151
|
Fatty acids in energy metabolism of the central nervous system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:472459. [PMID: 24883315 PMCID: PMC4026875 DOI: 10.1155/2014/472459] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022]
Abstract
In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.
Collapse
|
152
|
Darling RA, Zhao H, Kinch D, Li AJ, Simasko SM, Ritter S. Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol 2014; 307:R35-43. [PMID: 24760994 DOI: 10.1152/ajpregu.00536.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
β-mercaptoacetate (MA) is a drug known to block mitochondrial oxidation of medium- and long-chain fatty acids (FAs) and to stimulate feeding. Because MA-induced feeding is vagally dependent, it has been assumed that the feeding response is mediated by MA's antimetabolic action at a peripheral, vagally innervated site. However, MA's site of action has not yet been identified. Therefore, we used fluorescent calcium measurements in isolated neurons from rat nodose ganglia to determine whether MA has direct effects on vagal sensory neurons. We found that MA alone did not alter cytosolic calcium concentrations in nodose neurons. However, MA (60 μM to 6 mM) significantly decreased calcium responses to both linoleic acid (LA; 10 μM) and caprylic acid (C8; 10 μM) in all neurons responsive to LA and C8. GW9508 (40 μM), an agonist of the FA receptor, G protein-coupled receptor 40 (GPR40), also increased calcium levels almost exclusively in FA-responsive neurons. MA significantly inhibited this response to GW9508. MA did not inhibit calcium responses to serotonin, high K(+), or capsaicin, which do not utilize GPRs, or to CCK, which acts on a different GPR. GPR40 was detected in nodose ganglia by RT-PCR. Results suggest that FAs directly activate vagal sensory neurons via GPR40 and that MA antagonizes this effect. Thus, we propose that MA's nonmetabolic actions on GPR40 membrane receptors, expressed by multiple peripheral tissues in addition to the vagus nerve, may contribute to or mediate MA-induced stimulation of feeding.
Collapse
Affiliation(s)
- Rebecca A Darling
- Program in Neuroscience, Washington State University, Pullman, Washington
| | - Huan Zhao
- Program in Neuroscience, Washington State University, Pullman, Washington
| | - Dallas Kinch
- Program in Neuroscience, Washington State University, Pullman, Washington
| | - Ai-Jun Li
- Program in Neuroscience, Washington State University, Pullman, Washington
| | - Steven M Simasko
- Program in Neuroscience, Washington State University, Pullman, Washington
| | - Sue Ritter
- Program in Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
153
|
Gooley JJ, Chua ECP. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J Genet Genomics 2014; 41:231-50. [PMID: 24894351 DOI: 10.1016/j.jgg.2014.04.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 02/04/2023]
Abstract
The circadian timing system plays a key role in orchestrating lipid metabolism. In concert with the solar cycle, the circadian system ensures that daily rhythms in lipid absorption, storage, and transport are temporally coordinated with rest-activity and feeding cycles. At the cellular level, genes involved in lipid synthesis and fatty acid oxidation are rhythmically activated and repressed by core clock proteins in a tissue-specific manner. Consequently, loss of clock gene function or misalignment of circadian rhythms with feeding cycles (e.g., in shift work) results in impaired lipid homeostasis. Herein, we review recent progress in circadian rhythms research using lipidomics, i.e., large-scale profiling of lipid metabolites, to characterize circadian-regulated lipid pathways in mammals. In mice, novel regulatory circuits involved in fatty acid metabolism have been identified in adipose tissue, liver, and muscle. Extensive diversity in circadian regulation of plasma lipids has also been revealed in humans using lipidomics and other metabolomics approaches. In future studies, lipidomics platforms will be increasingly used to better understand the effects of genetic variation, shift work, food intake, and drugs on circadian-regulated lipid pathways and metabolic health.
Collapse
Affiliation(s)
- Joshua J Gooley
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston 02115, USA.
| | - Eric Chern-Pin Chua
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
154
|
Oh YT, Kim J, Kang I, Youn JH. Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male Wistar rats: role of individual free fatty acids. Endocrinology 2014; 155:923-31. [PMID: 24424035 PMCID: PMC3929730 DOI: 10.1210/en.2013-1700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We previously showed that a fall in the plasma free fatty acid (FFA) level increases plasma corticosterone levels in rats by activating the hypothalamic-pituitary-adrenal axis. In the present study, we tested whether this regulation is mediated by specific or all species of FFAs. Nicotinic acid (NA) (30 μmol/h) was infused in rats to decrease plasma FFAs and increase plasma ACTH and corticosterone. The NA infusion was combined with an infusion of lipids with different FFA compositions to selectively prevent falls in individual FFA levels; coconut, olive, and safflower oils (n = 7 for each), which are predominantly (>70%) composed of saturated, monounsaturated (oleic acid), and polyunsaturated (linoleic acid) FFAs, respectively, were used. At an infusion rate (0.1 g/h) that only partially prevented a fall in the total FFA level, coconut oil, but not olive or safflower oil, completely prevented NA-induced increases in plasma ACTH or corticosterone, suggesting that these responses are mainly mediated by saturated FFAs. In addition, quantification of individual FFA species in the blood using FFA-specific fluorescent probes revealed that plasma corticosterone and ACTH correlated significantly with plasma palmitate but not with other FFAs, such as oleate, linoleate, or arachidonate. Taken together, our data suggest that the regulation of the hypothalamic-pituitary-adrenal axis by FFAs is mainly mediated by the saturated fatty acid palmitate, but not by unsaturated fatty acids, such as oleate and linoleate.
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Physiology and Biophysics (Y.T.O., J.K., J.H.Y.), University of Southern California, Keck School of Medicine, Los Angeles, California 90089; and Department of Biochemistry and Molecular Biology (I.K., J.H.Y.), Kyung Hee University, School of Medicine, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
155
|
Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. DIABETES & METABOLISM 2014; 40:29-33. [DOI: 10.1016/j.diabet.2013.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
156
|
Abstract
Autophagy is a catabolic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to lysosomes, where the sequestered material is degraded and recycled. Autophagy is important for maintenance of intracellular energy homeostasis and the quality control of organelles such as the endoplasmic reticulum (ER) and mitochondria, which suggests that dysregulated autophagy might play a role in the pathogenesis of metabolic disorders and diabetes. In an attempt to elucidate the role of autophagy in metabolic disorders, diverse in vivo and in vitro models have been employed. Site-specific autophagy knockout models that are autophagy-deficient specifically in pancreatic β-cells, skeletal muscle, adipose tissues or liver have been produced. These models have generated valuable information regarding the role of autophagy in body metabolism. The role of autophagy in the hypothalamus, which controls whole body energy balance, appetite and energy expenditure, has also been investigated. Thus, mice with autophagy deficiency in the hypothalamus have shown diverse phenotypes (lean vs. obese) depending on the site of autophagy deficiency or the method of autophagy abrogation.
Collapse
Affiliation(s)
- Min-Seon Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | | | | |
Collapse
|
157
|
Xi D, Roizen J, Lai M, Gandhi N, Kublaoui B. Paraventricular nucleus Sim1 neuron ablation mediated obesity is resistant to high fat diet. PLoS One 2013; 8:e81087. [PMID: 24260538 PMCID: PMC3834298 DOI: 10.1371/journal.pone.0081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/09/2013] [Indexed: 11/25/2022] Open
Abstract
Single minded 1 (SIM1) is a transcription factor involved in brain patterning and control of energy balance. In humans, haploinsufficiency of SIM1 causes early-onset obesity. Mice deficient in the homologous gene, SIM1, also exhibit early onset obesity and increased sensitivity to a high fat diet. SIM1 is expressed in several areas of the brain implicated in control of energy balance including the paraventricular nucleus (PVN), the supraoptic nucleus (SON), the medial amygdala and nucleus of the lateral olfactory tract. We have previously shown that mice with global Sim1 neuron ablation exhibit obesity with hyperphagia as the primary defect. The PVN has a critical role in feeding and in high-fat appetite, thus, we sought to determine the effect of Sim1 neuron ablation limited to the PVN. We achieved PVN-SIM1 limited ablation through stereotactic injection of diphtheria toxin into the PVN of Sim1Cre-iDTR mice. The specificity of this ablation was confirmed by immunohistochemistry and quantitative real time PCR of the PVN, supraoptic nucleus and the amygdala. Mice with PVN Sim1 neuron ablation, similar to mice with global Sim1 neuron ablation, exhibit early onset obesity with hyperphagia as the primary defect. However, PVN-Sim1 neuron ablated mice have a decreased response to fasting-induced hyperphagia. Consistent with this decrement, PVN-Sim1 neuron ablated mice have a decreased hyperphagic response to PVN injection of agouti-related peptide (AgRP). When PVN-Sim1 neuron ablated mice are placed on a high fat diet, surprisingly, their intake decreases and they actually lose weight. When allowed ad lib access to high fat diet and normal chow simultaneously, PVN-Sim1 neuron ablated mice exhibit overall decreased intake. That is, in PVN-Sim1 neuron ablated mice, access to fat suppresses overall appetite.
