151
|
Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, Zhang R, Wu Y, Gao S, Kang T. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res 2020; 31:157-177. [PMID: 32958903 PMCID: PMC8027411 DOI: 10.1038/s41422-020-00409-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are generated within the multivesicular endosomes (MVEs) as intraluminal vesicles (ILVs) and secreted during the fusion of MVEs with the cell membrane. The mechanisms of exosome biogenesis remain poorly explored. Here we identify that RAB31 marks and controls an ESCRT-independent exosome pathway. Active RAB31, phosphorylated by epidermal growth factor receptor (EGFR), engages flotillin proteins in lipid raft microdomains to drive EGFR entry into MVEs to form ILVs, which is independent of the ESCRT (endosomal sorting complex required for transport) machinery. Active RAB31 interacts with the SPFH domain and drives ILV formation via the Flotillin domain of flotillin proteins. Meanwhile, RAB31 recruits GTPase-activating protein TBC1D2B to inactivate RAB7, thereby preventing the fusion of MVEs with lysosomes and enabling the secretion of ILVs as exosomes. These findings establish that RAB31 has dual functions in the biogenesis of exosomes: driving ILVs formation and suppressing MVEs degradation, providing an exquisite framework to better understand exosome biogenesis.
Collapse
Affiliation(s)
- Denghui Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Weixiang Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Liyan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Run Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Wen Wang
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
152
|
Abstract
The endosomal sorting complexes required for transport (ESCRTs) I, -II and -III, and their associated factors are a collection of ∼20 proteins in yeast and ∼30 in mammals, responsible for severing membrane necks in processes that range from multivesicular body formation, HIV release and cytokinesis, to plasma and lysosomal membrane repair. ESCRTs are best known for 'reverse-topology' membrane scission, where they act on the inner surface of membrane necks, often when membranes are budded away from the cytosol. These events are driven by membrane-associated assemblies of dozens to hundreds of ESCRT molecules. ESCRT-III proteins form filaments with a variety of geometries and ESCRT-I has now been shown to also form helical structures. The complex nature of the system and the unusual topology of its action has made progress challenging, and led to controversies with regard to its underlying mechanism. This Review will focus on recent advances obtained by structural in vitro reconstitution and in silico mechanistic studies, and places them in their biological context. The field is converging towards a consensus on the broad outlines of a mechanism that is driven by a progressive ATP-dependent treadmilling exchange of ESCRT subunits, as well as compositional change and geometric transitions in ESCRT filaments.
Collapse
Affiliation(s)
- Mark Remec Pavlin
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
153
|
Bhattacharjee S, Lee Y, Zhu B, Wu H, Chen Y, Chen H. Epsins in vascular development, function and disease. Cell Mol Life Sci 2020; 78:833-842. [PMID: 32930806 DOI: 10.1007/s00018-020-03642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Epsins are a family of adaptor proteins involved in clathrin-dependent endocytosis. In the vasculature, epsins 1 and 2 are functionally redundant members of this family that are expressed in the endothelial cells of blood vessels and the lymphatic system throughout development and adulthood. These proteins contain a number of peptide motifs that allow them to interact with lipid moieties and a variety of proteins. These interactions facilitate the regulation of a wide range of cell signaling pathways. In this review, we focus on the involvement of epsins 1 and 2 in controlling vascular endothelial growth factor receptor signaling in angiogenesis and lymphangiogenesis. We also discuss the therapeutic implications of understanding the molecular mechanisms of epsin-mediated regulation in diseases such as atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Sudarshan Bhattacharjee
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA
| | - Yang Lee
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA
| | - Yabing Chen
- Department of Pathology, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham and Research Department, Birmingham, AL, 35294, USA
| | - Hong Chen
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA.
| |
Collapse
|
154
|
Lučin P, Jug Vučko N, Karleuša L, Mahmutefendić Lučin H, Blagojević Zagorac G, Lisnić B, Pavišić V, Marcelić M, Grabušić K, Brizić I, Lukanović Jurić S. Cytomegalovirus Generates Assembly Compartment in the Early Phase of Infection by Perturbation of Host-Cell Factors Recruitment at the Early Endosome/Endosomal Recycling Compartment/Trans-Golgi Interface. Front Cell Dev Biol 2020; 8:563607. [PMID: 33042998 PMCID: PMC7516400 DOI: 10.3389/fcell.2020.563607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022] Open
Abstract
Beta-herpesviruses develop a unique structure within the infected cell known as an assembly compartment (AC). This structure, as large as the nucleus, is composed of host-cell-derived membranous elements. The biogenesis of the AC and its contribution to the final stages of beta-herpesvirus assembly are still unclear. In this study, we performed a spatial and temporal analysis of the AC in cells infected with murine CMV (MCMV), a member of the beta-herpesvirus family, using a panel of markers that characterize membranous organelle system. Out of 64 markers that were analyzed, 52 were cytosolic proteins that are recruited to membranes as components of membrane-shaping regulatory cascades. The analysis demonstrates that MCMV infection extensively reorganizes interface between early endosomes (EE), endosomal recycling compartment (ERC), and the trans-Golgi network (TGN), resulting in expansion of various EE-ERC-TGN intermediates that fill the broad area of the inner AC. These intermediates are displayed as over-recruitment of host-cell factors that control membrane flow at the EE-ERC-TGN interface. Most of the reorganization is accomplished in the early (E) phase of infection, indicating that the AC biogenesis is controlled by MCMV early genes. Although it is known that CMV infection affects the expression of a large number of host-cell factors that control membranous system, analysis of the host-cell transcriptome and protein expression in the E phase of infection demonstrated no sufficiently significant alteration in expression levels of analyzed markers. Thus, our study demonstrates that MCMV-encoded early phase function targets recruitment cascades of host cell-factors that control membranous flow at the EE-ERC-TGN interface in order to initiate the development of the AC.
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kristina Grabušić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
155
|
Pfitzner AK, Mercier V, Jiang X, Moser von Filseck J, Baum B, Šarić A, Roux A. An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission. Cell 2020; 182:1140-1155.e18. [PMID: 32814015 PMCID: PMC7479521 DOI: 10.1016/j.cell.2020.07.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023]
Abstract
The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.
Collapse
Affiliation(s)
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Xiuyun Jiang
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Buzz Baum
- Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anđela Šarić
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
156
|
Davies BA, Morton LO, Jefferson JR, Rozeveld CN, Doskey LC, LaRusso NF, Katzmann DJ. Polarized human cholangiocytes release distinct populations of apical and basolateral small extracellular vesicles. Mol Biol Cell 2020; 31:2463-2474. [PMID: 32845745 PMCID: PMC7851850 DOI: 10.1091/mbc.e19-03-0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intercellular communication is critical for organismal homeostasis, and defects can contribute to human disease states. Polarized epithelial cells execute distinct signaling agendas via apical and basolateral surfaces to communicate with different cell types. Small extracellular vesicles (sEVs), including exosomes and small microvesicles, represent an understudied form of intercellular communication in polarized cells. Human cholangiocytes, epithelial cells lining bile ducts, were cultured as polarized epithelia in a Transwell system as a model with which to study polarized sEV communication. Characterization of isolated apically and basolaterally released EVs revealed enrichment in sEVs. However, differences in apical and basolateral sEV composition and numbers were observed. Genetic or pharmacological perturbation of cellular machinery involved in the biogenesis of intralumenal vesicles at endosomes (the source of exosomes) revealed general and domain-specific effects on sEV biogenesis/release. Additionally, analyses of signaling revealed distinct profiles of activation depending on sEV population, target cell, and the function of the endosomal sorting complex required for transport (ESCRT)-associated factor ALG-2–interacting protein X (ALIX) within the donor cells. These results support the conclusion that polarized cholangiocytes release distinct sEV pools to mediate communication via their apical and basolateral domains and suggest that defective ESCRT function may contribute to disease states through altered sEV signaling.
Collapse
Affiliation(s)
- Brian A Davies
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905
| | - Leslie O Morton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - John R Jefferson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905.,Chemistry Department, Luther College, Decorah, IA 52101
| | - Cody N Rozeveld
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| | - Luke C Doskey
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| | - Nicholas F LaRusso
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - David J Katzmann
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
157
|
Schmidt O, Weyer Y, Sprenger S, Widerin MA, Eising S, Baumann V, Angelova M, Loewith R, Stefan CJ, Hess MW, Fröhlich F, Teis D. TOR complex 2 (TORC2) signaling and the ESCRT machinery cooperate in the protection of plasma membrane integrity in yeast. J Biol Chem 2020; 295:12028-12044. [PMID: 32611771 PMCID: PMC7443507 DOI: 10.1074/jbc.ra120.013222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Indexed: 12/26/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.
