-like receptor 4. This sensitization enhances the production of various proinflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor-alpha, thereby contributing to hepatocyte dysfunction, necrosis, and apoptosis and the generation of extracellular matrix proteins leading to fibrosis/cirrhosis. Indeed, neutralization of IL-1 by IL-1 receptor antagonist has recently been shown to potently prevent liver injury in murine models of ALD. As IL-1 is clearly linked to key clinical symptoms of acute alcoholic hepatitis such as fever, neutrophilia, and wasting, interfering with the IL-1 pathway might be an attractive treatment strategy in the future. An important role for IL-1-type cytokines and certain inflammasomes has also been demonstrated in murine models of nonalcoholic fatty liver disease. IL-1-type cytokines can regulate hepatic steatosis; the NLR family pyrin domain containing 3 inflammasome is critically involved in metabolic dysregulation. CONCLUSION IL-1 cytokine family members and various inflammasomes mediate different aspects of both ALD and nonalcoholic fatty liver disease. (Hepatology 2016;64:955-965).
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USAMA
| |
Collapse
|
168
|
Park B, Lee HR, Lee YJ. Alcoholic liver disease: focus on prodromal gut health. J Dig Dis 2016; 17:493-500. [PMID: 27356233 DOI: 10.1111/1751-2980.12375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/19/2016] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) is implicated in gut disturbances, both functionally and structurally. It has been noticed that the gut-liver interaction is an important feature in the prevention of systemic inflammation as well as liver health. The optimal functioning of the gut-liver axis depends on gut health. Therefore, gut problems may be important for estimating liver inflammation, while our knowledge of ALD could also provide an insight into gut health. Gut problems accompanied by ALD include gut motility and absorption problems, mucosal damage and the dysbiosis of gut microbiota and gastrointestinal carcinogenesis. Moreover, there is emerging evidence that besides direct inflammatory injury caused by alcohol, gut problems related to ALD play a crucial role in the pathogenesis of cardiovascular and immunological disorders. In this regard, we should consider ALD in relation to both gut health and chronic systemic low-grade inflammation. Accordingly, integrative therapeutic strategies are warranted for treating and preventing ALD and systemic inflammation as well as alcohol-related gut problems.
Collapse
Affiliation(s)
- Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Ree Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
169
|
Jiang Z, Chen C, Wang J, Xie W, Wang M, Li X, Zhang X. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. J Nat Med 2016; 70:45-53. [PMID: 26481011 DOI: 10.1007/s11418-015-0935-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Alcoholic liver disease (ALD) is a serious and challenging health issue. In the past decade, natural components possessing hepatoprotective properties have gained more attention for ALD intervention. In this study, the phytochemical components of anthocyanins from purple potato were assessed using UPLC-MS/MS, and the hepatoprotective effects of purple potato anthocyanins (PPAs) were investigated in the ALD mouse model. Serum and liver biochemical parameters were determined, along with histopathological changes in liver tissue. In addition, the major contributors to alcohol-induced oxidative stress were assessed. The results indicated that the levels of aspartate transaminase and alanine transaminase were lower in the serum of the PPA-treated group than the alcohol-treated group. PPAs significantly inhibited the reduction of total cholesterol and triglycerides. Higher levels of superoxide dismutase and reduced glutathione enzymes as well as a reduction in the formation of malondialdehyde occurred in mice fed with PPAs. In addition, PPAs protected against increased alcohol-induced levels and activity of cytochrome P450 2E1 (CYP2E1), which demonstrates the effects of PPAs against alcohol-induced oxidative stress and liver injury. This study suggests that PPAs could be an effective therapeutic agent in alcohol-induced liver injuries by inhibiting CYP2E1 expression and thereby strengthening antioxidant defenses.
Collapse
|
170
|
Singal AK, Kodali S, Vucovich LA, Darley-Usmar V, Schiano TD. Diagnosis and Treatment of Alcoholic Hepatitis: A Systematic Review. Alcohol Clin Exp Res 2016; 40:1390-402. [PMID: 27254289 PMCID: PMC4930399 DOI: 10.1111/acer.13108] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/24/2016] [Indexed: 12/16/2022]
Abstract
Alcoholic hepatitis (AH) occurs in about one-third of individuals reporting long-term heavy alcohol use. It is associated with high short-term mortality, economic burden, and hospital resources utilization. We performed this systematic review to (i) describe clinical characteristics and genomics associated with the risk of AH; (ii) discuss role and limitations of liver biopsy and prognostic scoring systems; (iii) summarize evidence regarding the currently available therapies including liver transplantation; and (iv) outline emerging therapies with areas of unmet need. Literature search was performed for studies published in English language (January 1971 through March 2016). The following search engines were used: PubMed, Elsevier Embase, PsycINFO, and Cochrane Library. For the treatment section, only randomized controlled studies were included for this review. A total of 138 studies (59 randomized, 22 systematic reviews or meta-analyses, 7 surveys or guidelines, 7 population-based, and 43 prospective cohorts) were cited. There are over 325,000 annual admissions with AH contributing to about 0.8% of all hospitalizations in the United States. Liver biopsy may be required in about 25 to 30% cases for uncertain clinical diagnosis. Corticosteroids with or without N-acetylcysteine remains the only available therapy for severe episodes. Data are emerging on the role of liver transplantation as salvage therapy for select patients. Abstinence remains the most important factor impacting long-term prognosis. Results from the ongoing clinical trials within the National Institute on Alcohol Abuse and Alcoholism-funded consortia are awaited for more effective and safer therapies. AH is a potentially lethal condition with a significant short-term mortality. A high index of suspicion is required. There remains an unmet need for noninvasive biomarkers for the diagnosis, and predicting prognosis and response to therapy.