Collapse
Affiliation(s)
- Dong Xi
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeff Roizen
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Meizan Lai
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nilay Gandhi
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bassil Kublaoui
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
158
|
Börner S, Albrecht E, Schäff C, Hacke S, Kautzsch U, Derno M, Hammon HM, Röntgen M, Sauerwein H, Kuhla B. Reduced AgRP activation in the hypothalamus of cows with high extent of fat mobilization after parturition. Gen Comp Endocrinol 2013; 193:167-77. [PMID: 23954363 DOI: 10.1016/j.ygcen.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022]
Abstract
Agouti-related protein (AgRP), produced by neurons located in the arcuate nucleus of the hypothalamus stimulates feed intake. During early lactation dairy cows increase their feed intake and additionally mobilize their fat reserves leading to increased plasma non-esterified fatty acid (NEFA) concentrations. Since cows with a higher extent of fat mobilization exhibit the lower feed intake, it seems that high NEFA concentrations confine hyperphagia. To test the involvement of AgRP neurons, we investigated 18 cows from parturition until day 40 postpartum (pp) and assigned the cows according to their NEFA concentration on day 40pp to either group H (high NEFA) or L (low NEFA). Both groups had comparable feed intake, body weight, milk yield, energy balance, plasma amino acids and leptin concentrations. Studies in respiratory chambers revealed the higher oxygen consumption and the lower respiratory quotient (RQ) in H compared to L cows. mRNA abundance of neuropeptide Y, peroxisome proliferator-activated receptor-gamma, AMP-activated protein kinase, and leptin receptor in the arcuate nucleus were comparable between groups. Immunohistochemical studies revealed the same number of AgRP neurons in H and L cows. AgRP neurons were co-localized with phosphorylated adenosine monophosphate-activated kinase without any differences between groups. The percentage of cFOS-activated AgRP neurons per total AgRP cells was lower in H cows and correlated negatively with oxygen consumption and NEFA, positively with RQ, but not with feed intake. We conclude that AgRP activation plays a pivotal role in the regulation of substrate utilization and metabolic rate in high NEFA dairy cows during early lactation.
Collapse
Affiliation(s)
- Sabina Börner
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Purkayastha S, Cai D. Neuroinflammatory basis of metabolic syndrome. Mol Metab 2013; 2:356-63. [PMID: 24327952 DOI: 10.1016/j.molmet.2013.09.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/07/2023] Open
Abstract
Inflammatory reaction is a fundamental defense mechanism against threat towards normal integrity and physiology. On the other hand, chronic diseases such as obesity, type 2 diabetes, hypertension and atherosclerosis, have been causally linked to chronic, low-grade inflammation in various metabolic tissues. Recent cross-disciplinary research has led to identification of hypothalamic inflammatory changes that are triggered by overnutrition, orchestrated by hypothalamic immune system, and sustained through metabolic syndrome-associated pathophysiology. While continuing research is actively trying to underpin the identity and mechanisms of these inflammatory stimuli and actions involved in metabolic syndrome disorders and related diseases, proinflammatory IκB kinase-β (IKKβ), the downstream nuclear transcription factor NF-κB and some related molecules in the hypothalamus were discovered to be pathogenically significant. This article is to summarize recent progresses in the field of neuroendocrine research addressing the central integrative role of neuroinflammation in metabolic syndrome components ranging from obesity, glucose intolerance to cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Sudarshana Purkayastha
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
160
|
Schwenk RW, Vogel H, Schürmann A. Genetic and epigenetic control of metabolic health. Mol Metab 2013; 2:337-47. [PMID: 24327950 PMCID: PMC3854991 DOI: 10.1016/j.molmet.2013.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as an excess accumulation of body fat resulting from a positive energy balance. It is the major risk factor for type 2 diabetes (T2D). The evidence for familial aggregation of obesity and its associated metabolic diseases is substantial. To date, about 150 genetic loci identified in genome-wide association studies (GWAS) are linked with obesity and T2D, each accounting for only a small proportion of the predicted heritability. However, the percentage of overall trait variance explained by these associated loci is modest (~5-10% for T2D, ~2% for BMI). The lack of powerful genetic associations suggests that heritability is not entirely attributable to gene variations. Some of the familial aggregation as well as many of the effects of environmental exposures, may reflect epigenetic processes. This review summarizes our current knowledge on the genetic basis to individual risk of obesity and T2D, and explores the potential role of epigenetic contribution.
Collapse
Key Words
- ADCY3, adenylate cyclase 3
- AQP9, aquaporin 9
- BDNF, brain-derived neurotrophic factor
- CDKAL1, CDK5 regulatory subunit associated protein 1-like 1
- CPEB4, cytoplasmic polyadenylation element binding protein 4
- DUSP22, dual specificity phosphatase 22
- DUSP8, dual specificity phosphatase 8
- Epigenetics
- GALNT10, UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 10 (GalNAc-T10)
- GIPR, gastric inhibitory polypeptide receptor
- GNPDA2, glucosamine-6-phosphate deaminase 2
- GP2, glycoprotein 2 (zymogen granule membrane)
- GWAS
- HIPK3, homeodomain interacting protein kinase 3
- IFI16, interferon, gamma-inducible protein 16
- KCNQ1, potassium voltage-gated channel, KQT-like subfamily, member 1
- KLHL32, kelch-like family member 32
- LEPR, leptin receptor
- MAP2K4, mitogen-activated protein kinase kinase 4
- MAP2K5, mitogen-activated protein kinase kinase 5
- MIR148A, microRNA 148a
- MMP9, matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)
- MNDA, myeloid cell nuclear differentiation antigen
- NFE2L3, nuclear factor, erythroid 2-like 3
- Obesity
- PACS1, phosphofurin acidic cluster sorting protein 1
- PAX6, paired box gene 6
- PCSK1, proprotein convertase subtilisin/kexin type 1
- PGC1α, peroxisome proliferative activated receptor, gamma, coactivator 1 alpha, PM2OD1
- PRKCH, protein kinase C, eta
- PRKD1, protein kinase D1
- PRKG1, protein kinase, cGMP-dependent, type I
- Positional cloning
- QPCTL, glutaminyl-peptide cyclotransferase-like
- RBJ, DnaJ (Hsp40) homolog, subfamily C, member 27
- RFC5, replication factor C (activator 1) 5
- RMST, rhabdomyosarcoma 2 associated transcript (non-protein coding)
- SEC16B, SEC16 homolog B
- TFAP2B, transcription factor AP-2 beta (activating enhancer binding protein 2 beta)
- TNNI3, troponin I type 3 (cardiac)
- TNNT1, troponin T type 1 (skeletal, slow)
- Type 2 diabetes
Collapse
Affiliation(s)
| | | | - Annette Schürmann
- Corresponding author. Tel.: +49 33200 882368; fax: +49 33200 882334.
| |
Collapse
|
161
|
Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats. PLoS One 2013; 8:e74021. [PMID: 24040150 PMCID: PMC3765350 DOI: 10.1371/journal.pone.0074021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/26/2013] [Indexed: 12/05/2022] Open
Abstract
Variations in plasma fatty acid (FA) concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH) neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36). The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or β-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/− heparin (IL, ILH, respectively) or saline/heparin (SH) were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1) Rats previously injected in ventromedian nucleus (VMN) with shRNA against CD36 or scrambled RNA; 2) Etomoxir (CPT1 inhibitor) or saline co-infused with ILH/SH; and 3) Triacsin C (acylCoA synthase inhibitor) or saline co-infused with ILH/SH. ILH significantly lowered food intake during refeeding compared to SH (p<0.001). Five hours after refeeding, etomoxir did not affect this inhibitory effect of ILH on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented ILH effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation.