Collapse
Affiliation(s)
- Oliver Schmidt
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Yannick Weyer
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Sprenger
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael A Widerin
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Eising
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Verena Baumann
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, United Kingdom
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Michael W Hess
- Institute for Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Fröhlich
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
158
|
Hattori T, Takahashi Y, Chen L, Tang Z, Wills CA, Liang X, Wang HG. Targeting the ESCRT-III component CHMP2A for noncanonical Caspase-8 activation on autophagosomal membranes. Cell Death Differ 2020; 28:657-670. [PMID: 32807832 DOI: 10.1038/s41418-020-00610-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagosomal membranes can serve as activation platforms for intracellular death-inducing signaling complexes (iDISCs) to initiate Caspase-8-dependent apoptosis. In this study, we explore the impact of ESCRT-III-dependent phagophore closure on iDISC assemblies and cell death in osteosarcoma and neuroblastoma cells. Inhibition of phagophore closure by conditional depletion of CHMP2A, an ESCRT-III component, stabilizes iDISCs on immature autophagosomal membranes and induces Caspase-8-dependent cell death. Importantly, suppression of the iDISC formation via deletion of ATG7, an E1 enzyme for ubiquitin-like autophagy-related proteins, blocks Caspase-8 activation and cell death following CHMP2A depletion. Although DR5 expression and TRAIL-induced apoptosis are enhanced in CHMP2A-depleted cells, the canonical extrinsic pathway of apoptosis is not responsible for the initiation of cell death by CHMP2A depletion. Furthermore, the loss of CHMP2A impairs neuroblastoma tumor growth associated with decreased autophagy and increased apoptosis in vivo. Together, these findings indicate that inhibition of the ESCRT-III-dependent autophagosome sealing process triggers noncanonical Caspase-8 activation and apoptosis, which may open new avenues for therapeutic targeting of autophagy in cancer.
Collapse
Affiliation(s)
- Tatsuya Hattori
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA.
| | - Longgui Chen
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Zhenyuan Tang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Carson A Wills
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Xinwen Liang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA. .,Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
159
|
Umaer K, Bangs JD. Late ESCRT machinery mediates the recycling and Rescue of Invariant Surface Glycoprotein 65 in Trypanosoma brucei. Cell Microbiol 2020; 22:e13244. [PMID: 32618070 DOI: 10.1111/cmi.13244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
The Endosomal Sorting Complex Required for Transport machinery consists of four protein complexes (ESCRT 0-IV) and the post ESCRT ATPase Vps4. ESCRT mediates cargo delivery for lysosomal degradation via formation of multivesicular bodies. Trypanosoma brucei contains orthologues of ESCRT I-III and Vps4. Trypanosomes also have an ubiquitinylated invariant surface glycoprotein (ISG65) that is delivered to the lysosome by ESCRT, however, we previously implicated TbVps4 in rescue and recycling of ISG65. Here we use conditional silencing to investigate the role of TbVps24, a phosphoinositide-binding ESCRT III component, on protein trafficking. TbVps24 localises to the TbRab7+ late endosome, and binds PI(3,5)P2 , the product of the TbFab1 kinase, both of which also localise to late endosomes. TbVps24 silencing is lethal, and negatively affects biosynthetic trafficking of the lysosomal markers p67 and TbCathepsin L. However, the major phenotype of silencing is accelerated degradation and depletion of the surface pool of ISG65. Thus, TbVps24 silencing phenocopies that of TbVps4 in regard to ISG65 trafficking. This presents a paradox since we have previously found that depletion of TbFab1 completely blocks ISG65 turnover. We propose a model in which late ESCRT components operate at two sites, one PI(3,5)P2 -dependent (degradation) and one PI(3,5)P2 -independent (recycling), to regulate ISG65 homeostasis.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| | - James D Bangs
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| |
Collapse
|
160
|
Abstract
The dynamics of nuclear envelope has a critical role in multiple cellular processes. However, little is known regarding the structural changes occurring inside the nucleus or at the inner and outer nuclear membranes. For viruses assembling inside the nucleus, remodeling of the intranuclear membrane plays an important role in the process of virion assembly. Here, we monitored the changes associated with viral infection in the case of nudiviruses. Our data revealed dramatic membrane remodeling inside the nuclear compartment during infection with Oryctes rhinoceros nudivirus, an important biocontrol agent against coconut rhinoceros beetle, a devastating pest for coconut and oil palm trees. Based on these findings, we propose a model for nudivirus assembly in which nuclear packaging occurs in fully enveloped virions. Enveloped viruses hijack cellular membranes in order to provide the necessary material for virion assembly. In particular, viruses that replicate and assemble inside the nucleus have developed special approaches to modify the nuclear landscape for their advantage. We used electron microscopy to investigate cellular changes occurring during nudivirus infection and we characterized a unique mechanism for assembly, packaging, and transport of new virions across the nuclear membrane and through the cytoplasm. Our three-dimensional reconstructions describe the complex remodeling of the nuclear membrane necessary to release vesicle-associated viruses into the cytoplasm. This is the first report of nuclear morphological reconfigurations that occur during nudiviral infection.
Collapse
|
161
|
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5:145. [PMID: 32759948 PMCID: PMC7406508 DOI: 10.1038/s41392-020-00261-0] [Citation(s) in RCA: 614] [Impact Index Per Article: 153.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by most eukaryotic cells and participate in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long noncoding RNA, circular RNA, etc., which play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, we mainly summarized as followed: the role of exosome contents in cancer, focusing on proteins and noncoding RNA; the interaction between exosomes and tumor microenvironment; the mechanisms that epithelial-mesenchymal transition, invasion and migration of tumor affected by exosomes; and tumor suppression strategies based on exosomes. Finally, the application potential of exosomes in clinical tumor diagnosis and therapy is prospected, which providing theoretical supports for using exosomes to serve precise tumor treatment in the clinic.
Collapse
Affiliation(s)
- Jie Dai
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Bang Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zuping He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013, Jiangsu, China.
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China. .,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
162
|
Huber ST, Mostafavi S, Mortensen SA, Sachse C. Structure and assembly of ESCRT-III helical Vps24 filaments. SCIENCE ADVANCES 2020; 6:eaba4897. [PMID: 32875105 PMCID: PMC7438092 DOI: 10.1126/sciadv.aba4897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
ESCRT-III proteins mediate a range of cellular membrane remodeling activities such as multivesicular body biogenesis, cytokinesis, and viral release. Critical to these processes is the assembly of ESCRT-III subunits into polymeric structures. In this study, we determined the cryo-EM structure of a helical assembly of Saccharomyces cerevisiae Vps24 at 3.2-Å resolution and found that Vps24 adopts an elongated open conformation. Vps24 forms a domain-swapped dimer extended into protofilaments that associate into a double-stranded apolar filament. We demonstrate that, upon binding negatively charged lipids, Vps24 homopolymer filaments undergo partial disassembly into shorter filament fragments and oligomers. Upon the addition of Vps24, Vps2, and Snf7, liposomes are deformed into neck and tubular structures by an ESCRT-III heteropolymer coat. The filamentous Vps24 homopolymer assembly structure and interaction studies reveal how Vps24 could introduce unique geometric properties to mixed-type ESCRT-III heteropolymers and contribute to the process of membrane scission events.
