151
|
Selnihhin D, Sparvath SM, Preus S, Birkedal V, Andersen ES. Multifluorophore DNA Origami Beacon as a Biosensing Platform. ACS NANO 2018; 12:5699-5708. [PMID: 29763544 DOI: 10.1021/acsnano.8b01510] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biosensors play increasingly important roles in many fields, from clinical diagnosis to environmental monitoring, and there is a growing need for cheap and simple analytical devices. DNA nanotechnology provides methods for the creation of sophisticated biosensors, however many of the developed DNA-based sensors are limited by cumbersome and time-consuming readouts involving advanced experimental techniques. Here we describe design, construction, and characterization of an optical DNA origami nanobiosensor device exploiting arrays of precisely positioned organic fluorophores. Two arrays of donor and acceptor fluorophores make up a multifluorophore Förster resonance energy-transfer pair that results in a high-output signal for microscopic detection of single devices. Arrangement of fluorophores into arrays increases the signal-to-noise ratio, allowing detection of signal output from singular biosensors using a conventional fluorescence microscopy setup. Single device analysis enables detection of target DNA sequences in concentrations down to 100 pM in <45 min. We expect that the presented nanobiosensor can function as a general platform for incorporating sensor modules for a variety of targets and that the strong signal amplification properties may allow detection in portable microscope systems to be used for biosensor applications in the field.
Collapse
|
152
|
Han X, Shokri Kojori H, Leblanc RM, Kim SJ. Ultrasensitive Plasmonic Biosensors for Real-Time Parallel Detection of Alpha-L-Fucosidase and Cardiac-Troponin-I in Whole Human Blood. Anal Chem 2018; 90:7795-7799. [DOI: 10.1021/acs.analchem.8b01816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xu Han
- Huston Labs, 1951 NW Seventh Avenue, Suite 600, Miami, Florida 33136, United States
| | - Hossein Shokri Kojori
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sung Jin Kim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
153
|
Yi C, Su MN, Dongare PD, Chakraborty D, Cai YY, Marolf DM, Kress RN, Ostovar B, Tauzin LJ, Wen F, Chang WS, Jones MR, Sader JE, Halas NJ, Link S. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping. NANO LETTERS 2018; 18:3494-3501. [PMID: 29715035 DOI: 10.1021/acs.nanolett.8b00559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.
Collapse
Affiliation(s)
- Chongyue Yi
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Man-Nung Su
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Pratiksha D Dongare
- Applied Physics Graduate Program , Rice University , Houston , Texas 77005 , United States
- Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
| | - Debadi Chakraborty
- ARC Centre of Excellence in Exciton Science, School of Mathematics and Statistics , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Yi-Yu Cai
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - David M Marolf
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Rachael N Kress
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Behnaz Ostovar
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Lawrence J Tauzin
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Fangfang Wen
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Wei-Shun Chang
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Matthew R Jones
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - John E Sader
- ARC Centre of Excellence in Exciton Science, School of Mathematics and Statistics , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Naomi J Halas
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
- Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
- Department of Physics and Astronomy , Rice University , Houston , Texas 77005 , United States
- Laboratory for Nanophotonics , Rice University , Houston , Texas 77005 , United States
| | - Stephan Link
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
- Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
- Laboratory for Nanophotonics , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
154
|
Li Z, Zhu C, Guo Z, Wang B, Wu X, Fei Y. Highly Sensitive Label-Free Detection of Small Molecules with an Optofluidic Microbubble Resonator. MICROMACHINES 2018; 9:mi9060274. [PMID: 30424207 PMCID: PMC6187366 DOI: 10.3390/mi9060274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 01/29/2023]
Abstract
The detection of small molecules has increasingly attracted the attention of researchers because of its important physiological function. In this manuscript, we propose a novel optical sensor which uses an optofluidic microbubble resonator (OFMBR) for the highly sensitive detection of small molecules. This paper demonstrates the binding of the small molecule biotin to surface-immobilized streptavidin with a detection limit reduced to 0.41 pM. Furthermore, binding specificity of four additional small molecules to surface-immobilized streptavidin is shown. A label-free OFMBR-based optical sensor has great potential in small molecule detection and drug screening because of its high sensitivity, low detection limit, and minimal sample consumption.
Collapse
Affiliation(s)
- Zihao Li
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Chenggang Zhu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Zhihe Guo
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Bowen Wang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Xiang Wu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| |
Collapse
|
155
|
Rabehi A, Garlan B, Achtsnicht S, Krause HJ, Offenhäusser A, Ngo K, Neveu S, Graff-Dubois S, Kokabi H. Magnetic Detection Structure for Lab-on-Chip Applications Based on the Frequency Mixing Technique. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1747. [PMID: 29844260 PMCID: PMC6021809 DOI: 10.3390/s18061747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/24/2023]
Abstract
A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding.
Collapse
Affiliation(s)
- Amine Rabehi
- Laboratoire d'Electronique et d'Electromagnétisme, Sorbonne Université, L2E, 75252 Paris, France.
| | - Benjamin Garlan
- Laboratoire d'Electronique et d'Electromagnétisme, Sorbonne Université, L2E, 75252 Paris, France.
| | - Stefan Achtsnicht
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Hans-Joachim Krause
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich, 52428 Jülich, Germany. h.-
| | - Andreas Offenhäusser
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Kieu Ngo
- Laboratoire Interfaces et Systèmes Électrochimiques, LISE, Sorbonne Université, CNRS, F 75005 Paris, France.
| | - Sophie Neveu
- PHENIX, Sorbonne Université, CNRS, F 75005 Paris, France.
| | - Stephanie Graff-Dubois
- Faculte de Medecine, Sorbonne Université, CIMI-PARIS, UMRS CR7-Inserm U1135-CNRS ERL 8255, 75013 Paris, France.
| | - Hamid Kokabi
- Laboratoire d'Electronique et d'Electromagnétisme, Sorbonne Université, L2E, 75252 Paris, France.
| |
Collapse
|
156
|
Tran DP, Pham TTT, Wolfrum B, Offenhäusser A, Thierry B. CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E785. [PMID: 29751688 PMCID: PMC5978162 DOI: 10.3390/ma11050785] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs' promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology.