Collapse
Affiliation(s)
- Ashwani K Singal
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sudha Kodali
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lee A Vucovich
- UAB Lister Hill Library of the Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas D Schiano
- Division of Liver Diseases, Mount Sinai School of Medicine, New York City, New York
| |
Collapse
|
171
|
Zeng T, Zhao YY, Xie KQ. Does Intestinal Microbiota Protect Mice Against Acute/Binge Drinking-Induced Liver Injury? Alcohol Clin Exp Res 2016; 40:1788-90. [PMID: 27339857 DOI: 10.1111/acer.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, China
| | - Yu-Ying Zhao
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
172
|
Cai X, Bao L, Wang N, Ren J, Chen Q, Xu M, Li D, Mao R, Li Y. Dietary nucleotides protect against alcoholic liver injury by attenuating inflammation and regulating gut microbiota in rats. Food Funct 2016; 7:2898-908. [PMID: 27247978 DOI: 10.1039/c5fo01580d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleotides have been reported to be effective in attenuating liver damage and regulating gut microbiota. However, the protective effect of nucleotides against alcoholic liver injury remains unknown. The present study aims to investigate whether nucleotides ameliorate alcoholic liver injury and explores the possible mechanism. Male Wistar rats were given alcohol, equivalent distilled water or an isocaloric amount of dextrose intragastrically twice daily for up to 6 weeks respectively. Two subgroups of alcohol-treated rats were fed with a nucleotide-supplemented AIN-93G rodent diet. Serum enzymes, inflammatory cytokines and microbiota composition of the caecum content were evaluated. We found that nucleotides could significantly decrease serum alanine aminotransferase and aspartate aminotransferase, plasma lipopolysaccharide and inflammatory cytokine levels. Sequencing of 16S rRNA genes revealed that nucleotide-treated rats showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than alcohol-treated rats. Moreover, nucleotide treatment inhibited the protein expression of toll-like receptor 4, CD14 and repressed the phosphorylation of inhibitor kappa Bα and nuclear factor-κB p65 in the liver. These results suggested that nucleotides suppressed the inflammatory response and regulated gut microbiota in alcoholic liver injury. The partial inhibition of lipopolysaccharide - toll-like receptor 4-nuclear factor-κB p65 signaling in the liver may be attributed to this mechanism.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Wang M, Zhang XJ, Yan C, He C, Li P, Chen M, Su H, Wan JB. Preventive effect of α-linolenic acid-rich flaxseed oil against ethanol-induced liver injury is associated with ameliorating gut-derived endotoxin-mediated inflammation in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
174
|
Sui YH, Luo WJ, Xu QY, Hua J. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation. World J Gastroenterol 2016; 22:2533-2544. [PMID: 26937141 PMCID: PMC4768199 DOI: 10.3748/wjg.v22.i8.2533] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/17/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of different dietary fatty acids on hepatic inflammasome activation.
METHODS: Wild-type C57BL/6 mice were fed either a high-fat diet or polyunsaturated fatty acid (PUFA)-enriched diet. Primary hepatocytes were treated with either saturated fatty acids (SFAs) or PUFAs as well as combined with lipopolysaccharide (LPS). The expression of NOD-like receptor protein 3 (NLRP3) inflammasome, peroxisome proliferator-activated receptor-γ and nuclear factor-kappa B (NF-κB) was determined by real-time PCR and Western blot. The activity of Caspase-1 and interleukine-1β production were measured.
RESULTS: High-fat diet-induced hepatic steatosis was sufficient to induce and activate hepatic NLRP3 inflammasome. SFA palmitic acid (PA) directly activated NLRP3 inflammasome and increased sensitization to LPS-induced inflammasome activation in hepatocytes. In contrast, PUFA docosahexaenoic acid (DHA) had the potential to inhibit NLRP3 inflammasome expression in hepatocytes and partly abolished LPS-induced NLRP3 inflammasome activation. Furthermore, a high-fat diet increased but PUFA-enriched diet decreased sensitization to LPS-induced hepatic NLRP3 inflammasome activation in vivo. Moreover, PA increased but DHA decreased phosphorylated NF-κB p65 protein expression in hepatocytes.
CONCLUSION: Hepatic NLRP3 inflammasome activation played an important role in the development of non-alcoholic fatty liver disease. Dietary SFAs and PUFAs oppositely regulated the activity of NLRP3 inflammasome through direct activation or inhibition of NF-κB.