Collapse
Affiliation(s)
- Stefan T. Huber
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Siavash Mostafavi
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Simon A. Mortensen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
163
|
Jiang Y, Cai X, Yao J, Guo H, Yin L, Leung W, Xu C. Role of Extracellular Vesicles in Influenza Virus Infection. Front Cell Infect Microbiol 2020; 10:366. [PMID: 32850473 PMCID: PMC7396637 DOI: 10.3389/fcimb.2020.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza virus infection is a major health care concern associated with significant morbidity and mortality worldwide, and cause annual seasonal epidemics and pandemics at irregular intervals. Recent research has highlighted that viral components can be found on the extracellular vesicles (EVs) released from infected cells, implying a functional relevance of EVs with influenza virus dissemination. Therefore, exploring the role of EVs in influenza virus infection has been attracting significant attention. In this review, we will briefly introduce the biogenesis of EVs, and focus on the role of EVs in influenza virus infection, and then discuss the EVs-based influenza vaccines and the limitations of EVs studies, to further enrich and boost the development of preventative and therapeutic strategies to combat influenza virus.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwen Yao
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liangjun Yin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
164
|
Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nat Cell Biol 2020; 22:856-867. [PMID: 32601372 DOI: 10.1038/s41556-020-0537-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/24/2020] [Indexed: 12/11/2022]
Abstract
The ESCRT-III membrane fission machinery maintains the integrity of the nuclear envelope. Although primary nuclei resealing takes minutes, micronuclear envelope ruptures seem to be irreversible. Instead, micronuclear ruptures result in catastrophic membrane collapse and are associated with chromosome fragmentation and chromothripsis, complex chromosome rearrangements thought to be a major driving force in cancer development. Here we use a combination of live microscopy and electron tomography, as well as computer simulations, to uncover the mechanism underlying micronuclear collapse. We show that, due to their small size, micronuclei inherently lack the capacity of primary nuclei to restrict the accumulation of CHMP7-LEMD2, a compartmentalization sensor that detects loss of nuclear integrity. This causes unrestrained ESCRT-III accumulation, which drives extensive membrane deformation, DNA damage and chromosome fragmentation. Thus, the nuclear-integrity surveillance machinery is a double-edged sword, as its sensitivity ensures rapid repair at primary nuclei while causing unrestrained activity at ruptured micronuclei, with catastrophic consequences for genome stability.
Collapse
|
165
|
Midbody Remnant Inheritance Is Regulated by the ESCRT Subunit CHMP4C. iScience 2020; 23:101244. [PMID: 32629610 PMCID: PMC7322264 DOI: 10.1016/j.isci.2020.101244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 01/05/2023] Open
Abstract
The inheritance of the midbody remnant (MBR) breaks the symmetry of the two daughter cells, with functional consequences for lumen and primary cilium formation by polarized epithelial cells, and also for development and differentiation. However, despite its importance, neither the relationship between the plasma membrane and the inherited MBR nor the mechanism of MBR inheritance is well known. Here, the analysis by correlative light and ultra-high-resolution scanning electron microscopy reveals a membranous stalk that physically connects the MBR to the apical membrane of epithelial cells. The stalk, which derives from the uncleaved side of the midbody, concentrates the ESCRT machinery. The ESCRT CHMP4C subunit enables MBR inheritance, and its depletion dramatically reduces the percentage of ciliated cells. We demonstrate (1) that MBRs are physically connected to the plasma membrane, (2) how CHMP4C helps maintain the integrity of the connection, and (3) the functional importance of the connection. Most midbody remnants of MDCK cells are physically connected to the apical membrane The connection derives from the uncleaved arm of the midbody CHMP4C distributes asymmetrically in the connection and maintains its integrity A connected midbody remnant is necessary for primary cilium formation by these cells
Collapse
|
166
|
Lusk CP, Ader NR. CHMPions of repair: Emerging perspectives on sensing and repairing the nuclear envelope barrier. Curr Opin Cell Biol 2020; 64:25-33. [PMID: 32105978 PMCID: PMC7371540 DOI: 10.1016/j.ceb.2020.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Understanding how the integrity of the nuclear membranes is protected against internal and external stresses is an emergent challenge. Work reviewed here investigated the mechanisms by which losses of nuclear-cytoplasmic compartmentalization are sensed and ameliorated. Fundamental to these is spatial control over interactions between the endosomal sorting complexes required for transport machinery and LAP2-emerin-MAN1 family inner nuclear membrane proteins, which together promote nuclear envelope sealing in interphase and at the end of mitosis. We suggest that the size of the nuclear envelope hole dictates the mechanism of its repair, with larger holes requiring barrier-to-autointegration factor and the potential triggering of a postmitotic nuclear envelope reassembly pathway in interphase. We also consider why these mechanisms fail at ruptured micronuclei. Together, this work re-emphasizes the need to understand how membrane flow and local lipid metabolism help ensure that the nuclear envelope is refractory to mechanical rupture yet fluid enough to allow its essential dynamics.
Collapse
Affiliation(s)
- C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06520, USA.
| | - Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06520, USA
| |
Collapse
|
167
|
Lee IJ, Stokasimov E, Dempsey N, Varberg JM, Jacob E, Jaspersen SL, Pellman D. Factors promoting nuclear envelope assembly independent of the canonical ESCRT pathway. J Cell Biol 2020; 219:e201908232. [PMID: 32243490 PMCID: PMC7265314 DOI: 10.1083/jcb.201908232] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/11/2020] [Accepted: 03/03/2020] [Indexed: 01/15/2023] Open
Abstract
The nuclear envelope (NE) undergoes dynamic remodeling to maintain NE integrity, a process involving the inner nuclear membrane protein LEM2 recruiting CHMP7/Cmp7 and then ESCRT-III. However, prior work has hinted at CHMP7/ESCRT-independent mechanisms. To identify such mechanisms, we studied NE assembly in Schizosaccharomyces japonicus, a fission yeast that undergoes partial mitotic NE breakdown and reassembly. S. japonicus cells lacking Cmp7 have compromised NE sealing after mitosis but are viable. A genetic screen identified mutations that promote NE integrity in cmp7Δ cells. Unexpectedly, loss of Lem2 or its interacting partner Nur1 suppressed cmp7Δ defects. In the absence of Cmp7, Lem2 formed aggregates that appear to interfere with ESCRT-independent NE sealing. A gain-of-function mutation implicated a membrane and ESCRT-III regulator, Alx1, in this alternate pathway. Additional results suggest a potentially general role for unsaturated fatty acids in NE integrity. These findings establish the existence of mechanisms for NE sealing independent of the canonical ESCRT pathway.
Collapse
Affiliation(s)
- I-Ju Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Ema Stokasimov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Nathaniel Dempsey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | | | - Etai Jacob
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
168
|
Moser von Filseck J, Barberi L, Talledge N, Johnson IE, Frost A, Lenz M, Roux A. Anisotropic ESCRT-III architecture governs helical membrane tube formation. Nat Commun 2020; 11:1516. [PMID: 32471995 PMCID: PMC7260168 DOI: 10.1038/s41467-020-15327-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
ESCRT-III proteins assemble into ubiquitous membrane-remodeling polymers during many cellular processes. Here we describe the structure of helical membrane tubes that are scaffolded by bundled ESCRT-III filaments. Cryo-ET reveals how the shape of the helical membrane tube arises from the assembly of two distinct bundles of helical filaments that have the same helical path but bind the membrane with different interfaces. Higher-resolution cryo-EM of filaments bound to helical bicelles confirms that ESCRT-III filaments can interact with the membrane through a previously undescribed interface. Mathematical modeling demonstrates that the interface described above is key to the mechanical stability of helical membrane tubes and helps infer the rigidity of the described protein filaments. Altogether, our results suggest that the interactions between ESCRT-III filaments and the membrane could proceed through multiple interfaces, to provide assembly on membranes with various shapes, or adapt the orientation of the filaments towards the membrane during membrane remodeling.
Collapse
Affiliation(s)
| | - Luca Barberi
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France.
- Biochemistry Department, University of Geneva, 1211, Geneva, Switzerland.
| | - Nathaniel Talledge
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, San Francisco, CA, 94158, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 841112, USA
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Isabel E Johnson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, San Francisco, CA, 94158, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, San Francisco, CA, 94158, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 841112, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris, PSL Research University, Université Paris Diderot, Sorbonne Université, 75005, Paris, France
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, 1211, Geneva, Switzerland.
- Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, 1211, Switzerland.
| |
Collapse
|
169
|
Bertin A, de Franceschi N, de la Mora E, Maity S, Alqabandi M, Miguet N, di Cicco A, Roos WH, Mangenot S, Weissenhorn W, Bassereau P. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat Commun 2020; 11:2663. [PMID: 32471988 PMCID: PMC7260177 DOI: 10.1038/s41467-020-16368-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Endosomal sorting complexes for transport-III (ESCRT-III) assemble in vivo onto membranes with negative Gaussian curvature. How membrane shape influences ESCRT-III polymerization and how ESCRT-III shapes membranes is yet unclear. Human core ESCRT-III proteins, CHMP4B, CHMP2A, CHMP2B and CHMP3 are used to address this issue in vitro by combining membrane nanotube pulling experiments, cryo-electron tomography and AFM. We show that CHMP4B filaments preferentially bind to flat membranes or to tubes with positive mean curvature. Both CHMP2B and CHMP2A/CHMP3 assemble on positively curved membrane tubes. Combinations of CHMP4B/CHMP2B and CHMP4B/CHMP2A/CHMP3 are recruited to the neck of pulled membrane tubes and reshape vesicles into helical "corkscrew-like" membrane tubes. Sub-tomogram averaging reveals that the ESCRT-III filaments assemble parallel and locally perpendicular to the tube axis, highlighting the mechanical stresses imposed by ESCRT-III. Our results underline the versatile membrane remodeling activity of ESCRT-III that may be a general feature required for cellular membrane remodeling processes.
