151
|
Li W, Zhou Y, You W, Yang M, Ma Y, Wang M, Wang Y, Yuan S, Xiao Y. Development of Photoaffinity Probe for the Discovery of Steviol Glycosides Biosynthesis Pathway in Stevia rebuadiana and Rapid Substrate Screening. ACS Chem Biol 2018; 13:1944-1949. [PMID: 29863335 DOI: 10.1021/acschembio.8b00285] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functional discovery and characterization of the target enzymes responsible for the biosynthesis pathway coded for the genes is ongoing, and the unknown functional diversity of this class of enzymes has been revealed by genome sequencing. Commonly, it is feasible in annotating of biosynthetic genes of prokaryotes due to the existence of gene clusters of secondary metabolites. However, in eukaryotes, the biosynthetic genes are not compactly clustered in the way of prokaryotes. Hence, it remains challenging to identify the biosynthetic pathways of newly discovered natural products in plants. Steviol glycosides are one class of natural sweeteners found in high abundance in the herb Stevia rebaudiana. Here, we applied the chemoproteomic strategy for the proteomic profiling of the biosynthetic enzymes of steviol glycosides in Stevia rebaudiana. We not only identified a steviol-catalyzing UDP-glycosyltransferase (UGT) UGT73E1 involved in steviol glycoside biosynthesis but also built up a probe-based platform for the screening of potential substrates of functional uncharacterized UGT rapidly. This approach would be a complementary tool in mining novel synthetic parts for assembling of synthetic biological systems for the biosynthesis of other complex natural products.
Collapse
Affiliation(s)
- Weichao Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjing You
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mengquan Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanrong Ma
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingli Wang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station 6, CH-1015 Lausanne, Switzerland
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
152
|
Kang KB, Jayakodi M, Lee YS, Nguyen VB, Park HS, Koo HJ, Choi IY, Kim DH, Chung YJ, Ryu B, Lee DY, Sung SH, Yang TJ. Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng. Sci Rep 2018; 8:11744. [PMID: 30082711 PMCID: PMC6078999 DOI: 10.1038/s41598-018-30262-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Ginsenosides are dammarane-type or triterpenoidal saponins that contribute to the various pharmacological activities of the medicinal herb Panax ginseng. The putative biosynthetic pathway for ginsenoside biosynthesis is known in P. ginseng, as are some of the transcripts and enzyme-encoding genes. However, few genes related to the UDP-glycosyltransferases (UGTs), enzymes that mediate glycosylation processes in final saponin biosynthesis, have been identified. Here, we generated three replicated Illumina RNA-Seq datasets from the adventitious roots of P. ginseng cultivar Cheongsun (CS) after 0, 12, 24, and 48 h of treatment with methyl jasmonate (MeJA). Using the same CS cultivar, metabolomic data were also generated at 0 h and every 12-24 h thereafter until 120 h of MeJA treatment. Differential gene expression, phylogenetic analysis, and metabolic profiling were used to identify candidate UGTs. Eleven candidate UGTs likely to be involved in ginsenoside glycosylation were identified. Eight of these were considered novel UGTs, newly identified in this study, and three were matched to previously characterized UGTs in P. ginseng. Phylogenetic analysis further asserted their association with ginsenoside biosynthesis. Additionally, metabolomic analysis revealed that the newly identified UGTs might be involved in the elongation of glycosyl chains of ginsenosides, especially of protopanaxadiol (PPD)-type ginsenosides.
Collapse
Affiliation(s)
- Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Van Binh Nguyen
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jo Koo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ik Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Gangwon-do, 24341, Republic of Korea
| | - Dae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - You Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byeol Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
153
|
Transcriptome Analysis of Bael (Aegle marmelos (L.) Corr.) a Member of Family Rutaceae. FORESTS 2018. [DOI: 10.3390/f9080450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aegle marmelos (L.) Corr. is a medicinally and horticulturally important tree member of the family Rutaceae. It is native to India, where it is also known as Bael. Despite its importance, the genomic resources of this plant are scarce. This study presented the first-ever report of expressed transcripts in the leaves of Aegle marmelos. A total of 133,616 contigs were assembled to 46,335 unigenes with minimum and maximum lengths of 201 bp and 14,853 bp, respectively. There were 7002 transcription factors and 94,479 simple sequence repeat (SSR) markers. The A. marmelos transcripts were also annotated based on information from other members of Rutaceae; namely Citrus clementina and Citrus sinensis. A total of 482 transcripts were annotated as cytochrome p450s (CYPs), and 314 transcripts were annotated as glucosyltransferases (GTs). In the A. marmelos leaves, the monoterpenoid biosynthesis pathway was predominant. This study provides an important genomic resource along with useful information about A. marmelos.
Collapse
|
154
|
Salim V, Jones AD, DellaPenna D. Camptotheca acuminata 10-hydroxycamptothecin O-methyltransferase: an alkaloid biosynthetic enzyme co-opted from flavonoid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:112-125. [PMID: 29681057 DOI: 10.1111/tpj.13936] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The medicinal plant Camptotheca acuminata accumulates camptothecin, 10-hydroxycamptothecin, and 10-methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10-hydroxycamptothecin O-methyltransferase (Ca10OMT), a member of the Diverse subclade of class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A-ring 7-OH of flavonoids, which is structurally equivalent to the 10-OH of 10-hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3-D positioning of the 7-OH, A- and C-rings of flavonoids is nearly identical to the 10-OH, A- and B-rings of 10-hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10-hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7-OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMTin vivo is 10-hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non-inhibitory flavonoid glycosides.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824-1319, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824-1319, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824-1319, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824-1319, USA
| |
Collapse
|
155
|
Yuan S, Liu M, Yang Y, He JM, Wang YN, Kong JQ. Transcriptome-Wide Identification of an Aurone Glycosyltransferase with Glycosidase Activity from Ornithogalum saundersiae. Genes (Basel) 2018; 9:E327. [PMID: 29958449 PMCID: PMC6071076 DOI: 10.3390/genes9070327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023] Open
Abstract
Aurone glycosides display a variety of biological activities. However, reports about glycosyltransferases (GTs) responsible for aurones glycosylation are limited. Here, the transcriptome-wide discovery and identification of an aurone glycosyltransferase with glycosidase activity is reported. Specifically, a complementary DNA (cDNA), designated as OsUGT1, was isolated from the plant Ornithogalum saundersiae based on transcriptome mining. Conserved domain (CD)-search speculated OsUGT1 as a flavonoid GT. Phylogenetically, OsUGT1 is clustered as the same phylogenetic group with a putative 5,6-dihydroxyindoline-2-carboxylic acid (cyclo-DOPA) 5-O-glucosyltransferase, suggesting OsUGT1 may be an aurone glycosyltransferase. The purified OsUGT1 was therefore used as a biocatalyst to incubate with the representative aurone sulfuretin. In vitro enzymatic analyses showed that OsUGT1 was able to catalyze sulfuretin to form corresponding monoglycosides, suggesting OsUGT1 was indeed an aurone glycosyltransferase. OsUGT1 was observed to be a flavonoid GT, specific for flavonoid substrates. Moreover, OsUGT1 was demonstrated to display transglucosylation activity, transferring glucosyl group to sulfuretin via o-Nitrophenyl-β-d-glucopyranoside (oNP-β-Glc)-dependent fashion. In addition, OsUGT1-catalyzed hydrolysis was observed. This multifunctionality of OcUGT1 will broaden the application of OcUGT1 in glycosylation of aurones and other flavonoids.
Collapse
Affiliation(s)
- Shuai Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Ming Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Yan Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Jiu-Ming He
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Ya-Nan Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| |
Collapse
|
156
|
Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Alatar AA, Cantini C, Cai G, Hausman JF, Siddiqui KS, Hernández-Sotomayor SMT, Faisal M. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes (Basel) 2018; 9:E309. [PMID: 29925808 PMCID: PMC6027220 DOI: 10.3390/genes9060309] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon.
Collapse
Affiliation(s)
- Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
- Trees and timber institute-National research council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - J Armando Muñoz-Sanchez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 # 130 X 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.
| | - Fabio Apone
- Arterra Biosciences srl/Vitalab srl, via B. Brin 69, 80142 Naples, Italy.
| | - Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Ahmad A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Claudio Cantini
- Trees and timber institute-National research council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Khawar Sohail Siddiqui
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia.