Collapse
Affiliation(s)
- Duy Phu Tran
- Future Industries Institute and ARC Centre of Excellence for Convergent Nano-Bio Science and Technology, University of South Australia, Mawson Lakes 5095, South Australia, Australia.
| | - Thuy Thi Thanh Pham
- Future Industries Institute and ARC Centre of Excellence for Convergent Nano-Bio Science and Technology, University of South Australia, Mawson Lakes 5095, South Australia, Australia.
| | - Bernhard Wolfrum
- Department of Electrical, Electronic and Computer Engineering, Technical University of Munich, 85748 Munich, Germany.
| | | | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence for Convergent Nano-Bio Science and Technology, University of South Australia, Mawson Lakes 5095, South Australia, Australia.
| |
Collapse
|
157
|
Monitoring complex monosaccharide mixtures derived from macroalgae biomass by combined optical and microelectromechanical techniques. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
158
|
Cao C, Zhang F, Goldys EM, Gao F, Liu G. Advances in structure-switching aptasensing towards real time detection of cytokines. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
159
|
Zhou MH, Meng WL, Zhang CY, Li XB, Wu JZ, Zhang NH. The pH-dependent elastic properties of nanoscale DNA films and the resultant bending signals for microcantilever biosensors. SOFT MATTER 2018; 14:3028-3039. [PMID: 29637943 DOI: 10.1039/c7sm01883e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The diverse mechanical properties of nanoscale DNA films on solid substrates have a close correlation with complex detection signals of micro-/nano-devices. This paper is devoted to formulating several multiscale models to study the effect of pH-dependent ionic inhomogeneity on the graded elastic properties of nanoscale DNA films and the resultant bending deflections of microcantilever biosensors. First, a modified inverse Debye length is introduced to improve the classical Poisson-Boltzmann equation for the electrical potential of DNA films to consider the inhomogeneous effect of hydrogen ions. Second, the graded characteristics of the particle distribution are taken into consideration for an improvement in Parsegian's mesoscopic potential for both attraction-dominated and repulsion-dominated films. Third, by the improved interchain interaction potential and the thought experiment about the compression of a macroscopic continuum DNA bar, we investigate the diversity of the elastic properties of single-stranded DNA (ssDNA) films due to pH variations. The relevant theoretical predictions quantitatively or qualitatively agree well with the relevant DNA experiments on the electrical potential, film thickness, condensation force, elastic modulus, and microcantilever deflections. The competition between attraction and repulsion among the fixed charges and the free ions endows the DNA film with mechanical properties such as a remarkable size effect and a non-monotonic behavior, and a negative elastic modulus is first revealed in the attraction-dominated ssDNA film. There exists a transition between the pH-sensitive parameter interval and the pH-insensitive one for the bending signals of microcantilevers, which is predominated by the initial stress effect in the DNA film.
Collapse
Affiliation(s)
- Mei-Hong Zhou
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
| | | | | | | | | | | |
Collapse
|
160
|
La Spada L, Vegni L. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications. MATERIALS 2018; 11:ma11040603. [PMID: 29652853 PMCID: PMC5951487 DOI: 10.3390/ma11040603] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell's equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on "metamaterial" concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring.
Collapse
Affiliation(s)
- Luigi La Spada
- School of Computing, Electronics and Mathematics, Coventry University, Coventry CV1 5FB, UK.
| | - Lucio Vegni
- Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy.
| |
Collapse
|
161
|
Zeming KK, Salafi T, Shikha S, Zhang Y. Fluorescent label-free quantitative detection of nano-sized bioparticles using a pillar array. Nat Commun 2018; 9:1254. [PMID: 29593276 PMCID: PMC5871788 DOI: 10.1038/s41467-018-03596-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Disease diagnostics requires detection and quantification of nano-sized bioparticles including DNA, proteins, viruses, and exosomes. Here, a fluorescent label-free method for sensitive detection of bioparticles is explored using a pillar array with micrometer-sized features in a deterministic lateral displacement (DLD) device. The method relies on measuring changes in size and/or electrostatic charges of 1 µm polymer beads due to the capture of target bioparticles on the surface. These changes can be sensitively detected through the lateral displacement of the beads in the DLD array, wherein the lateral shifts in the output translates to a quantitative measurement of bioparticles bound to the bead. The detection of albumin protein and nano-sized polymer vesicles with a concentration as low as 10 ng mL-1 (150 pM) and 3.75 μg mL-1, respectively, is demonstrated. This label-free method holds potential for point-of-care diagnostics, as it is low-cost, fast, sensitive, and only requires a standard laboratory microscope for detection.
Collapse
Affiliation(s)
- Kerwin Kwek Zeming
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Thoriq Salafi
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
162
|
Fan S, Bi S, Li Q, Guo Q, Liu J, Ouyang Z, Jiang C, Song J. Size-dependent Young's modulus in ZnO nanowires with strong surface atomic bonds. NANOTECHNOLOGY 2018; 29:125702. [PMID: 29350192 DOI: 10.1088/1361-6528/aaa929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young's modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young's modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young's modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young's modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.
Collapse
Affiliation(s)
- Shiwen Fan
- Institute of Photoelectric Nanoscience and Nanotechnology, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China. Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Detection of heart-type fatty acid-binding protein (h-FABP) using piezoresistive polymer microcantilevers functionalized by a dry method. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0723-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
164
|
Bang D, Lee T, Park J, Lee G, Haam S, Park J. Enhancement of Capturing Efficacy for Circulating Tumor Cells by Centrifugation. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-017-2105-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
165
|
Interaction of Extracellular Vesicles with Si Surface Studied by Nanomechanical Microcantilever Sensors. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
166
|
Wang T, Yang H, Qi D, Liu Z, Cai P, Zhang H, Chen X. Mechano-Based Transductive Sensing for Wearable Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702933. [PMID: 29359885 DOI: 10.1002/smll.201702933] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Wearable healthcare presents exciting opportunities for continuous, real-time, and noninvasive monitoring of health status. Even though electrochemical and optical sensing have already made great advances, there is still an urgent demand for alternative signal transformation in terms of miniaturization, wearability, conformability, and stretchability. Mechano-based transductive sensing, referred to the efficient transformation of biosignals into measureable mechanical signals, is claimed to exhibit the aforementioned desirable properties, and ultrasensitivity. In this Concept, a focus on pressure, strain, deflection, and swelling transductive principles based on micro-/nanostructures for wearable healthcare is presented. Special attention is paid to biophysical sensors based on pressure/strain, and biochemical sensors based on microfluidic pressure, microcantilever, and photonic crystals. There are still many challenges to be confronted in terms of sample collection, miniaturization, and wireless data readout. With continuing efforts toward solving those problems, it is anticipated that mechano-based transduction will provide an accessible route for multimode wearable healthcare systems integrated with physical, electrophysiological, and biochemical sensors.
Collapse
Affiliation(s)
- Ting Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Yang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dianpeng Qi
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiyuan Liu
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
167
|
AlKahtani RN. The implications and applications of nanotechnology in dentistry: A review. Saudi Dent J 2018; 30:107-116. [PMID: 29628734 PMCID: PMC5884254 DOI: 10.1016/j.sdentj.2018.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/08/2017] [Accepted: 01/23/2018] [Indexed: 11/30/2022] Open
Abstract
The emerging science of nanotechnology, especially within the dental and medical fields, sparked a research interest in their potential applications and benefits in comparison to conventional materials used. Therefore, a better understanding of the science behind nanotechnology is essential to appreciate how these materials can be utilised in our daily practice. The present paper will help the reader understand nanoscience, and the benefits and limitations of nanotechnology by addressing its ethical, social, and health implications. Additionally, nano-applications in dental diagnostics, dental prevention, and in dental materials will be addressed, with examples of commercially available products and evidence on their clinical performance.