Collapse
Affiliation(s)
- Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
| | - Nicola de Franceschi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000, Grenoble, France.
| | - Eugenio de la Mora
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Maryam Alqabandi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
| | - Nolwen Miguet
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000, Grenoble, France
| | - Aurélie di Cicco
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Stéphanie Mangenot
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000, Grenoble, France.
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
| |
Collapse
|
170
|
Flower TG, Takahashi Y, Hudait A, Rose K, Tjahjono N, Pak AJ, Yokom AL, Liang X, Wang HG, Bouamr F, Voth GA, Hurley JH. A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission. Nat Struct Mol Biol 2020; 27:570-580. [PMID: 32424346 PMCID: PMC7339825 DOI: 10.1038/s41594-020-0426-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, MVB biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101–VPS28–VPS37B–MVB12A was determined, revealing an ESCRT-I helical assembly with a 12 molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse grained simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding, and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor, but has an essential scaffolding and mechanical role in its own right. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.
Collapse
Affiliation(s)
- Thomas G Flower
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Arpa Hudait
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Kevin Rose
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Tjahjono
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Alexander J Pak
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Adam L Yokom
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Xinwen Liang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
171
|
Alix-Mediated Rescue of Feline Immunodeficiency Virus Budding Differs from That Observed with Human Immunodeficiency Virus. J Virol 2020; 94:JVI.02019-19. [PMID: 32213612 DOI: 10.1128/jvi.02019-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
The structural protein Gag is the only viral component required for retroviral budding from infected cells. Each of the three conserved domains-the matrix (MA), capsid (CA), and nucleocapsid (NC) domains-drives different phases of viral particle assembly and egress. Once virus assembly is complete, retroviruses, like most enveloped viruses, utilize host proteins to catalyze membrane fission and to free progeny virions. These proteins are members of the endosomal sorting complex required for transport (ESCRT), a cellular machinery that coats the inside of budding necks to perform membrane-modeling events necessary for particle abscission. The ESCRT is recruited through interactions with PTAP and LYPXnL, two highly conserved sequences named late (L) domains, which bind TSG101 and Alix, respectively. A TSG101-binding L-domain was identified in the p2 region of the feline immunodeficiency virus (FIV) Gag protein. Here, we show that the human protein Alix stimulates the release of virus from FIV-expressing human cells. Furthermore, we demonstrate that the Alix Bro1 domain rescues FIV mutants lacking a functional TSG101-interacting motif, independently of the entire p2 region and of the canonical Alix-binding L-domain(s) in FIV Gag. However, in contrast to the effect on human immunodeficiency virus type 1 (HIV-1), the C377,409S double mutation, which disrupts both CCHC zinc fingers in the NC domain, does not abrogate Alix-mediated virus rescue. These studies provide insight into conserved and divergent mechanisms of lentivirus-host interactions involved in virus budding.IMPORTANCE FIV is a nonprimate lentivirus that infects domestic cats and causes a syndrome that is reminiscent of AIDS in humans. Based on its similarity to HIV with regard to different molecular and biochemical properties, FIV represents an attractive model for the development of strategies to prevent and/or treat HIV infection. Here, we show that the Bro1 domain of the human cellular protein Alix is sufficient to rescue the budding of FIV mutants devoid of canonical L-domains. Furthermore, we demonstrate that the integrity of the CCHC motifs in the Gag NC domain is dispensable for Alix-mediated rescue of virus budding, suggesting the involvement of other regions of the Gag viral protein. Our research is pertinent to the identification of a conserved yet mechanistically divergent ESCRT-mediated lentivirus budding process in general, and to the role of Alix in particular, which underlies the complex viral-cellular network of interactions that promote late steps of the retroviral life cycle.
Collapse
|
172
|
Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2020; 39:3034-3060. [DOI: 10.1080/07391102.2020.1756409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raied A. Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Pushchino, Moscow Region, Russia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
173
|
Buysse D, Pfitzner AK, West M, Roux A, Odorizzi G. The ubiquitin hydrolase Doa4 directly binds Snf7 to inhibit recruitment of ESCRT-III remodeling factors in S. cerevisiae. J Cell Sci 2020; 133:jcs.241455. [PMID: 32184262 DOI: 10.1242/jcs.241455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
The ESCRT-III protein complex executes reverse-topology membrane scission. The scission mechanism is unclear but is linked to remodeling of ESCRT-III complexes at the membrane surface. At endosomes, ESCRT-III mediates the budding of intralumenal vesicles (ILVs). In Saccharomyces cerevisiae, ESCRT-III activity at endosomes is regulated through an unknown mechanism by Doa4, an ubiquitin hydrolase that deubiquitylates transmembrane proteins sorted into ILVs. We report that the non-catalytic N-terminus of Doa4 binds Snf7, the predominant ESCRT-III subunit. Through this interaction, Doa4 overexpression alters Snf7 assembly status and inhibits ILV membrane scission. In vitro, the Doa4 N-terminus inhibits association of Snf7 with Vps2, which functions with Vps24 to arrest Snf7 polymerization and remodel Snf7 polymer structure. In vivo, Doa4 overexpression inhibits Snf7 interaction with Vps2 and also with the ATPase Vps4, which is recruited by Vps2 and Vps24 to remodel ESCRT-III complexes by catalyzing subunit turnover. Our data suggest a mechanism by which the deubiquitylation machinery regulates ILV biogenesis by interfering with ESCRT-III remodeling.
Collapse
Affiliation(s)
- Dalton Buysse
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland.,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva CH-1211, Switzerland
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
174
|
The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion of cytokinesis. Nat Commun 2020; 11:1941. [PMID: 32321914 PMCID: PMC7176721 DOI: 10.1038/s41467-020-15205-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
Cytokinesis requires the constriction of ESCRT-III filaments on the side of the midbody, where abscission occurs. After ESCRT recruitment at the midbody, it is not known how the ESCRT-III machinery localizes to the abscission site. To reveal actors involved in abscission, we obtained the proteome of intact, post-abscission midbodies (Flemmingsome) and identified 489 proteins enriched in this organelle. Among these proteins, we further characterized a plasma membrane-to-ESCRT module composed of the transmembrane proteoglycan syndecan-4, ALIX and syntenin, a protein that bridges ESCRT-III/ALIX to syndecans. The three proteins are highly recruited first at the midbody then at the abscission site, and their depletion delays abscission. Mechanistically, direct interactions between ALIX, syntenin and syndecan-4 are essential for proper enrichment of the ESCRT-III machinery at the abscission site, but not at the midbody. We propose that the ESCRT-III machinery must be physically coupled to a membrane protein at the cytokinetic abscission site for efficient scission, uncovering common requirements in cytokinesis, exosome formation and HIV budding.
Collapse
|
175
|
Tedeschi A, Almagro J, Renshaw MJ, Messal HA, Behrens A, Petronczki M. Cep55 promotes cytokinesis of neural progenitors but is dispensable for most mammalian cell divisions. Nat Commun 2020; 11:1746. [PMID: 32269212 PMCID: PMC7142149 DOI: 10.1038/s41467-020-15359-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
In mammalian cell lines, the endosomal sorting complex required for transport (ESCRT)-III mediates abscission, the process that physically separates daughter cells and completes cell division. Cep55 protein is regarded as the master regulator of abscission, because it recruits ESCRT-III to the midbody (MB), the site of abscission. However, the importance of this mechanism in a mammalian organism has never been tested. Here we show that Cep55 is dispensable for mouse embryonic development and adult tissue homeostasis. Cep55-knockout offspring show microcephaly and primary neural progenitors require Cep55 and ESCRT for survival and abscission. However, Cep55 is dispensable for cell division in embryonic or adult tissues. In vitro, division of primary fibroblasts occurs without Cep55 and ESCRT-III at the midbody and is not affected by ESCRT depletion. Our work defines Cep55 as an abscission regulator only in specific tissue contexts and necessitates the re-evaluation of an alternative ESCRT-independent cell division mechanism.
Collapse
Affiliation(s)
- Antonio Tedeschi
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Cell Division and Aneuploidy Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, London, EN6 3LD, UK.