| | - S M Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 # 130 X 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
157
|
Feng K, Xu ZS, Liu JX, Li JW, Wang F, Xiong AS. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.). PLANTA 2018; 247:1363-1375. [PMID: 29520459 DOI: 10.1007/s00425-018-2870-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/01/2018] [Indexed: 05/18/2023]
Abstract
This study showed that a galactosyltransferase, AgUCGalT1, is involved in anthocyanin galactosylation in purple celery. Celery is a well-known vegetable because of its rich nutrients, low calories, and medicinal values. Its petioles and leaf blades are the main organs acting as nutrient sources. UDP-galactose: cyanidin 3-O-galactosyltransferase can transfer the galactosyl moiety from UDP-galactose to the 3-O-position of cyanidin through glycosylation. This process enhances the stability and water solubility of anthocyanins. In the present study, LC-MS data indicated that abundant cyanidin-based anthocyanins accumulated in the petioles of purple celery ('Nanxuan liuhe purple celery'). A gene encoding UDP-galactose: cyanidin 3-O-galactosyltransferase, namely AgUCGalT1, was isolated from purple celery and expressed in Escherichia coli BL21 (DE3). Sequence alignments revealed that the AgUCGalT1 protein contained a highly conserved putative secondary plant glycosyltransferase (PSPG) motif. The glycosylation product catalyzed by AgUCGalT1 was detected using UPLC equipment. The recombinant AgUCGalT1 had an optimal enzyme activity at 35 °C and pH 8.0, and showed highest enzyme activity toward cyanidin among the enzyme activities involving other substances, namely, peonidin, quercetin, and kaempferol. The expression levels of AgUCGalT1 were positively correlated with the total anthocyanin contents in purple and non-purple celery varieties. Crude enzymes extracted from purple celery exhibited glycosylation ability, whereas crude enzymes obtained from non-purple celery did not have this ability. This work provided evidence as a basis for investigations on the function of AgUCGalT1 in anthocyanin glycosylation in purple celery.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Wen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
158
|
Fidan O, Yan R, Gladstone G, Zhou T, Zhu D, Zhan J. New Insights into the Glycosylation Steps in the Biosynthesis of Sch47554 and Sch47555. Chembiochem 2018; 19:1424-1432. [DOI: 10.1002/cbic.201800105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ozkan Fidan
- Department of Biological Engineering Utah State University 4105 Old Main Hill Logan UT 84322 USA
| | - Riming Yan
- Department of Biological Engineering Utah State University 4105 Old Main Hill Logan UT 84322 USA
- Key Laboratory of Protection and Utilization of Subtropic Plant, Resources of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 P.R. China
| | - Gabrielle Gladstone
- Department of Biological Engineering Utah State University 4105 Old Main Hill Logan UT 84322 USA
| | - Tong Zhou
- Department of Biological Engineering Utah State University 4105 Old Main Hill Logan UT 84322 USA
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant, Resources of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 P.R. China
| | - Jixun Zhan
- Department of Biological Engineering Utah State University 4105 Old Main Hill Logan UT 84322 USA
| |
Collapse
|
159
|
Zagrobelny M, de Castro ÉCP, Møller BL, Bak S. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. INSECTS 2018; 9:E51. [PMID: 29751568 PMCID: PMC6023451 DOI: 10.3390/insects9020051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
Chemical defences are key components in insect⁻plant interactions, as insects continuously learn to overcome plant defence systems by, e.g., detoxification, excretion or sequestration. Cyanogenic glucosides are natural products widespread in the plant kingdom, and also known to be present in arthropods. They are stabilised by a glucoside linkage, which is hydrolysed by the action of β-glucosidase enzymes, resulting in the release of toxic hydrogen cyanide and deterrent aldehydes or ketones. Such a binary system of components that are chemically inert when spatially separated provides an immediate defence against predators that cause tissue damage. Further roles in nitrogen metabolism and inter- and intraspecific communication has also been suggested for cyanogenic glucosides. In arthropods, cyanogenic glucosides are found in millipedes, centipedes, mites, beetles and bugs, and particularly within butterflies and moths. Cyanogenic glucosides may be even more widespread since many arthropod taxa have not yet been analysed for the presence of this class of natural products. In many instances, arthropods sequester cyanogenic glucosides or their precursors from food plants, thereby avoiding the demand for de novo biosynthesis and minimising the energy spent for defence. Nevertheless, several species of butterflies, moths and millipedes have been shown to biosynthesise cyanogenic glucosides de novo, and even more species have been hypothesised to do so. As for higher plant species, the specific steps in the pathway is catalysed by three enzymes, two cytochromes P450, a glycosyl transferase, and a general P450 oxidoreductase providing electrons to the P450s. The pathway for biosynthesis of cyanogenic glucosides in arthropods has most likely been assembled by recruitment of enzymes, which could most easily be adapted to acquire the required catalytic properties for manufacturing these compounds. The scattered phylogenetic distribution of cyanogenic glucosides in arthropods indicates that the ability to biosynthesise this class of natural products has evolved independently several times. This is corroborated by the characterised enzymes from the pathway in moths and millipedes. Since the biosynthetic pathway is hypothesised to have evolved convergently in plants as well, this would suggest that there is only one universal series of unique intermediates by which amino acids are efficiently converted into CNglcs in different Kingdoms of Life. For arthropods to handle ingestion of cyanogenic glucosides, an effective detoxification system is required. In butterflies and moths, hydrogen cyanide released from hydrolysis of cyanogenic glucosides is mainly detoxified by β-cyanoalanine synthase, while other arthropods use the enzyme rhodanese. The storage of cyanogenic glucosides and spatially separated hydrolytic enzymes (β-glucosidases and α-hydroxynitrile lyases) are important for an effective hydrogen cyanide release for defensive purposes. Accordingly, such hydrolytic enzymes are also present in many cyanogenic arthropods, and spatial separation has been shown in a few species. Although much knowledge regarding presence, biosynthesis, hydrolysis and detoxification of cyanogenic glucosides in arthropods has emerged in recent years, many exciting unanswered questions remain regarding the distribution, roles apart from defence, and convergent evolution of the metabolic pathways involved.
Collapse
Affiliation(s)
- Mika Zagrobelny
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
- VILLUM Center for Plant Plasticity, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Søren Bak
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
160
|
He Y, Ahmad D, Zhang X, Zhang Y, Wu L, Jiang P, Ma H. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2018; 18:67. [PMID: 29673318 PMCID: PMC5909277 DOI: 10.1186/s12870-018-1286-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. RESULTS In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. CONCLUSION We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.
Collapse
Affiliation(s)
- Yi He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Dawood Ahmad
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Xu Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Yu Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Lei Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Peng Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Hongxiang Ma
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| |
Collapse
|
161
|
Yuan S, Yin S, Liu M, Kong JQ. Isolation and characterization of a multifunctional flavonoid glycosyltransferase from Ornithogalum caudatum with glycosidase activity. Sci Rep 2018; 8:5886. [PMID: 29651040 PMCID: PMC5897352 DOI: 10.1038/s41598-018-24277-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/29/2018] [Indexed: 12/25/2022] Open
Abstract
Glycosyltransferases (GTs) are bidirectional biocatalysts catalyzing the glycosylation of diverse molecules. However, the extensive applications of GTs in glycosides formation are limited due to their requirements of expensive nucleotide diphosphate (NDP)-sugars or NDP as the substrates. Here, in an effort to characterize flexible GTs for glycodiversification of natural products, we isolated a cDNA, designated as OcUGT1 from Ornithogalum caudatum, which encoded a flavonoid GT that was able to catalyze the trans-glycosylation reactions, allowing the formation of glycosides without the additions of NDP-sugars or NDP. In addition, OcUGT1 was observed to exhibit additional five types of functions, including classical sugar transfer reaction and three reversible reactions namely NDP-sugar synthesis, sugars exchange and aglycons exchange reactions, as well as enzymatic hydrolysis reaction, suggesting OcUGT1 displays both glycosyltransferase and glycosidase activities. Expression profiles revealed that the expression of OcUGT1 was development-dependent and affected by environmental factors. The unusual multifunctionality of OcUGT1 broadens the applicability of OcUGT1, thereby generating diverse carbohydrate-containing structures.
Collapse
Affiliation(s)
- Shuai Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China
| | - Sen Yin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China
| | - Ming Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| |
Collapse
|
162
|
Brauch D, Porzel A, Schumann E, Pillen K, Mock HP. Changes in isovitexin-O-glycosylation during the development of young barley plants. PHYTOCHEMISTRY 2018; 148:11-20. [PMID: 29421507 DOI: 10.1016/j.phytochem.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 05/20/2023]
Abstract
Phenylpropanoids are a class of plant natural products that have many biological functions, including stress defence. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens. Although the phenylpropanoid composition of barley has recently been addressed in more detail, the biosynthesis and regulation of this pathway have not been fully established. Barley introgression lines, such as the S42IL-population offer a set of genetically diverse plants that enable the correlation of metabolic data to distinct genetic regions on the barley genome and, subsequently, identification of relevant genes. The phenylpropanoid profiles of the first and third leaf of barley seedlings in Scarlett and four members of the S42IL-population were obtained by LC-MS. Comparison of the leaf profiles revealed a change in the glycosylation pattern of the flavone-6-C-glucoside isovitexin in the elite cultivar Scarlett. The change was characterized by the stepwise decrease in isovitexin-7-O-glucoside (saponarin) and an increase in isovitexin-2″-O-β-D-glucoside content. The lines S42IL-101-, -177 and -178 were completely devoid of isovitexin-2″-O-β-D-glucoside. Parallel glucosyltransferase assays were consistent with the observed metabolic patterns. The genetic region responsible for this metabolic effect was located on chromosome 1H between 0.21 and 15.08 cM, encompassing 505 gene candidates in the genome of the sequenced cultivar Morex. Only one of these genes displayed sequence similarity with glucosyltransferases of plant secondary metabolism that possessed the characteristic PSPG motif.
Collapse
Affiliation(s)
- Dominic Brauch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466 Seeland, Germany
| | - Andrea Porzel
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Erika Schumann
- Martin-Luther-University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle (Saale), Germany
| | - Klaus Pillen
- Martin-Luther-University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle (Saale), Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466 Seeland, Germany.
| |
Collapse
|
163
|
Ibdah M, Martens S, Gang DR. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2273-2280. [PMID: 29171271 DOI: 10.1021/acs.jafc.7b04445] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Newe Ya'ar Research Center , Agriculture Research Organization , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione , Fondazione Edmund Mach , Via E. Mach 1 , 38010 San Michele all'Adige , Trentino , Italy
| | - David R Gang
- Institute of Biological Chemistry , Washington State University , Post Office Box 646340, Pullman , Washington 99164-6340 , United States
| |
Collapse
|
164
|
Feng K, Xu ZS, Que F, Liu JX, Wang F, Xiong AS. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. PLANTA 2018; 247:301-315. [PMID: 28965159 DOI: 10.1007/s00425-017-2783-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
165
|
Rehman HM, Nawaz MA, Shah ZH, Ludwig-Müller J, Chung G, Ahmad MQ, Yang SH, Lee SI. Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci Rep 2018; 8:1875. [PMID: 29382843 PMCID: PMC5789830 DOI: 10.1038/s41598-018-19535-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022] Open
Abstract
In plants, UGTs (UDP-glycosyltransferases) glycosylate various phytohormones and metabolites in response to biotic and abiotic stresses. Little is known about stress-responsive glycosyltransferases in plants. Therefore, it is important to understand the genomic and transcriptomic portfolio of plants with regard to biotic and abiotic stresses. Here, we identified 140, 154, and 251 putative UGTs in Brassica rapa, Brassica oleracea, and Brassica napus, respectively, and clustered them into 14 major phylogenetic groups (A–N). Fourteen major KEGG pathways and 24 biological processes were associated with the UGTs, highlighting them as unique modulators against environmental stimuli. Putative UGTs from B. rapa and B. oleracea showed a negative selection pressure and biased gene fractionation pattern during their evolution. Polyploidization increased the intron proportion and number of UGT-containing introns among Brassica. The putative UGTs were preferentially expressed in developing tissues and at the senescence stage. Differential expression of up- and down-regulated UGTs in response to phytohormone treatments, pathogen responsiveness and abiotic stresses, inferred from microarray and RNA-Seq data in Arabidopsis and Brassica broaden the glycosylation impact at the molecular level. This study identifies unique candidate UGTs for the manipulation of biotic and abiotic stress pathways in Brassica and Arabidopsis.