Collapse
|
175
|
Lower Neighborhood Socioeconomic Status Associated with Reduced Diversity of the Colonic Microbiota in Healthy Adults. PLoS One 2016; 11:e0148952. [PMID: 26859894 PMCID: PMC4747579 DOI: 10.1371/journal.pone.0148952] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
In the United States, there are persistent and widening socioeconomic gaps in morbidity and mortality from chronic diseases. Although most disparities research focuses on person-level socioeconomic-status, mounting evidence suggest that chronic diseases also pattern by the demographic characteristics of neighborhoods. Yet the biological mechanisms underlying these associations are poorly understood. There is increasing recognition that chronic diseases share common pathogenic features, some of which involve alterations in the composition, diversity, and functioning of the gut microbiota. This study examined whether socioeconomic-status was associated with alpha-diversity of the colonic microbiota. Forty-four healthy adults underwent un-prepped sigmoidoscopy, during which mucosal biopsies and fecal samples were collected. Subjects’ zip codes were geocoded, and census data was used to form a composite indicator of neighborhood socioeconomic-status, reflecting household income, educational attainment, employment status, and home value. In unadjusted analyses, neighborhood socioeconomic-status explained 12–18 percent of the variability in alpha-diversity of colonic microbiota. The direction of these associations was positive, meaning that as neighborhood socioeconomic-status increased, so did alpha-diversity of both the colonic sigmoid mucosa and fecal microbiota. The strength of these associations persisted when models were expanded to include covariates reflecting potential demographic (age, gender, race/ethnicity) and lifestyle (adiposity, alcohol use, smoking) confounds. In these models neighborhood socioeconomic-status continued to explain 11–22 percent of the variability in diversity indicators. Further analyses suggested these patterns reflected socioeconomic variations in evenness, but not richness, of microbial communities residing in the sigmoid. We also found indications that residence in neighborhoods of higher socioeconomic-status was associated with a greater abundance of Bacteroides and a lower abundance of Prevotella, suggesting that diet potentially underlies differences in microbiota composition. These findings suggest the presence of socioeconomic variations in colonic microbiota diversity. Future research should explore whether these variations contribute to disparities in chronic disease outcomes.
Collapse
|
176
|
Schneider ACR, Rico EP, de Oliveira DL, Rosemberg DB, Guizzo R, Meurer F, da Silveira TR. Lactobacillus rhamnosus GG Effect on Behavior of Zebrafish During Chronic Ethanol Exposure. Biores Open Access 2016; 5:1-5. [PMID: 26862467 PMCID: PMC4744878 DOI: 10.1089/biores.2015.0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ethanol is a widely consumed drug, which acts on the central nervous system to induce behavioral alterations ranging from disinhibition to sedation. Recent studies have produced accumulating evidence for the therapeutic role of probiotic bacteria in behavior. We aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) on the behavior of adult zebrafish chronically exposed to ethanol. Adult wild-type zebrafish were randomly divided into four groups, each containing 15 fish. The following groups were formed: Control (C), received unsupplemented feed during the trial period; Probiotic (P), fed with feed supplemented with LGG; Ethanol (E), received unsupplemented feed and 0.5% of ethanol directly added to the tank water; and Probiotic+Ethanol (P+E), group under ethanol exposure (0.5%) and fed with LGG supplemented feed. After 2 weeks of exposure, the novel tank test was used to evaluate fish behavior, which was analyzed using computer-aided video tracking. LGG alone did not alter swimming behavior of the fish. Ethanol exposure led to robust behavioral effects in the form of reduced anxiety levels, as indicated by increased vertical exploration and more time spent in the upper region of the novel tank. The group exposed to ethanol and treated with LGG behaved similarly to animals exposed to ethanol alone. Taken together, these results show that zebrafish behavior was not altered by LGG per se, as seen in murine models. This was the first study to investigate the effects of a probiotic diet on behavior after a chronic ethanol exposure.
Collapse
Affiliation(s)
- Ana Claudia Reis Schneider
- Programa de Pós-Graduação: Ciências em Gastroenterologia e Hepatologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Brazil
| | - Eduardo Pacheco Rico
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense-UNESC , Criciúma, Brazil
| | - Diogo Losch de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Denis Broock Rosemberg
- Programa de Pós Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Ranieli Guizzo
- Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Brazil
| | - Fábio Meurer
- Engenharia de Alimentos, Universidade Federal do Paraná (UFPR) , Campus Jandaia do Sul, Jandaia do Sul, Brazil
| | - Themis Reverbel da Silveira
- Programa de Pós-Graduação: Ciências em Gastroenterologia e Hepatologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Brazil
| |
Collapse
|
177
|
Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats. PLoS One 2015; 10:e0140498. [PMID: 26484872 PMCID: PMC4618849 DOI: 10.1371/journal.pone.0140498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022] Open
Abstract
The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT) or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH) (3.5 g/kg/dose oral gavages at 12-h intervals) or dextrose (Control). Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4), leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1) were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART), are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART.
Collapse
|
178
|
Alcohol and the Intestine. Biomolecules 2015; 5:2573-88. [PMID: 26501334 PMCID: PMC4693248 DOI: 10.3390/biom5042573] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023] Open
Abstract
Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches.
Collapse
|
179
|
Bagyánszki M, Bódi N. Gut region-dependent alterations of nitrergic myenteric neurons after chronic alcohol consumption. World J Gastrointest Pathophysiol 2015; 6:51-57. [PMID: 26301118 PMCID: PMC4540706 DOI: 10.4291/wjgp.v6.i3.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/27/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol abuse damages nearly every organ in the body. The harmful effects of ethanol on the brain, the liver and the pancreas are well documented. Although chronic alcohol consumption causes serious impairments also in the gastrointestinal tract like altered motility, mucosal damage, impaired absorption of nutrients and inflammation, the effects of chronically consumed ethanol on the enteric nervous system are less detailed. While the nitrergic myenteric neurons play an essential role in the regulation of gastrointestinal peristalsis, it was hypothesised, that these neurons are the first targets of consumed ethanol or its metabolites generated in the different gastrointestinal segments. To reinforce this hypothesis the effects of ethanol on the gastrointestinal tract was investigated in different rodent models with quantitative immunohistochemistry, in vivo and in vitro motility measurements, western blot analysis, evaluation of nitric oxide synthase enzyme activity and bio-imaging of nitric oxide synthesis. These results suggest that chronic alcohol consumption did not result significant neural loss, but primarily impaired the nitrergic pathways in gut region-dependent way leading to disturbed gastrointestinal motility. The gut segment-specific differences in the effects of chronic alcohol consumption highlight the significance the ethanol-induced neuronal microenvironment involving oxidative stress and intestinal microbiota.