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Matthew J Renshaw
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hendrik A Messal
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Faculty of Life Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, London, EN6 3LD, UK
- Boehringer Ingelheim RCV GmbH & Co KG, A-1121, Vienna, Austria
| |
Collapse
|
176
|
Yagisawa F, Fujiwara T, Takemura T, Kobayashi Y, Sumiya N, Miyagishima SY, Nakamura S, Imoto Y, Misumi O, Tanaka K, Kuroiwa H, Kuroiwa T. ESCRT Machinery Mediates Cytokinetic Abscission in the Unicellular Red Alga Cyanidioschyzon merolae. Front Cell Dev Biol 2020; 8:169. [PMID: 32346536 PMCID: PMC7169423 DOI: 10.3389/fcell.2020.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/17/2022] Open
Abstract
In many eukaryotes, cytokinesis proceeds in two successive steps: first, ingression of the cleavage furrow and second, abscission of the intercellular bridge. In animal cells, the actomyosin contractile ring is involved in the first step, while the endosomal sorting complex required for transport (ESCRT), which participates in various membrane fusion/fission events, mediates the second step. Intriguingly, in archaea, ESCRT is involved in cytokinesis, raising the hypothesis that the function of ESCRT in eukaryotic cytokinesis descended from the archaeal ancestor. In eukaryotes other than in animals, the roles of ESCRT in cytokinesis are poorly understood. To explore the primordial core mechanisms for eukaryotic cytokinesis, we investigated ESCRT functions in the unicellular red alga Cyanidioschyzon merolae that diverged early in eukaryotic evolution. C. merolae provides an excellent experimental system. The cell has a simple organelle composition. The genome (16.5 Mb, 5335 genes) has been completely sequenced, transformation methods are established, and the cell cycle is synchronized by a light and dark cycle. Similar to animal and fungal cells, C. merolae cells divide by furrowing at the division site followed by abscission of the intercellular bridge. However, they lack an actomyosin contractile ring. The proteins that comprise ESCRT-I-IV, the four subcomplexes of ESCRT, are partially conserved in C. merolae. Immunofluorescence of native or tagged proteins localized the homologs of the five ESCRT-III components [charged multivesicular body protein (CHMP) 1, 2, and 4-6], apoptosis-linked gene-2-interacting protein X (ALIX), the ESCRT-III adapter, and the main ESCRT-IV player vacuolar protein sorting (VPS) 4, to the intercellular bridge. In addition, ALIX was enriched around the cleavage furrow early in cytokinesis. When the ESCRT function was perturbed by expressing dominant-negative VPS4, cells with an elongated intercellular bridge accumulated-a phenotype resulting from abscission failure. Our results show that ESCRT mediates cytokinetic abscission in C. merolae. The fact that ESCRT plays a role in cytokinesis in archaea, animals, and early diverged alga C. merolae supports the hypothesis that the function of ESCRT in cytokinesis descended from archaea to a common ancestor of eukaryotes.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa, Japan
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Saitama, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Shizuoka, Japan
| | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuko Sumiya
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Saitama, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Shizuoka, Japan
| | - Soichi Nakamura
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Japan Women’s University, Tokyo, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Japan Women’s University, Tokyo, Japan
| |
Collapse
|
177
|
Nguyen HC, Talledge N, McCullough J, Sharma A, Moss FR, Iwasa JH, Vershinin MD, Sundquist WI, Frost A. Membrane constriction and thinning by sequential ESCRT-III polymerization. Nat Struct Mol Biol 2020; 27:392-399. [PMID: 32251413 PMCID: PMC7343221 DOI: 10.1038/s41594-020-0404-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/05/2020] [Indexed: 01/04/2023]
Abstract
The endosomal sorting complexes required for transport (ESCRTs) mediate diverse membrane remodeling events. These typically require ESCRT-III proteins to stabilize negatively curved membranes; however, recent work has indicated that certain ESCRT-IIIs also participate in positive-curvature membrane-shaping reactions. ESCRT-IIIs polymerize into membrane-binding filaments, but the structural basis for negative versus positive membrane remodeling by these proteins remains poorly understood. To learn how certain ESCRT-IIIs shape positively curved membranes, we determined structures of human membrane-bound CHMP1B-only, membrane-bound CHMP1B + IST1, and IST1-only filaments by cryo-EM. Our structures show how CHMP1B first polymerizes into a single-stranded helical filament, shaping membranes into moderate-curvature tubules. Subsequently, IST1 assembles a second strand on CHMP1B, further constricting the membrane tube and reducing its diameter nearly to the fission point. Each step of constriction thins the underlying bilayer, lowering the barrier to membrane fission. Our structures reveal how a two-component, sequential polymerization mechanism drives membrane tubulation, constriction and bilayer thinning.
Collapse
Affiliation(s)
- Henry C Nguyen
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Nathaniel Talledge
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John McCullough
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Abhimanyu Sharma
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Frank R Moss
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Janet H Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Michael D Vershinin
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Adam Frost
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
178
|
Mandal T, Lough W, Spagnolie SE, Audhya A, Cui Q. Molecular Simulation of Mechanical Properties and Membrane Activities of the ESCRT-III Complexes. Biophys J 2020; 118:1333-1343. [PMID: 32078797 PMCID: PMC7091516 DOI: 10.1016/j.bpj.2020.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 01/16/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery carries out the membrane scission reactions that are required for many biological processes throughout cells. How ESCRTs bind and deform cellular membranes and ultimately produce vesicles has been a matter of active research in recent years. In this study, we use fully atomistic molecular dynamics simulations to scrutinize the structural details of a filament composed of Vps32 protomers, a major component of ESCRT-III complexes. The simulations show that both hydrophobic and electrostatic interactions between monomers help maintain the structural stability of the filament, which exhibits an intrinsic bend and twist. Our findings suggest that the accumulation of bending and twisting stresses as the filament elongates on the membrane surface likely contributes to the driving force for membrane invagination. The filament exposes a large cationic surface that senses the negatively charged lipids in the membrane, and the N-terminal amphipathic helix of the monomers not only acts as a membrane anchor but also generates significant positive membrane curvature. Taking all results together, we discuss a plausible mechanism for membrane invagination driven by ESCRT-III.
Collapse
Affiliation(s)
- Taraknath Mandal
- Department of Chemistry, Boston University, Boston, Massachusetts
| | | | | | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Qiang Cui
- Departments of Chemistry, Physics, and Biomedical Engineering, Boston University, Boston, Massachusetts.
| |
Collapse
|
179
|
Nepal B, Sepehri A, Lazaridis T. Mechanisms of negative membrane curvature sensing and generation by ESCRT III subunit Snf7. Protein Sci 2020; 29:1473-1485. [PMID: 32142182 DOI: 10.1002/pro.3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Certain proteins have the propensity to bind to negatively curved membranes and generate negative membrane curvature. The mechanism of action of these proteins is much less studied and understood than those that sense and generate positive curvature. In this work, we use implicit membrane modeling to explore the mechanism of an important negative curvature sensing and generating protein: the main ESCRT III subunit Snf7. We find that Snf7 monomers alone can sense negative curvature and that curvature sensitivity increases for dimers and trimers. We have observed spontaneous bending of Snf7 oligomers into circular structures with preferred radius of ~20 nm. The preferred curvature of Snf7 filaments is further confirmed by the simulations of preformed spirals on a cylindrical membrane surface. Snf7 filaments cannot bind with the same interface to flat and curved membranes. We find that even when a filament has the preferred radius, it is always less stable on the flat membrane surface than on the interior cylindrical membrane surface. This provides an additional energy for membrane bending which has not been considered in the spiral spring model. Furthermore, the rings on the cylindrical spirals are bridged together by helix 4 and hence are extra stabilized compared to the spirals on the flat membrane surface.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Aliasghar Sepehri
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York, USA.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
180
|
Abstract
Many enveloped viruses utilize the cellular ESCRT pathway for budding, even flaviviruses, which form viral particles inside replication organelles derived from the endoplasmic reticulum (ER). In this section, we introduce methods for detecting several ESCRT subunit proteins in virus-infected cells by immunofluorescence microscopy and immunoelectron microscopy (immuno-EM). We also introduce a new method; correlative light microscopy and electron microscopy (CLEM), which allows the observation of target structures with both high-resolution EM and fluorescence labeling.