Collapse
Affiliation(s)
- Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Korea
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Korea
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Korea
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 6000, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Korea.
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea.
| |
Collapse
|
166
|
Han Z, Zhang J, Cai S, Chen X, Quan X, Zhang G. Association mapping for total polyphenol content, total flavonoid content and antioxidant activity in barley. BMC Genomics 2018; 19:81. [PMID: 29370751 PMCID: PMC5784657 DOI: 10.1186/s12864-018-4483-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/16/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The interest has been increasing on the phenolic compounds in plants because of their nutritive function as food and the roles regulating plant growth. However, their underlying genetic mechanism in barley is still not clear. RESULTS A genome-wide association study (GWAS) was conducted for total phenolic content (TPC), total flavonoid content (FLC) and antioxidant activity (AOA) in 67 cultivated and 156 Tibetan wild barley genotypes. Most markers associated with phenolic content were different in cultivated and wild barleys. The markers bPb-0572 and bPb-4531 were identified as the major QTLs controlling phenolic compounds in Tibetan wild barley. Moreover, the marker bPb-4531 was co-located with the UDP- glycosyltransferase gene (HvUGT), which is a homolog to Arabidopsis UGTs and involved in biosynthesis of flavonoid glycosides . CONCLUSIONS GWAS is an efficient tool for exploring the genetic architecture of phenolic compounds in the cultivated and Tibetan wild barleys. The DArT markers applied in this study can be used in barley breeding for developing new barley cultivars with higher phenolics content. The candidate gene (HvUGT) provides a potential route for deep understanding of the molecular mechanism of flavonoid synthesis.
Collapse
Affiliation(s)
- Zhigang Han
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058 China
| | - Jingjie Zhang
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058 China
| | - Shengguan Cai
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohui Chen
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoyan Quan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Guoping Zhang
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
167
|
Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:1575-1585. [DOI: 10.1007/s00253-018-8747-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
|
168
|
Liu X, Lin C, Ma X, Tan Y, Wang J, Zeng M. Functional Characterization of a Flavonoid Glycosyltransferase in Sweet Orange ( Citrus sinensis). FRONTIERS IN PLANT SCIENCE 2018; 9:166. [PMID: 29497429 PMCID: PMC5818429 DOI: 10.3389/fpls.2018.00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/30/2018] [Indexed: 05/06/2023]
Abstract
Fruits of sweet orange (Citrus sinensis), a popular commercial Citrus species, contain high concentrations of flavonoids beneficial to human health. These fruits predominantly accumulate O-glycosylated flavonoids, in which the disaccharides [neohesperidose (rhamnosyl-α-1,2-glucose) or rutinose (rhamnosyl-α-1,6-glucose)] are linked to the flavonoid aglycones through the 3- or 7-hydroxyl sites. The biotransformation of the flavonoid aglycones into O-rutinosides or O-neohesperidosides in the Citrus plants usually consists of two glycosylation reactions involving a series of uridine diphosphate-sugar dependent glycosyltransferases (UGTs). Although several genes encoding flavonoid UGTs have been functionally characterized in the Citrus plants, full elucidation of the flavonoid glycosylation process remains elusive. Based on the available genomic and transcriptome data, we isolated a UGT with a high expression level in the sweet orange fruits that possibly encodes a flavonoid glucosyltransferase and/or rhamnosyltransferase. Biochemical analyses revealed that a broad range of flavonoid substrates could be glucosylated at their 3- and/or 7-hydrogen sites by the recombinant enzyme, including hesperetin, naringenin, diosmetin, quercetin, and kaempferol. Furthermore, overexpression of the gene could significantly increase the accumulations of quercetin 7-O-rhamnoside, quercetin 7-O-glucoside, and kaempferol 7-O-glucoside, implying that the enzyme has flavonoid 7-O-glucosyltransferase and 7-O-rhamnosyltransferase activities in vivo.
Collapse
Affiliation(s)
- Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Cailing Lin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xiaodi Ma
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yan Tan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jiuzhao Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- *Correspondence: Ming Zeng,
| |
Collapse
|
169
|
Akere A, Liu Q, Wu S, Hou B, Yang M. High throughput mass spectrometry-based characterisation of Arabidopsis thaliana group H glycosyltransferases. RSC Adv 2018; 8:30080-30086. [PMID: 35546822 PMCID: PMC9085408 DOI: 10.1039/c8ra03947j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/06/2018] [Indexed: 11/21/2022] Open
Abstract
In this report, we cloned and characterised four members of group H glycosyltransferases (GTs) by studying their substrate specificities and kinetics. The formation of products and possible glycosylation position was confirmed using MS/MS. The results revealed that 76E1 and 76E5 have broader donor specificity, including UDP-glucose (UDPGlc), UDP-galactose (UDPGal) and UDP-N-acetylglucosamine (UDPGlcNAc) with various flavonoids as acceptor substrates. Pseudo-single substrate kinetics data showed a relatively low KM, indicating a high affinity for substrate UDPGlc and also supported that 76E5 is more of a galactosyl and N-acetylglucosamine transferase. Sequence alignment and site-directed mutagenesis studies indeed suggested that serine is a crucial residue in the UDPGlcNAc and UDPGal activity. We cloned and characterised four group H glycosyltransferases by studying their substrate specificities and kinetics. Sequence alignment and site-directed mutagenesis studies showed that serine is a crucial residue for UDPGlcNAc and UDPGal activity.![]()
Collapse
Affiliation(s)
- Aishat Akere
- The School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Qian Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation
- Ministry of Education of China
- School of Life Sciences
- Shandong University
- Jinan
| | - Shibo Wu
- The School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Bingkai Hou
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation
- Ministry of Education of China
- School of Life Sciences
- Shandong University
- Jinan
| | - Min Yang
- The School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| |
Collapse
|
170
|
Li Q, Yu HM, Meng XF, Lin JS, Li YJ, Hou BK. Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:10-19. [PMID: 28902451 DOI: 10.1111/plb.12627] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
Although plant glycosyltransferases are thought to play important roles in growth and interaction with the environment, little is known about their physiological roles for most members of the plant glycosyltransferase family. We cloned and characterised an Arabidopsis glycosyltransferase gene, UGT76E11. Its in vivo physiological effects on flavonoid accumulation and plant tolerance to abiotic stresses were investigated. The UGT76E11 gene was up-regulated in transcription expression under stress conditions of salinity, drought and H2 O2 treatment. Transgenic plants ectopically overexpressing UGT76E11 showed substantially enhanced tolerance to salinity and drought at germination and during post-germination growth. Enzyme activity of UGT76E11 to glucosylate quercetin and other flavonoids was confirmed. Ectopic expression of UGT76E11 resulted in significantly increased flavonoid content in transgenic plants compared to wild type, suggesting a contribution of UGT76E11 to modulation of flavonoid metabolism. Consistent with this result, several biosynthesis genes in the flavonoid pathway were clearly up-regulated in transgenic plants. Furthermore, overexpression of UGT76E11 also enhanced the scavenging capacity for ROS and increased expression levels of a number of stress-related genes. Based on these results, we suggest that the glycosyltransferase UGT76E11 plays an important role in modulating flavonoid metabolism and enhancing plant adaptation to environmental stresses. Our findings might allow use of glycosyltransferase UGT76E11 in crop improvement, towards both enhanced stress tolerance and increased flavonoid accumulation.
Collapse
Affiliation(s)
- Qin Li
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Hui-Min Yu
- School of Life Science, QiLu Normal University, Jinan, Shandong, China
| | - Xia-Fei Meng
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Ji-Shan Lin
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yan-Jie Li
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Bing-Kai Hou
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
171
|
Su X, Shen G, Di S, Dixon RA, Pang Y. Characterization of UGT716A1 as a Multi-substrate UDP:Flavonoid Glucosyltransferase Gene in Ginkgo biloba. FRONTIERS IN PLANT SCIENCE 2017; 8:2085. [PMID: 29270187 PMCID: PMC5725826 DOI: 10.3389/fpls.2017.02085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 05/10/2023]
Abstract
Ginkgo biloba L., a "living fossil" and medicinal plant, is a well-known rich source of bioactive flavonoids. The molecular mechanism underlying the biosynthesis of flavonoid glucosides, the predominant flavonoids in G. biloba, remains unclear. To better understand flavonoid glucosylation in G. biloba, we generated a transcriptomic dataset of G. biloba leaf tissue by high-throughput RNA sequencing. We identified 25 putative UDP-glycosyltransferase (UGT) unigenes that are potentially involved in the flavonoid glycosylation. Among them, we successfully isolated and expressed eight UGT genes in Escherichia coli, and found that recombinant UGT716A1 protein was active toward broad range of flavonoid/phenylpropanoid substrates. In particular, we discovered the first recombinant UGT protein, UGT716A1 from G. biloba, possessing unique activity toward flavanol gallates that have been extensively documented to have significant bioactivity relating to human health. UGT716A1 expression level paralleled the flavonoid distribution pattern in G. biloba. Ectopic over-expression of UGT716A1 in Arabidopsis thaliana led to increased accumulation of several flavonol glucosides. Identification and comparison of the in vitro enzymatic activity of UGT716A1 homologs revealed a UGT from the primitive land species Physcomitrella patens also showed broader substrate spectrum than those from higher plants A. thaliana, Vitis vinifera, and Medicago truncatula. The characterization of UGT716A1 from G. biloba bridges a gap in the evolutionary history of UGTs in gymnosperms. We also discuss the implication of UGT716A1 for biosynthesis, evolution, and bioengineering of diverse glucosylated flavonoids.
