151
|
Singh V, Mahra K, Jung D, Shin JH. Gut Microbes in Polycystic Ovary Syndrome and Associated Comorbidities; Type 2 Diabetes, Non-Alcoholic Fatty Liver Disease (NAFLD), Cardiovascular Disease (CVD), and the Potential of Microbial Therapeutics. Probiotics Antimicrob Proteins 2024; 16:1744-1761. [PMID: 38647957 DOI: 10.1007/s12602-024-10262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine anomalies among females of reproductive age, highlighted by hyperandrogenism. PCOS is multifactorial as it can be associated with obesity, insulin resistance, low-grade chronic inflammation, and dyslipidemia. PCOS also leads to dysbiosis by lowering microbial diversity and beneficial microbes, such as Faecalibacterium, Roseburia, Akkermenisa, and Bifidobacterium, and by causing a higher load of opportunistic pathogens, such as Escherichia/Shigella, Fusobacterium, Bilophila, and Sutterella. Wherein, butyrate producers and Akkermansia participate in the glucose uptake by inducing glucagon-like peptide-1 (GLP-1) and glucose metabolism, respectively. The abovementioned gut microbes also maintain the gut barrier function and glucose homeostasis by releasing metabolites such as short-chain fatty acids (SCFAs) and Amuc_1100 protein. In addition, PCOS-associated gut is found to be higher in gut-microbial enzyme β-glucuronidase, causing the de-glucuronidation of conjugated androgen, making it susceptible to reabsorption by entero-hepatic circulation, leading to a higher level of androgen in the circulatory system. Overall, in PCOS, such dysbiosis increases the gut permeability and LPS in the systemic circulation, trimethylamine N-oxide (TMAO) in the circulatory system, chronic inflammation in the adipose tissue and liver, and oxidative stress and lipid accumulation in the liver. Thus, in women with PCOS, dysbiosis can promote the progression and severity of type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). To alleviate such PCOS-associated complications, microbial therapeutics (probiotics and fecal microbiome transplantation) can be used without any side effects, unlike in the case of hormonal therapy. Therefore, this study sought to understand the mechanistic significance of gut microbes in PCOS and associated comorbidities, along with the role of microbial therapeutics that can ease the life of PCOS-affected women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Kanika Mahra
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - DaRyung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
152
|
Nguyen SM, Tran TDC, Tran TM, Wang C, Wu J, Cai Q, Ye F, Shu XO. Influence of Peanut Consumption on the Gut Microbiome: A Randomized Clinical Trial. Nutrients 2024; 16:3313. [PMID: 39408280 PMCID: PMC11478729 DOI: 10.3390/nu16193313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Peanut consumption could impact cardiometabolic health through gut microbiota, a hypothesis that remains to be investigated. A randomized clinical trial in Vietnam evaluated whether peanut consumption alters gut microbiome communities. Methods: One hundred individuals were included and randomly assigned to the peanut intervention and control groups. A total of 51 participants were provided with and asked to consume 50 g of peanuts daily, while 49 controls maintained their usual dietary intake for 16 weeks. Stool samples were collected before and on the last day of the trial. After excluding 22 non-compliant participants and those who received antibiotic treatment, 35 participants from the intervention and 43 from the control were included in the analysis. Gut microbiota composition was measured by shotgun metagenomic sequencing. Associations of changes in gut microbial diversity with peanut intervention were evaluated via linear regression analysis. Linear mixed-effects models were used to analyze associations of composition, sub-community structure, and microbial metabolic pathways with peanut intervention. We also performed beta regression analysis to examine the impact of peanut intervention on the overall and individual stability of microbial taxa and metabolic pathways. All associations with false discovery rate (FDR)-corrected p-values of <0.1 were considered statistically significant. Results: No significant changes were found in α- and β-diversities and overall gut microbial stability after peanut intervention. However, the peanut intervention led to lower enrichment of five phyla, five classes, two orders, twenty-four metabolic pathways, and six species-level sub-communities, with a dominant representation of Bifidobacterium pseudocatenulatum, Escherichia coli D, Holdemanella biformis, Ruminococcus D bicirculans, Roseburia inulinivorans, and MGYG-HGUT-00200 (p < 0.05 and FDR < 0.1). The peanut intervention led to the short-term stability of several species, such as Faecalibacterium prausnitzii F and H, and a metabolic pathway involved in nitrate reduction V (p < 0.05; FDR < 0.1), known for their potential roles in human health, especially cardiovascular health. Conclusions: In summary, a 16-week peanut intervention led to significant changes in gut microbial composition, species-level sub-communities, and the short-term stability of several bacteria, but not overall gut microbial diversity and stability. Further research with a larger sample size and a longer intervention period is needed to confirm these findings and investigate the direct impact of gut-microbiome-mediated health effects of peanut consumption. Trial registration: The International Traditional Medicine Clinical Trial Registry (ITMCTR). Registration number: ITMCTR2024000050. Retrospectively Registered 24 April 2024.