Collapse
Affiliation(s)
- Rawan N AlKahtani
- Restorative Dentistry Division, Clinical Dental Sciences Department, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
168
|
Mathew R, Ravi Sankar A. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors. NANO-MICRO LETTERS 2018; 10:35. [PMID: 30393684 PMCID: PMC6199092 DOI: 10.1007/s40820-018-0189-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 05/30/2023]
Abstract
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.
Collapse
Affiliation(s)
- Ribu Mathew
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT) Chennai, Chennai, Tamil Nadu 600127 India
| | - A. Ravi Sankar
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT) Chennai, Chennai, Tamil Nadu 600127 India
| |
Collapse
|
169
|
Roxworthy BJ, Vangara S, Aksyuk VA. Sub-diffraction spatial mapping of nanomechanical modes using a plasmomechanical system. ACS PHOTONICS 2018; 5:10.1021/acsphotonics.8b00604. [PMID: 30984799 PMCID: PMC6459204 DOI: 10.1021/acsphotonics.8b00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmomechanical systems - formed by introducing a mechanically compliant gap between metallic nanostructures - produce large optomechanical interactions that can be localized to deep subwavelength volumes. This unique ability opens a new path to study optomechanics in nanometer-scale regimes inaccessible by other methods. We show that the localized optomechanical interactions produced by plasmomechanics can be used to spatially map the displacement modes of a vibrating nanomechanical system with a resolution exceeding the diffraction limit. Furthermore, we use white light illumination for motion transduction instead of a monochromatic laser, and develop a semi-analytical model matching the changes in optomechanical coupling constant and motion signal strength observed in a broadband transduction experiment. Our results clearly demonstrate the key benefit of localized and broadband performance provided by plasmomechanical systems, which may enable future nano-scale sensing and wafer-scale metrology applications.
Collapse
Affiliation(s)
- Brian J. Roxworthy
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | - Vladimir A. Aksyuk
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
170
|
Enzyme–Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications. Methods Enzymol 2018; 609:293-333. [DOI: 10.1016/bs.mie.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
171
|
Zheng Z, Zhang W, Yu C, Zheng G, Ma K, Qin Z, Ye J, Chao Y. Integration of the 3DOM Al/Co3O4 nanothermite film with a semiconductor bridge to realize a high-output micro-energetic igniter. RSC Adv 2018; 8:2552-2560. [PMID: 35541495 PMCID: PMC9077334 DOI: 10.1039/c7ra11293a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
Microigniters play an important role for the reliable initiation of micro explosive devices. However, the microigniter is still limited by the low out-put energy to realize high reliability and safety. Integration of energetic materials with microigniters is an effective method to enhance the ignition ability. In this work, a Al/Co3O4 nanothermite film with a three-dimensionally ordered macroporous structure was prepared by the deposition of nanoscale Al layers using magnetron sputtering on Co3O4 skeletons that are synthesized using an inverse template method. Both the uniform structure and nanoscale contact between the Al layers and the Co3O4 skeletons lead to an excellent exothermicity. In order to investigate the ignition properties, a micro-energetic igniter has been fabricated by the integration of the Al/Co3O4 nanothermite film with a semiconductor bridge microigniter. The thermite reactions between the nanoscale Al layer and the Co3O4 skeleton extensively promote the intensity of the spark, the length in duration and the size of the area, which greatly enhance the ignition reliability of the micro-energetic igniter. Moreover, this novel design enables the micro-energetic igniter to fire the pyrotechnic Zr/Pb3O4 in a gap of 3.7 mm by capacitor discharge stimulation and to keep the intrinsic instantaneity high and firing energy low. The realization of gap ignition will surely improve the safety level of initiating systems and have a significant impact on the design and application of explosive devices. A micro-energetic igniter integrated with a 3DOM Al/Co3O4 nanothermite film is able to generate larger spark and realize gap ignition.![]()
Collapse
Affiliation(s)
- Zilong Zheng
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Wenchao Zhang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Chunpei Yu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Guoqiang Zheng
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
- The 43rd Research Institute of CETC
| | - Kefeng Ma
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Zhichun Qin
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jiahai Ye
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yimin Chao
- School of Chemistry
- University of East Anglia
- UK
| |
Collapse
|
172
|
Abstract
With the recent advancement of nanomaterials and nanostructured materials, the point-of-care biosensor devices have shown a potential growth to revolutionize the future personalized health care diagnostics and therapy practices. This chapter deals with the fundamentals of nanomaterials-based biosensors. The first chapter covers the brief details of nanotechnology with its types and an introduction to the synthesis of nanomaterials and their importance to construct transducers. The different components of transducers such as electrochemical, optical, piezoelectric, thermal, surface plasmon resonance, and so on for biosensors have been explained in this chapter. Various principles utilized for development of enzymatic biosensors, immunosensors, DNA, and whole-cell biosensors have been included in this chapter. Immobilization of bioreceptors is a crucial step to fabricate biosensors and their stepwise demonstration and conjugation of nanomaterials with nanomaterials have been described.
Collapse
|
173
|
Kang DH, Jung HS, Kim K, Kim J. Mussel-Inspired Universal Bioconjugation of Polydiacetylene Liposome for Droplet-Array Biosensors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42210-42216. [PMID: 29111663 DOI: 10.1021/acsami.7b14086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most solid-state biosensor platforms require a specific immobilization chemistry and a bioconjugation strategy separately to tether sensory molecules to a substrate and attach specific receptors to the sensory unit, respectively. We developed a mussel-inspired universal conjugation method that enables both surface immobilization and bioconjugation at the same time. By incorporating dopamine or catechol moiety into self-signaling polydiacetylene (PDA) liposomes, we demonstrated efficient immobilization of the PDA liposomes to a wide range of substrates, without any substrate modification. Moreover, receptor molecules having a specificity toward a target molecule can also be attached to the immobilized PDA liposome layer without any chemical modification. We applied our mussel-inspired conjugation method to a droplet-array biosensor by exploiting the hydrophilic nature of PDA liposomes coated on a hydrophobic polytetrafluoroethylene surface and demonstrated selective and sensitive detection of vascular endothelial growth factor down to 10 nM.