Collapse
Affiliation(s)
- Xiaojia Su
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoan Shen
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shaokang Di
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX, United States
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yongzhen Pang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
172
|
Kim OT, Jin ML, Lee DY, Jetter R. Characterization of the Asiatic Acid Glucosyltransferase, UGT73AH1, Involved in Asiaticoside Biosynthesis in Centella asiatica (L.) Urban. Int J Mol Sci 2017; 18:E2630. [PMID: 29210992 PMCID: PMC5751233 DOI: 10.3390/ijms18122630] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/27/2023] Open
Abstract
Centella asiatica (L.) Urban contains two ursane-type triterpene saponins, asiaticoside and madecassoside, as major secondary metabolites. In order to select candidate genes encoding UDP-glucosyltransferases (UGTs) involved in asiaticoside biosynthesis, we performed transcriptomic analysis of leaves elicited by methyl jasmonate (MeJA). Among the unigenes, 120 isotigs and 13 singletons of unique sequences were annotated as UGTs, including 37 putative full-length cDNAs, and 15 of the putative UGT genes were named according to the UGT committee nomenclature protocols. One of them, UGT73AH1, was characterized by heterologous expression in Escherichia coli BL21 (DE3) cells. After induction with IPTG, a total protein extract was assayed with UDP-glucose and asiatic acid. UPLC-QTOF/MS analysis showed that UGT73AH1 catalyzes the glycosylation of asiatic acid to its monoglucoside. It remains unclear whether glycosylation occurs on the triterpene C-2α, C-3β, C-23, or C-28 position. However, it is very likely that UGT73AH1 glucosylates the C-28 position, because only C-28 bears a glucose moiety in the final pathway product of asiatic acid, while C-2α, C-3β, and C-23 remain un-conjugated.
Collapse
Affiliation(s)
- Ok Tae Kim
- Department of Herbal Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Mei Lan Jin
- Department of Herbal Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Dae Young Lee
- Department of Herbal Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
173
|
Inoue S, Moriya T, Morita R, Kuwata K, Thul ST, Sarangi BK, Minami Y. Characterization of UDP-glucosyltransferase from Indigofera tinctoria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:226-233. [PMID: 29156217 DOI: 10.1016/j.plaphy.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/11/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Indican is a secondary metabolite in Indigofera tinctoria; its synthesis from indoxyl and UDP-glucose is catalyzed by a UDP-glucosyltransferase (UGT). In this study, we partially purified UGT extracted from I. tinctoria leaves and analyzed the protein by peptide mass fingerprinting. We identified two fragments that were homologous to UGT after comparison with the transcriptomic data of I. tinctoria leaves. The fragments were named itUgt1 and itUgt2 and were amplified using rapid amplification of cDNA ends polymerase chain reaction to obtain full-length cDNAs. The resultant nucleotide sequences of itUgt1 and itUgt2 encoded peptides of 477 and 475 amino acids, respectively. The primary structure of itUGT1 was 89% identical to that of itUGT2 and contained an important plant secondary product glycosyltransferase (PSPG) box sequence and a UGT motif. The recombinant proteins expressed in Escherichia coli were found to possess high indican synthesis activity. Although the properties of the two proteins itUGT1 and itUGT2 were very similar, itUGT2 was more stable at high temperatures than itUGT1. Expression levels of itUGT mRNA and protein in plant tissues were examined by UGT assay, immunoblotting, and semi-quantitative reverse transcription polymerase chain reaction. So far, we presume that itUGT1, but not itUGT2, primarily catalyzes indican synthesis in I. tinctoria leaves.
Collapse
Affiliation(s)
- Shintaro Inoue
- Okayama University of Science, Department of Biochemistry, Faculty of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Toshiki Moriya
- Okayama University of Science, Department of Biochemistry, Faculty of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Rihito Morita
- Okayama University of Science, Department of Biochemistry, Faculty of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Sanjog T Thul
- CSIR-National Environmental Engineering Research Institute (NEERI), Department of Science & Technology, Govt. of India, Nehru Marg, Nagpur 440020, India
| | - Bijaya K Sarangi
- CSIR-National Environmental Engineering Research Institute (NEERI), Department of Science & Technology, Govt. of India, Nehru Marg, Nagpur 440020, India
| | - Yoshiko Minami
- Okayama University of Science, Department of Biochemistry, Faculty of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
174
|
Yin Q, Shen G, Di S, Fan C, Chang Z, Pang Y. Genome-Wide Identification and Functional Characterization of UDP-Glucosyltransferase Genes Involved in Flavonoid Biosynthesis in Glycine max. PLANT & CELL PHYSIOLOGY 2017; 58:1558-1572. [PMID: 28633497 DOI: 10.1093/pcp/pcx081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/26/2017] [Indexed: 05/20/2023]
Abstract
Flavonoids, natural products abundant in the model legume Glycine max, confer benefits to plants and to animal health. Flavonoids are present in soybean mainly as glycoconjugates. However, the mechanisms of biosynthesis of flavonoid glycosides are largely unknown in G. max. In the present study, 212 putative UDP-glycosyltransferase (UGT) genes were identified in G. max by genome-wide searching. The GmUGT genes were distributed differentially among the 20 chromosomes, and they were expressed in various tissues with distinct expression profiles. We further analyzed the enzymatic activities of 11 GmUGTs that are potentially involved in flavonoid glycosylation, and found that six of them (UGT72X4, UGT72Z3, UGT73C20, UGT88A13, UGT88E19 and UGT92G4) exhibited activity toward flavonol, isoflavone, flavone and flavanol aglycones with different kinetic properties. Among them, UGT72X4, UGT72Z3 and UGT92G4 are flavonol-specific UGTs, and UGT73C20 and UGT88E19 exhibited activity toward both flavonol and isoflavone aglycones. In particular, UGT88A13 exhibited activity toward epicatechin, but not for the flavonol aglycones kaempferol and quercetin. Overexpression of these six GmUGT genes significantly increased the contents of isoflavone and flavonol glucosides in soybean hairy roots. In addition, overexpression of these six GmUGT genes also affected flavonol glycoside contents differently in seedlings and seeds of transgenic Arabidopsis thaliana. We provide valuable information on the identification of all UGT genes in soybean, and candidate GmUGT genes for potential metabolic engineering of flavonoid compounds in both Escherichia coli and plants.
Collapse
Affiliation(s)
- Qinggang Yin
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Guoan Shen
- Key Laboratory of Plant Molecular and Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shaokang Di
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Cunying Fan
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yongzhen Pang
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
175
|
Zhan X, Shen Q, Wang X, Hong Y. The Sulfoquinovosyltransferase-like Enzyme SQD2.2 is Involved in Flavonoid Glycosylation, Regulating Sugar Metabolism and Seed Setting in Rice. Sci Rep 2017; 7:4685. [PMID: 28680100 PMCID: PMC5498572 DOI: 10.1038/s41598-017-04002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Seed setting is an important trait that contributes to seed yield and relies greatly on starch accumulation. In this study, a sulfoquinovosyl transferase-like protein, designated as SQD2.2 involved in seed setting and flavonoid accumulation, was identified and characterized in rice. Rice SQD2.2 is localized to the cytoplasm, and the SQD2.2 transcript was highest in leaves. Rice SQD2.2-overexpressing (OE) plants exhibited a decreased seed setting rate and diminished tiller number simultaneously with an increased glycosidic flavonoid level compared with wild-type (WT) plants. SQD2.2 catalyzes the glycosylation of apigenin to produce apigenin 7-O-glucoside using uridine diphosphate-glucose (UDPG) as a sugar donor, but it failed to compensate for sulfoquinovosyldiacylglycerol (SQDG) synthesis in the Arabidopsis sqd2 mutant. Furthermore, apigenin 7-O-glucoside inhibited starch synthase (SS) activity in a concentration-dependent manner, and SQD2.2-OE plants exhibited reduced SS activity accompanied by a significant reduction in starch levels and an elevation in soluble sugar levels relative to WT plants. Both adenosine diphosphate-glucose (ADPG) and UDPG levels in SQD2.2-OE plants were notably lower than those in WT plants. Taken together, rice SQD2.2 exhibits a novel role in flavonoid synthesis and plays an important role in mediating sugar allocation between primary and secondary metabolism in rice.
Collapse
Affiliation(s)
- Xinqiao Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingwen Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
176
|
Lee D, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha S, Choi YD, Kim J. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:754-764. [PMID: 27892643 PMCID: PMC5425393 DOI: 10.1111/pbi.12673] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 05/02/2023]
Abstract
Drought has a serious impact on agriculture worldwide. A plant's ability to adapt to rhizosphere drought stress requires reprogramming of root growth and development. Although physiological studies have documented the root adaption for tolerance to the drought stress, underlying molecular mechanisms is still incomplete, which is essential for crop engineering. Here, we identified OsNAC6-mediated root structural adaptations, including increased root number and root diameter, which enhanced drought tolerance. Multiyear drought field tests demonstrated that the grain yield of OsNAC6 root-specific overexpressing transgenic rice lines was less affected by drought stress than were nontransgenic controls. Genome-wide analyses of loss- and gain-of-function mutants revealed that OsNAC6 up-regulates the expression of direct target genes involved in membrane modification, nicotianamine (NA) biosynthesis, glutathione relocation, 3'-phophoadenosine 5'-phosphosulphate accumulation and glycosylation, which represent multiple drought tolerance pathways. Moreover, overexpression of NICOTIANAMINE SYNTHASE genes, direct targets of OsNAC6, promoted the accumulation of the metal chelator NA and, consequently, drought tolerance. Collectively, OsNAC6 orchestrates novel molecular drought tolerance mechanisms and has potential for the biotechnological development of high-yielding crops under water-limiting conditions.