Collapse
Affiliation(s)
- Sang Minh Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| | - Thi Du Chi Tran
- Vietnam Colorectal Cancer and Polyps Research, Vinmec Healthcare System, Hanoi 10000, Vietnam; (T.D.C.T.); (T.M.T.)
- College of Health Sciences, VinUniversity (VinUni), Hanoi 67000, Vietnam
- Vinmec-VinUni Institute of Immunology, Hanoi 10000, Vietnam
| | - Thi Mo Tran
- Vietnam Colorectal Cancer and Polyps Research, Vinmec Healthcare System, Hanoi 10000, Vietnam; (T.D.C.T.); (T.M.T.)
| | - Cong Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| | - Fei Ye
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| |
Collapse
|
153
|
Chen H, Chen K. Predicting disease-associated microbes based on similarity fusion and deep learning. Brief Bioinform 2024; 25:bbae550. [PMID: 39504483 PMCID: PMC11540060 DOI: 10.1093/bib/bbae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Increasing studies have revealed the critical roles of human microbiome in a wide variety of disorders. Identification of disease-associated microbes might improve our knowledge and understanding of disease pathogenesis and treatment. Computational prediction of microbe-disease associations would provide helpful guidance for further biomedical screening, which has received lots of research interest in bioinformatics. In this study, a deep learning-based computational approach entitled SGJMDA is presented for predicting microbe-disease associations. Specifically, SGJMDA first fuses multiple similarities of microbes and diseases using a nonlinear strategy, and extracts feature information from homogeneous networks composed of the fused similarities via a graph convolution network. Second, a heterogeneous microbe-disease network is built to further capture the structural information of microbes and diseases by employing multi-neighborhood graph convolution network and jumping knowledge network. Finally, potential microbe-disease associations are inferred through computing the linear correlation coefficients of their embeddings. Results from cross-validation experiments show that SGJMDA outperforms 6 state-of-the-art computational methods. Furthermore, we carry out case studies on three important diseases using SGJMDA, in which 19, 20, and 11 predictions out of their top 20 results are successfully checked by the latest databases, respectively. The excellent performance of SGJMDA suggests that it could be a valuable and promising tool for inferring disease-associated microbes.
Collapse
Affiliation(s)
- Hailin Chen
- School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Kuan Chen
- School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
154
|
Sritana N, Phungpinij A. Analysis of Oral Microbiota in Elderly Thai Patients with Alzheimer's Disease and Mild Cognitive Impairment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1242. [PMID: 39338124 PMCID: PMC11431138 DOI: 10.3390/ijerph21091242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that predominantly affects the older adult population. Neuroinflammation may be triggered by the migration of oral microbiota composition changes from the oral cavity to the brain. However, the relationship between oral microbiota composition and neurodegenerative diseases, such as AD, remains poorly understood. Therefore, we conducted a comprehensive comparison of the relative abundance and diversity of bacterial taxa present in saliva among older adults diagnosed with AD, those with mild cognitive impairment (MCI), and healthy controls. Saliva samples and clinical data were collected from 10 AD patients, 46 MCI patients, and 44 healthy older adults. AD patients had lower Clinical Dementia Rating, Montreal Cognitive Assessment, and Mini-mental Status Examination scores, and induced microbial diversity, than the MCI and control groups. Moreover, AD patients exhibited significantly higher levels of Fusobacteriota and Peptostreptococcaceae and lower levels of Veillonella than the MCI and control groups. In conclusion, a high abundance of Fusobacteria at various levels (i.e., phylum, class, family, and genus levels) may serve as a biomarker for AD. The analysis of oral microbiota dysbiosis biomarkers in older adults may be valuable for identifying individuals at risk for AD.
Collapse
Affiliation(s)
- Narongrit Sritana
- Molecular and Genomics Research Laboratory, Centre of Learning and Research in Celebration of HRH Princess Chulabhorn’s 60 th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok 10210, Thailand;
| | | |
Collapse
|
155
|
Kropp C, Tambosco K, Chadi S, Langella P, Claus SP, Martin R. Christensenella minuta protects and restores intestinal barrier in a colitis mouse model by regulating inflammation. NPJ Biofilms Microbiomes 2024; 10:88. [PMID: 39294159 PMCID: PMC11411060 DOI: 10.1038/s41522-024-00540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/23/2024] [Indexed: 09/20/2024] Open
Abstract
Christensenella minuta DSM 22607 has recently been suggested as a potential microbiome-based therapy for inflammatory bowel disease (IBD) because it displays strong anti-inflammatory effects both in vitro and in vivo. Here, we aimed to decipher the mechanism(s) underlying the DSM 22607-mediated beneficial effects on the host in a mouse model of chemically induced acute colitis. We observed that C. minuta plays a key role in the preservation of the epithelial barrier and the management of DNBS-induced inflammation by inhibiting interleukin (IL)-33 and Tumor necrosis factor receptor superfamily member 8 (Tnfrsf8) gene expression. We also showed that DSM 22607 abundance was positively correlated with Akkermansia sp. and Dubosiella sp. and modulated microbial metabolites in the cecum. These results offer new insights into the biological and molecular mechanisms underlying the beneficial effects of C. minuta DSM 22607 by protecting the intestinal barrier integrity and regulating inflammation.