Collapse
|
162
|
Fusco S, Pani G. Brain response to calorie restriction. Cell Mol Life Sci 2013; 70:3157-70. [PMID: 23269433 PMCID: PMC11114019 DOI: 10.1007/s00018-012-1223-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/09/2012] [Accepted: 11/26/2012] [Indexed: 01/04/2023]
Abstract
Calorie restriction extends longevity and delays ageing in model organisms and mammals, opposing the onset and progression of an array of age-related diseases. These beneficial effects also extend to the maintenance of brain cognitive functions at later age and to the prevention, at least in rodents, of brain senescence and associated neurodegenerative disorders. In recent years, the molecular mechanisms underlying brain response to calorie restriction have begun to be elucidated, revealing the unanticipated role of a number of key nutrient sensors and nutrient-triggered signaling cascades in the translation of metabolic cues into cellular and molecular events that ultimately lead to increased cell resistance to stress, enhanced synaptic plasticity, and improved cognitive performance. Of note, the brain's role in CR also includes the activation of nutrient-sensitive hypothalamic circuitries and the implementation of neuroendocrine responses that impact the entire organism. The present review addresses emerging molecular themes in brain response to dietary restriction, and the implications of this knowledge for the understanding and the prevention of brain disorders associated with ageing and metabolic disease.
Collapse
Affiliation(s)
- Salvatore Fusco
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University Medical School, Largo F. Vito 1, Basic Science Building, room 405, Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University Medical School, Largo F. Vito 1, Basic Science Building, room 405, Rome, Italy
| |
Collapse
|
163
|
Towards a 'systems'-level understanding of the nervous system and its disorders. Trends Neurosci 2013; 36:674-84. [PMID: 23988221 DOI: 10.1016/j.tins.2013.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/17/2013] [Accepted: 07/24/2013] [Indexed: 12/26/2022]
Abstract
It is becoming clear that nervous system development and adult functioning are highly coupled with other physiological systems. Accordingly, neurological and psychiatric disorders are increasingly being associated with a range of systemic comorbidities including, most prominently, impairments in immunological and bioenergetic parameters as well as in the gut microbiome. Here, we discuss various aspects of the dynamic crosstalk between these systems that underlies nervous system development, homeostasis, and plasticity. We believe a better definition of this underappreciated systems physiology will yield important insights into how nervous system diseases with systemic comorbidities arise and potentially identify novel diagnostic and therapeutic strategies.
Collapse
|
164
|
Simopoulos AP. Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease. Nutrients 2013; 5:2901-23. [PMID: 23896654 PMCID: PMC3775234 DOI: 10.3390/nu5082901] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022] Open
Abstract
Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health.
Collapse
Affiliation(s)
- Artemis P Simopoulos
- The Center for Genetics, Nutrition and Health, 2001 S Street, NW, Suite 530, Washington, DC 20009, USA.
| |
Collapse
|
165
|
Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 2013; 19:269-84. [PMID: 22900819 PMCID: PMC3691913 DOI: 10.1089/ars.2012.4875] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. RECENT ADVANCES Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. CRITICAL ISSUES This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. FUTURE DIRECTIONS The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Collapse
Affiliation(s)
- Dolors Serra
- Department of Biochemistry and Molecular Biology, Facultat de Farmàcia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
166
|
Vinik AI, Cincotta AH, Scranton RE, Bohannon N, Ezrokhi M, Gaziano JM. Effect of bromocriptine-QR on glycemic control in subjects with uncontrolled hyperglycemia on one or two oral anti-diabetes agents. Endocr Pract 2013. [PMID: 23186965 DOI: 10.4158/ep12187.or] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the effect of Bromocriptine-QR on glycemic control in patients with type 2 diabetes whose glycemia is poorly controlled on one or two oral anti-diabetes agents. METHODS Five hundred fifteen Type 2 Diabetes Mellitus (T2DM) subjects (ages 18 to 80 and average body mass index [BMI] of 32.7) with baseline HbA1c ≥ 7.5 and on one or two oral anti-diabetes (OAD) medications (metformin, sulfonylurea, and/or thiazolidinediones) were randomized 2:1 to bromocriptine-QR (1.6 to 4.8 mg/day) or placebo for a 24 week treatment period. Study investigators were allowed to adjust, if necessary, subject anti-diabetes medications during the study to attempt to achieve glycemic control in case of glycemic deterioration. The impact of bromocriptine-QR treatment intervention on glycemic control was assessed in subjects on any one or two OADs (ALL treatment category) (N = 515), or on metformin with or without another OAD (Met/OAD treatment category) (N = 356), or on metformin plus a sulfonylurea (Met/SU treatment category) (N = 245) 1) by examining the between group difference in change from baseline a) concomitant OAD medication changes during the study, and b) HbA1c and 2) by determining the odds of reaching HbA1c of ≤ 7.0% on bromocriptine-QR versus placebo. RESULTS Significantly more patients (approximately 1.5 to 2-fold more; P<.05) intensified concomitant anti-diabetes medication therapy during the study in the placebo versus the bromocriptine-QR arm. In subjects that did not change the intensity of the baseline diabetes therapy (72%), and that were on any one or two OADs (ALL), or on metformin with or without another OAD (Met/OAD), or on metformin plus sulfonylurea (Met/SU), the HbA1c change for bromocriptine-QR versus placebo was -0.47 versus +0.22 (between group delta of -0.69, P<.0001), -0.55 versus +0.26 (between group delta of -0.81, P<.0001) and -0.63 versus +0.20 (between group delta of -0.83, P<.0001) respectively, after 24 weeks on therapy. The odds ratio of reaching HbA1c of ≤ 7.0% was 6.50, 12.03 and 11.45 (P<.0002) for these three groups, respectively. CONCLUSION In T2DM subjects whose hyperglycemia is poorly controlled on one or two oral agents, bromocriptine-QR therapy for 24 weeks can provide significant added improvement in glycemic control relative to adding placebo.
Collapse
Affiliation(s)
- Aaron I Vinik
- Strelitz Diabetes Center and Neuroendocrine Unit, Norfolk, Virginia, USA
| | | | | | | | | | | |
Collapse
|
167
|
Laeger T, Sauerwein H, Tuchscherer A, Bellmann O, Metges C, Kuhla B. Concentrations of hormones and metabolites in cerebrospinal fluid and plasma of dairy cows during the periparturient period. J Dairy Sci 2013; 96:2883-93. [DOI: 10.3168/jds.2012-5909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/09/2013] [Indexed: 01/18/2023]
|
168
|
Lu M, Sarruf DA, Li P, Osborn O, Sanchez-Alavez M, Talukdar S, Chen A, Bandyopadhyay G, Xu J, Morinaga H, Dines K, Watkins S, Kaiyala K, Schwartz MW, Olefsky JM. Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. J Biol Chem 2013; 288:10722-35. [PMID: 23457303 DOI: 10.1074/jbc.m112.443606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.
Collapse
Affiliation(s)
- Min Lu
- Department of Medicine, University of California, San Diego, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Imbernon M, Beiroa D, Vázquez MJ, Morgan DA, Veyrat–Durebex C, Porteiro B, Díaz–Arteaga A, Senra A, Busquets S, Velásquez DA, Al–Massadi O, Varela L, Gándara M, López–Soriano F, Gallego R, Seoane LM, Argiles JM, López M, Davis RJ, Sabio G, Rohner–Jeanrenaud F, Rahmouni K, Dieguez C, Nogueiras R. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 2013; 144:636-649.e6. [PMID: 23142626 PMCID: PMC3663042 DOI: 10.1053/j.gastro.2012.10.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. METHODS Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. RESULTS We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. CONCLUSIONS Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways.