Collapse
Affiliation(s)
- Dong‐Keun Lee
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Jin Seo Jeong
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Geupil Jang
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Seung Woon Bang
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Sun‐Hwa Ha
- Department of Genetic Engineering and Graduate School of BiotechnologyKyung Hee UniversityYonginKorea
| | - Yang Do Choi
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Ju‐Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| |
Collapse
|
177
|
Enzymatic glucosylation of unnatural naphthols by a promiscuous glycosyltransferase from Aloe arborescens. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
178
|
Li P, Li YJ, Wang B, Yu HM, Li Q, Hou BK. The Arabidopsis UGT87A2, a stress-inducible family 1 glycosyltransferase, is involved in the plant adaptation to abiotic stresses. PHYSIOLOGIA PLANTARUM 2017; 159:416-432. [PMID: 27747895 DOI: 10.1111/ppl.12520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 05/08/2023]
Abstract
Glycosyltransferase (GT) family-1, the biggest GT family in plants, typically participates in modification of small molecules and affects many aspects during plant development. In Arabidopsis thaliana, although some UDP glycosyltransferases (UGTs) of family-1 have been functionally characterized, functions of most the UGTs remain unknown or fragmentary. Here, we report data for the Arabidopsis UGT87A2, a stress-regulated GT. We found that UGT87A2 could be dramatically induced by salinity, osmotic stress, drought and ABA. Overexpression of UGT87A2 (87A2OE) leads to accelerated germination and greening, higher survival rate as well as increased root length against abiotic stresses compared with those of wild-type (WT) plants. In addition, we observed lower water loss rate in the 87A2OE plants due to smaller stomatal apertures. The transgenic plants also showed reduced levels of H2 O2 and superoxide under low water status compared with those of WT plants. Consistently, function loss of UGT87A2 in ugt87a2 knockout lines resulted in opposite performances under these conditions. A transcriptome profiling revealed that 121 genes were differentially regulated upon UGT87A2 overexpression, and a large number of stress-induced genes were upregulated in UGT87A2 overexpression plants. Expression of seven genes among them were assessed by quantitative real-time polymerase chain reaction (qRT-PCR), including CPK32, CYP81F2, MYB96, DREB2A, FBS1, PUB23 and RAV2 under both control and stress treatments, and the results greatly validated our transcriptome data. Taken together, our findings support an explicit role of UGT87A2 in adaptation to abiotic stresses.
Collapse
Affiliation(s)
- Pan Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, PR China
| | - Yan-Jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, PR China
| | - Bo Wang
- Institute of Applied Chemistry and Biological Engineering, Weifang Engineering Vocational College, Weifang, PR China
| | - Hui-Min Yu
- School of Life Science, QiLu Normal University, Jinan, PR China
| | - Qin Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, PR China
| | - Bing-Kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, PR China
| |
Collapse
|
179
|
Zhou W, Bi H, Zhuang Y, He Q, Yin H, Liu T, Ma Y. Production of Cinnamyl Alcohol Glucoside from Glucose in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2129-2135. [PMID: 28229589 DOI: 10.1021/acs.jafc.7b00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rosin, a cinnamyl alcohol glucoside, is one of the important ingredients in Rhodiola rosea, which is a valuable medicinal herb used for centuries. Rosin displayed multiple biological activities. The traditional method for producing rosin and derivatives is direct extraction from R. rosea, which suffers from limited availability of natural resources and complicated purification procedure. This work achieved de novo biosynthesis of rosin in Escherichia coli. First, a biosynthetic pathway of aglycon cinnamyl alcohol from phenylalanine was constructed. Subsequently, the UGT genes from Rhodiola sachalinensis (UGT73B6) or Arabidopsis thaliana (UGT73C5) were introduced into the above recombinant E. coli strain to produce rosin. Then the phenylalanine metabolic pathway of E. coli was optimized by genetic manipulation, and the production of rosin by the engineered E. coli reached 258.5 ± 8.8 mg/L. This study lays a significant foundation for microbial production of rosin and its derivatives using glucose as the renewable carbon source.
Collapse
Affiliation(s)
- Wei Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Qinglin He
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Hua Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| |
Collapse
|
180
|
Chen HY, Li X. Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:195-203. [PMID: 27411741 DOI: 10.1111/tpj.13271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
UDP-glycosyltransferase (UGT) plays a major role in the diversity and reactivity of plant specialized metabolites by catalyzing the transfer of the sugar moiety from activated UDP-sugars to various acceptors. Arabidopsis UGT89A2 was previously identified from a genome-wide association study as a key factor that affects the differential accumulation of dihydroxybenzoic acid (DHBA) glycosides in distinct Arabidopsis natural accessions, including Col-0 and C24. The in vitro enzyme assays indicate that these distinct metabolic phenotypes reflect the divergence of UGT89A2 enzyme properties in the Col-0 and C24 accessions. UGT89A2 from Col-0 is highly selective toward UDP-xylose as the sugar donor, and the isoform from C24 can utilize both UDP-glucose and UDP-xylose but with a higher affinity to the glucose donor. The sequences of the two isozymes only differ at six amino acid residues. Examination of these amino acid residues in more natural accessions revealed a strong correlation between the amino acid polymorphism at position 153 and the DHBA glycoside accumulation pattern. Site-directed mutagenesis that swapped residue 153 between UGT89A2 from Col-0 and C24 reversed the UDP-sugar preferences, indicating that residue 153 plays an important role in determining sugar donor specificity of UGT89A2. This study provides insight into the key amino acid changes that confer sugar donor selectivity on UGTs, and demonstrates the usefulness of natural variation in understanding the structure-function relationship of enzymes involved in specialized metabolism.
Collapse
Affiliation(s)
- Han-Yi Chen
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xu Li
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
181
|
Wang F, Zhi J, Zhang Z, Wang L, Suo Y, Xie C, Li M, Zhang B, Du J, Gu L, Sun H. Transcriptome Analysis of Salicylic Acid Treatment in Rehmannia glutinosa Hairy Roots Using RNA-seq Technique for Identification of Genes Involved in Acteoside Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:787. [PMID: 28567046 PMCID: PMC5434160 DOI: 10.3389/fpls.2017.00787] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/27/2017] [Indexed: 05/04/2023]
Abstract
Rehmannia glutinosa is a common bulk medicinal material that has been widely used in China due to its active ingredients. Acteoside, one of the ingredients, has antioxidant, antinephritic, anti-inflammatory, hepatoprotective, immunomodulatory, and neuroprotective effects, is usually selected as a quality-control component for R. glutinosa herb in the Chinese Pharmacopeia. The acteoside biosynthesis pathway in R. glutinosa has not yet been clearly established. Herein, we describe the establishment of a genetic transformation system for R. glutinosa mediated by Agrobacterium rhizogenes. We screened the optimal elicitors that markedly increased acteoside accumulation in R. glutinosa hairy roots. We found that acteoside accumulation dramatically increased with the addition of salicylic acid (SA); the optimal SA dose was 25 μmol/L for hairy roots. RNA-seq was applied to analyze the transcriptomic changes in hairy roots treated with SA for 24 h in comparison with an untreated control. A total of 3,716, 4,018, and 2,715 differentially expressed transcripts (DETs) were identified in 0 h-vs.-12 h, 0 h-vs.-24 h, and 12 h-vs.-24 h libraries, respectively. KEGG pathway-based analysis revealed that 127 DETs were enriched in "phenylpropanoid biosynthesis." Of 219 putative unigenes involved in acteoside biosynthesis, 54 were found to be up-regulated at at least one of the time points after SA treatment. Selected candidate genes were analyzed by quantitative real-time PCR (qRT-PCR) in hairy roots with SA, methyl jasmonate (MeJA), AgNO3 (Ag+), and putrescine (Put) treatment. All genes investigated were up-regulated by SA treatment, and most candidate genes were weakly increased by MeJA to some degree. Furthermore, transcription abundance of eight candidate genes in tuberous roots of the high-acteoside-content (HA) cultivar QH were higher than those of the low-acteoside-content (LA) cultivar Wen 85-5. These results will pave the way for understanding the molecular basis of acteoside biosynthesis in R. glutinosa, and can serve as a basis for future validation studies.
Collapse
Affiliation(s)
- Fengqing Wang
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- *Correspondence: Fengqing Wang
| | - Jingyu Zhi
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Lina Wang
- School of Medicine, Henan University of Traditional Chinese MedicineZhengzhou, China
| | - Yanfei Suo
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Caixia Xie
- School of Medicine, Henan University of Traditional Chinese MedicineZhengzhou, China
| | - Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Bao Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jiafang Du
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Li Gu
- College of Crop Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hongzheng Sun
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
182
|
Wu B, Gao L, Gao J, Xu Y, Liu H, Cao X, Zhang B, Chen K. Genome-Wide Identification, Expression Patterns, and Functional Analysis of UDP Glycosyltransferase Family in Peach ( Prunus persica L. Batsch). FRONTIERS IN PLANT SCIENCE 2017; 8:389. [PMID: 28382047 PMCID: PMC5360731 DOI: 10.3389/fpls.2017.00389] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/07/2017] [Indexed: 05/18/2023]
Abstract
Peach (Prunus persica L. Batsch) is a commercial grown fruit trees, important because of its essential nutrients and flavor promoting secondary metabolites. The glycosylation processes mediated by UDP-glycosyltransferases (UGTs) play an important role in regulating secondary metabolites availability. Identification and characterization of peach UGTs is therefore a research priority. A total of 168 peach UGT genes that distributed unevenly across chromosomes were identified based on their conserved PSPG motifs. Phylogenetic analysis of these genes with plant UGTs clustered them into 16 groups (A-P). Comparison of the patterns of intron-extron and their positions within genes revealed one highly conserved intron insertion event in peach UGTs. Tissue specificity, temporal expression patterns in peach fruit during development and ripening, and in response to abiotic stress UV-B irradiation was investigated using RNA-seq strategy. The relationship between UGTs transcript levels and concentrations of glycosylated volatiles was examined to select candidates for functional analysis. Heterologous expressing these candidate genes in Escherichia coli identified UGTs that were involved in the in vitro volatile glycosylation. Our results provide an important source for the identification of functional UGT genes to potential manipulate secondary biosynthesis in peach.