Collapse
Affiliation(s)
- Camille Kropp
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
- YSOPIA Bioscience, 33076, Bordeaux, France
| | - Kevin Tambosco
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | - Sead Chadi
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | | | - Rebeca Martin
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France.
| |
Collapse
|
156
|
Min M, Nadora D, Chakkalakal M, Afzal N, Subramanyam C, Gahoonia N, Pan A, Thacker S, Nong Y, Chambers CJ, Sivamani RK. An Oral Botanical Supplement Improves Small Intestinal Bacterial Overgrowth (SIBO) and Facial Redness: Results of an Open-Label Clinical Study. Nutrients 2024; 16:3149. [PMID: 39339748 PMCID: PMC11435404 DOI: 10.3390/nu16183149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Small intestinal bacterial overgrowth (SIBO) is a common, yet underdiagnosed, gut condition caused by gut dysbiosis. A previous study has shown the potential of herbal therapy, providing equivalent results to rifaximin. OBJECTIVES The objective of this study was to assess how the use of an oral botanical regimen may modulate the gut microbiome, facial erythema, and intestinal permeability in those with SIBO. METHODS This was an open-label prospective study of adults that had lactulose breath test-confirmed SIBO. Participants received a 10-week oral supplementation of a Biocidin liquid tincture and GI Detox+. If participants were found to be non-responsive to treatment after 10 weeks with a persistently positive lactulose breath test, a third oral supplement, Olivirex, was administered for an additional 4 weeks. Lactulose breath tests were administered at baseline, weeks 6, 10, and 14 to assess for SIBO status. A high-resolution photographic analysis system was utilized to analyze changes in facial erythema. Stool sample collections and venipuncture were performed to analyze the gut microbiome and intestinal permeability. RESULTS A total of 33 subjects were screened with breath testing, and 19 subjects were found to have SIBO. Three of the subjects withdrew during the screening period prior to baseline, and sixteen subjects enrolled. Four subjects dropped out after baseline. Hydrogen-dominant SIBO was the most common subtype of SIBO, followed by methane and hydrogen sulfide. The botanical regimen was most effective for hydrogen- and hydrogen sulfide-dominant SIBO, leading to negative breath test results at week 10 in 42.8% and 66.7% of participants, respectively. Compared to baseline, supplementation with the botanical regimen led to positive shifts in short-chain fatty acid-producing bacteria such as A. muciniphila, F. prausnitzii, C. eutectus, and R. faecis by 31.4%, 35.4%, 24.8%, and 48.7% percent at week 10, respectively. The mean abundance of Firmicutes decreased by 20.2%, Bacteroides increased by 30%, and the F/B ratio decreased by 25.4% at week 10 compared to baseline. At week 10, there was a trending 116% increase in plasma LPS/IgG (p = 0.08). There were no significant changes in plasma zonulin, DAO, histamine, DAO/histamine, LPS/IgG, LPS/IgA, or LPS/IgM. Facial erythema was not statistically different at week 6, but at week 10, there was a 20% decrease (p = 0.001) in redness intensity. Among the patients that extended to week 14, there was no statistical change in erythema. CONCLUSIONS Supplementation with an antimicrobial botanical supplemental regimen may have therapeutic potential in hydrogen and hydrogen-sulfide subtypes of SIBO. Furthermore, the botanical supplemental regimen may reduce facial erythema, increase SCFA-producing bacteria, decrease the F/B ratio, and modulate markers of intestinal permeability.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Dawnica Nadora
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | | | - Nasima Afzal
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Chaitra Subramanyam
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nimrit Gahoonia
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Osteopathic Medicine, Touro University, Vallejo, CA 94592, USA
| | - Adrianne Pan
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Shivani Thacker
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Yvonne Nong
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cindy J. Chambers
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- Pacific Skin Institute, Sacramento, CA 95815, USA
| | - Raja K. Sivamani
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- Pacific Skin Institute, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, Sacramento, CA 95816, USA
| |
Collapse
|
157
|
Akagbosu CO, McCauley KE, Namasivayam S, Romero-Soto HN, O’Brien W, Bacorn M, Bohrnsen E, Schwarz B, Mistry S, Burns AS, Perez-Chaparro PJ, Chen Q, LaPoint P, Patel A, Krausfeldt LE, Subramanian P, Sellers BA, Cheung F, Apps R, Douagi I, Levy S, Nadler EP, Hourigan SK. Gut microbiome shifts in adolescents after sleeve gastrectomy with increased oral-associated taxa and pro-inflammatory potential. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313738. [PMID: 39371172 PMCID: PMC11451705 DOI: 10.1101/2024.09.16.24313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Bariatric surgery is highly effective in achieving weight loss in children and adolescents with severe obesity, however the underlying mechanisms are incompletely understood, and gut microbiome changes are unknown. Objectives 1) To comprehensively examine gut microbiome and metabolome changes after laparoscopic vertical sleeve gastrectomy (VSG) in adolescents and 2) to assess whether the microbiome/metabolome changes observed with VSG influence phenotype using germ-free murine models. Design 1) A longitudinal observational study in adolescents undergoing VSG with serial stool samples undergoing shotgun metagenomic microbiome sequencing and metabolomics (polar metabolites, bile acids and short chain fatty acids) and 2) a human-to-mouse fecal transplant study. Results We show adolescents exhibit significant gut microbiome and metabolome shifts several months after VSG, with increased alpha diversity and notably with enrichment of oral-associated taxa. To assess causality of the microbiome/metabolome changes in phenotype, pre-VSG and post-VSG stool was transplanted into germ-free mice. Post-VSG stool was not associated with any beneficial outcomes such as adiposity reduction compared pre-VSG stool. However, post-VSG stool exhibited an inflammatory phenotype with increased intestinal Th17 and decreased regulatory T cells. Concomitantly, we found elevated fecal calprotectin and an enrichment of proinflammatory pathways in a subset of adolescents post-VSG. Conclusion We show that in some adolescents, microbiome changes post-VSG may have inflammatory potential, which may be of importance considering the increased incidence of inflammatory bowel disease post-VSG.
Collapse
Affiliation(s)
- Cynthia O Akagbosu
- Department of Gastroenterology. Weill Cornell Medicine. New York, New York, United States
| | - Kathryn E McCauley
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sivaranjani Namasivayam
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Hector N Romero-Soto
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Wade O’Brien
- Dartmouth Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States
| | - Mickayla Bacorn
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Eric Bohrnsen
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States
| | - Benjamin Schwarz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States
| | - Shreni Mistry
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Andrew S Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - P. Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Qing Chen
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Phoebe LaPoint
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Anal Patel
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Lauren E Krausfeldt
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian A Sellers
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, United States
| | - Foo Cheung
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, United States
| | - Richard Apps
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, United States
| | - Iyadh Douagi
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, United States
| | - Shira Levy
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Evan P Nadler
- Evan P Nadler. ProCare Consultants, Washington DC, Washington DC, United States
| | - Suchitra K Hourigan
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
158
|
Wang PP, Wang LJ, Fan YQ, Dou ZJ, Han JX, Wang B. Analysis of the characteristics of intestinal microbiota in patients with different severity of obstructive sleep apnea. Sci Rep 2024; 14:21552. [PMID: 39285240 PMCID: PMC11405394 DOI: 10.1038/s41598-024-72230-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Intestinal microbiota imbalance plays an important role in the progression of obstructive sleep apnea (OSA), and is considered to be the main mediator that triggers metabolic comorbidities. Here, we analyzed the changes in intestinal microbiota in patients with different severities of OSA based on apnea hypopnea index (AHI) classification, and explored the role of intestinal microbiota in the severity of OSA. This study included 19 healthy volunteers and 45 patients with OSA [5 ≤ AHI < 15 (n = 14), 15 ≤ AHI < 30 (n = 13), AHI ≥ 30 (n = 18)]. Relevant sleep monitoring data and medical history data were collected, and microbial composition was analyzed using 16S rRNA high-throughput sequencing technology. The diversity analysis of intestinal microbiota among different groups of people was conducted, including alpha diversity, beta diversity, species diversity, and marker species as well as differential functional metabolic pathway prediction analysis. With the increase of AHI classification, the alpha diversity in patients with OSA significantly decreased. The results revealed that the severity of OSA is associated with differences in the structure and composition of the intestinal microbiota. The abundance of bacteria producing short-chain fatty acids (such as Bacteroides, Ruminococcacea, and Faecalibacterium) in severe OSA is significantly reduced and a higher ratio of Firmicutes to Bacteroidetes. Random forest analysis showed that Parabacteroides was a biomarker genus with important discriminatory significance. The differential metabolic pathway prediction function shows that the main function of maintaining intestinal microbiota homeostasis is biosynthetic function. Our results show that the differences in the composition of intestinal microbiota in patients with different severities of OSA are mainly related to short-chain fatty acid-producing bacteria. These changes may play a pathological role in OSA combined with metabolic comorbidities.