Collapse
|
181
|
Abstract
The WW domain is a modular protein structure that recognizes the proline-rich Pro-Pro-x-Tyr (PPxY) motif contained in specific target proteins. The compact modular nature of the WW domain makes it ideal for mediating interactions between proteins in complex networks and signaling pathways of the cell (e.g. the Hippo pathway). As a result, WW domains play key roles in a plethora of both normal and disease processes. Intriguingly, RNA and DNA viruses have evolved strategies to hijack cellular WW domain-containing proteins and thereby exploit the modular functions of these host proteins for various steps of the virus life cycle, including entry, replication, and egress. In this review, we summarize key findings in this rapidly expanding field, in which new virus-host interactions continue to be identified. Further unraveling of the molecular aspects of these crucial virus-host interactions will continue to enhance our fundamental understanding of the biology and pathogenesis of these viruses. We anticipate that additional insights into these interactions will help support strategies to develop a new class of small-molecule inhibitors of viral PPxY-host WW-domain interactions that could be used as antiviral therapeutics.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore, Singapore 119077.,Center for Computational Biology, DUKE-NUS Medical School, Singapore 169857
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Singapore 119077.,Laboratory of Cancer Signaling and Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597.,Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, Singapore 117411.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
182
|
Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem Soc Trans 2020; 47:1867-1879. [PMID: 31845722 PMCID: PMC6925526 DOI: 10.1042/bst20190527] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
Abstract
Protein modification by ubiquitin is one of the most versatile posttranslational regulations and counteracted by almost 100 deubiquitinating enzymes (DUBs). USP8 was originally identified as a growth regulated ubiquitin-specific protease and is like many other DUBs characterized by its multidomain architecture. Besides the catalytic domain, specific protein-protein interaction modules were characterized which contribute to USP8 substrate recruitment, regulation and targeting to distinct protein complexes. Studies in mice and humans impressively showed the physiological relevance and non-redundant function of USP8 within the context of the whole organism. USP8 knockout (KO) mice exhibit early embryonic lethality while induced deletion in adult animals rapidly causes lethal liver failure. Furthermore, T-cell specific ablation disturbs T-cell development and function resulting in fatal autoimmune inflammatory bowel disease. In human patients, somatic mutations in USP8 were identified as the underlying cause of adrenocorticotropic hormone (ACTH) releasing pituitary adenomas causing Cushing's disease (CD). Here we provide an overview of the versatile molecular, cellular and pathology associated function and regulation of USP8 which appears to depend on specific protein binding partners, substrates and the cellular context.
Collapse
|
183
|
Meng B, Ip NCY, Abbink TEM, Kenyon JC, Lever AML. ESCRT-II functions by linking to ESCRT-I in human immunodeficiency virus-1 budding. Cell Microbiol 2020; 22:e13161. [PMID: 31922351 PMCID: PMC7187348 DOI: 10.1111/cmi.13161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus (HIV) uses the ESCRT (endosomal sorting complexes required for transport) protein pathway to bud from infected cells. Despite the roles of ESCRT-I and -III in HIV budding being firmly established, participation of ESCRT-II in this process has been controversial. EAP45 is a critical component of ESCRT-II. Previously, we utilised a CRISPR-Cas9 EAP45 knockout cell line to assess the involvement of ESCRT-II in HIV replication. We demonstrated that the absence of ESCRT-II impairs HIV budding. Here, we show that virus spread is also defective in physiologically relevant CRISPR/Cas9 EAP45 knockout T cells. We further show reappearance of efficient budding by re-introduction of EAP45 expression into EAP45 knockout cells. Using expression of selected mutants of EAP45, we dissect the domain requirement responsible for this function. Our data show at the steady state that rescue of budding is only observed in the context of a Gag/Pol, but not a Gag expressor, indicating that the size of cargo determines the usage of ESCRT-II. EAP45 acts through the YPXL-ALIX pathway as partial rescue is achieved in a PTAP but not a YPXL mutant virus. Our study clarifies the role of ESCRT-II in the late stages of HIV replication and reinforces the notion that ESCRT-II plays an integral part during this process as it does in sorting ubiquitinated cargos and in cytokinesis.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Natasha C Y Ip
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Truus E M Abbink
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Microbiology and Immunology, National University of Singapore, Singapore.,Homerton College, Cambridge, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Medicine, National University of Singapore, Singapore
| |
Collapse
|
184
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
185
|
Schäfer JA, Schessner JP, Bircham PW, Tsuji T, Funaya C, Pajonk O, Schaeff K, Ruffini G, Papagiannidis D, Knop M, Fujimoto T, Schuck S. ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast. EMBO J 2020; 39:e102586. [PMID: 31802527 PMCID: PMC6960443 DOI: 10.15252/embj.2019102586] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.
Collapse
Affiliation(s)
- Jasmin A Schäfer
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Julia P Schessner
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
- Present address:
Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peter W Bircham
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
- Present address:
Laboratory of Systems BiologyVIB Center for Microbiology/Laboratory of Genetics and GenomicsCMPGKU LeuvenLeuvenBelgium
| | - Takuma Tsuji
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Charlotta Funaya
- Electron Microscopy Core FacilityHeidelberg UniversityHeidelbergGermany
| | - Oliver Pajonk
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Katharina Schaeff
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Giulia Ruffini
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Dimitrios Papagiannidis
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Michael Knop
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Toyoshi Fujimoto
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Sebastian Schuck
- DKFZ‐ZMBH Alliance and CellNetworks Cluster of ExcellenceCenter for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| |
Collapse
|
186
|
Szymańska E, Nowak P, Kolmus K, Cybulska M, Goryca K, Derezińska-Wołek E, Szumera-Ciećkiewicz A, Brewińska-Olchowik M, Grochowska A, Piwocka K, Prochorec-Sobieszek M, Mikula M, Miączyńska M. Synthetic lethality between VPS4A and VPS4B triggers an inflammatory response in colorectal cancer. EMBO Mol Med 2020; 12:e10812. [PMID: 31930723 PMCID: PMC7005644 DOI: 10.15252/emmm.201910812] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Somatic copy number alterations play a critical role in oncogenesis. Loss of chromosomal regions containing tumor suppressors can lead to collateral deletion of passenger genes. This can be exploited therapeutically if synthetic lethal partners of such passenger genes are known and represent druggable targets. Here, we report that VPS4B gene, encoding an ATPase involved in ESCRT‐dependent membrane remodeling, is such a passenger gene frequently deleted in many cancer types, notably in colorectal cancer (CRC). We observed downregulation of VPS4B mRNA and protein levels from CRC patient samples. We identified VPS4A paralog as a synthetic lethal interactor for VPS4B in vitro and in mouse xenografts. Depleting both proteins profoundly altered the cellular transcriptome and induced cell death accompanied by the release of immunomodulatory molecules that mediate inflammatory and anti‐tumor responses. Our results identify a pair of novel druggable targets for personalized oncology and provide a rationale to develop VPS4 inhibitors for precision therapy of VPS4B‐deficient cancers.
Collapse
Affiliation(s)
- Ewelina Szymańska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Paulina Nowak
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Kolmus
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Magdalena Cybulska
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Edyta Derezińska-Wołek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Aleksandra Grochowska
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
187
|
Abstract
The human betaherpesviruses, human cytomegalovirus (HCMV; species Human betaherpesvirus 5) and human herpesviruses 6A, 6B, and 7 (HHV-6A, -6B, and -7; species Human betaherpesviruses 6A, 6B, and 7) are highly prevalent and can cause severe disease in immune-compromised and immune-naive populations in well- and under-developed communities. Herpesvirus virion assembly is an intricate process that requires viral orchestration of host systems. In this review, we describe recent advances in some of the many cellular events relevant to assembly and egress of betaherpesvirus virions. These include modifications of host metabolic, immune, and autophagic/recycling systems. In addition, we discuss unique aspects of betaherpesvirus virion structure, virion assembly, and the cellular pathways employed during virion egress.
Collapse
|
188
|
Zenko D, Thompson D, Hislop JN. Endocytic sorting and downregulation of the M2 acetylcholine receptor is regulated by ubiquitin and the ESCRT complex. Neuropharmacology 2020; 162:107828. [PMID: 31654703 DOI: 10.1016/j.neuropharm.2019.107828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/14/2023]
Abstract
Cholinergic dysfunction plays a critical role in a number of disease states, and the loss of functional muscarinic acetylcholine receptors plays a key role in disease pathogenesis. Therefore, preventing receptor downregulation would maintain functional receptor number, and be predicted to alleviate symptoms. However, the molecular mechanism(s) underlying muscarinic receptor downregulation are currently unknown. Here we demonstrate that the M2 muscarinic receptor undergoes rapid lysosomal proteolysis, and this lysosomal trafficking is facilitated by ubiquitination of the receptor. Importantly, we show that this trafficking is driven specifically by ESCRT mediated involution. Critically, we provide evidence that disruption of this process leads to a re-routing of the trafficking of the M2 receptor away from the lysosome and into recycling pathway, and eventually back to the plasma membrane. This study is the first to identify the process by which the M2 muscarinic acetylcholine receptor undergoes endocytic sorting, and critically reveals a regulatory checkpoint that represents a target to pharmacologically increase the number of functional muscarinic receptors within the central nervous system.