Collapse
Affiliation(s)
- Do Hyun Kang
- Materials Science and Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| | | | | | - Jinsang Kim
- Materials Science and Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
- Macromolecular Science and Engineering, Chemical Engineering, Biomedical Engineering, Chemistry, and Biointerface Institute, University of Michigan , Ann Arbor 48109, United States
| |
Collapse
|
174
|
Kartanas T, Ostanin V, Challa PK, Daly R, Charmet J, Knowles TP. Enhanced Quality Factor Label-free Biosensing with Micro-Cantilevers Integrated into Microfluidic Systems. Anal Chem 2017; 89:11929-11936. [DOI: 10.1021/acs.analchem.7b01174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tadas Kartanas
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department
of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Victor Ostanin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Pavan Kumar Challa
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ronan Daly
- Department
of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Jerome Charmet
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Institute
of Digital Healthcare, WMG, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tuomas P.J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
175
|
Solano I, Parisse P, Gramazio F, Ianeselli L, Medagli B, Cavalleri O, Casalis L, Canepa M. Atomic Force Microscopy and Spectroscopic Ellipsometry combined analysis of Small Ubiquitin-like Modifier adsorption on functional monolayers. APPLIED SURFACE SCIENCE 2017. [DOI: 10.1016/j.apsusc.2016.10.195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
176
|
Janissen R, Sahoo PK, Santos CA, da Silva AM, von Zuben AAG, Souto DEP, Costa ADT, Celedon P, Zanchin NIT, Almeida DB, Oliveira DS, Kubota LT, Cesar CL, Souza APD, Cotta MA. InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. NANO LETTERS 2017; 17:5938-5949. [PMID: 28895736 DOI: 10.1021/acs.nanolett.7b01803] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Electrically active field-effect transistors (FET) based biosensors are of paramount importance in life science applications, as they offer direct, fast, and highly sensitive label-free detection capabilities of several biomolecules of specific interest. In this work, we report a detailed investigation on surface functionalization and covalent immobilization of biomarkers using biocompatible ethanolamine and poly(ethylene glycol) derivate coatings, as compared to the conventional approaches using silica monoliths, in order to substantially increase both the sensitivity and molecular selectivity of nanowire-based FET biosensor platforms. Quantitative fluorescence, atomic and Kelvin probe force microscopy allowed detailed investigation of the homogeneity and density of immobilized biomarkers on different biofunctionalized surfaces. Significantly enhanced binding specificity, biomarker density, and target biomolecule capture efficiency were thus achieved for DNA as well as for proteins from pathogens. This optimized functionalization methodology was applied to InP nanowires that due to their low surface recombination rates were used as new active transducers for biosensors. The developed devices provide ultrahigh label-free detection sensitivities ∼1 fM for specific DNA sequences, measured via the net change in device electrical resistance. Similar levels of ultrasensitive detection of ∼6 fM were achieved for a Chagas Disease protein marker (IBMP8-1). The developed InP nanowire biosensor provides thus a qualified tool for detection of the chronic infection stage of this disease, leading to improved diagnosis and control of spread. These methodological developments are expected to substantially enhance the chemical robustness, diagnostic reliability, detection sensitivity, and biomarker selectivity for current and future biosensing devices.
Collapse
Affiliation(s)
- Richard Janissen
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
- Kavli Institute of Nanoscience, Delft University of Technology , 2629 HZ Delft, The Netherlands
| | - Prasana K Sahoo
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Clelton A Santos
- Center for Molecular Biology and Genetic Engineering, Biology Institute, University of Campinas , Campinas, São Paulo 13083-875, Brazil
| | - Aldeliane M da Silva
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Antonio A G von Zuben
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Denio E P Souto
- Chemistry Institute, University of Campinas , Campinas, São Paulo 13083-970, Brazil
| | - Alexandre D T Costa
- Oswaldo Cruz Foundation, Carlos Chagas Institute , Curitiba, Paraná 81310-020 Brazil
| | - Paola Celedon
- Molecular Biology Institute of Paraná , Curitiba, Paraná 81310-020 Brazil
| | - Nilson I T Zanchin
- Oswaldo Cruz Foundation, Carlos Chagas Institute , Curitiba, Paraná 81310-020 Brazil
| | - Diogo B Almeida
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Douglas S Oliveira
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Lauro T Kubota
- Chemistry Institute, University of Campinas , Campinas, São Paulo 13083-970, Brazil
| | - Carlos L Cesar
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Anete P de Souza
- Center for Molecular Biology and Genetic Engineering, Biology Institute, University of Campinas , Campinas, São Paulo 13083-875, Brazil
| | - Monica A Cotta
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| |
Collapse
|
177
|
You JB, Kim YT, Lee KG, Choi Y, Choi S, Kim CH, Kim KH, Chang SJ, Lee TJ, Lee SJ, Im SG. Surface-Modified Mesh Filter for Direct Nucleic Acid Extraction and its Application to Gene Expression Analysis. Adv Healthc Mater 2017; 6. [PMID: 28714572 DOI: 10.1002/adhm.201700642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 12/23/2022]
Abstract
Rapid and convenient isolation of nucleic acids (NAs) from cell lysate plays a key role for onsite gene expression analysis. Here, this study achieves one-step and efficient capture of NA directly from cell lysate by developing a cationic surface-modified mesh filter (SMF). By depositing cationic polymer via vapor-phase deposition process, strong charge interaction is introduced on the surface of the SMF to capture the negatively charged NAs. The NA capturing capability of SMF is confirmed by X-ray photoelectron spectroscopy, fluorescent microscopy, and zeta potential measurement. In addition, the genomic DNAs of Escherichia Coli O157:H7 can be extracted by the SMF from artificially infected food, and fluorescent signal is observed on the surface of SMF after amplification of target gene. The proposed SMF is able to provide a more simplified, convenient, and fast extraction method and can be applied to the fields of food safety testing, clinical diagnosis, or environmental pollutant monitoring.