Collapse
|
183
|
Mohanty B, Takahashi H, de los Reyes BG, Wijaya E, Nakazono M, Lee DY. Transcriptional regulatory mechanism of alcohol dehydrogenase 1-deficient mutant of rice for cell survival under complete submergence. RICE (NEW YORK, N.Y.) 2016; 9:51. [PMID: 27681580 PMCID: PMC5040660 DOI: 10.1186/s12284-016-0124-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/22/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Rice is the only crop that germinates and elongates the coleoptile under complete submergence. It has been shown that alcohol dehydrogenase 1 (ADH1)-deficient mutant of rice with reduced alcohol dehydrogenase activity (rad) and reduced ATP level, is viable with much reduced coleoptile elongation under such condition. To understand the altered transcriptional regulatory mechanism of this mutant, we aimed to establish possible relationships between gene expression and cis-regulatory information content. FINDINGS We performed promoter analysis of the publicly available differentially expressed genes in ADH1 mutant. Our results revealed that a crosstalk between a number of key transcription factors (TFs) and different phytohormones altered transcriptional regulation leading to the survival of the mutant. Amongst the key TFs identified, we suggest potential involvement of MYB, bZIP, ARF and ERF as transcriptional activators and WRKY, ABI4 and MYC as transcriptional repressors of coleoptile elongation to maintain metabolite levels for the cell viability. Out of the repressors, WRKY TF is most likely playing a major role in the alteration of the physiological implications associated with the cell survival. CONCLUSIONS Overall, our analysis provides a possible transcriptional regulatory mechanism underlying the survival of the rad mutant under complete submergence in an energy crisis condition and develops hypotheses for further experimental validation.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Benildo G. de los Reyes
- Department of Plant and Soil Science, Texas Tech University, Box 42122, Lubbock, TX 79409-2122 USA
| | - Edward Wijaya
- IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros, Singapore, 138668 Singapore
| |
Collapse
|
184
|
de Costa F, Barber CJS, Reed DW, Covello PS. From Plant Extract to a cDNA Encoding a Glucosyltransferase Candidate: Proteomics and Transcriptomics as Tools to Help Elucidate Saponin Biosynthesis in Centella asiatica. Methods Mol Biol 2016; 1405:43-8. [PMID: 26843164 DOI: 10.1007/978-1-4939-3393-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Centella asiatica (L.) Urban (Apiaceae), a small annual plant that grows in India, Sri Lanka, Malaysia, and other parts of Asia, is well-known as a medicinal herb with a long history of therapeutic uses. The bioactive compounds present in C. asiatica leaves include ursane-type triterpene sapogenins and saponins-asiatic acid, madecassic acid, asiaticoside, and madecassoside. Various bioactivities have been shown for these compounds, although most of the steps in the biosynthesis of triterpene saponins, including glycosylation, remain uncharacterized at the molecular level. This chapter describes an approach that integrates partial enzyme purification, proteomics methods, and transcriptomics, with the aim of reducing the number of cDNA candidates encoding for a glucosyltransferase involved in saponin biosynthesis and facilitating the elucidation of the pathway in this medicinal plant.
Collapse
Affiliation(s)
- Fernanda de Costa
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil.,Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla J S Barber
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK, Canada, S7N 0W9
| | - Darwin W Reed
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK, Canada, S7N 0W9
| | - Patrick S Covello
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK, Canada, S7N 0W9.
| |
Collapse
|
185
|
Mamoon Rehman H, Amjad Nawaz M, Bao L, Hussain Shah Z, Lee JM, Ahmad MQ, Chung G, Yang SH. Genome-wide analysis of Family-1 UDP-glycosyltransferases in soybean confirms their abundance and varied expression during seed development. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:87-97. [PMID: 27721120 DOI: 10.1016/j.jplph.2016.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 05/13/2023]
Abstract
Family-1 UDP-glycosyltransferases (EC 2.4.1.x; UGTs) are enzymes that glycosylate aglycones into glycoside-associated compounds with improved transport and water solubility. This glycosylation mechanism is vital to plant functions, such as regulation of hormonal homeostasis, growth and development, xenobiotic detoxification, stress response, and biosynthesis of secondary metabolites. Here, we report a genome-wide analysis of soybean that identified 149 putative UGTs based on 44 conserved plant secondary product glycosyl-transferase (PSPG) motif amino acid sequences. Phylogenetic analysis against 22 referenced UGTs from Arabidopsis and maize clustered the putative UGTs into 15 major groups (A-O); J, K, and N were not represented, but the UGTs were distributed across all chromosomes except chromosome 04. Leucine was the most abundant amino acid across all 149 UGT peptide sequences. Two conserved introns (C1 and C2) were detected in the most intron-containing UGTs. Publicly available microarray data on their maximum expression in the seed developmental stage were further confirmed using Affymetrix soybean IVT array and RNA sequencing data. The UGT expression models were designed, based on reads per kilobase of gene model per million mapped read (RPKM) values confirmed their maximally varied expression at globular and early maturation stages of seed development.
Collapse
Affiliation(s)
- Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 550-749, Republic of Korea
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 550-749, Republic of Korea
| | - Le Bao
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 550-749, Republic of Korea
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdul-Aziz University Jeddah, Saudi Arabia
| | - Jae-Min Lee
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 550-749, Republic of Korea
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 6000, Pakistan
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 550-749, Republic of Korea.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 550-749, Republic of Korea
| |
Collapse
|
186
|
Cho AR, Lee SJ, Kim BG, Ahn JH. Biosynthesis of three N-acetylaminosugar-conjugated flavonoids using engineered Escherichia coli. Microb Cell Fact 2016; 15:182. [PMID: 27776529 PMCID: PMC5078965 DOI: 10.1186/s12934-016-0582-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Nucleotide sugars serve as sugar donors for the synthesis of various glycones. The biological and chemical properties of glycones can be altered depending which sugar is attached. Bacteria synthesize unusual nucleotide sugars. A novel nucleotide sugar can be synthesized in Escherichia coli by introducing nucleotide biosynthetic genes from other microorganisms into E. coli. The engineered E. coli strains can be used as a platform for the synthesis of novel glycones. Results Four genes, Pdeg (UDP-N-acetylglucosamine C4,6-dehydratase), Preq (UDP-4-reductase), UDP-GlcNAc 6-DH (UDP-N-acetylglucosamine 6-dehydrogenase), and UXNAcS (UDP-N-acetylxylosamine synthase), were employed to synthesize UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid, and UDP-N-acetylxylosamine in E. coli. We engineered an E. coli nucleotide sugar biosynthetic pathway to increase the pool of substrate for the target nucleotide sugars. Uridine diphosphate dependent glycosyltransferase (UGT) was also selected and introduced into E. coli. Using engineered E. coli, high levels of three novel flavonoid glycosides were obtained; 158.3 mg/L quercetin 3-O-(N-acetyl)quinovosamine, 172.5 mg/L luteolin 7-O-(N-acetyl)glucosaminuronic acid, and 160.8 mg/L quercetin 3-O-(N-acetyl)xylosamine. Conclusions We reconstructed an E. coli nucleotide pathway for the synthesis of UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid and UDP-N-acetylxylosamine in an E. coli galU (UDP-glucose 1-phosphate uridylyltransferase) or pgm (phosphoglucomutase) deletion mutant. Using engineered E. coli strains harboring a specific UGT, three novel flavonoids glycones were synthesized. The E. coli strains used in this study can be used for the synthesis of diverse glycones. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0582-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Ra Cho
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, South Korea
| | - Su Jin Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, South Korea
| | - Bong Gyu Kim
- Department of Forest Resources, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju, Gyeongsangman-do, 660-758, South Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, South Korea.
| |
Collapse
|
187
|
Zhang T, Liang J, Wang P, Xu Y, Wang Y, Wei X, Fan M. Purification and characterization of a novel phloretin-2'-O-glycosyltransferase favoring phloridzin biosynthesis. Sci Rep 2016; 6:35274. [PMID: 27731384 PMCID: PMC5059724 DOI: 10.1038/srep35274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023] Open
Abstract
Phloretin-2'-O-glycosyltransferase (P2'GT) catalyzes the last glycosylation step in the biosynthesis of phloridzin that contributes to the flavor, color and health benefits of apples and processed apple products. In this work, a novel P2'GT of Malus x domestica (MdP2'GT) with a specific activity of 46.82 μkat/Kg protein toward phloretin and uridine diphosphate glucose (UDPG) at an optimal temperature of 30 °C and pH 8.0 was purified from the engineered Pichia pastoris broth to homogeneity by anion exchange chromatography, His-Trap affinity chromatography and gel filtration. The purified MdP2'GT was low N-glycosylated and secreted as a stable dimer with a molecular mass of 70.7 kDa in its native form. Importantly, MdP2'GT also exhibited activity towards quercetin and adenosine diphosphate glucose (ADPG), kaempferol and UDPG, quercetin and UDP-galactose, isoliquiritigenin and UDPG, and luteolin and UDPG, producing only one isoquercitrin, astragalin, hyperoside, isoliquiritin, or cynaroside, respectively. This broad spectrum of activities make MdP2'GT a promising biocatalyst for the industrial preparation of the corresponding polyphenol glycosides, preferably for their subsequent isolation and purification. Besides, MdP2'GT displayed the lowest Km and the highest kcat/Km for phloretin and UDPG compared to all previously reported P2'GTs, making MdP2'GT favor phloridzin synthesis the most.