Collapse
Affiliation(s)
- Dmitry Zenko
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK
| | - Dawn Thompson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK
| | - James N Hislop
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
189
|
Schwihla M, Korbei B. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:680. [PMID: 32528512 PMCID: PMC7253699 DOI: 10.3389/fpls.2020.00680] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The plasma membrane (PM), as border between the inside and the outside of a cell, is densely packed with proteins involved in the sensing and transmission of internal and external stimuli, as well as transport processes and is therefore vital for plant development as well as quick and accurate responses to the environment. It is consequently not surprising that several regulatory pathways participate in the tight regulation of the spatiotemporal control of PM proteins. Ubiquitination of PM proteins plays a key role in directing their entry into the endo-lysosomal system, serving as a signal for triggering endocytosis and further sorting for degradation. Nevertheless, a uniting picture of the different roles of the respective types of ubiquitination in the consecutive steps of down-regulation of membrane proteins is still missing. The trans-Golgi network (TGN), which acts as an early endosome (EE) in plants receives the endocytosed cargo, and here the decision is made to either recycled back to the PM or further delivered to the vacuole for degradation. A multi-complex machinery, the endosomal sorting complex required for transport (ESCRT), concentrates ubiquitinated proteins and ushers them into the intraluminal vesicles of multi-vesicular bodies (MVBs). Several ESCRTs have ubiquitin binding subunits, which anchor and guide the cargos through the endocytic degradation route. Basic enzymes and the mode of action in the early degradation steps of PM proteins are conserved in eukaryotes, yet many plant unique components exist, which are often essential in this pathway. Thus, deciphering the initial steps in the degradation of ubiquitinated PM proteins, which is the major focus of this review, will greatly contribute to the larger question of how plants mange to fine-tune their responses to their environment.
Collapse
|
190
|
Abstract
Exosomes are secreted vesicles involved in signaling processes. The biogenesis of a class of these extracellular vesicles depends on syntenin, and on the interaction of this cytosolic protein with syndecans. Heparanase, largely an endosomal enzyme, acts as a regulator of the syndecan-syntenin-exosome biogenesis pathway. The upregulation of syntenin and heparanase in cancers may support the suspected roles of exosomes in tumor biology.
Collapse
|
191
|
Zhou K, Guo S, Li F, Sun Q, Liang G. Exosomal PD-L1: New Insights Into Tumor Immune Escape Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2020; 8:569219. [PMID: 33178688 PMCID: PMC7593554 DOI: 10.3389/fcell.2020.569219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
As a classical immune checkpoint molecule, PD-L1 on the surface of tumor cells plays a pivotal role in tumor immunosuppression, primarily by inhibiting the antitumor activities of T cells by binding to its receptor PD-1. PD-1/PD-L1 inhibitors have demonstrated unprecedented promise in treating various human cancers with impressive efficacy. However, a significant portion of cancer patients remains less responsive. Therefore, a better understanding of PD-L1-mediated immune escape is imperative. PD-L1 can be expressed on the surface of tumor cells, but it is also found to exist in extracellular forms, such as on exosomes. Recent studies have revealed the importance of exosomal PD-L1 (ExoPD-L1). As an alternative to membrane-bound PD-L1, ExoPD-L1 produced by tumor cells also plays an important regulatory role in the antitumor immune response. We review the recent remarkable findings on the biological functions of ExoPD-L1, including the inhibition of lymphocyte activities, migration to PD-L1-negative tumor cells and immune cells, induction of both local and systemic immunosuppression, and promotion of tumor growth. We also discuss the potential implications of ExoPD-L1 as a predictor for disease progression and treatment response, sensitive methods for detection of circulating ExoPD-L1, and the novel therapeutic strategies combining the inhibition of exosome biogenesis with PD-L1 blockade in the clinic.
Collapse
Affiliation(s)
- Kaijian Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo,
| | - Fei Li
- Department of Pharmaceutical Science, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoxin Liang
- Cancer Therapy Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
192
|
Lee BR, Sanstrum BJ, Liu Y, Kwon SH. Distinct role of Sirtuin 1 (SIRT1) and Sirtuin 2 (SIRT2) in inhibiting cargo-loading and release of extracellular vesicles. Sci Rep 2019; 9:20049. [PMID: 31882861 PMCID: PMC6934595 DOI: 10.1038/s41598-019-56635-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes, vehicles for intercellular communication, are formed intracellularly within multivesicular bodies (MVBs) and are released upon fusion with the plasma membrane. For their biogenesis, proper cargo loading to exosomes and vesicle traffic for extracellular release are required. Previously we showed that the L-type lectin, LMAN2, limits trans-Golgi Network (TGN)-to-endosomes traffic of GPRC5B, an exosome cargo protein, for exosome release. Here, we identified that the protein deacetylase sirtuin 2 (SIRT2) as a novel interactor of LMAN2. Loss of SIRT2 expression resulted in exosomal release of LMAN2, a Golgi resident protein, along with increased exosomal release of GPRC5B. Furthermore, knockout of SIRT2 increased total number of extracellular vesicles (EVs), indicating increased MVB-to-EV flux. While knockout of SIRT1 increased EV release with enlarged late endolysosome, knockout of SIRT2 did not exhibit endolysosome enlargement for increased EV release. Taken together, our study suggests that SIRT2 regulates cargo loading to MVBs and MVB-to-EV flux through a mechanism distinct from that of SIRT1.
Collapse
Affiliation(s)
- Byung Rho Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Bethany J Sanstrum
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
193
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front Cell Dev Biol 2019; 7:291. [PMID: 31921835 PMCID: PMC6914677 DOI: 10.3389/fcell.2019.00291] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental features of biomembranes is the ability to fuse or to separate. These processes called respectively membrane fusion and fission are central in the homeostasis of events such as those related to intracellular membrane traffic. Proteins that contain amphipathic helices (AHs) were suggested to mediate membrane fission via shallow insertion of these helices into the lipid bilayer. Here we analyze the AH-containing proteins that have been identified as essential for membrane fission and categorize them in few subfamilies, including small GTPases, Atg proteins, and proteins containing either the ENTH/ANTH- or the BAR-domain. AH-containing fission-inducing proteins may require cofactors such as additional proteins (e.g., lipid-modifying enzymes), or lipids (e.g., phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidic acid [PA], or cardiolipin). Both PA and cardiolipin possess a cone shape and a negative charge (-2) that favor the recruitment of the AHs of fission-inducing proteins. Instead, PtdIns(4,5)P2 is characterized by an high negative charge able to recruit basic residues of the AHs of fission-inducing proteins. Here we propose that the AHs of fission-inducing proteins contain sequence motifs that bind lipid cofactors; accordingly (K/R/H)(K/R/H)xx(K/R/H) is a PtdIns(4,5)P2-binding motif, (K/R)x6(F/Y) is a cardiolipin-binding motif, whereas KxK is a PA-binding motif. Following our analysis, we show that the AHs of many fission-inducing proteins possess five properties: (a) at least three basic residues on the hydrophilic side, (b) ability to oligomerize, (c) optimal (shallow) depth of insertion into the membrane, (d) positive cooperativity in membrane curvature generation, and (e) specific interaction with one of the lipids mentioned above. These lipid cofactors favor correct conformation, oligomeric state and optimal insertion depth. The most abundant lipid in a given organelle possessing high negative charge (more negative than -1) is usually the lipid cofactor in the fission event. Interestingly, naturally occurring mutations have been reported in AH-containing fission-inducing proteins and related to diseases such as centronuclear myopathy (amphiphysin 2), Charcot-Marie-Tooth disease (GDAP1), Parkinson's disease (α-synuclein). These findings add to the interest of the membrane fission process whose complete understanding will be instrumental for the elucidation of the pathogenesis of diseases involving mutations in the protein AHs.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
194
|
Maki M. Structures and functions of penta-EF-hand calcium-binding proteins and their interacting partners: enigmatic relationships between ALG-2 and calpain-7. Biosci Biotechnol Biochem 2019; 84:651-660. [PMID: 31814542 DOI: 10.1080/09168451.2019.1700099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The penta-EF-hand (PEF) protein family includes ALG-2 (gene name, PDCD6) and its paralogs as well as classical calpain family members. ALG-2 is a prototypic PEF protein that is widely distributed in eukaryotes and interacts with a variety of proteins in a Ca2+-dependent manner. Mammalian ALG-2 and its interacting partners have various modulatory roles including roles in cell death, signal transduction, membrane repair, ER-to-Golgi vesicular transport, and RNA processing. Some ALG-2-interacting proteins are key factors that function in the endosomal sorting complex required for transport (ESCRT) system. On the other hand, mammalian calpain-7 (CAPN7) lacks the PEF domain but contains two microtubule-interacting and trafficking (MIT) domains in tandem. CAPN7 interacts with a subset of ESCRT-III proteins through the MIT domains and regulates EGF receptor downregulation. Structures and functions of ALG-2 and those of its interacting partners as well as relationships with the calpain family are reviewed in this article.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