Collapse
|
180
|
Li Y, Han T. Mechanisms of susceptibility to bacterial infections in cirrhotic patients. Shijie Huaren Xiaohua Zazhi 2015; 23:3560-3566. [DOI: 10.11569/wcjd.v23.i22.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial infections are very common in cirrhotic patients, and the incidence is 4-5 times higher than that in the general population. The mechanisms of susceptibility to bacterial infections in cirrhotic patients include intestinal bacterial overgrowth, bacterial translocation, increased number of potentially pathogenic bacteria accompanied by reduced number of beneficial bacteria; small bowel motility disturbances and delayed gut transit, increased intestinal permeability; genetic predisposition to bacterial infections; immunodeficiency accompanied by persistent activation of the immune cells with production of pro-inflammatory cytokines. In this paper, we will discuss the mechanisms of susceptibility to bacterial infections in cirrhotic patients.
Collapse
|
181
|
Tang Y, Zhang L, Forsyth CB, Shaikh M, Song S, Keshavarzian A. The Role of miR-212 and iNOS in Alcohol-Induced Intestinal Barrier Dysfunction and Steatohepatitis. Alcohol Clin Exp Res 2015. [PMID: 26207424 DOI: 10.1111/acer.12813] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alcoholic liver disease is commonly associated with intestinal barrier dysfunction. Alcohol-induced dysregulation of intestinal tight junction proteins, such as Zonula Occludens-1 (ZO-1), plays an important role in alcohol-induced gut leakiness. However, the mechanism of alcohol-induced disruption of tight junction proteins is not well established. The goal of this study was to elucidate this mechanism by studying the role of microRNA 212 (miR-212) and inducible nitric oxide synthase (iNOS) in alcohol-induced gut leakiness. METHODS The permeability of the Caco-2 monolayer was assessed by transepithelial electrical resistance and flux of fluorescein sulfonic acid. miR-212 was measured by real-time polymerase chain reaction. The wild-type, iNOS knockout, and miR-212 knockdown mice were fed with alcohol diet (29% of total calories, 4.5% v/v) for 8 weeks. The LNA-anti-miR-212 was used to inhibit miR-212 expression in mice. The alcohol-induced intestinal permeability, miR-212 expression, and liver injuries in mice were measured. RESULTS Our in vitro monolayer and in vivo mice studies showed that: (i) alcohol-induced overexpression of the intestinal miR-212 and intestinal hyperpermeability is prevented using miR-212 knockdown techniques; and (ii) iNOS is up-regulated in the intestine by alcohol and that iNOS signaling is required for alcohol-induced miR-212 overexpression, ZO-1 disruption, gut leakiness, and steatohepatitis. CONCLUSIONS These studies thus support a novel miR-212 mechanism for alcohol-induced gut leakiness and a potential target that could be exploited for therapeutic intervention to prevent leaky gut and liver injury in alcoholics.
Collapse
Affiliation(s)
- Yueming Tang
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Lijuan Zhang
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Christopher B Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Maliha Shaikh
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Shiwen Song
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
182
|
Tang Y, Forsyth CB, Keshavarzian A. The role of miRNAs in alcohol-induced endotoxemia, dysfunction of mucosal immunity, and gut leakiness. Alcohol Clin Exp Res 2015; 38:2331-4. [PMID: 25257284 DOI: 10.1111/acer.12551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/10/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Yueming Tang
- Section of Gastroenterology, Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | | | | |
Collapse
|
183
|
Swanson GR, Gorenz A, Shaikh M, Desai V, Forsyth C, Fogg L, Burgess HJ, Keshavarzian A. Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics. Am J Physiol Gastrointest Liver Physiol 2015; 308:G1004-11. [PMID: 25907689 PMCID: PMC4469868 DOI: 10.1152/ajpgi.00002.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/15/2015] [Indexed: 01/31/2023]
Abstract
Chronic heavy alcohol use is known to cause gut leakiness and alcoholic liver disease (ALD), but only 30% of heavy drinkers develop increased intestinal permeability and ALD. The hypothesis of this study was that disruption of circadian rhythms is a potential risk factor in actively drinking alcoholics for gut leakiness and endotoxemia. We studied 20 subjects with alcohol use disorder (AD) and 17 healthy controls (HC, 6 day workers, 11 night workers). Subjects wore a wrist actiwatch for 7 days and underwent a 24-h dim light phase assessment and urine collection for intestinal permeability. The AD group had significantly less total sleep time and increased fragmentation of sleep (P < 0.05). AD also had significantly lower plasma melatonin levels compared with the HC [mean area under the curve (AUC) 322.78 ± 228.21 vs. 568.75 ± 304.26 pg/ml, P = 0.03]. In the AD group, AUC of melatonin was inversely correlated with small bowel and colonic intestinal permeability (lactulose-to-mannitol ratio, r = -0.39, P = 0.03; urinary sucralose, r = -0.47, P = 0.01). Cosinor analysis of lipopolysaccharide-binding protein (marker of endotoxemia) and lipopolysaccharide every 4 h for 24 h in HC and AD subjects had a midline estimating statistic of rhythm of 5,026.15 ± 409.56 vs. 6,818.02 ± 628.78 ng/ml (P < 0.01) and 0.09 ± 0.03 vs. 0.15 ± 0.19 EU/ml (P < 0.05), respectively. We found plasma melatonin was significantly lower in the AD group, and lower melatonin levels correlated with increased intestinal permeability and a marker of endotoxemia. Our study suggests the suppression of melatonin in AD may promote gut leakiness and endotoxemia.