Collapse
Affiliation(s)
- Tingjing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Jianqiang Liang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panxue Wang
- Department of Food Science, University of Massachusetts, Amherst, MA01003, USA
| | - Ying Xu
- College of Life Science and Engineering, Shaanxi University of Science &Technology, Xi'an, Shaanxi, 710021, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| |
Collapse
|
188
|
Yahyaa M, Davidovich-Rikanati R, Eyal Y, Sheachter A, Marzouk S, Lewinsohn E, Ibdah M. Identification and characterization of UDP-glucose:Phloretin 4'-O-glycosyltransferase from Malus x domestica Borkh. PHYTOCHEMISTRY 2016; 130:47-55. [PMID: 27316677 DOI: 10.1016/j.phytochem.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Apples (Malus x domestica Brokh.) are among the world's most important food crops with nutritive and medicinal importance. Many of the health beneficial properties of apple fruit are suggested to be due to (poly)phenolic metabolites, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the sweet tasting dihydrochalcones, such as trilobatin, are unknown. To identify candidate genes for involvement in the glycosylation of dihydrochalcones, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Bacillus subtilis phloretin glycosyltransferase. Herein reported is the identification and functional characterization of a Malus x domestica gene encoding phloretin-4'-O-glycosyltransferase designated MdPh-4'-OGT. Recombinant MdPh-4'-OGT protein glycosylates phloretin in the presence of UDP-glucose into trilobatin in vitro. Its apparent Km values for phloretin and UDP-glucose were 26.1 μM and 1.2 mM, respectively. Expression analysis of the MdPh-4'-OGT gene indicated that its transcript levels showed significant variation in apple tissues of different developmental stages.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | | | - Yoram Eyal
- Institute of Plant Science, The Volcani Center, ARO, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Alona Sheachter
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Sally Marzouk
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Efraim Lewinsohn
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Mwafaq Ibdah
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
189
|
Expression of Codon-Optimized Plant Glycosyltransferase UGT72B14 in Escherichia coli Enhances Salidroside Production. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9845927. [PMID: 27597978 PMCID: PMC5002478 DOI: 10.1155/2016/9845927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/18/2022]
Abstract
Salidroside, a plant secondary metabolite in Rhodiola, has been demonstrated to have several adaptogenic properties as a medicinal herb. Due to the limitation of plant source, microbial production of salidroside by expression of plant uridine diphosphate glycosyltransferase (UGT) is promising. However, glycoside production usually remains hampered by poor expression of plant UGTs in microorganisms. Herein, we achieved salidroside production by expression of Rhodiola UGT72B14 in Escherichia coli (E. coli) and codon optimization was accordingly applied. UGT72B14 expression was optimized by changing 278 nucleotides and decreasing the G+C content to 51.05% without altering the amino acid sequence. The effect of codon optimization on UGT72B14 catalysis for salidroside production was assessed both in vitro and in vivo. In vitro, salidroside production by codon-optimized UGT72B14 is enhanced because of a significantly improved protein yield (increased by 4.8-fold) and an equivalently high activity as demonstrated by similar kinetic parameters (KM and Vmax), compared to that by wild-type protein. In vivo, both batch and fed-batch cultivation using the codon-optimized gene resulted in a significant increase in salidroside production, which was up to 6.7 mg/L increasing 3.2-fold over the wild-type UGT72B14.
Collapse
|
190
|
Candar-Cakir B, Arican E, Zhang B. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1727-46. [PMID: 26857916 PMCID: PMC5067666 DOI: 10.1111/pbi.12533] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/15/2015] [Accepted: 12/26/2015] [Indexed: 05/03/2023]
Abstract
Drought stress has adverse impacts on plant production and productivity. MicroRNAs (miRNAs) are one class of noncoding RNAs regulating gene expression post-transcriptionally. In this study, we employed small RNA and degradome sequencing to systematically investigate the tissue-specific miRNAs responsible to drought stress, which are understudied in tomato. For this purpose, root and upground tissues of two different drought-responsive tomato genotypes (Lycopersicon esculentum as sensitive and L. esculentum var. cerasiforme as tolerant) were subjected to stress with 5% polyethylene glycol for 7 days. A total of 699 conserved miRNAs belonging to 578 families were determined and 688 miRNAs were significantly differentially expressed between different treatments, tissues and genotypes. Using degradome sequencing, 44 target genes were identified associated with 36 miRNA families. Drought-related miRNAs and their targets were enriched functionally by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Totally, 53 miRNAs targeted 23 key drought stress- and tissue development-related genes, including DRP (dehydration-responsive protein), GTs (glycosyltransferases), ERF (ethylene responsive factor), PSII (photosystem II) protein, HD-ZIP (homeodomain-leucine zipper), MYB and NAC-domain transcription factors. miR160, miR165, miR166, miR171, miR398, miR408, miR827, miR9472, miR9476 and miR9552 were the key miRNAs functioning in regulation of these genes and involving in tomato response to drought stress. Additionally, plant hormone signal transduction pathway genes were differentially regulated by miR169, miR172, miR393, miR5641, miR5658 and miR7997 in both tissues of both sensitive and tolerant genotypes. These results provide new insight into the regulatory role of miRNAs in drought response with plant hormone signal transduction and drought-tolerant tomato breeding.
Collapse
Affiliation(s)
- Bilgin Candar-Cakir
- Programme of Molecular Biology and Genetics, Institute of Science, Istanbul University, Vezneciler, Istanbul, Turkey
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Ercan Arican
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
191
|
Guo DD, Liu F, Tu YH, He BX, Gao Y, Guo ML. Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis. PLoS One 2016; 11:e0158159. [PMID: 27391785 PMCID: PMC4938162 DOI: 10.1371/journal.pone.0158159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant in China. Flavonoids are the dominant active medical compounds. UDP-glycosyltransferase plays an essential role in the biosynthesis and storage of flavonoids in safflower. In this study, 45 UGT unigenes were screened from our transcriptomic database of safflower. Among them, 27 UGT unigenes were predicted to own a complete open reading frame with various pI and Mw. The phylogenetic tree showed that CtUGT3 and CtUGT16 were classified under the UGT71 subfamily involved in metabolite process, whereas CtUGT25 has high identities with PoUGT both catalyzing the glycosylation of flavonoids and belonging to the UGT90 subfamily. cDNA microarray exhibited that the three UGT genes displayed temporal difference in two chemotype safflower lines. To functionally characterize UGT in safflower, CtUGT3, CtUGT16 and CtUGT25 were cloned and analyzed. Subcellular localization suggested that the three UGTs might be located in the cell cytoplasm and chloroplast. The expression pattern showed that the three UGTs were all suppressed in two lines responsive to methyl jasmonate induction. The co-expression relation of expression pattern and metabolite accumulation demonstrated that CtUGT3 and CtUGT25 were positively related to kaempferol-3-O-β-D-glucoside and CtUGT16 was positively related to quercetin-3-O-β-D-glucoside in yellow line, whereas CtUGT3 and CtUGT25 were positively related to quercetin-3-O-β-D-glucoside in white line. This study indicates that the three CtUGTs play a significant and multiple role in flavonoids biosynthesis with presenting different functional characterization in two safflower lines.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Fei Liu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Yan-Hua Tu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Bei-Xuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Yue Gao
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
- * E-mail: (MLG); (YG)
| | - Mei-Li Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
- * E-mail: (MLG); (YG)
| |
Collapse
|
192
|
Tofighi Z, Amini M, Shirzadi M, Mirhabibi H, Ghazi Saeedi N, Yassa N. Vigna radiata as a New Source for Biotransformation of Hydroquinone to Arbutin. PHARMACEUTICAL SCIENCES 2016. [DOI: 10.15171/ps.2016.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
193
|
An DG, Yang SM, Kim BG, Ahn JH. Biosynthesis of two quercetin O-diglycosides in Escherichia coli. ACTA ACUST UNITED AC 2016; 43:841-9. [DOI: 10.1007/s10295-016-1750-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/15/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.
Collapse
Affiliation(s)
- Dae Gyun An
- grid.258676.8 0000000405328339 Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University 05029 Seoul Korea
| | - So Mi Yang
- grid.258676.8 0000000405328339 Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University 05029 Seoul Korea
| | - Bong Gyu Kim
- grid.440929.2 0000000417707889 Department of Forest Resources Gyeongnam National University of Science and Technology 33 Dongjin-ro, Jinju-si 660-758 Gyeongsangman-do Republic of Korea
| | - Joong-Hoon Ahn
- grid.258676.8 0000000405328339 Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University 05029 Seoul Korea
| |
Collapse
|
194
|
Gao L, Wang Y, Li Z, Zhang H, Ye J, Li G. Gene Expression Changes during the Gummosis Development of Peach Shoots in Response to Lasiodiplodia theobromae Infection Using RNA-Seq. Front Physiol 2016; 7:170. [PMID: 27242544 PMCID: PMC4861008 DOI: 10.3389/fphys.2016.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 01/31/2023] Open
Abstract
Lasiodiplodia theobromae is a causal agent of peach (Prunus persica L.) tree gummosis, a serious disease affecting peach cultivation and production. However, the molecular mechanism underlying the pathogenesis remains unclear. RNA-Seq was performed to investigate gene expression in peach shoots inoculated or mock-inoculated with L. theobromae. A total of 20772 genes were detected in eight samples; 4231, 3750, 3453, and 3612 differentially expressed genes were identified at 12, 24, 48, and 60 h after inoculation, respectively. Furthermore, 920 differentially co-expressed genes (515 upregulated and 405 downregulated) were found, respectively. Gene ontology annotation revealed that phenylpropanoid biosynthesis and metabolism, uridine diphosphate-glucosyltransferase activity, and photosynthesis were the most differentially regulated processes during gummosis development. Significant differences were also found in the expression of genes involved in glycometabolism and in ethylene and jasmonic acid biosynthesis and signaling. These data illustrate the dynamic changes in gene expression in the inoculated peach shoots at the transcriptome level. Overall, gene expression in defense response and glycometabolism might result in the gummosis of peach trees induced by L. theobromae.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Yuting Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest Agriculture and Forestry University Yangling, China
| | - He Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
195
|
Tiwari P, Sangwan RS, Sangwan NS. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnol Adv 2016; 34:714-739. [PMID: 27131396 DOI: 10.1016/j.biotechadv.2016.03.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/06/2016] [Accepted: 03/19/2016] [Indexed: 02/04/2023]
Abstract
The multigene family of enzymes known as glycosyltransferases or popularly known as GTs catalyze the addition of carbohydrate moiety to a variety of synthetic as well as natural compounds. Glycosylation of plant secondary metabolites is an emerging area of research in drug designing and development. The unsurpassing complexity and diversity among natural products arising due to glycosylation type of alterations including glycodiversification and glycorandomization are emerging as the promising approaches in pharmacological studies. While, some GTs with broad spectrum of substrate specificity are promising candidates for glycoengineering while others with stringent specificity pose limitations in accepting molecules and performing catalysis. With the rising trends in diseases and the efficacy/potential of natural products in their treatment, glycosylation of plant secondary metabolites constitutes a key mechanism in biogeneration of their glycoconjugates possessing medicinal properties. The present review highlights the role of glycosyltransferases in plant secondary metabolism with an overview of their identification strategies, catalytic mechanism and structural studies on plant GTs. Furthermore, the article discusses the biotechnological and biomedical application of GTs ranging from detoxification of xenobiotics and hormone homeostasis to the synthesis of glycoconjugates and crop engineering. The future directions in glycosyltransferase research should focus on the synthesis of bioactive glycoconjugates via metabolic engineering and manipulation of enzyme's active site leading to improved/desirable catalytic properties. The multiple advantages of glycosylation in plant secondary metabolomics highlight the increasing significance of the GTs, and in near future, the enzyme superfamily may serve as promising path for progress in expanding drug targets for pharmacophore discovery and development.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India; Center of Innovative and Applied Bioprocessing (CIAB), A National Institute under Department of Biotechnology, Government of India, C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali 160071, Punjab, India
| | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
196
|
Hu Y, Duan S, Zhang Y, Shantharaj D, Jones JB, Wang N. Temporal Transcription Profiling of Sweet Orange in Response to PthA4-Mediated Xanthomonas citri subsp. citri Infection. PHYTOPATHOLOGY 2016; 106:442-451. [PMID: 26780431 DOI: 10.1094/phyto-09-15-0201-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri, is a devastating disease of most commercial citrus varieties. In our previous study, we analyzed the transcriptional response of 'Valencia' sweet orange to X. citri subsp. citri wild-type and pthA4 mutant infection at 48 h postinoculation (hpi). Using microarray analysis, two PthA4 targets, CsLOB1 and CsSWEET1, were identified. We have shown that PthA4 binds to the effector binding element (EBE) of CsLOB1 and activates gene expression of this susceptibility gene. However, how PthA4 modulates host genes at different stages of infection remains to be determined. In this study, we compared the transcriptional profiles between citrus leaf tissue inoculated with Xcc306 and those inoculated with a pthA4-deletion mutant strain (Xcc306∆pthA4) at 6, 48, and 120 hpi. At both 48 and 120 hpi, the PthA4-mediated infection significantly upregulated expression of a variety of genes involved in cell-wall degradation and modification, DNA packaging, G-protein, protein synthesis, sucrose metabolism, and cell division functions, while the downregulated genes were mainly enriched in photosynthesis, transport, secondary metabolism, cytochrome P450, and various plant defense-associated mechanisms. To validate microarray results, gene expression of 26 genes representing genes associated with cell-wall-associated, immunity system, and carbohydrate metabolism was confirmed using quantitative reverse-transcription polymerase chain reaction. Expression patterns of these genes at 48 and 120 hpi were consistent with the microarray results. We also identified putative EBE for PthA4 (EBEPthA4) in the promoter regions of multiple genes upregulated by PthA4, to which PthA4 might bind directly to control their gene expression. Our study provided a dynamic picture of citrus genes regulated by PthA4 during the X. citri subsp. citri infection of citrus leaves at different stages. This study will be useful in further understanding the virulence mechanism of X. citri subsp. citri and identifying potential targets of PthA4.