Collapse
Affiliation(s)
- Jae Bem You
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Yong Tae Kim
- Department of Nano Bio Research; National NanoFab Center (NNFC); Daejeon 34141 Republic of Korea
| | - Kyoung G. Lee
- Department of Nano Bio Research; National NanoFab Center (NNFC); Daejeon 34141 Republic of Korea
| | - Yunho Choi
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Seongkyun Choi
- Department of Nano Bio Research; National NanoFab Center (NNFC); Daejeon 34141 Republic of Korea
| | - Chi Hyun Kim
- Department of Nano Bio Research; National NanoFab Center (NNFC); Daejeon 34141 Republic of Korea
| | - Kyung Hoon Kim
- Department of Nano Bio Research; National NanoFab Center (NNFC); Daejeon 34141 Republic of Korea
| | - Sung Jin Chang
- Department of Chemistry; Chung-Ang University; Seoul 06911 Republic of Korea
| | - Tae Jae Lee
- Department of Nano Bio Research; National NanoFab Center (NNFC); Daejeon 34141 Republic of Korea
| | - Seok Jae Lee
- Department of Nano Bio Research; National NanoFab Center (NNFC); Daejeon 34141 Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- Graphene Research Center in KAIST Institute for NanoCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| |
Collapse
|
178
|
Ahmed A, Pelton M, Guest JR. Understanding How Acoustic Vibrations Modulate the Optical Response of Plasmonic Metal Nanoparticles. ACS NANO 2017; 11:9360-9369. [PMID: 28817767 DOI: 10.1021/acsnano.7b04789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Measurements of acoustic vibrations in nanoparticles provide an opportunity to study mechanical phenomena at nanometer length scales and picosecond time scales. Vibrations in noble-metal nanoparticles have attracted particular attention because they couple to plasmon resonances in the nanoparticles, leading to strong modulation of optical absorption and scattering. There are three mechanisms that transduce the mechanical oscillations into changes in the plasmon resonance: (1) changes in the nanoparticle geometry, (2) changes in electron density due to changes in the nanoparticle volume, and (3) changes in the interband transition energies due to compression/expansion of the nanoparticle (deformation potential). These mechanisms have been studied in the past to explain the origin of the experimental signals; however, a thorough quantitative connection between the coupling of phonon and plasmon modes has not yet been made, and the separate contribution of each coupling mechanism has not yet been quantified. Here, we present a numerical method to quantitatively determine the coupling between vibrational and plasmon modes in noble-metal nanoparticles of arbitrary geometries and apply it to silver and gold spheres, shells, rods, and cubes in the context of time-resolved measurements. We separately determine the parts of the optical response that are due to shape changes, changes in electron density, and changes in deformation potential. We further show that coupling is, in general, strongest when the regions of largest electric field (plasmon mode) and largest displacement (phonon mode) overlap. These results clarify reported experimental results and should help guide future experiments and potential applications.
Collapse
Affiliation(s)
- Aftab Ahmed
- Department of Electrical Engineering, California State University Long Beach , Long Beach, California 90840, United States
- Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Matthew Pelton
- Department of Physics, University of Maryland, Baltimore County , Baltimore, Maryland 21250, United States
- Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jeffrey R Guest
- Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States
| |
Collapse
|
179
|
MacKay S, Abdelrasoul GN, Tamura M, Lin D, Yan Z, Chen J. Using Impedance Measurements to Characterize Surface Modified with Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2141. [PMID: 29358569 PMCID: PMC5620498 DOI: 10.3390/s17092141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/01/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
With the increased practice of preventative healthcare to help reduce costs worldwide, sensor technology improvement is vital to patient care. Point-of-care (POC) diagnostics can reduce time and lower labor in testing, and can effectively avoid transporting costs because of portable designs. Label-free detection allows for greater versatility in the detection of biological molecules. Here, we describe the use of an impedance-based POC biosensor that can detect changes in the surface modification of a micro-fabricated chip using impedance spectroscopy. Gold nanoparticles (GNPs) have been employed to evaluate the sensing ability of our new chip using impedance measurements. Furthermore, we used impedance measurements to monitor surface functionalization progress on the sensor's interdigitated electrodes (IDEs). Electrodes made from aluminum and gold were employed and the results were analyzed to compare the impact of electrode material. GNPs coated with mercaptoundecanoic acid were also used as a model of biomolecules to greatly enhance chemical affinity to the silicon substrate. The portable sensor can be used as an alternative technology to ELISA (enzyme-linked immunosorbent assays) and polymerase chain reaction (PCR)-based techniques. This system has advantages over PCR and ELISA both in the amount of time required for testing and the ease of use of our sensor. With other techniques, larger, expensive equipment must be utilized in a lab environment, and procedures have to be carried out by trained professionals. The simplicity of our sensor system can lead to an automated and portable sensing system.
Collapse
Affiliation(s)
- Scott MacKay
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Gaser N Abdelrasoul
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Marcus Tamura
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Donghai Lin
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Zhimin Yan
- National Institute for Nanotechnology, National Research Council, Edmonton, AB T6G 2M9, Canada.
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
- National Institute for Nanotechnology, National Research Council, Edmonton, AB T6G 2M9, Canada.
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| |
Collapse
|
180
|
Abstract
Early liver cancer diagnosis has clinical significance in treating cancer. Joint detection of multiple biomarkers has been considered as an effective and reliable method for early cancer diagnosis. In this work, a novel biosensor based on microcantilever array was batch-fabricated for multiple liver cancer biomarkers detection with high sensitivity, high accuracy, high throughput, and high specification. A micro-cavity was designed in the free end of the cantilever for local reaction between antibody and antigen, which can dramatically reduce the effect of adsorption-induced stiffness coefficient k variation. Furthermore,the pillar arrays in the micro-cavity were designed for increasing detection upper limit. A linear relationship between the relative frequency shift and the antigen concentration was observed for three liver cancer biomarkers, alpha-fetoprotein (AFP), γ-glutamyltranspeptidase II (GGT-2), and hepatocyte growth factor (HGF). Slight cross-reaction response to different antigens ensures high specificity of the sensor. These features will promote clinical application of the cantilever sensors in early cancer diagnosis.
Collapse
|
181
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
182
|
Nano-Integrated Suspended Polymeric Microfluidics (SPMF) Platform for Ultra-Sensitive Bio-Molecular Recognition of Bovine Growth Hormones. Sci Rep 2017; 7:10969. [PMID: 28887532 PMCID: PMC5591301 DOI: 10.1038/s41598-017-11300-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022] Open
Abstract
The development of sensitive platforms for the detection of biomolecules recognition is an extremely important problem in clinical diagnostics. In microcantilever (MC) transducers, surface-stress is induced upon bimolecular interaction which is translated into MC deflection. This paper presents a cost-effective and ultra-sensitive MC-based biosensing platform. To address these goals, the need for costly high-resolution read-out system has been eliminated by reducing the cantilever compliance through developing a polymer-based cantilever. Furthermore a microfluidic system has been integrated with the MC in order to enhance sensitivity and response time and to reduce analytes consumption. Gold nanoparticles (AuNPs) are synthesized on the surface of suspended microfluidics as the selective layer for biomolecule immobilization. The biosensing results show significant improvement in the sensitivity of the proposed platform compared with available silicon MC biosensor. A detection limit of 2 ng/ml (100pM) is obtained for the detection of bovine growth hormones. The results validated successful application of suspended polymeric microfluidics (SPMF) as the next generation of biosensing platforms which could enable femtomolar (fM) biomolecular recognition detection.