Collapse
Affiliation(s)
- Garth R. Swanson
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Annika Gorenz
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Maliha Shaikh
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Vishal Desai
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Christopher Forsyth
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Louis Fogg
- 4Community, Systems and Mental Health Nursing, Rush University, Chicago, Illinois
| | - Helen J. Burgess
- 2Departments of Behavioral Sciences and Internal Medicine, Rush University Medical Center, Chicago, Illinois;
| | - Ali Keshavarzian
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois; ,3Departments of Pharmacology, Molecular Biophysics & Physiology, Rush University Medical Center, Chicago, Illinois; and
| |
Collapse
|
184
|
Forsyth CB, Voigt RM, Burgess HJ, Swanson GR, Keshavarzian A. Circadian rhythms, alcohol and gut interactions. Alcohol 2015; 49:389-98. [PMID: 25499101 DOI: 10.1016/j.alcohol.2014.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/14/2022]
Abstract
The circadian clock establishes rhythms throughout the body with an approximately 24 hour period that affect expression of hundreds of genes. Epidemiological data reveal chronic circadian misalignment, common in our society, significantly increases the risk for a myriad of diseases, including cardiovascular disease, diabetes, cancer, infertility and gastrointestinal disease. Disruption of intestinal barrier function, also known as gut leakiness, is especially important in alcoholic liver disease (ALD). Several studies have shown that alcohol causes ALD in only a 20-30% subset of alcoholics. Thus, a better understanding is needed of why only a subset of alcoholics develops ALD. Compelling evidence shows that increased gut leakiness to microbial products and especially LPS play a critical role in the pathogenesis of ALD. Clock and other circadian clock genes have been shown to regulate lipid transport, motility and other gut functions. We hypothesized that one possible mechanism for alcohol-induced intestinal hyperpermeability is through disruption of central or peripheral (intestinal) circadian regulation. In support of this hypothesis, our recent data shows that disruption of circadian rhythms makes the gut more susceptible to injury. Our in vitro data show that alcohol stimulates increased Clock and Per2 circadian clock proteins and that siRNA knockdown of these proteins prevents alcohol-induced permeability. We also show that intestinal Cyp2e1-mediated oxidative stress is required for alcohol-induced upregulation of Clock and Per2 and intestinal hyperpermeability. Our mouse model of chronic alcohol feeding shows that circadian disruption through genetics (in Clock(▵19) mice) or environmental disruption by weekly 12h phase shifting results in gut leakiness alone and exacerbates alcohol-induced gut leakiness and liver pathology. Our data in human alcoholics show they exhibit abnormal melatonin profiles characteristic of circadian disruption. Taken together our data support circadian mechanisms for alcohol-induced gut leakiness that could provide new therapeutic targets for ALD.
Collapse
Affiliation(s)
- Christopher B Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA; Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | - Robin M Voigt
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Helen J Burgess
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL USA
| | - Garth R Swanson
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA; Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA; Department of Molecular Biophysics & Physiology, Rush University Medical Center, Chicago, IL, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
185
|
Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5153-5160. [PMID: 26191211 PMCID: PMC4503083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a chronic, progressive, and immunologically mediated inflammatory liver disorder. The etiology of AIH still remains unknown. The aim of this study was to investigate the changes in intestinal permeability, bacterial translocation, and intestinal microbiome in patients with AIH and to evaluate the correlations of those changes with the stages of the disease. METHODS 24 patients with autoimmune hepatitis and 8 healthy volunteers were recruited for this study. We assessed (1) the integrity of tight junctions within the gut by immunohistochemical analysis of zona occludens-1 and occludin expression in duodenal biopsy specimens; (2) changes in the enteric microbiome by 16S rDNA quantitative PCR; and (3) the presence of bacterial translocation by the level of lipopolysaccharide (LPS) using ELISA. RESULTS Increased intestinal permeability, derangement of the microbiome and bacterial translocation occurred in AIH, which correlated with the severity of the disease. CONCLUSIONS Autoimmune hepatitis is associated with leaky gut and intestinal microbiome dysbiosis. The impaired intestinal barrier may play an important role in the pathogenesis of AIH.
Collapse
Affiliation(s)
- Rui Lin
- Department of Digestive Diseases, General Hospital, Tianjin Medical University Tianjin 300052, China
| | - Lu Zhou
- Department of Digestive Diseases, General Hospital, Tianjin Medical University Tianjin 300052, China
| | - Jie Zhang
- Department of Digestive Diseases, General Hospital, Tianjin Medical University Tianjin 300052, China
| | - Bangmao Wang
- Department of Digestive Diseases, General Hospital, Tianjin Medical University Tianjin 300052, China
| |
Collapse
|
186
|
Couch RD, Dailey A, Zaidi F, Navarro K, Forsyth CB, Mutlu E, Engen PA, Keshavarzian A. Alcohol induced alterations to the human fecal VOC metabolome. PLoS One 2015; 10:e0119362. [PMID: 25751150 PMCID: PMC4353727 DOI: 10.1371/journal.pone.0119362] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Abstract
Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.