Collapse
Affiliation(s)
- Monica Imbernon
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Daniel Beiroa
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - María J. Vázquez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Donald A. Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Christelle Veyrat–Durebex
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Begoña Porteiro
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Adenis Díaz–Arteaga
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Silvia Busquets
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Douglas A. Velásquez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Omar Al–Massadi
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain,Grupo Fisiopatología Endocrina, Complejo Hospitalario Universitario de Santiago-Instituto de Investigación Sanitaria (IDIS/SERGAS) Santiago de Compostela, Spain
| | - Luis Varela
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Marina Gándara
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain
| | | | - Rosalía Gallego
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain
| | - Luisa M. Seoane
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain,Grupo Fisiopatología Endocrina, Complejo Hospitalario Universitario de Santiago-Instituto de Investigación Sanitaria (IDIS/SERGAS) Santiago de Compostela, Spain
| | - Josep M. Argiles
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Roger J. Davis
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Guadalupe Sabio
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Françoise Rohner–Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Carlos Dieguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| |
Collapse
|
170
|
Chai B, Li JY, Fritze D, Zhang W, Xia Z, Mulholland MW. A novel transcript is up-regulated by fasting in the hypothalamus and enhances insulin signalling. J Neuroendocrinol 2013; 25:292-301. [PMID: 22935015 PMCID: PMC4651207 DOI: 10.1111/j.1365-2826.2012.02378.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/16/2012] [Accepted: 08/24/2012] [Indexed: 12/18/2022]
Abstract
A transcript of unknown function, regulated by fasting and feeding, was identified by microarray analysis. The transcript is up-regulated in the fasting state. An 1168-bp cDNA was cloned from rat hypothalamus and sequenced. This sequence is consistent with adipogenesis down-regulating transcript 3 (AGD3) (also known as human OCC-1) mRNA. A protein sequence identical to AGD3 was determined by mass spectrometry. In the rat brain, AGD3 mRNA is distributed in the arcuate nucleus, ventromedial hypothalamus, amygdaloid nuclei, hippocampus, and somatic cortex. Double in situ hybridisation showed that AGD3 mRNA is co-localised with pro-opiomelanocortin and neuropeptide Y in arcuate nucleus neurones. AGD3 binds with insulin receptor substrate 4 and increases insulin-stimulated phospho-Akt and regulates AMP-activated protein kinase and mammalian target of rapamycin downstream target S6 kinase phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael W Mulholland
- Corresponding Author: Michael W. Mulholland, M.D., Ph.D., 2101 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0346, USA, Tel.: +1 734 936 3236; fax: +1 734 763 5625,
| |
Collapse
|
171
|
Moreno C, Yang L, Dacks P, Isoda F, Poplawski M, Mobbs CV. Regulation of peripheral metabolism by substrate partitioning in the brain. Endocrinol Metab Clin North Am 2013; 42:67-80. [PMID: 23391240 PMCID: PMC4501378 DOI: 10.1016/j.ecl.2012.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All organisms must adapt to changing nutrient availability, with nutrient surplus promoting glucose metabolism and nutrient deficit promoting alternative fuels (in mammals, mainly free fatty acids). A major function of glucose-sensing neurons in the hypothalamus is to regulate blood glucose. When these neurons sense glucose levels are too low, they activate robust counterregulatory responses to enhance glucose production, primarily from liver, and reduce peripheral metabolism. Some hypothalamic neurons can metabolize free fatty acids via β-oxidation, and β-oxidation generally opposes effects of glucose on hypothalamic neurons. Thus hypothalamic β-oxidation promotes obese phenotypes, including enhanced hepatic glucose output.
Collapse
Affiliation(s)
- Cesar Moreno
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Pl., New York, NY 10029, Phone: 212 659 5911,
| | - Linda Yang
- Harvard Medical School, Beth Israel Deaconess Medical Center,
| | - Penny Dacks
- Alzheimer's Drug Discovery Foundation, Aging & Alzheimer's Disease Prevention, New York, NY 10019,
| | - Fumiko Isoda
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Pl., New York, NY 10029, Phone: 212 659 5911,
| | - Michael Poplawski
- Department of Neuroscience, New York, NY 10029, Phone: 212 659 5929,
| | - Charles V. Mobbs
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Pl., New York, NY 10029
| |
Collapse
|
172
|
Arble DM, Sandoval DA. CNS control of glucose metabolism: response to environmental challenges. Front Neurosci 2013; 7:20. [PMID: 23550218 PMCID: PMC3581798 DOI: 10.3389/fnins.2013.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/04/2013] [Indexed: 01/07/2023] Open
Abstract
Over the last 15 years, considerable work has accumulated to support the role of the CNS in regulating postprandial glucose levels. As discussed in the first section of this review, the CNS receives and integrates information from afferent neurons, circulating hormones, and postprandially generated nutrients to subsequently direct changes in glucose output by the liver and glucose uptake by peripheral tissues. The second major component of this review focuses on the effects of external pressures, including high fat diet and changes to the light:dark cycle on CNS-regulating glucose homeostasis. We also discuss the interaction between these different pressures and how they contribute to the multifaceted mechanisms that we hypothesize contribute to the dysregulation of glucose in type 2 diabetes mellitus (T2DM). We argue that while current peripheral therapies serve to delay the progression of T2DM, generating combined obesity and T2DM therapies targeted at the CNS, the primary site of dysfunction for both diseases, would lead to a more profound impact on the progression of both diseases.
Collapse
Affiliation(s)
- Deanna M Arble
- Department of Medicine, University of Cincinnati Cincinnati, OH, USA
| | | |
Collapse
|
173
|
Hypothalamic neuronal toll-like receptor 2 protects against age-induced obesity. Sci Rep 2013; 3:1254. [PMID: 23409245 PMCID: PMC3570778 DOI: 10.1038/srep01254] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are traditionally associated with immune-mediated host defense. Here, we ascribe a novel extra-immune, hypothalamic-associated function to TLR2, a TLR-family member known to recognize lipid components, in the protection against obesity. We found that TLR2-deficient mice exhibited mature-onset obesity and susceptibility to high-fat diet (HFD)-induced weight gain, via modulation of food intake. Age-related obesity was still evident in chimeric mice, carrying comparable TLR2+ immune cells, suggesting a non-hematopoietic-related involvement of this receptor. TLR2 was up-regulated with age or HFD in pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus, a brain area participating in central-metabolic regulation, possibly modulating the hypothalamic-anorexigenic peptide, α-melanocyte-stimulating hormone (α-MSH). Direct activation of TLR2 in a hypothalamic-neuronal cell-line via its known ligands, further supports its capacity to mediate non-immune related metabolic regulation. Thus, our findings identify TLR2 expressed by hypothalamic neurons as a potential novel regulator of age-related weight gain and energy expenditure.
Collapse
|
174
|
Le Stunff H, Coant N, Migrenne S, Magnan C. Targeting lipid sensing in the central nervous system: new therapy against the development of obesity and type 2 diabetes. Expert Opin Ther Targets 2013; 17:545-55. [PMID: 23379938 DOI: 10.1517/14728222.2013.768233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The hypothalamus plays a major role in the control of energy balance, by sensing circulating lipids. Several studies conducted over the past decade suggest that disruption of lipid sensing can lead to hypothalamic lipotoxicity, thereby contributing to the development of various diseases, such as obesity and type 2 diabetes. AREAS COVERED The physiological role of 'lipid sensing' as a regulator of neuronal activity involved in the regulation of energy homeostasis will be reviewed. Next, the emerging evidence that alterations of hypothalamic systems that regulate energy balance during overnutrition can lead to the development of obesity and associated pathologies such as type 2 diabetes will be described. EXPERT OPINION Several studies have highlighted the role of malonyl-CoA and PKCθ and also autophagy within the hypothalamus as signals of nutrient abundance by critical neurons regulating food intake. Besides the physiological role of hypothalamic lipid sensing, it has been shown that overnutrition can also induce hypothalamic lipotoxicity through an inflammatory process. In conclusion, lipid toxicity could be the starting point of perturbations of the central control of energy balance which will favor the appearance of obesity and type 2 diabetes. Lipid sensing in the hypothalamus could be considered as a potential target for anti-obesity/diabetic strategies.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Unité Biologie Fonctionnelle et Adaptative - EAC CNRS 4413, Équipe Homéostasie Energétique et RéGulation nerveuse et Endocrine (HERGE), Université PARIS DIDEROT (7) , Bâtiment BUFFON - 5ème étage - pièce 504A, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 Paris Cedex 13 , France.