Collapse
|
183
|
Optomechanical devices for deep plasma cancer proteomics. Semin Cancer Biol 2017; 52:26-38. [PMID: 28867489 DOI: 10.1016/j.semcancer.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 12/27/2022]
Abstract
Most of the cancer deaths could be avoided by early detection of the tumor when it is confined to its primary site and it has not metastasized. To this aim, one of the most promising strategies is the discovery and detection of protein biomarkers shed by the young tumor to the bloodstream. Proteomic technologies, mainly mass spectrometry and multiplexed immunoassays, have rapidly developed during last years with improved limits of detection and multiplexing capability. Unfortunately, these developments together major investments and large international efforts have not resulted into new useful protein biomarkers. Here, we analyze the potential and limitations of current proteomic technologies for detecting protein biomarkers released into circulation by the tumor. We find that these technologies can hardly probe the deepest region of the plasma proteome, at concentrations below the pg/mL level, where protein biomarkers for early cancer detection may exist. This clearly indicates the need of incorporating novel ultrasensitive techniques to the proteomic tool-box that can cover the inaccessible regions of the plasma proteome. We here propose biological detectors based on nanomechanical systems for discovery and detection of cancer protein biomarkers in plasma. We review the modes of operation of these devices, putting our focus on recent developments on nanomechanical sandwich immunoassays and nanomechanical spectrometry. The first technique enables reproducible immunodetection of proteins at concentrations well below the pg/mL level, with a limit of detection on the verge of 10 ag/mL. This technology can potentially detect low abundance tumor-associated proteins in plasma at the very early stages of the tumor. The second technique enables the identification of individual intact proteins by two physical coordinates, the mass and stiffness, instead of the mass-to-charge ratio of the protein constituents. This technology enormously simplifies the identification of proteins and it can provide useful information on interactions and posttranslational modifications, that otherwise is lost in mass spectrometry.
Collapse
|
184
|
Pan S, Zhang H, Liu W, Wang Y, Pang W, Duan X. Biofouling Removal and Protein Detection Using a Hypersonic Resonator. ACS Sens 2017; 2:1175-1183. [PMID: 28730815 DOI: 10.1021/acssensors.7b00298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nonspecific binding (NSB) is a general issue for surface based biosensors. Various approaches have been developed to prevent or remove the NSBs. However, these approaches either increased the background signals of the sensors or limited to specific transducers interface. In this work, we developed a hydrodynamic approach to selectively remove the NSBs using a microfabricated hypersonic resonator with 2.5 gigahertz (GHz) resonant frequency. The high frequency device facilitates generation of multiple controlled microvortexes which then create cleaning forces at the solid-liquid interfaces. The competitive adhesive and cleaning forces have been investigated using the finite element method (FEM) simulation, identifying the feasibility of the vortex-induced NSB removal. NSB proteins have been selectively removed experimentally both on the surface of the resonator and on other substrates which contact the vortexes. Thus, the developed hydrodynamic approach is believed to be a simple and versatile tool for NSB removal and compatible to many sensor systems. The unique feature of the hypersonic resonator is that it can be used as a gravimetric sensor as well; thus a combined NSB removal and protein detection dual functional biosensor system is developed.
Collapse
Affiliation(s)
- Shuting Pan
- State Key Laboratory of Precision Measuring Technology & Instruments and ‡College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hongxiang Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments and ‡College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wenpeng Liu
- State Key Laboratory of Precision Measuring Technology & Instruments and ‡College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments and ‡College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments and ‡College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments and ‡College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
185
|
Lee J, Kaul AB, Feng PXL. Carbon nanofiber high frequency nanomechanical resonators. NANOSCALE 2017; 9:11864-11870. [PMID: 28805881 DOI: 10.1039/c7nr02306e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Carbon nanofibers (CNFs) synthesized using a plasma-enhanced chemical vapor deposition (PECVD) process are investigated as a new class of building blocks for high-frequency vibrating nanomechanical resonators. The CNF resonators are prototyped by using vertically oriented few-μm-long cantilever-structured CNFs grown by PECVD. Undriven thermomechanical motions and photothermally driven resonances are measured in the frequency range of ∼3-10 MHz, which exhibit quality (Q) factors of ∼140-350 in moderate vacuum (milliTorr) at room temperature. Further, characteristics of CNF resonators after platinum deposition and intensive electron beam exposure are investigated, and resonance frequency shifts due to mass loading on the CNFs are clearly observed. In addition, extensive material characterization of the CNFs using techniques such as X-ray electron dispersive spectroscopy (XEDS) with spatial element-mapping reveals the structure and growth mechanism of the CNFs.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Electrical Engineering & Computer Science, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
186
|
Kim D, Kwon HJ, Shin K, Kim J, Yoo RE, Choi SH, Soh M, Kang T, Han SI, Hyeon T. Multiplexible Wash-Free Immunoassay Using Colloidal Assemblies of Magnetic and Photoluminescent Nanoparticles. ACS NANO 2017; 11:8448-8455. [PMID: 28787118 DOI: 10.1021/acsnano.7b04088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal assemblies of nanoparticles possess both the intrinsic and collective properties of their constituent nanoparticles, which are useful in applications where ordinary nanoparticles are not well suited. Here, we report an immunoassay technique based on colloidal nanoparticle assemblies made of iron oxide nanoparticles (magnetic substrate) and manganese-doped zinc sulfide (ZnS:Mn) nanoparticles (photoluminescent substrate), both of which are functionalized with antibodies to capture target proteins in a sandwich assay format. After magnetic isolation of the iron oxide nanoparticle assemblies and their bound ZnS:Mn nanoparticle assemblies (MZSNAs), photoluminescence of the remaining MZSNAs is measured for the protein quantification, eliminating the need for washing steps and signal amplification. Using human C-reactive protein as a model biomarker, we achieve a detection limit of as low as 0.7 pg/mL, which is more than 1 order of magnitude lower than that of enzyme-linked immunosorbent assay (9.1 pg/mL) performed using the same pair of antibodies, while using only one-tenth of the antibodies. We also confirm the potential for multiplex detection by using two different types of photoluminescent colloidal nanoparticle assemblies simultaneously.
Collapse
Affiliation(s)
- Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
| | - Hyek Jin Kwon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Jaehyup Kim
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| |
Collapse
|
187
|
Singh V, Nerimetla R, Yang M, Krishnan S. Magnetite-Quantum Dot Immunoarray for Plasmon-Coupled-Fluorescence Imaging of Blood Insulin and Glycated Hemoglobin. ACS Sens 2017; 2:909-915. [PMID: 28750536 DOI: 10.1021/acssensors.7b00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New microarray chip strategies that are sensitive and selective and that can measure low levels of important biomarkers directly in a blood sample are significant for improving human health by allowing timely diagnosis of an abnormal condition. Herein, we designed an antibody-aptamer immunoarray chip to demonstrate simultaneous measurement of blood insulin and glycated hemoglobin (HbA1c) levels relevant to diabetic and prediabetic disorders using a surface plasmon microarray with validation by fluorescence imaging. To accomplish both surface plasmon and fluorescence imaging on the same sample, we decorated magnetite nanoparticles with quantum dots for covalent immobilization of aptamers for subsequent capture and isolation of the aptamers specific for insulin and HbA1c markers from 20-times diluted whole blood samples. Direct clinically relevant analysis, along with fluorescent imaging of the two markers, was achieved by this new immunoarray platform. The limit of detection was 4 pM for insulin and 1% for HbA1c. Examination of cross-talk using thrombin and platelet-derived growth factor confirmed that the designed immunoarray was highly selective for insulin and HbA1c. Surface plasmon kinetic analysis provided apparent binding constants of 0.24 (±0.08) nM and 37 (±3) μM, respectively, for the binding of insulin and HbA1c onto their surface immobilized monoclonal antibodies. Thus, quantitative imaging of ultralow levels of blood biomarker levels with binding kinetics is uniquely obtained in the designed immunoarray chip. In conclusion, this report demonstrates considerable significance of the developed magnetite-quantum dot-bioconjugate strategy for clinical diagnostics of whole blood biomarkers with characterization of molecular binding interactions.