Collapse
Affiliation(s)
- Pei-Pei Wang
- Department of the Second Clinical Medicine, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Li-Juan Wang
- Department of Respiratory, Ninth Hospital of Xi'an, Xian, China
| | - Yong-Qiang Fan
- Department of the General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhan-Jun Dou
- Department of Respiratory, Shanxi Cancer Hospital, Taiyuan, China
| | - Jian-Xing Han
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bei Wang
- Department of Respiratory, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
159
|
Dong PY, Yan YMC, Chen Y, Bai Y, Li YY, Dong Y, Liu J, Zhang BQ, Klinger FG, Chen MM, Zhang XF. Multiple omics integration analysis reveals the regulatory effect of chitosan oligosaccharide on testicular development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116802. [PMID: 39106567 DOI: 10.1016/j.ecoenv.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/26/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
Infertility is a global health problem affecting millions of people of reproductive age worldwide, with approximately half caused by males. Chitosan oligosaccharide (COS) has strong antioxidant capacity, but its impact on the male reproductive system has not been effectively evaluated. To address this, we integrated RNA-seq, serum metabolomics and intestinal 16 S rDNA analysis to conduct a comprehensive investigation on the male reproductive system. The results showed that COS has potential targets for the treatment of oligospermia, which can promote the expression of meiotic proteins DDX4, DAZL and SYCP1, benefit germ cell proliferation and testicular development, enhance antioxidant capacity, and increase the expression of testicular steroid proteins STAR and CYP11A1. At the same time, COS can activate PI3K-Akt signaling pathway in testis and TM3 cells. Microbiome and metabolomics analysis suggested that COS alters gut microbial community composition and cooperates with serum metabolites to regulate spermatogenesis. Therefore, COS promotes male reproduction by regulating intestinal microorganisms and serum metabolism, activating PI3K-Akt signaling pathway, improving testicular antioxidant capacity and steroid regulation.
Collapse
Affiliation(s)
- Pei-Yu Dong
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu-Mei Chen Yan
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu Chen
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yue Bai
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yin-Yin Li
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yang Dong
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao 266100, China
| | - Bing-Qiang Zhang
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266111, China; Qingdao Restore Biotechnology Co., Ltd., Qingdao, Shandong 266111, China
| | | | - Meng-Meng Chen
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266111, China; Qingdao Restore Biotechnology Co., Ltd., Qingdao, Shandong 266111, China.
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China.
| |
Collapse
|
160
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
161
|
Camarini R, Marianno P, Hanampa-Maquera M, Oliveira SDS, Câmara NOS. Prenatal Stress and Ethanol Exposure: Microbiota-Induced Immune Dysregulation and Psychiatric Risks. Int J Mol Sci 2024; 25:9776. [PMID: 39337263 PMCID: PMC11431796 DOI: 10.3390/ijms25189776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Changes in maternal gut microbiota due to stress and/or ethanol exposure can have lasting effects on offspring's health, particularly regarding immunity, inflammation response, and susceptibility to psychiatric disorders. The literature search for this review was conducted using PubMed and Scopus, employing keywords and phrases related to maternal stress, ethanol exposure, gut microbiota, microbiome, gut-brain axis, diet, dysbiosis, progesterone, placenta, prenatal development, immunity, inflammation, and depression to identify relevant studies in both preclinical and human research. Only a limited number of reviews were included to support the arguments. The search encompassed studies from the 1990s to the present. This review begins by exploring the role of microbiota in modulating host health and disease. It then examines how disturbances in maternal microbiota can affect the offspring's immune system. The analysis continues by investigating the interplay between stress and dysbiosis, focusing on how prenatal maternal stress influences both maternal and offspring microbiota and its implications for susceptibility to depression. The review also considers the impact of ethanol consumption on gut dysbiosis, with an emphasis on the effects of prenatal ethanol exposure on both maternal and offspring microbiota. Finally, it is suggested that maternal gut microbiota dysbiosis may be significantly exacerbated by the combined effects of stress and ethanol exposure, leading to immune system dysfunction and chronic inflammation, which could increase the risk of depression in the offspring. These interactions underscore the potential for novel mental health interventions that address the gut-brain axis, especially in relation to maternal and offspring health.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Maylin Hanampa-Maquera
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Samuel Dos Santos Oliveira
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
162
|
Markus V. Gut bacterial quorum sensing molecules and their association with inflammatory bowel disease: Advances and future perspectives. Biochem Biophys Res Commun 2024; 724:150243. [PMID: 38857558 DOI: 10.1016/j.bbrc.2024.150243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Inflammatory Bowel Disease (IBD) is an enduring inflammatory disease of the gastrointestinal tract (GIT). The complexity of IBD, its profound impact on patient's quality of life, and its burden on healthcare systems necessitate continuing studies to elucidate its etiology, refine care strategies, improve treatment outcomes, and identify potential targets for novel therapeutic interventions. The discovery of a connection between IBD and gut bacterial quorum sensing (QS) molecules has opened exciting opportunities for research into IBD pathophysiology. QS molecules are small chemical messengers synthesized and released by bacteria based on population density. These chemicals are sensed not only by the microbial species but also by host cells and are essential in gut homeostasis. QS molecules are now known to interact with inflammatory pathways, therefore rendering them potential therapeutic targets for IBD management. Given these intriguing developments, the most recent research findings in this area are herein reviewed. First, the global burden of IBD and the disruptions of the gut microbiota and intestinal barrier associated with the disease are assessed. Next, the general QS mechanism and signaling molecules in the gut are discussed. Then, the roles of QS molecules and their connection with IBD are elucidated. Lastly, the review proposes potential QS-based therapeutic targets for IBD, offering insights into the future research trajectory in this field.