| | | | | | | |
Collapse
|
175
|
Morita S, Miyata S. Accessibility of low-molecular-mass molecules to the median eminence and arcuate hypothalamic nucleus of adult mouse. Cell Biochem Funct 2013; 31:668-77. [PMID: 23348371 DOI: 10.1002/cbf.2953] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/13/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022]
Abstract
Blood-derived molecules are able to access to the median eminence (ME) and arcuate hypothalamic nucleus (Arc) due to the lack of the blood-brain barrier. In the present study, we examined the accessibility of low-molecular-mass (LMM) molecules into parenchyma in the ME and Arc of adult mice by administration of Dextran 3000 (Dex3k), Dex10k, Evans blue (EB) and fluorescein isothiocyanate (FITC). In the external zone of the ME, the fluorescence of Dex3k, EB and FITC tracers generated an intensity gradient from fenestrated capillary, but that of Dex10k was detected only between the inner and outer basement membrane of pericapillary space. The fluorescence of FITC in the external zone of the ME was closely associated with axonal terminals and surrounded by cellular processes of tanycytes-like cells and astrocytes. In the ependymal/internal zone of the ME and Arc, the fluorescence of all LMM tracers was seen at tanycytes-like cells and neurons. The fluorescence of EB and FITC in these regions was not detected when brains were fixed during or before the administration of tracers. The inhomogeneity of accessibility for fluorescent tracers depended on routes for tracer administration. Thus, the present study indicates that the accessibility of LMM blood-derived molecules to parenchyma depends on fenestration of the capillary in the external zone of the ME and active transport of ependymal cells in the ependymal/internal zone of the ME and Arc.
Collapse
Affiliation(s)
- Shoko Morita
- Department of Anatomy & Neuroscience, Nara Medical University840 Shijyo-cho, Kashihara City, Nara, 634-8521, Japan
| | | |
Collapse
|
176
|
Dietrich MO, Horvath TL. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci 2013; 36:65-73. [PMID: 23318157 DOI: 10.1016/j.tins.2012.12.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022]
Abstract
The past 20 years witnessed an enormous leap in understanding of the central regulation of whole-body energy metabolism. Genetic tools have enabled identification of the region-specific expression of peripheral metabolic hormone receptors and have identified neuronal circuits that mediate the action of these hormones on behavior and peripheral tissue functions. One of the surprising findings of recent years is the observation that brain circuits involved in metabolism regulation remain plastic through adulthood. In this review, we discuss these findings and focus on the role of neurons and glial cells in the dynamic process of plasticity, which is fundamental to the regulation of physiological and pathological metabolic events.
Collapse
Affiliation(s)
- Marcelo O Dietrich
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
177
|
Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metab 2013; 24:40-7. [PMID: 23265946 PMCID: PMC3556486 DOI: 10.1016/j.tem.2012.11.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/02/2012] [Accepted: 11/14/2012] [Indexed: 12/14/2022]
Abstract
Overnutrition-induced diseases such as obesity and type 2 diabetes (T2D) involve neural dysregulation of metabolic physiology. Recently, interdisciplinary research in neuroscience and immunology has linked overnutrition to a non-classical onset of inflammation in the brain, particularly in the hypothalamus. This neuroinflammation impairs central regulatory pathways of energy balance and nutrient metabolism, and leads to obesity, diabetes, and cardiovascular complications. This review describes recent findings on the roles of overnutrition-induced hypothalamic inflammation in neurodegeneration and defective adult neurogenesis, as well as in impaired neural stem cell regeneration, and their relevance to obesity and related diseases. In addition, commonalities in terms of neuroinflammation between neurodegenerative diseases and overnutrition-induced metabolic diseases are discussed. Targeting neuroinflammation and neurodegeneration will provide promising approaches for treating obesity and other overnutrition-related diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Institute of Aging, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
178
|
Abstract
Inflammation is a biological response mounted by the immune system against dangerous assaults that threaten the integrity and normal physiology of an organism. During the past decades, cross-disciplinary research from immunology and endocrinology has much broadened this knowledge by demonstrating that chronic conditions of nutritional excess constitute an independent category of inflammatory activators, and the resulting chronic and low-grade inflammation is an important characteristic of overnutrition-induced diseases. A large body of research has demonstrated that these diseases are pathogenically associated with the local, negative actions of inflammation in peripheral tissues predominantly including the liver, muscle, and fat. In this research background, more recent research has advanced to a new level, with the important discoveries showing that overnutrition-induced inflammation occurs in the brain and thus plays a broad and leadership role in overnutrition-induced diseases. While much more research establishments are expected in this emerging and quickly expanding research, the appreciated understandings have been mainly based on proinflammatory IKKβ/NF-κB pathway and related molecules in the hypothalamus. In this chapter, the author focuses on describing IKKβ/NF-κB-induced neural inflammation in the context of overnutrition-induced metabolic inflammation and especially the central roles of this neural inflammation in the development of a spectrum of overnutrition-related diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Institute of Aging, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
179
|
Canale MP, Manca di Villahermosa S, Martino G, Rovella V, Noce A, De Lorenzo A, Di Daniele N. Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Int J Endocrinol 2013; 2013:865965. [PMID: 24288531 PMCID: PMC3833340 DOI: 10.1155/2013/865965] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/10/2013] [Indexed: 12/15/2022] Open
Abstract
The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adiponectin. Chronic sympathetic nervous system overactivity contributes to a further decline of insulin sensitivity and creates a vicious circle that may contribute to the development of hypertension and of the metabolic syndrome and favor cardiovascular and kidney disease. Selective renal denervation is an emerging area of interest in the clinical management of obesity-related hypertension. This review focuses on current understanding of some mechanisms through which sympathetic overactivity may be interlaced to the metabolic syndrome, with particular regard to the role of insulin resistance and of some adipokines.
Collapse
Affiliation(s)
- Maria Paola Canale
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Simone Manca di Villahermosa
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuliana Martino
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa Noce
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonino De Lorenzo
- Division of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Di Daniele
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
- *Nicola Di Daniele:
| |
Collapse
|
180
|
Tsukita S, Yamada T, Uno K, Takahashi K, Kaneko K, Ishigaki Y, Imai J, Hasegawa Y, Sawada S, Ishihara H, Oka Y, Katagiri H. Hepatic glucokinase modulates obesity predisposition by regulating BAT thermogenesis via neural signals. Cell Metab 2012; 16:825-32. [PMID: 23217261 DOI: 10.1016/j.cmet.2012.11.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 08/01/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
Considering the explosive increase in obesity worldwide, there must be an unknown mechanism(s) promoting energy accumulation under conditions of overnutrition. We identified a feed-forward mechanism favoring energy storage, originating in hepatic glucokinase (GK) upregulation. High-fat feeding induced hepatic GK upregulation, and hepatic GK overexpression dose-dependently decreased adaptive thermogenesis by downregulating thermogenesis-related genes in brown adipose tissue (BAT). This intertissue (liver-to-BAT) system consists of the afferent vagus from the liver and sympathetic efferents from the medulla and antagonizes anti-obesity effects of leptin on thermogenesis. Furthermore, upregulation of endogenous GK in the liver by high-fat feeding was more marked in obesity-prone than in obesity-resistant strains and was inversely associated with BAT thermogenesis. Hepatic GK overexpression in obesity-resistant mice promoted weight gain, while hepatic GK knockdown in obesity-prone mice attenuated weight gain with increased adaptive thermogenesis. Thus, this intertissue energy-saving system may contribute to determining obesity predisposition.