Collapse
Affiliation(s)
- Vini Singh
- Department of Chemistry and ‡Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Rajasekhara Nerimetla
- Department of Chemistry and ‡Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Ming Yang
- Department of Chemistry and ‡Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sadagopan Krishnan
- Department of Chemistry and ‡Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
188
|
Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochim Acta 2017; 184:3049-3067. [PMID: 29109592 PMCID: PMC5669453 DOI: 10.1007/s00604-017-2410-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials. It starts with an introduction into the field, the significance of testing for PSA, and on current limitations. A first main section treats electrochemical biosensors for PSA, with subsections on methods based on the use of gold electrodes, graphene or graphene-oxide, carbon nanotubes, hybrid nanoparticles, and other types of nanoparticles. It also covers electrochemical methods based on the enzyme-like activity of PSA, on DNA-, aptamer- and biofuel cell-based methods, and on the detection of PSA via its glycan part. The next main section covers optical biosensors, with subsections on methods making use of surface plasmon resonance (SPR), localized SPR and plasmonic ELISA-like schemes. This is followed by subsections on methods based on the use of fiber optics, fluorescence, chemiluminescence, Raman scattering and SERS, electrochemiluminescence and cantilever-based methods. The most sensitive biosensors are the electrochemical ones, with lowest limits of detection (down to attomolar concentrations), followed by mass cantilever sensing and electrochemilumenescent strategies. Optical biosensors show lower performance, but are still more sensitive compared to standard ELISA. The most commonly applied nanomaterials are metal and carbon-based ones and their hybrid composites used for different amplification strategies. The most attractive sensing schemes are summarized in a Table. The review ends with a section on conclusions and perspectives.
Collapse
Affiliation(s)
- Dominika Damborska
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Erika Dosekova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Alena Holazova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
189
|
Precision measurement: Sensing past the quantum limit. Nature 2017; 547:164-165. [PMID: 28703192 DOI: 10.1038/547164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
190
|
Choi JW, Lee H, Lee G, Kim YR, Ahn MJ, Park HJ, Eom K, Kwon T. Blood Droplet-Based Cancer Diagnosis via Proteolytic Activity Measurement in Cancer Progression. Am J Cancer Res 2017; 7:2878-2887. [PMID: 28824722 PMCID: PMC5562222 DOI: 10.7150/thno.19358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinase (MMP) is a key marker and target molecule for cancer diagnosis, as MMP is able to cleave peptide chains resulting in degradation of extracellular matrix (ECM), a necessary step for cancer development. In particular, MMP2 has recently been recognized as an important biomarker for lung cancer. Despite the important role of detecting MMP molecules in cancer diagnosis, it is a daunting task to quantitatively understand a correlation between the status of cancer development and the secretion level of MMP in a blood droplet. Here, we demonstrate a nanoscale cancer diagnosis by nanomechanical quantitation of MMP2 molecules under cancer progression with using a blood droplet of lung cancer patients. Specifically, we measured the frequency dynamics of nanomechanical biosensor functionalized with peptide chains mimicking ECM in response to MMP2 secreted from tumors in lung with different metastasis level. It is shown that the frequency shift of the biosensor, which exhibits the detection sensitivity below 1 nM, enables the quantitation of the secretion level of MMP2 molecules during the progression of cancer cells or tumor growth. More importantly, using a blood droplet of lung cancer patients, nanomechanical biosensor is shown to be capable of depicting the correlation between the secretion level of MMP2 molecules and the level of cancer metastasis, which highlights the cantilever-based MMP2 detection for diagnosis of lung cancer. Our finding will broaden the understanding of cancer development activated by MMP and allow for a fast and point-of-care cancer diagnostics.
Collapse
|
191
|
Kim M, Alapan Y, Adhikari A, Little JA, Gurkan UA. Hypoxia-enhanced adhesion of red blood cells in microscale flow. Microcirculation 2017; 24:10.1111/micc.12374. [PMID: 28387057 PMCID: PMC5679205 DOI: 10.1111/micc.12374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The advancement of microfluidic technology has facilitated the simulation of physiological conditions of the microcirculation, such as oxygen tension, fluid flow, and shear stress in these devices. Here, we present a micro-gas exchanger integrated with microfluidics to study RBC adhesion under hypoxic flow conditions mimicking postcapillary venules. METHODS We simulated a range of physiological conditions and explored RBC adhesion to endothelial or subendothelial components (FN or LN). Blood samples were injected into microchannels at normoxic or hypoxic physiological flow conditions. Quantitative evaluation of RBC adhesion was performed on 35 subjects with homozygous SCD. RESULTS Significant heterogeneity in RBC adherence response to hypoxia was seen among SCD patients. RBCs from a HEA population showed a significantly greater increase in adhesion compared to RBCs from a HNA population, for both FN and LN. CONCLUSIONS The approach presented here enabled the control of oxygen tension in blood during microscale flow and the quantification of RBC adhesion in a cost-efficient and patient-specific manner. We identified a unique patient population in which RBCs showed enhanced adhesion in hypoxia in vitro. Clinical correlates suggest a more severe clinical phenotype in this subgroup.
Collapse
Affiliation(s)
- Myeongseop Kim
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Yunus Alapan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anima Adhikari
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A. Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center at University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
192
|
Rippa M, Castagna R, Tkachenko V, Zhou J, Petti L. Engineered nanopatterned substrates for high-sensitive localized surface plasmon resonance: an assay on biomacromolecules. J Mater Chem B 2017; 5:5473-5478. [PMID: 32264087 DOI: 10.1039/c7tb00777a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this paper, we report on novel iso-Y-shaped-nanopillar based photonic crystals (PCs) engineered for plasmonic lab-on-a-chip advanced diagnostics. The iso-Y shaped units are selected on the basis of their plasmonic properties, analyzed numerically and experimentally. We show that by accurately choosing the nanopillar shape, dimensions and their geometrical disposal it is possible to obtain efficient optical 2D structures for biomolecule detection by high-sensitive localized surface plasmonic resonance (LSPR). In particular, an assay is realized by using bovine serum albumin (BSA), a widely recognized model for biosystem studies. BSA was simply deposited on a self-assembled monolayer (SAM) of 4-mercaptobenzoic acid (4-MBA) previously grown-up on the plasmonic substrate. We demonstrate that the geometries considered allow the design of LSPR nano-assays working in the visible-NIR region based on both intensity interrogation and the resonance peak shift permitting the sensing of BSA with a limit of detection in the order of picomoles (LOD = 233 pM).