Collapse
Affiliation(s)
- Victor Markus
- Near East University, Faculty of Medicine, Department of Medical Biochemistry, Nicosia, TRNC Mersin 10, Turkey.
| |
Collapse
|
163
|
Toto F, Marangelo C, Scanu M, De Angelis P, Isoldi S, Abreu MT, Cucchiara S, Stronati L, Del Chierico F, Putignani L. A Novel Microbial Dysbiosis Index and Intestinal Microbiota-Associated Markers as Tools of Precision Medicine in Inflammatory Bowel Disease Paediatric Patients. Int J Mol Sci 2024; 25:9618. [PMID: 39273567 PMCID: PMC11395508 DOI: 10.3390/ijms25179618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Recent evidence indicates that the gut microbiota (GM) has a significant impact on the inflammatory bowel disease (IBD) progression. Our aim was to investigate the GM profiles, the Microbial Dysbiosis Index (MDI) and the intestinal microbiota-associated markers in relation to IBD clinical characteristics and disease state. We performed 16S rRNA metataxonomy on both stools and ileal biopsies, metabolic dysbiosis tests on urine and intestinal permeability and mucosal immunity activation tests on the stools of 35 IBD paediatric patients. On the GM profile, we assigned the MDI to each patient. In the statistical analyses, the MDI was correlated with clinical parameters and intestinal microbial-associated markers. In IBD patients with high MDI, Gemellaceae and Enterobacteriaceae were increased in stools, and Fusobacterium, Haemophilus and Veillonella were increased in ileal biopsies. Ruminococcaceae and WAL_1855D were enriched in active disease condition; the last one was also positively correlated to MDI. Furthermore, the MDI results correlated with PUCAI and Matts scores in ulcerative colitis patients (UC). Finally, in our patients, we detected metabolic dysbiosis, intestinal permeability and mucosal immunity activation. In conclusion, the MDI showed a strong association with both severity and activity of IBD and a positive correlation with clinical scores, especially in UC. Thus, this evidence could be a useful tool for the diagnosis and prognosis of IBD.
Collapse
Affiliation(s)
- Francesca Toto
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Chiara Marangelo
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Paola De Angelis
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Sara Isoldi
- Pediatric Gastroenterology and Hepatology Unit, Santobono-Pausilipon Children's Hospital, 80122 Naples, Italy
| | - Maria Teresa Abreu
- Crohn's and Colitis Center, Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Salvatore Cucchiara
- Maternal Child Health Department, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, 00185 Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
164
|
Retuerto M, Al-Shakhshir H, Herrada J, McCormick TS, Ghannoum MA. Analysis of Gut Bacterial and Fungal Microbiota in Children with Autism Spectrum Disorder and Their Non-Autistic Siblings. Nutrients 2024; 16:3004. [PMID: 39275319 PMCID: PMC11396985 DOI: 10.3390/nu16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes.
Collapse
Affiliation(s)
- Mauricio Retuerto
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hilmi Al-Shakhshir
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Janet Herrada
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Medical Mycology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
165
|
Kleerebezem M, Führen J. Synergistic vs. complementary synbiotics: the complexity of discriminating synbiotic concepts using a Lactiplantibacillus plantarum exemplary study. MICROBIOME RESEARCH REPORTS 2024; 3:46. [PMID: 39741951 PMCID: PMC11684985 DOI: 10.20517/mrr.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 01/03/2025]
Abstract
Synbiotics are defined as "a mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host". The definition discriminates between synergistic and complementary synbiotics. Synergistic synbiotics involve a direct interaction between the substrate and co-administered microbe(s), while complementary synbiotics act through independent mechanisms. Here, we evaluate the complexity of discrimination between these two synbiotic concepts using an exemplary study performed with a panel of Lactiplantibacillus plantarum (L. plantarum) strains to identify strain-specific synergistic synbiotics that eventually turned out to work via a complementary synbiotic mechanism. This study highlights that assessing the in situ selectivity of synergistic synbiotics in the intestinal tract is challenging due to the confounding effects of the substrate ingredient on the endogenous microbiome, thereby raising doubts about the added value of distinguishing between synergistic and complementary concepts in synbiotics.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Department of Animal Sciences, Host Microbe Interactomics Group, Wageningen university and Research, Wageningen 6708 WD, the Netherlands
| | - Jori Führen
- Laboratory of Food Microbiology, Wageningen university and Research, Wageningen 6708 WG, the Netherlands
| |
Collapse
|
166
|
Sardar P, Almeida A, Pedicord VA. Integrating functional metagenomics to decipher microbiome-immune interactions. Immunol Cell Biol 2024; 102:680-691. [PMID: 38952337 DOI: 10.1111/imcb.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome-immune interactions and their contributions to health and disease states.