Collapse
Affiliation(s)
- Sohei Tsukita
- Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Araújo TG, Oliveira AG, Carvalho BM, Guadagnini D, Protzek AOP, Carvalheira JBC, Boschero AC, Saad MJA. Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms. Endocrinology 2012; 153:5760-5769. [PMID: 23024263 DOI: 10.1210/en.2012-1496] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin resistance is present in obesity and in type 2 diabetes and is associated with islet cell hyperplasia and hyperinsulinemia, but the driving forces behind this compensatory mechanism are incompletely understood. Previous data have suggested the involvement of an unknown circulating insulin resistance-related β-cell growth factor. In this context, looking for candidates to be a circulating factor, we realized that hepatocyte growth factor (HGF) is a strong candidate as a link between insulin resistance and increased mass of islets/hyperinsulinemia. Our approach aimed to show a possible cause-effect relationship between increase in circulating HGF levels and compensatory islet hyperplasia/hyperinsulinemia by showing the strength of the association, whether or not is a dose-dependent response, the temporality, consistency, plausibility, and reversibility of the association. In this regard, our data showed: 1) a strong and consistent correlation between HGF and the compensatory mechanism in three animal models of insulin resistance; 2) HGF increases β-cell mass in a dose-dependent manner; 3) blocking HGF shuts down the compensatory mechanisms; and 4) an increase in HGF levels seems to precede the compensatory response associated with insulin resistance, indicating that these events occur in a sequential mode. Additionally, blockages of HGF receptor (Met) worsen the impaired insulin-induced insulin signaling in liver of diet-induced obesity rats. Overall, our data indicate that HGF is a growth factor playing a key role in islet mass increase and hyperinsulinemia in diet-induced obesity rats and suggest that the HGF-Met axis may have a role on insulin signaling in the liver.
Collapse
Affiliation(s)
- Tiago G Araújo
- Department of Internal Medicine, State University of Campinas, Campinas, 13081-970 São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Kahn SE, Suvag S, Wright LA, Utzschneider KM. Interactions between genetic background, insulin resistance and β-cell function. Diabetes Obes Metab 2012; 14 Suppl 3:46-56. [PMID: 22928564 PMCID: PMC3634618 DOI: 10.1111/j.1463-1326.2012.01650.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An interaction between genes and the environment is a critical component underlying the pathogenesis of the hyperglycaemia of type 2 diabetes. The development of more sophisticated techniques for studying gene variants and for analysing genetic data has led to the discovery of some 40 genes associated with type 2 diabetes. Most of these genes are related to changes in β-cell function, with a few associated with decreased insulin sensitivity and obesity. Interestingly, using quantitative traits based on continuous measures rather than dichotomous ones, it has become evident that not all genes associated with changes in fasting or post-prandial glucose are also associated with a diagnosis of type 2 diabetes. Identification of these gene variants has provided novel insights into the physiology and pathophysiology of the β-cell, including the identification of molecules involved in β-cell function that were not previously recognized as playing a role in this critical cell.
Collapse
Affiliation(s)
- S E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA.
| | | | | | | |
Collapse
|
183
|
Abstract
A growing number of studies have shown that a diet high in long chain SFA and/or obesity cause profound changes to the energy balance centres of the hypothalamus which results in the loss of central leptin and insulin sensitivity. Insensitivity to these important anorexigenic messengers of nutritional status perpetuates the development of both obesity and peripheral insulin insensitivity. A high-fat diet induces changes in the hypothalamus that include an increase in markers of oxidative stress, inflammation, endoplasmic reticulum (ER) stress, autophagy defect and changes in the rate of apoptosis and neuronal regeneration. In addition, a number of mechanisms have recently come to light that are important in the hypothalamic control of energy balance, which could play a role in perpetuating the effect of a high-fat diet on hypothalamic dysfunction. These include: reactive oxygen species as an important second messenger, lipid metabolism, autophagy and neuronal and synaptic plasticity. The importance of nutritional activation of the Toll-like receptor 4 and the inhibitor of NF-κB kinase subunit β/NK-κB and c-Jun amino-terminal kinase 1 inflammatory pathways in linking a high-fat diet to obesity and insulin insensitivity via the hypothalamus is now widely recognised. All of the hypothalamic changes induced by a high-fat diet appear to be causally linked and inhibitors of inflammation, ER stress and autophagy defect can prevent or reverse the development of obesity pointing to potential drug targets in the prevention of obesity and metabolic dysfunction.
Collapse
|
184
|
Jauch-Chara K, Friedrich A, Rezmer M, Melchert UH, G Scholand-Engler H, Hallschmid M, Oltmanns KM. Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes 2012; 61:2261-8. [PMID: 22586589 PMCID: PMC3425399 DOI: 10.2337/db12-0025] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cerebral insulin exerts anorexic effects in humans and animals. The underlying mechanisms, however, are not clear. Because insulin physiologically facilitates glucose uptake by most tissues of the body and thereby fosters intracellular energy supply, we hypothesized that intranasal insulin reduces food consumption via enhancement of the neuroenergetic level. In a double-blind, placebo-controlled, within-subject comparison, 15 healthy men (BMI 22.2 ± 0.37 kg/m(2)) aged 22-28 years were intranasally administered insulin (40 IU) or placebo after an overnight fast. Cerebral energy metabolism was assessed by (31)P magnetic resonance spectroscopy. At 100 min after spray administration, participants consumed ad libitum from a test buffet. Our data show that intranasal insulin increases brain energy (i.e., adenosine triphosphate and phosphocreatine levels). Cerebral energy content correlates inversely with subsequent calorie intake in the control condition. Moreover, the neuroenergetic rise upon insulin administration correlates with the consecutive reduction in free-choice calorie consumption. Brain energy levels may therefore constitute a predictive value for food intake. Given that the brain synchronizes food intake behavior in dependence of its current energetic status, a future challenge in obesity treatment may be to therapeutically influence cerebral energy homeostasis. Intranasal insulin, after optimizing its application schema, seems a promising option in this regard.
Collapse
Affiliation(s)
- Kamila Jauch-Chara
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
185
|
Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, Lutz B, Marsicano G, Cota D. Hypothalamic CB1 cannabinoid receptors regulate energy balance in mice. Endocrinology 2012; 153:4136-43. [PMID: 22778221 DOI: 10.1210/en.2012-1405] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cannabinoid type 1 (CB(1)) receptor activation is generally considered a powerful orexigenic signal and inhibition of the endocannabinoid system is beneficial for the treatment of obesity and related metabolic diseases. The hypothalamus plays a critical role in regulating energy balance by modulating both food intake and energy expenditure. Although CB(1) receptor signaling has been implicated in the modulation of both these mechanisms, a complete understanding of its role in the hypothalamus is still lacking. Here we combined a genetic approach with the use of adeno-associated viral vectors to delete the CB(1) receptor gene in the adult mouse hypothalamus and assessed the impact of such manipulation on the regulation of energy balance. Viral-mediated deletion of the CB(1) receptor gene in the hypothalamus led to the generation of Hyp-CB(1)-KO mice, which displayed an approximately 60% decrease in hypothalamic CB(1) receptor mRNA levels. Hyp-CB(1)-KO mice maintained on a normocaloric, standard diet showed decreased body weight gain over time, which was associated with increased energy expenditure and elevated β(3)-adrenergic receptor and uncoupling protein-1 mRNA levels in the brown adipose tissue but, surprisingly, not to changes in food intake. Additionally, Hyp-CB(1)-KO mice were insensitive to the anorectic action of the hormone leptin (5 mg/kg) and displayed a time-dependent hypophagic response to the CB(1) inverse agonist rimonabant (3 mg/kg). Altogether these findings suggest that hypothalamic CB(1) receptor signaling is a key determinant of energy expenditure under basal conditions and reveal its specific role in conveying the effects of leptin and pharmacological CB1 receptor antagonism on food intake.
Collapse
Affiliation(s)
- Pierre Cardinal
- Group Energy Balance and Obesity, Institut National de la Santé et de la Recherche Médicale, Unité 862, Neurocentre Magendie, 146 Rue Léo Saignat, F-33077 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway. Proc Nutr Soc 2012; 71:502-10. [PMID: 22877732 DOI: 10.1017/s0029665112000754] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) pathway is known to couple different environmental cues to the regulation of several energy-demanding functions within the cell, spanning from protein translation to mitochondrial activity. As a result, at the organism level, mTORC1 activity affects energy balance and general metabolic homoeostasis by modulating both the activity of neuronal populations that play key roles in the control of food intake and body weight, as well as by determining storage and use of fuel substrates in peripheral tissues. This review focuses on recent advances made in understanding the role of the mTORC1 pathway in the regulation of energy balance. More particularly, it aims at providing an overview of the status of knowledge regarding the mechanisms underlying the ability of certain amino acids, glucose and fatty acids, to affect mTORC1 activity and in turn illustrates how the mTORC1 pathway couples nutrient sensing to the hypothalamic regulation of the organisms' energy homoeostasis and to the control of intracellular metabolic processes, such as glucose uptake, protein and lipid biosynthesis. The evidence reviewed pinpoints the mTORC1 pathway as an integrator of the actions of nutrients on metabolic health and provides insight into the relevance of this intracellular pathway as a potential target for the therapy of metabolic diseases such as obesity and type-2 diabetes.