Collapse
Affiliation(s)
- Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| | - Allyson Dailey
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Fatima Zaidi
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Karl Navarro
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Christopher B. Forsyth
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ece Mutlu
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Phillip A. Engen
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ali Keshavarzian
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, United States of America
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
187
|
Voican CS, Njiké-Nakseu M, Boujedidi H, Barri-Ova N, Bouchet-Delbos L, Agostini H, Maitre S, Prévot S, Cassard-Doulcier AM, Naveau S, Perlemuter G. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int 2015; 35:967-78. [PMID: 24766056 DOI: 10.1111/liv.12575] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/19/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Patients with alcoholic liver disease (ALD) display inflammation of the subcutaneous adipose tissue (SAT) which correlates with liver lesions. We examined macrophage markers and polarization in the SAT of alcoholic patients and adipokine expression according to liver inflammation; we studied the consequences of alcohol withdrawal. PATIENTS AND METHODS Forty-seven patients with ALD were prospectively included. SAT and blood samples were collected at inclusion and after 1 week of alcohol withdrawal. Pro-inflammatory cytokines/chemokines, inflammasome components and products, adipokine expression levels, macrophage markers and polarization in liver and SAT samples were assessed by RT-PCR arrays. RESULTS mRNA expression level of chemokines (IL8, semaphorin 7A) correlated with hepatic steatosis in both liver and SAT. Liver expression of inflammasome components (IL1β, IL18, caspase-1) and SAT IL6 and CCL2 correlated with liver damage. In patients with mild ALD, 1 week of alcohol withdrawal was sufficient to decrease expression level of total macrophage markers in the adipose tissue, to orient adipose tissue macrophages (ATM) towards an anti-inflammatory M2 phenotype and to decrease the mRNA expression of cytokines/chemokines (IL18, CCL2, osteopontin, semaphorin 7A). In patients with severe ALD, 1 week of abstinence was also associated with an increase in CCL18 expression. CONCLUSIONS In alcoholic patients, upregulation of chemotactic factors in the liver and SAT is an early event that begins as early as the steatosis stage. The inflammasome pathway is upregulated in the liver of patients with ALD. One week of alcohol withdrawal alleviates macrophage infiltration in SAT and orients ATM towards a M2 anti-inflammatory phenotype; this implicates alcohol in adipose tissue inflammation (ClinicalTrials.gov NCT00388323).
Collapse
Affiliation(s)
- Cosmin S Voican
- INSERM U996, IPSIT, Clamart, F-92140, France; Univ Paris-Sud, Faculté de médecine Paris-Sud, Kremlin-Bicêtre, F-94270, France; AP-HP, Hôpital Antoine Béclère, Service d'hépato-gastroentérologie et nutrition, Clamart, F-92140, France; DHU Hépatinov, Clamart, F-92140, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that mRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
189
|
Abstract
Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that mRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
190
|
Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res 2015; 37:223-36. [PMID: 26695747 PMCID: PMC4590619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The excessive use of alcohol is a global problem causing many adverse pathological health effects and a significant financial health care burden. This review addresses the effect of alcohol consumption on the microbiota in the gastrointestinal tract (GIT). Although data are limited in humans, studies highlight the importance of changes in the intestinal microbiota in alcohol-related disorders. Alcohol-induced changes in the GIT microbiota composition and metabolic function may contribute to the well-established link between alcohol-induced oxidative stress, intestinal hyperpermeability to luminal bacterial products, and the subsequent development of alcoholic liver disease (ALD), as well as other diseases. In addition, clinical and preclinical data suggest that alcohol-related disorders are associated with quantitative and qualitative dysbiotic changes in the intestinal microbiota and may be associated with increased GIT inflammation, intestinal hyperpermeability resulting in endotoxemia, systemic inflammation, and tissue damage/organ pathologies including ALD. Thus, gut-directed interventions, such as probiotic and synbiotic modulation of the intestinal microbiota, should be considered and evaluated for prevention and treatment of alcohol-associated pathologies.
Collapse
|
191
|
|
192
|
Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:1-62. [PMID: 25911232 DOI: 10.1016/bs.aambs.2015.02.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.