Collapse
Affiliation(s)
- Puspendu Sardar
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alexandre Almeida
- Department of Veterinary Medicine, University of Cambridge School of Biological Sciences, Cambridge, UK
| | - Virginia A Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
167
|
Steimle A, Neumann M, Grant ET, Willieme S, De Sciscio A, Parrish A, Ollert M, Miyauchi E, Soga T, Fukuda S, Ohno H, Desai MS. Gut microbial factors predict disease severity in a mouse model of multiple sclerosis. Nat Microbiol 2024; 9:2244-2261. [PMID: 39009690 PMCID: PMC11371644 DOI: 10.1038/s41564-024-01761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Gut bacteria are linked to neurodegenerative diseases but the risk factors beyond microbiota composition are limited. Here we used a pre-clinical model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), to identify microbial risk factors. Mice with different genotypes and complex microbiotas or six combinations of a synthetic human microbiota were analysed, resulting in varying probabilities of severe neuroinflammation. However, the presence or relative abundances of suspected microbial risk factors failed to predict disease severity. Akkermansia muciniphila, often associated with MS, exhibited variable associations with EAE severity depending on the background microbiota. Significant inter-individual disease course variations were observed among mice harbouring the same microbiota. Evaluation of microbial functional characteristics and host immune responses demonstrated that the immunoglobulin A coating index of certain bacteria before disease onset is a robust individualized predictor of disease development. Our study highlights the need to consider microbial community networks and host-specific bidirectional interactions when aiming to predict severity of neuroinflammation.
Collapse
Affiliation(s)
- Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mareike Neumann
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Stéphanie Willieme
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alessandro De Sciscio
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
168
|
Ju L, Suo Z, Lin J, Liu Z. Fecal microbiota and metabolites in the pathogenesis and precision medicine for inflammatory bowel disease. PRECISION CLINICAL MEDICINE 2024; 7:pbae023. [PMID: 39381014 PMCID: PMC11459260 DOI: 10.1093/pcmedi/pbae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, and its pathogenesis is believed to be associated with an imbalance between commensal organisms and the intestinal immune system. This imbalance is significantly influenced by the intestinal microbiota and metabolites and plays a critical role in maintaining intestinal mucosal homeostasis. However, disturbances in the intestinal microbiota cause dysregulated immune responses and consequently induce intestinal inflammation. Recent studies have illustrated the roles of the intestinal microbiota in the pathogenesis of IBD and underscored the potential of precision diagnosis and therapy. This work summarises recent progress in this field and particularly focuses on the application of the intestinal microbiota and metabolites in the precision diagnosis, prognosis assessment, treatment effectiveness evaluation, and therapeutic management of IBD.
Collapse
Affiliation(s)
- Long Ju
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian 351100, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| |
Collapse
|
169
|
Grellier N, Severino A, Archilei S, Kim J, Gasbarrini A, Cammarota G, Porcari S, Benech N. Gut microbiota in inflammation and colorectal cancer: A potential Toolbox for Clinicians. Best Pract Res Clin Gastroenterol 2024; 72:101942. [PMID: 39645280 DOI: 10.1016/j.bpg.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is a worldwide public health issue specifically in patients with chronic diseases associated with a western lifestyle, such as metabolic diseases and inflammatory bowel diseases (IBD). Interestingly, both metabolic disorders and IBD are characterized by a chronic state of inflammation that contributes to the carcinogenesis with specific alteration of the gut microbiota composition and function. Evidence now shows that this altered gut microbiota contributes fueling a chronic pro-inflammatory state in a vicious circle that can favor CRC development. In this review article, we present the current knowledge concerning the involvement of the gut microbiota as a procarcinogenic factor shared by IBD and cardiometabolic diseases, and provide clues as to how it may be used to prevent or diagnose CRC.