Collapse
|
187
|
Woodside B, Budin R, Wellman MK, Abizaid A. Many mouths to feed: the control of food intake during lactation. Front Neuroendocrinol 2012; 33:301-14. [PMID: 23000403 DOI: 10.1016/j.yfrne.2012.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 01/07/2023]
Abstract
Providing nutrients to their developing young is perhaps the most energetically demanding task facing female mammals. In this paper we focus primarily on studies carried out in rats to describe the changes in the maternal brain that enable the dam to meet the energetic demands of her offspring. In rats, providing milk for their litter is associated with a dramatic increase in caloric intake, a reduction in energy expenditure and changes in the pattern of energy utilization as well as storage. These behavioral and physiological adaptations result, in part, from alterations in the central pathways controlling energy balance. Differences in circulating levels of metabolic hormones such as leptin, ghrelin and insulin as well as in responsiveness to these signals between lactating and nonlactating animals, contribute to the modifications in energy balance pathways seen postpartum. Suckling stimulation from the pups both directly, and through the hormonal state that it induces in the mother, plays a key role in facilitating these adaptations.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology/Groupe de recherches en neurobiologie comportementale, Concordia University, Montreal, Canada.
| | | | | | | |
Collapse
|
188
|
Oh YT, Oh KS, Kang I, Youn JH. A Fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: evidence for brain sensing of circulating FFA. Endocrinology 2012; 153:3587-92. [PMID: 22669895 PMCID: PMC3404348 DOI: 10.1210/en.2012-1330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The brain responds to a fall in blood glucose by activating neuroendocrine mechanisms for its restoration. It is unclear whether the brain also responds to a fall in plasma free fatty acids (FFA) to activate mechanisms for its restoration. We examined whether lowering plasma FFA increases plasma corticosterone or catecholamine levels and, if so, whether the brain is involved in these responses. Plasma FFA levels were lowered in rats with three independent antilipolytic agents: nicotinic acid (NA), insulin, and the A1 adenosine receptor agonist SDZ WAG 994 with plasma glucose clamped at basal levels. Lowering plasma FFA with these agents all increased plasma corticosterone, but not catecholamine, within 1 h, accompanied by increases in plasma ACTH. These increases in ACTH or corticosterone were abolished when falls in plasma FFA were prevented by Intralipid during NA or insulin infusion. In addition, the NA-induced increases in plasma ACTH were completely prevented by administration of SSR149415, an arginine vasopressin receptor antagonist, demonstrating that the hypothalamus is involved in these responses. Taken together, the present data suggest that the brain may sense a fall in plasma FFA levels and activate the hypothalamic-pituitary-adrenal axis to increase plasma ACTH and corticosterone, which would help restore FFA levels. Thus, the brain may be involved in the sensing and control of circulating FFA levels.
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, 1333 San Pablo Street, Mudd Memorial Research Building 626, Los Angeles, California 90089-9142, USA
| | | | | | | |
Collapse
|
189
|
Effect of central and peripheral leucine on energy metabolism in the Djungarian hamster (Phodopus sungorus). J Comp Physiol B 2012; 183:261-8. [PMID: 22843139 DOI: 10.1007/s00360-012-0699-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/27/2012] [Accepted: 07/14/2012] [Indexed: 12/24/2022]
Abstract
Branched-chain amino acids, particularly leucine, are thought to activate nutrient sensing pathways in the hypothalamus that regulate food intake and energy homeostasis. In the light of recent controversial findings of leucine's effect on energy homeostasis further clarification of the metabolic impact of dietary leucine supplementation is required. We examined the pharmacological and dietary effects of leucine on energy metabolism in the Djungarian hamster (Phodopus sungorus), a well-established model for studies of alterations in leptin sensitivity and energy metabolism. We acutely administered leucine into the lateral ventricle (1.1 μg) of hamsters to characterize whether leucine exhibits anorexigenic properties in this species as has been described in other rodents. Next the catabolic effect of dietary administered leucine via supplemented rodent diet (15 % leucine), drinking water (17 g/L leucine) and oral gavages (10 mg/day); as well as the effect of subcutaneously (0.1 and 3 mg/day) and intraperitoneally (0.1, 3 and 6 mg/day) injected leucine which avoids the gastrointestinal-track was analyzed. Centrally administered leucine reduced 24 h food intake (by 32 %) and body weight. Both parameters were also reduced in hamsters with leucine supplemented diet, but this catabolic response was based on a pronounced taste aversion to the leucine-diet. In all other experiments, dietary leucine and peripheral injections of leucine had no effect on food intake, body weight and basal blood glucose levels. Our data suggest that in the Djungarian hamster dietary leucine fails to exhibit catabolic effects that would override the evolutionary conserved adaptations of the species which is critical for its survival.
Collapse
|
190
|
Abstract
Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
191
|
Bantubungi K, Prawitt J, Staels B. Control of metabolism by nutrient-regulated nuclear receptors acting in the brain. J Steroid Biochem Mol Biol 2012; 130:126-37. [PMID: 22033286 DOI: 10.1016/j.jsbmb.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/04/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022]
Abstract
Today, we are witnessing a rising incidence of obesity worldwide. This increase is due to a sedentary life style, an increased caloric intake and a decrease in physical activity. Obesity contributes to the appearance of type 2 diabetes, dyslipidemia and cardiovascular complications due to atherosclerosis, and nephropathy. Therefore, the development of new therapeutic strategies may become a necessity. Given the metabolism controlling properties of nuclear receptors in peripheral organs (such as liver, adipose tissues, pancreas) and their implication in various processes underlying metabolic diseases, they constitute interesting therapeutic targets for obesity, dyslipidemia, cardiovascular disease and type 2 diabetes. The recent identification of the central nervous system as a player in the control of peripheral metabolism opens new avenues to our understanding of the pathophysiology of obesity and type 2 diabetes and potential novel ways to treat these diseases. While the metabolic functions of nuclear receptors in peripheral organs have been extensively investigated, little is known about their functions in the brain, in particular with respect to brain control of energy homeostasis. This review provides an overview of the relationships between nuclear receptors in the brain, mainly at the hypothalamic level, and the central regulation of energy homeostasis. In this context, we will particularly focus on the role of PPARα, PPARγ, LXR and Rev-erbα.
Collapse
Affiliation(s)
- Kadiombo Bantubungi
- Univ Lille Nord de France, INSERM UMR1011, UDSL, Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
192
|
Abstract
Energy balance is maintained by a complex homeostatic system involving some signaling pathways and "nutrient sensors" in multiple tissues and organs. Any defect associated with the pathways can lead to metabolic disorders including obesity, type 2 diabetes, and the metabolic syndrome. The 5'-adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) appear to play a significant role in the intermediary metabolism of these diseases. AMPK is involved in the fundamental regulation of energy balance at the whole body level by responding to hormonal and nutrient signals in the central nervous system and peripheral tissues that modulate food intake and energy expenditure. Mammalian target of rapamycin (mTOR),is one of the downstream targets of AMPK functions as an intracellular nutrient sensor to control protein synthesis, cell growth, and metabolism. Recent research demonstrated the possible interplay between mTOR and AMPK signaling pathways. In this review, we will present current knowledge of AMPK and mTOR pathways in regulating energy balance and demonstrate the convergence between these two pathways.
Collapse
Affiliation(s)
- Jia Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
| | | | | |
Collapse
|
193
|
Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes (Lond) 2012; 37:625-33. [PMID: 22710925 DOI: 10.1038/ijo.2012.93] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the regulation of appetite has improved considerably over the last few decades. Recent work, stimulated by efforts aimed at curbing the current obesity epidemic, has unravelled some of the complex pathways regulating energy homeostasis. Key factors to this progress have been the discovery of leptin and the neuronal circuitry involved in mediating its effects, as well as the identification of gut hormones that have important physiological roles relating to energy homeostasis. Despite these advances in research, there are currently no effective treatments for the growing problem of obesity. In this article, we summarise the regulatory pathways controlling appetite with a special focus on gut hormones. We detail how recent findings have contributed to our knowledge regarding the pathogenesis and treatment of common obesity. A number of barriers still need to be overcome to develop safe and effective anti-obesity treatments. We outline problems highlighted by historical failures and discuss the potential of augmenting natural satiety signals, such as gut hormones, to treat obesity.