Collapse
Affiliation(s)
- Yang Hu
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Shuo Duan
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Yunzeng Zhang
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Deepak Shantharaj
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Jeffrey B Jones
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Nian Wang
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| |
Collapse
|
197
|
Sun W, Liang L, Meng X, Li Y, Gao F, Liu X, Wang S, Gao X, Wang L. Biochemical and Molecular Characterization of a Flavonoid 3-O-glycosyltransferase Responsible for Anthocyanins and Flavonols Biosynthesis in Freesia hybrida. FRONTIERS IN PLANT SCIENCE 2016; 7:410. [PMID: 27064818 PMCID: PMC4815329 DOI: 10.3389/fpls.2016.00410] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/17/2016] [Indexed: 05/20/2023]
Abstract
The glycosylation of flavonoids increases their solubility and stability in plants. Flowers accumulate anthocyanidin and flavonol glycosides which are synthesized by UDP-sugar flavonoid glycosyltransferases (UFGTs). In our previous study, a cDNA clone (Fh3GT1) encoding UFGT was isolated from Freesia hybrida, which was preliminarily proved to be invovled in cyanidin 3-O-glucoside biosynthesis. Here, a variety of anthocyanin and flavonol glycosides were detected in flowers and other tissues of F. hybrida, implying the versatile roles of Fh3GT1 in flavonoids biosynthesis. To further unravel its multi-functional roles, integrative analysis between gene expression and metabolites was investigated. The results showed expression of Fh3GT1 was positively related to the accumulation of anthocyanins and flavonol glycosides, suggesting its potential roles in the biosynthesis of both flavonoid glycosides. Subsequently, biochemical analysis results revealed that a broad range of flavonoid substrates including flavonoid not naturally occurred in F. hybrida could be recognized by the recombinant Fh3GT1. Both UDP-glucose and UDP-galactose could be used as sugar donors by recombinant Fh3GT1, although UDP-galactose was transferred with relatively low activity. Furthermore, regiospecificity analysis demonstrated that Fh3GT1 was able to glycosylate delphinidin at the 3-, 4-', and 7- positions in a sugar-dependent manner. And the introduction of Fh3GT1 into Arabidopsis UGT78D2 mutant successfully restored the anthocyanins and flavonols phenotypes caused by lost-of-function of the 3GT, indicating that Fh3GT1 functions as a flavonoid 3-O-glucosyltransferase in vivo. In summary, these results demonstrate that Fh3GT1 is a flavonoid 3-O-glycosyltransferase using UDP-glucose as the preferred sugar donor and may involve in flavonoid glycosylation in F. hybrida.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
- College of Life Science, Guizhou Normal UniversityGuiyang, China
| | - Lingjie Liang
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Xiangyu Meng
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Yueqing Li
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Fengzhan Gao
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Xingxue Liu
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
| | - Xiang Gao
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
| | - Li Wang
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| |
Collapse
|
198
|
Wang X, Fan R, Li J, Li C, Zhang Y. Molecular Cloning and Functional Characterization of a Novel (Iso)flavone 4',7-O-diglucoside Glucosyltransferase from Pueraria lobata. FRONTIERS IN PLANT SCIENCE 2016; 7:387. [PMID: 27066037 PMCID: PMC4814453 DOI: 10.3389/fpls.2016.00387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 05/28/2023]
Abstract
Pueraria lobata roots accumulate a rich source of isoflavonoid glycosides, including 7-O- and 4'-O-mono-glucosides, and 4',7-O-diglucosides, which have numerous human health benefits. Although, isoflavonoid 7-O-glucosyltranferases (7-O-UGTs) have been well-characterized at molecular levels in legume plants, genes, or enzymes that are required for isoflavonoid 4'-O- and 4',7-O-glucosylation have not been identified in P. lobata to date. Especially for the 4',7-O-di-glucosylations, the genetic control for this tailing process has never been elucidated from any plant species. Through transcriptome mining, we describe here the identification and characterization of a novel UGT (designated PlUGT2) governing the isoflavonoid 4',7-O-di-glucosylations in P. lobata. Biochemical roles of PlUGT2 were assessed by in vitro assays with PlUGT2 protein produced in Escherichia coli and analyzed for its qualitative substrate specificity. PlUGT2 was active with various (iso)flavonoid acceptors, catalyzing consecutive glucosylation activities at their O-4' and O-7 positions. PlUGT2 was most active with genistein, a general isoflavone in legume plants. Real-time PCR analysis showed that PlUGT2 is preferentially transcribed in roots relative to other organs of P. lobata, which is coincident with the accumulation pattern of 4'-O-glucosides and 4',7-O-diglucosides in P. lobata. The identification of PlUGT2 would help to decipher the P. lobata isoflavonoid glucosylations in vivo and may provide a useful enzyme catalyst for an efficient biotransformation of isoflavones or other natural products for food or pharmacological purposes.
Collapse
|
199
|
Xu L, Qi T, Xu L, Lu L, Xiao M. Recent progress in the enzymatic glycosylation of phenolic compounds. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2015.1137580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
200
|
Devaiah SP, Owens DK, Sibhatu MB, Sarkar TR, Strong CL, Mallampalli VKPS, Asiago J, Cooke J, Kiser S, Lin Z, Wamucho A, Hayford D, Williams BE, Loftis P, Berhow M, Pike LM, McIntosh CA. Identification, Recombinant Expression, and Biochemical Analysis of Putative Secondary Product Glucosyltransferases from Citrus paradisi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1957-1969. [PMID: 26888166 DOI: 10.1021/acs.jafc.5b05430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Flavonoid and limonoid glycosides influence taste properties as well as marketability of Citrus fruit and products, particularly grapefruit. In this work, nine grapefruit putative natural product glucosyltransferases (PGTs) were resolved by either using degenerate primers against the semiconserved PSPG box motif, SMART-RACE RT-PCR, and primer walking to full-length coding regions; screening a directionally cloned young grapefruit leaf EST library; designing primers against sequences from other Citrus species; or identifying PGTs from Citrus contigs in the harvEST database. The PGT proteins associated with the identified full-length coding regions were recombinantly expressed in Escherichia coli and/or Pichia pastoris and then tested for activity with a suite of substrates including flavonoid, simple phenolic, coumarin, and/or limonoid compounds. A number of these compounds were eliminated from the predicted and/or potential substrate pool for the identified PGTs. Enzyme activity was detected in some instances with quercetin and catechol glucosyltransferase activities having been identified.
Collapse
Affiliation(s)
- Shivakumar P Devaiah
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Daniel K Owens
- Natural Products Utilization Research Unit, ARS, U.S. Department of Agriculture , P.O. Box 1848, University, Mississippi 38677, United States
| | - Mebrahtu B Sibhatu
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Tapasree Roy Sarkar
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Christy L Strong
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Venkata K P S Mallampalli
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Josephat Asiago
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Jennifer Cooke
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Starla Kiser
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Zhangfan Lin
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Anye Wamucho
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Deborah Hayford
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Bruce E Williams
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Peri Loftis
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Mark Berhow
- Functional Foods Research Unit, ARS, U.S. Department of Agriculture , Peoria, Illinois 61604, United States
| | - Lee M Pike
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Cecilia A McIntosh
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
- School of Graduate Studies, East Tennessee State University , P.O. Box 70720, Johnson City, Tennessee 37614, United States
| |
Collapse
|