Collapse
Affiliation(s)
- M Rippa
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, 80072 Pozzuoli, Italy.
| | | | | | | | | |
Collapse
|
193
|
Abstract
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.
Collapse
|
194
|
Fu Q, Wu Z, Du D, Zhu C, Lin Y, Tang Y. Versatile Barometer Biosensor Based on Au@Pt Core/Shell Nanoparticle Probe. ACS Sens 2017; 2:789-795. [PMID: 28723117 DOI: 10.1021/acssensors.7b00156] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is a high global demand for sensitive, portable, user-friendly, and cost-effective biosensors. In this work, we introduce a barometer-based biosensor for the detection of a broad range of targets. The device is operated by measuring the pressure change produced by oxygen (O2) generation in a limited chamber using a portable barometer. The design employs core-shell Au@Pt nanoparticles (Au@PtNPs) as the bioassay probe to catalyze the decomposition of H2O2 and the release of O2. As a proof of concept, we developed barometer-based immunosensors to detect carcinoembryonic antigen (CEA) and ractopamine (Rac). In addition, barometer-based aptasensors for sensitive detection of thrombin and mercury ion (Hg2+) were also developed. In order to facilitate the analysis of results, we have developed smartphone software to calculate, save, and wirelessly trsnsmit the results. Linear detection ranges for detection of CEA, Rac, thrombin, and Hg2+ were 0.025-1.6 ng/mL, 0.0625-4 ng/mL, 4-128 U/L, and 0.25-16 ng/mL, respectively. The detection limit of these four analytes is 0.021 ng/mL, 0.051 ng/mL, 2.4 U/L, and 0.22 ng/mL, respectively. Furthermore, the developed barometer-based biosensors exhibited high specificities for these four analytes. CEA in serum samples, Rac in urine samples, thrombin in serum samples, and Hg2+ in river water samples were measured by the barometer-based biosensors. Obtained results of these targets from barometer-based biosensors were consistent with detection results from traditional methods, indicating that barometer-based biosensors are widely applicable.
Collapse
Affiliation(s)
- Qiangqiang Fu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | | | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | | |
Collapse
|
195
|
Rawal S, Yang YP, Cote R, Agarwal A. Identification and Quantitation of Circulating Tumor Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:321-343. [PMID: 28301753 DOI: 10.1146/annurev-anchem-061516-045405] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Circulating tumor cells (CTCs) are shed from the primary tumor into the circulatory system and act as seeds that initiate cancer metastasis to distant sites. CTC enumeration has been shown to have a significant prognostic value as a surrogate marker in various cancers. The widespread clinical utility of CTC tests, however, is still limited due to the inherent rarity and heterogeneity of CTCs, which necessitate robust techniques for their efficient enrichment and detection. Significant recent advances have resulted in technologies with the ability to improve yield and purity of CTC enrichment as well as detection sensitivity. Current efforts are largely focused on the translation and standardization of assays to fully realize the clinical utility of CTCs. In this review, we aim to provide a comprehensive overview of CTC enrichment and detection techniques with an emphasis on novel approaches for rapid quantification of CTCs.
Collapse
Affiliation(s)
- Siddarth Rawal
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
| | - Yu-Ping Yang
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, Florida 33146
| | - Richard Cote
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, Florida 33146
| | - Ashutosh Agarwal
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146;
| |
Collapse
|
196
|
Abstract
Biosensing has found wide applications in biological and medical research, and in clinical diagnosis, environmental monitoring and other analytical tasks. Recognized as novel and outstanding transducing materials because of their superior and unique physical/chemical properties, group III nitride (III-nitride) nanomaterials have been introduced into biosensor development with remarkable advancements achieved in the past few decades. This paper presents the first comprehensive review on biosensor development with III-nitride nanomaterials. The review starts with the introduction of the material properties and biocompatibility of III-nitrides that are useful for biosensing. The focus is then placed on surface treatments of III-nitrides, which lay the foundation for biosensing, and on biosensing mechanisms where the exceptional properties of III-nitride nanomaterials lead to superior biosensing performance. From a practical point of view, techniques for biosensor fabrication are then summarized. Finally, existing biosensing applications and future directions are discussed.
Collapse
Affiliation(s)
- Xiao Li
- Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| | | |
Collapse
|
197
|
Stassi S, Fantino E, Calmo R, Chiappone A, Gillono M, Scaiola D, Pirri CF, Ricciardi C, Chiadò A, Roppolo I. Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19193-19201. [PMID: 28530385 DOI: 10.1021/acsami.7b04030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.
Collapse
Affiliation(s)
- Stefano Stassi
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Erika Fantino
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Roberta Calmo
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Annalisa Chiappone
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy
| | - Matteo Gillono
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy
| | - Davide Scaiola
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy
| | - Carlo Ricciardi
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Ignazio Roppolo
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy
| |
Collapse
|
198
|
Wallace RA, Sepaniak MJ, Lavrik NV, Datskos PG. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF. Anal Chem 2017; 89:6272-6276. [DOI: 10.1021/acs.analchem.7b01375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan A. Wallace
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael J. Sepaniak
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nickolay V. Lavrik
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Panos G. Datskos
- Engineering
Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
199
|
Zhang Y, Li M, Li Z, Li Q, Aldalbahi A, Shi J, Wang L, Fan C, Zuo X. Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9036-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
200
|
Experimental evidence of Fano resonances in nanomechanical resonators. Sci Rep 2017; 7:1065. [PMID: 28432315 PMCID: PMC5430710 DOI: 10.1038/s41598-017-01147-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/27/2017] [Indexed: 11/17/2022] Open
Abstract
Fano resonance refers to an interference between localized and continuum states that was firstly reported for atomic physics and solid-state quantum devices. In recent years, Fano interference gained more and more attention for its importance in metamaterials, nanoscale photonic devices, plasmonic nanoclusters and surface-enhanced Raman scattering (SERS). Despite such interest in nano-optics, no experimental evidence of Fano interference was reported up to now for purely nanomechanical resonators, even if classical mechanical analogies were referred from a theoretical point of view. Here we demonstrate for the first time that harmonic nanomechanical resonators with relatively high quality factors, such as cantilevers vibrating in vacuum, can show characteristic Fano asymmetric curves when coupled in arrays. The reported findings open new perspectives in fundamental aspects of classical nanomechanical resonators and pave the way to a new generation of chemical and biological nanoresonator sensors with higher parallelization capability.
Collapse
|