Collapse
Affiliation(s)
- Aurelijus Burokas
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
193
|
Wang H, Li X, Wang C, Zhu D, Xu Y. Abnormal ultrastructure of intestinal epithelial barrier in mice with alcoholic steatohepatitis. Alcohol 2014; 48:787-93. [PMID: 25454538 DOI: 10.1016/j.alcohol.2014.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 12/12/2022]
Abstract
Intestinal barrier dysfunction caused by chronic alcohol consumption is closely associated with disruption of the intestinal epithelial apical junction complex. The present study was undertaken to directly display by transmission electron microscopy the abnormal ultrastructure of the intestinal epithelial barrier in mice with alcoholic steatohepatitis. The results showed that chronic alcohol consumption could induce obvious liver injury, with diffuse lipid accumulation and focal inflammatory cell infiltration in the liver, assessed by hematoxylin and eosin staining. The indicators of intestinal barrier dysfunction, d-lactic acid and lipopolysaccharide, were significantly higher in alcohol-fed mice than in control mice. Alcohol exposure obviously caused high permeability in the ileum to fluorescein isothiocyanate-dextran (FD-4; molecular weight 4000). Transmission electron microscopy demonstrated that tight junctions and adherens junctions expanded noticeably in alcohol-fed mice. Although the tight junction (TJ) length of alcohol-fed mice had no significant difference compared with control mice, the adherens junction (AJ) length of alcohol-fed mice significantly decreased compared with control mice. Additionally, the ratios of both TJmax/TJmin and AJmax/AJmin were significantly larger in alcohol-fed mice than in control liquid-fed mice. In conclusion, high intestinal permeability caused by alcohol attributes to the irregular ultrastructure of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China
| | - Xin Li
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China
| | - Chen Wang
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China
| | - Dong Zhu
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China.
| | - Youqing Xu
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China.
| |
Collapse
|
194
|
Neuman MG, French SW, French BA, Seitz HK, Cohen LB, Mueller S, Osna NA, Kharbanda KK, Seth D, Bautista A, Thompson KJ, McKillop IH, Kirpich IA, McClain CJ, Bataller R, Nanau RM, Voiculescu M, Opris M, Shen H, Tillman B, Li J, Liu H, Thomes PG, Ganesan M, Malnick S. Alcoholic and non-alcoholic steatohepatitis. Exp Mol Pathol 2014; 97:492-510. [PMID: 25217800 PMCID: PMC4696068 DOI: 10.1016/j.yexmp.2014.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 02/08/2023]
Abstract
This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sebastian Mueller
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Department of Pharmacology; Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Department of Pharmacology; Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Robley Rex Veterans Medical Center, Louisville, KY, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Voiculescu
- Division of Nephrology and Internal Medicine, Fundeni Clinical Institute and University of Medicine and Pharmacy, "Carol Davila", Bucharest, Romania
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| | - Hong Shen
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Jun Li
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hui Liu
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul G Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
195
|
Ceccarelli S, Nobili V, Alisi A. Toll-like receptor-mediated signaling cascade as a regulator of the inflammation network during alcoholic liver disease. World J Gastroenterol 2014; 20:16443-16451. [PMID: 25469012 PMCID: PMC4248187 DOI: 10.3748/wjg.v20.i44.16443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/08/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic abuse of alcohol leads to various histological abnormalities in the liver. These are conditions collectively known as alcoholic liver disease (ALD). Currently, ALD is considered to be one of the major causes of death worldwide. An impaired intestinal barrier with related endotoxemia is among the various pathogenetic factors. This is mainly characterized by circulating levels of lipopolysaccharide (LPS), considered critical for the onset of intra-hepatic inflammation. This in turn promotes hepatocellular damage and fibrosis in ALD. Elevated levels of LPS exert their effects by binding to Toll-like receptors (TLRs) which are expressed by all liver-resident cells. The activation of TLR signaling triggers an overproduction and release of some cytokines, which promote an autocatalytic cascade of other pro-inflammatory signals. In this review, we provide an overview of the mechanisms that sustain LPS-mediated activation of TLR signaling, reporting current experimental and clinical evidence of its role during inflammation in ALD.
Collapse
|
196
|
Zhong W, Zhou Z. Alterations of the gut microbiome and metabolome in alcoholic liver disease. World J Gastrointest Pathophysiol 2014; 5:514-522. [PMID: 25400995 PMCID: PMC4231516 DOI: 10.4291/wjgp.v5.i4.514] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/01/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is one of the leading causes of liver diseases and liver-related death worldwide. The gut is a habitat for billions of microorganisms which promotes metabolism and digestion in their symbiotic relationship with the host. Alterations of gut microbiome by alcohol consumption are referred to bacterial overgrowth, release of bacteria-derived products, and/or changed microbiota equilibrium. Alcohol consumption also perturbs the function of gastrointestinal mucosa and elicits a pathophysiological condition. These adverse effects caused by alcohol may ultimately result in a broad change of gastrointestinal luminal metabolites such as bile acids, short chain fatty acids, and branched chain amino acids. Gut microbiota alterations, metabolic changes produced in a dysbiotic intestinal environment, and the host factors are all critical contributors to the development and progression of alcoholic liver disease. This review summarizes recent findings of how alcohol-induced alterations of gut microbiota and metabolome, and discusses the mechanistic link between gastrointestinal dyshomeostasis and alcoholic liver injury.