195
|
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019; 12:133. [PMID: 31815633 PMCID: PMC6902437 DOI: 10.1186/s13045-019-0806-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC, also called primary liver cancer) is one of the most fatal cancers in the world. Due to the insidiousness of the onset of HCC and the lack of effective treatment methods, the prognosis of HCC is extremely poor, and the 5-year average survival rate is less than 10%. Exosomes are nano-sized microvesicle and contain various components such as nucleic acids, proteins, and lipids. Exosomes are important carriers for signal transmission or transportation of material from cell to cell or between cells and tissues. In recent years, exosomes have been considered as potential therapeutic targets of HCC. A large number of reports indicate that exosomes play a key role in the establishment of an HCC microenvironment, as well as the development, progression, invasion, metastasis, and even the diagnosis, treatment, and prognosis of HCC. However, the exact molecular mechanisms and roles of exosomes in these processes remain unclear. We believe that elucidation of the regulatory mechanism of HCC-related exosomes and its signaling pathway and analysis of its clinical applications in the diagnosis and treatment of HCC can provide useful clues for future treatment regimens for HCC. This article discusses and summarizes the research progress of HCC-related exosomes and their potential clinical applications.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
196
|
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019; 12:133. [DOI: doi10.1186/s13045-019-0806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 09/01/2023] Open
Abstract
AbstractHepatocellular carcinoma (HCC, also called primary liver cancer) is one of the most fatal cancers in the world. Due to the insidiousness of the onset of HCC and the lack of effective treatment methods, the prognosis of HCC is extremely poor, and the 5-year average survival rate is less than 10%. Exosomes are nano-sized microvesicle and contain various components such as nucleic acids, proteins, and lipids. Exosomes are important carriers for signal transmission or transportation of material from cell to cell or between cells and tissues. In recent years, exosomes have been considered as potential therapeutic targets of HCC. A large number of reports indicate that exosomes play a key role in the establishment of an HCC microenvironment, as well as the development, progression, invasion, metastasis, and even the diagnosis, treatment, and prognosis of HCC. However, the exact molecular mechanisms and roles of exosomes in these processes remain unclear. We believe that elucidation of the regulatory mechanism of HCC-related exosomes and its signaling pathway and analysis of its clinical applications in the diagnosis and treatment of HCC can provide useful clues for future treatment regimens for HCC. This article discusses and summarizes the research progress of HCC-related exosomes and their potential clinical applications.
Collapse
|
197
|
Ziegler CM, Dang L, Eisenhauer P, Kelly JA, King BR, Klaus JP, Manuelyan I, Mattice EB, Shirley DJ, Weir ME, Bruce EA, Ballif BA, Botten J. NEDD4 family ubiquitin ligases associate with LCMV Z's PPXY domain and are required for virus budding, but not via direct ubiquitination of Z. PLoS Pathog 2019; 15:e1008100. [PMID: 31710650 PMCID: PMC6874086 DOI: 10.1371/journal.ppat.1008100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/21/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Viral late domains are used by many viruses to recruit the cellular endosomal sorting complex required for transport (ESCRT) to mediate membrane scission during viral budding. Unlike the P(S/T)AP and YPX(1–3)L late domains, which interact directly with the ESCRT proteins Tsg101 and ALIX, the molecular linkage connecting the PPXY late domain to ESCRT proteins is unclear. The mammarenavirus lymphocytic choriomeningitis virus (LCMV) matrix protein, Z, contains only one late domain, PPXY. We previously found that this domain in LCMV Z, as well as the ESCRT pathway, are required for the release of defective interfering (DI) particles but not infectious virus. To better understand the molecular mechanism of ESCRT recruitment by the PPXY late domain, affinity purification-mass spectrometry was used to identify host proteins that interact with the Z proteins of the Old World mammarenaviruses LCMV and Lassa virus. Several Nedd4 family E3 ubiquitin ligases interact with these matrix proteins and in the case of LCMV Z, the interaction was PPXY-dependent. We demonstrated that these ligases directly ubiquitinate LCMV Z and mapped the specific lysine residues modified. A recombinant LCMV containing a Z that cannot be ubiquitinated maintained its ability to produce both infectious virus and DI particles, suggesting that direct ubiquitination of LCMV Z alone is insufficient for recruiting ESCRT proteins to mediate virus release. However, Nedd4 ligases appear to be important for DI particle release suggesting that ubiquitination of targets other than the Z protein itself is required for efficient viral ESCRT recruitment. Enveloped viruses derive their lipid bilayer from either the cellular plasma membrane or an intracellular organelle during the process of viral budding in which a virus particle is formed at a membrane. Many enveloped viruses recruit the cellular endosomal sorting complex required for transport (ESCRT) in order to efficiently cut the membrane that connects a newly budded, but not released, virus particle from its parent membrane. Late domains, which are short protein motifs found in numerous enveloped viruses, specifically recruit ESCRT for this process. Two types of late domains accomplish this by binding directly to ESCRT proteins. A third late domain, PPXY, recruits ESCRT proteins through an unknown, indirect linkage. In this study, we sought to identify proteins that may bridge the PPXY late domain and ESCRT proteins. We found that Nedd4 family ubiquitin ligases interact with the PPXY domain in the mammarenavirus Z protein resulting in ubiquitination of Z at two lysine residues. However, Z ubiquitination was largely dispensable for the virus. Conversely, Nedd4 ubiquitin ligases were critical during infection suggesting that the most important contribution made to virus release by Nedd4 ligases is not direct ubiquitination of the viral matrix protein, but possibly the ubiquitination of cellular proteins or other viral proteins.
Collapse
Affiliation(s)
- Christopher M. Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Loan Dang
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Philip Eisenhauer
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Jamie A. Kelly
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Benjamin R. King
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Joseph P. Klaus
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Inessa Manuelyan
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - Ethan B. Mattice
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - David J. Shirley
- Ixis LLC, Data Science Division, Burlington, Vermont, United States of America
| | - Marion E. Weir
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Emily A. Bruce
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Bryan A. Ballif
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Jason Botten
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
198
|
Abstract
Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.
Collapse
|
199
|
Loi M, Raimondi A, Morone D, Molinari M. ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress. Nat Commun 2019; 10:5058. [PMID: 31699981 PMCID: PMC6838186 DOI: 10.1038/s41467-019-12991-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) produces about 40% of the nucleated cell's proteome. ER size and content in molecular chaperones increase upon physiologic and pathologic stresses on activation of unfolded protein responses (UPR). On stress resolution, the mammalian ER is remodeled to pre-stress, physiologic size and function on activation of the LC3-binding activity of the translocon component SEC62. This elicits recov-ER-phagy, i.e., the delivery of the excess ER generated during the phase of stress to endolysosomes (EL) for clearance. Here, ultrastructural and genetic analyses reveal that recov-ER-phagy entails the LC3 lipidation machinery and proceeds via piecemeal micro-ER-phagy, where RAB7/LAMP1-positive EL directly engulf excess ER in processes that rely on the Endosomal Sorting Complex Required for Transport (ESCRT)-III component CHMP4B and the accessory AAA+ ATPase VPS4A. Thus, ESCRT-III-driven micro-ER-phagy emerges as a key catabolic pathway activated to remodel the mammalian ER on recovery from ER stress.
Collapse
Affiliation(s)
- Marisa Loi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, 8093, Zurich, Switzerland
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Diego Morone
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland.
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
200
|
Ladinsky MS, Khamaikawin W, Jung Y, Lin S, Lam J, An DS, Bjorkman PJ, Kieffer C. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. eLife 2019; 8:46916. [PMID: 31657719 PMCID: PMC6839903 DOI: 10.7554/elife.46916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1–infected BM/liver/thymus (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1–producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Wannisa Khamaikawin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yujin Jung
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Samantha Lin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jennifer Lam
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Dong Sung An
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Kieffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|