Collapse
Affiliation(s)
- S S Hussain
- Department of Diabetes, Endocrinology and Metabolism, Hammersmith Hospital, Imperial College London, London, UK
| | | |
Collapse
|
194
|
Abstract
Intracellular lipids are stored in lipid droplets (LDs) and metabolized by cytoplasmic neutral hydrolases to supply lipids for cell use. Recently, an alternative pathway of lipid metabolism through the lysosomal degradative pathway of autophagy has been described and termed lipophagy. In this form of lipid metabolism, LD triglycerides (TGs) and cholesterol are taken up by autophagosomes and delivered to lysosomes for degradation by acidic hydrolases. Free fatty acids generated by lipophagy from the breakdown of TGs fuel cellular rates of mitochondrial β-oxidation. Lipophagy therefore functions to regulate intracellular lipid stores, cellular levels of free lipids such as fatty acids and energy homeostasis. The amount of lipid metabolized by lipophagy varies in response to the extracellular supply of nutrients. The ability of the cell to alter the amount of lipid targeted for autophagic degradation depending on nutritional status demonstrates that this process is selective. Intracellular lipids themselves regulate levels of autophagy by unclear mechanisms. Impaired lipophagy can lead to excessive tissue lipid accumulation such as hepatic steatosis, alter hypothalamic neuropeptide release to affect body mass, block cellular transdifferentiation and sensitize cells to death stimuli. Future studies will likely identify additional mechanisms by which lipophagy regulates cellular physiology, making this pathway a potential therapeutic target in a variety of diseases.
Collapse
|
195
|
Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain. Cell Tissue Res 2012; 349:589-603. [PMID: 22584508 DOI: 10.1007/s00441-012-1421-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/19/2012] [Indexed: 01/05/2023]
Abstract
The blood-brain barrier (BBB) prevents free access of circulating molecules to the brain and maintains a specialized brain environment to protect the brain from blood-derived bioactive and toxic molecules; however, the circumventricular organs (CVOs) have fenestrated vasculature. The fenestrated vasculature in the sensory CVOs, including the organum vasculosum of lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows neurons and astrocytes to sense a variety of plasma molecules and convey their information into other brain regions and the vasculature in the secretory CVOs, including median eminence (ME) and neurohypophysis (NH), permits neuronal terminals to secrete many peptides into the blood stream. The present study showed that vascular permeability of low-molecular-mass tracers such as fluorescein isothiocyanate (FITC) and Evans Blue was higher in the secretory CVOs and kidney as compared with that in the sensory CVOs. On the other hand, vascular permeability of high-molecular-mass tracers such as FITC-labeled bovine serum albumin and Dextran 70,000 was lower in the CVOs as compared with that in the kidney. Prominent vascular permeability of low- and high-molecular-mass tracers was also observed in the arcuate nucleus. These data demonstrate that vascular permeability for low-molecular-mass molecules is higher in the secretory CVOs as compared with that in the sensory CVOs, possibly for large secretion of peptides to the blood stream. Moreover, vascular permeability for high-molecular-mass tracers in the CVOs is smaller than that of the kidney, indicating that the CVOs are not totally without a BBB.
Collapse
|
196
|
Abstract
Lipid sensing and insulin signaling in the brain independently triggers a negative feedback system to lower glucose production and food intake. Here, we discuss the underlying molecular and neuronal mechanisms of lipid sensing and insulin signaling in the hypothalamus and how these mechanisms are affected in response to high-fat feeding. We propose that high-fat feeding concurrently disrupts hypothalamic insulin-signaling and lipid-sensing mechanisms and that experiments aimed to restore both insulin action and lipid sensing in the brain could effectively lower glucose production and food intake to restore metabolic homeostasis in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | | |
Collapse
|
197
|
Abstract
The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and nonneuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
198
|
Yue JTY, Mighiu PI, Naples M, Adeli K, Lam TKT. Glycine normalizes hepatic triglyceride-rich VLDL secretion by triggering the CNS in high-fat fed rats. Circ Res 2012; 110:1345-54. [PMID: 22474253 DOI: 10.1161/circresaha.112.268276] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Dysregulation of hepatic triglyceride (TG)-rich very low-density lipoproteins (VLDL-TG) in obesity and type 2 diabetes contributes to the dyslipidemia that leads to cardiovascular morbidity. The central nervous system (CNS), particularly the hypothalamus, regulates hepatic lipid metabolism. Although the underlying neurocircuitry remains elusive, glycine has been documented to enhance CNS N-methyl-d-aspartate (NMDA) receptor-mediated transmission. OBJECTIVE We tested the hypothesis that glycine regulates hepatic VLDL-TG secretion by potentiating NMDA receptor-mediated transmission in the CNS. METHODS AND RESULTS Using 10-hour fasted male Sprague-Dawley rats implanted with stereotaxic cannulae into an extrahypothalamic region termed the dorsal vagal complex (DVC) and vascular catheters to enable direct DVC infusion and blood sampling, respectively, the rate of hepatic VLDL-TG secretion was measured following tyloxapol (an inhibitor of lipoprotein lipase) injection. Direct DVC infusion of glycine lowered VLDL-TG secretion, whereas NMDA receptor blocker MK-801 fully negated glycine's effect. NR1 subunit of NMDA receptor antagonist 7-chlorokynurenic acid, adenoviral injection of NR1 short hairpin RNA (shRNA), and hepatic vagotomy also nullified glycine's effect. Finally, DVC glycine normalized the hypersecretion of VLDL-TG induced by high-fat feeding. CONCLUSIONS Molecular and pharmacological inhibition of the NR1-containing NMDA receptors in the DVC negated the ability of glycine to inhibit hepatic secretion of VLDL-TG in vivo. Importantly, the hypersecretion of VLDL-TG from the liver induced by a model of high-fat feeding was restored by the hepatic lipid control of CNS glycine sensing. These findings collectively suggest that glycine or glycine analogues may have therapeutic benefits in lowering plasma lipid levels in diabetes and obesity by triggering the CNS.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
199
|
Abstract
The cellular nutrient sensing apparatus detects nutritional depletion and transmits this information to downstream effectors that generate energy from alternate sources. Autophagy is a crucial catabolic pathway that turns over redundant cytoplasmic components in lysosomes to provide energy to the starved cell. Recent studies have described a role for hypothalamic autophagy in the control of food intake and energy balance. Activated autophagy in hypothalamic neurons during starvation mobilized neuron-intrinsic lipids to generate free fatty acids that increased AgRP levels. AgRP neuron-specific inhibition of autophagy decreased fasting-induced increases in AgRP levels and food intake. Deletion of autophagy in AgRP neurons led to constitutive increases in levels of proopiomelanocortin and its active processed product, α-melanocyte stimulating hormone that contributed to reduced adiposity in these rodents. The current manuscript discusses these new findings and raises additional questions that may help understand how hypothalamic autophagy controls food intake and energy balance. These studies may have implications for designing new therapies against obesity and insulin resistance.
Collapse
|
200
|
Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012; 2012:282041. [PMID: 22536247 PMCID: PMC3320019 DOI: 10.1155/2012/282041] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/17/2012] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets (LDs), initially considered "inert" lipid deposits, have gained during the last decade the classification of cytosolic organelles due to their defined composition and the multiplicity of specific cellular functions in which they are involved. The classification of LD as organelles brings along the need for their regulated turnover and recent findings support the direct contribution of autophagy to this turnover through a process now described as lipophagy. This paper focuses on the characteristics of this new type of selective autophagy and the cellular consequences of the mobilization of intracellular lipids through this process. Lipophagy impacts the cellular energetic balance directly, through lipid breakdown and, indirectly, by regulating food intake. Defective lipophagy has been already linked to important metabolic disorders such as fatty liver, obesity and atherosclerosis, and the age-dependent decrease in autophagy could underline the basis for the metabolic syndrome of aging.
Collapse
Affiliation(s)
- Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|