Collapse
|
197
|
Heberlein A, Käser M, Lichtinghagen R, Rhein M, Lenz B, Kornhuber J, Bleich S, Hillemacher T. TNF-α and IL-6 serum levels: neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol 2014; 48:671-6. [PMID: 25262503 DOI: 10.1016/j.alcohol.2014.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the serum levels of IL-6 and TNF-α in 30 male alcohol-dependent patients during withdrawal (day 1, 7, and 14) and compared them with the levels obtained from 18 healthy male controls. IL-6 (day 1: T = 2,593, p = 0.013; day 7: T = 2,315, p = 0.037; day 14: T = 1,650, p = 0.112) serum levels were significantly increased at the beginning of alcohol withdrawal. TNF-α (T = 3,202, p = 0.03) serum levels were significantly elevated in the patients' group during the whole period of withdrawal. IL-6 serum levels decreased significantly during withdrawal (F = 16.507, p < 0.001), whereas TNF-α levels did not change significantly (day 1-14). IL-6 serum levels were directly associated with alcohol consumption (r = 0.392, p = 0.047) on day 1. Moreover, the IL-6 serum levels were associated with alcohol craving (PACS total score day 1: r = -0.417, p = 0.022, the score of the obsessive subscale of the OCDS on day 14 [r = -0.549, p = 0.022]), depression (r = -0.507, p = 0.005), and trait anxiety (r = -0.674, p < 0.001) on day 1. We found an association with the duration of active drinking following the last period of abstinence and the TNF-α serum levels (day 1:r = 0.354, p = 0.009; day 7: r = 0.323, p = 0.022; day 14: r = 0.303, p = 0.034) as well as an association with the severity of alcohol dependence measured by the SESA scale (r = 0.454, p = 0.015). Moreover, we found a significant association between the BDNF serum levels and the TNF-α serum levels (r = -0.426, p = 0.021). Our results support an association between alterations in TNF-α and IL-6 serum levels and alcohol consumption.
Collapse
Affiliation(s)
- Annemarie Heberlein
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hanover, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany.
| | - Marius Käser
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hanover, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | | | - Mathias Rhein
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hanover, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
| | - Stefan Bleich
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hanover, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Thomas Hillemacher
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hanover, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| |
Collapse
|
198
|
Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry 2014; 76:725-33. [PMID: 24629538 DOI: 10.1016/j.biopsych.2014.02.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/13/2014] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammation might play a role in the development of several psychiatric diseases. However, the origins of processes that mediate inflammation are unknown. We previously reported increased intestinal permeability, elevated blood lipopolysaccharide levels, and low-grade systemic inflammation associated with psychological symptoms of alcohol dependence in alcohol-dependent subjects. In this study, we tested inflammatory responses of peripheral blood mononuclear cells (PBMCs) to gut-derived bacterial products during detoxification and the relationship to alcohol craving. METHODS In 63 actively drinking noncirrhotic alcohol-dependent subjects, testing was performed at the beginning (day 2) and end (day 18) of alcohol detoxification and compared with testing in 14 healthy subjects. Activation of various intracellular signaling pathways by gut-derived bacterial products was analyzed by quantitative polymerase chain reaction, Western blotting, and DNA binding assays (for transcription factors). Toll-like receptor activation was assessed by cell cultures. RESULTS In addition to lipopolysaccharides, we showed that peptidoglycans may also cross the gut barrier to reach the systemic circulation. Both activate their respective Toll-like receptors in peripheral blood mononuclear cells. Chronic alcohol consumption inhibited the nuclear factor kappa B proinflammatory cytokine pathway but activated the mitogen-activated protein kinase/activator protein 1 pathway, together with the inflammasome complex. This activity resulted in increased messenger RNA and plasma levels of interleukin (IL)-8, IL-1β, and IL-18. Activated proinflammatory pathways, in particular, IL-8 and IL-1β, were positively correlated with alcohol consumption and alcohol-craving scores. Short-term alcohol withdrawal was associated with the recovery of lipopolysaccharide-dependent receptors but not peptidoglycan-dependent receptors. CONCLUSIONS Lipopolysaccharides and peptidoglycans from the gut microbiota stimulate specific inflammatory pathways in peripheral blood mononuclear cells that are correlated with alcohol craving.
Collapse
|
199
|
Kalaitzakis E. Gastrointestinal dysfunction in liver cirrhosis. World J Gastroenterol 2014; 20:14686-14695. [PMID: 25356031 PMCID: PMC4209534 DOI: 10.3748/wjg.v20.i40.14686] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/27/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Patients with liver cirrhosis exhibit several features of gut dysfunction which may contribute to the development of cirrhosis complications as well as have an impact on nutritional status and health-related quality of life. Gastrointestinal symptoms are common in cirrhosis and their pathophysiology probably involves factors related to liver disease severity, psychological distress, and gut dysfunction (e.g., increased gastric sensitivity to distension and delayed gut transit). They may lead to reduced food intake and, thus, may contribute to the nutritional status deterioration in cirrhotic patients. Although tense ascites appears to have a negative impact on meal-induced accommodation of the stomach, published data on gastric accommodation in cirrhotics without significant ascites are not unanimous. Gastric emptying and small bowel transit have generally been shown to be prolonged. This may be related to disturbances in postprandial glucose, insulin, and ghrelin levels, which, in turn, appear to be associated to insulin resistance, a common finding in cirrhosis. Furthermore, small bowel manometry disturbances and delayed gut transit may be associated with the development of small bowel bacterial overgrowth. Finally, several studies have reported intestinal barrier dysfunction in patients with cirrhosis (especially those with portal hypertension), which is related to bacterial translocation and permeation of intestinal bacterial products, e.g., endotoxin and bacterial DNA, thus potentially being involved in the pathogenesis of complications of liver cirrhosis.
Collapse
|
200
|
Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness. Redox Biol 2014; 3:40-6. [PMID: 25462064 PMCID: PMC4297927 DOI: 10.1016/j.redox.2014.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD). While alcohol is necessary for the development of ALD, only 20-30% of alcoholics develop alcoholic steatohepatitis (ASH) with progressive liver disease leading to cirrhosis and liver failure (ALD). This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new avenues for therapy of ALD.
Collapse
|