Collapse
Affiliation(s)
- Nathan Grellier
- Department of Hepato-Gastroenterology, Poitiers University Hospital, Poitiers, France
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Sebastiano Archilei
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Jumin Kim
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Nicolas Benech
- Hospices Civils de Lyon, Hepato-gastroenterology Department, Hôpital de La Croix-Rousse, 69000, Lyon, France; Lyon GEM Microbiota Study Group, Lyon, France; Université Claude Bernard Lyon 1, Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France.
| |
Collapse
|
170
|
Prosty C, Katergi K, Papenburg J, Lawandi A, Lee TC, Shi H, Burnham P, Swem L, Routy B, Yansouni CP, Cheng MP. Causal role of the gut microbiome in certain human diseases: a narrative review. EGASTROENTEROLOGY 2024; 2:e100086. [PMID: 39944364 PMCID: PMC11770457 DOI: 10.1136/egastro-2024-100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 03/19/2025]
Abstract
Composed of an elaborate ecosystem of bacteria, fungi, viruses and protozoa residing in the human digestive tract, the gut microbiome influences metabolism, immune modulation, bile acid homeostasis and host defence. Through observational and preclinical data, the gut microbiome has been implicated in the pathogenesis of a spectrum of chronic diseases ranging from psychiatric to gastrointestinal in nature. Until recently, the lack of unequivocal evidence supporting a causal link between gut microbiome and human health outcomes incited controversy regarding its significance. However, recent randomised controlled trial (RCT) evidence in conditions, such as Clostridioides difficile infection, cancer immunotherapy and ulcerative colitis, has supported a causal relationship and has underscored the potential of the microbiome as a therapeutic target. This review delineates the RCT evidence substantiating the potential for a causal relationship between the gut microbiome and human health outcomes, the seminal observational evidence that preceded these RCTs and the remaining knowledge gaps.
Collapse
Affiliation(s)
- Connor Prosty
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Khaled Katergi
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jesse Papenburg
- Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alexander Lawandi
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Todd C Lee
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Hao Shi
- Kanvas Biosciences, Princeton, New Jersey, USA
| | | | - Lee Swem
- Kanvas Biosciences, Princeton, New Jersey, USA
| | - Bertrand Routy
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Universite de Montreal, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- JD MacLean Centre for Tropical Diseases, McGill University, Montreal, Quebec, Canada
| | - Matthew P Cheng
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Kanvas Biosciences, Princeton, New Jersey, USA
| |
Collapse
|
171
|
Gleeson PJ, Monteiro RC. The Role of Mucosal Immunity: What Can We Learn From Animal and Human Studies? Semin Nephrol 2024; 44:151566. [PMID: 40082160 DOI: 10.1016/j.semnephrol.2025.151566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Immunoglobulin A (IgA) is a key actor in the mucosal immune system, which moderates interactions between the host and environmental factors such as food antigens and commensal microorganisms. The pathogenesis of IgA nephropathy (IgAN) involves a multistep process starting with deglycosylation of mucosally derived, polymeric IgA1 (dg-IgA1) that reaches the circulation. Modified O-glycans on dg-IgA1 are targeted by IgG-autoantibodies, leading to the formation of circulating immune complexes that deposit in the glomerular mesangium. Infections of mucosal surfaces trigger flares of primary IgAN, while inflammatory bowel disease and liver cirrhosis are important causes of secondary IgAN, supporting a mucosal source of nephritogenic IgA1. In the presence of microbial pathogens or food antigens, activated dendritic cells in the gut mucosa induce T-cell-dependent or T-cell-independent B-cell differentiation into IgA-secreting plasma cells. Herein we review the literature concerning mucosal immune function and how it is altered in this disease. We discuss recent evidence supporting a causal role of gut microbiota dysbiosis in IgAN pathogenesis.
Collapse
Affiliation(s)
- Patrick J Gleeson
- Paris Cité University, Center for Research on Inflammation, Paris, France; Inserm, UMR1149; CNRS EMR8252; Inflamex Laboratory of Excellence; Nephrology Department.
| | - Renato C Monteiro
- Paris Cité University, Center for Research on Inflammation, Paris, France; Inserm, UMR1149; CNRS EMR8252; Inflamex Laboratory of Excellence; Immunology laboratory of Bichat hospital, Paris, France
| |
Collapse
|
172
|
Hu M, Du Y, Li W, Zong X, Du W, Sun H, Liu H, Zhao K, Li J, Farooq MZ, Wu J, Xu Q. Interplay of Food-Derived Bioactive Peptides with Gut Microbiota: Implications for Health and Disease Management. Mol Nutr Food Res 2024; 68:e2400251. [PMID: 39097954 DOI: 10.1002/mnfr.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Indexed: 08/06/2024]
Abstract
Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.
Collapse
Affiliation(s)
- Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyue Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomei Zong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Jianxiong Li
- Wuhan Jason Biotech Co., Ltd., Wuhan, 430070, China
| | - Muhammad Zahid Farooq
- Department of Animal Science, University of Veterinary and Animal Science, Lahore, 54000, Pakistan
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
173
|
Cheng WW, Liu BH, Hou XT, Meng H, Wang D, Zhang CH, Yuan S, Zhang QG. Natural Products on Inflammatory Bowel Disease: Role of Gut Microbes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1275-1301. [PMID: 39192679 DOI: 10.1142/s0192415x24500514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Inflammatory bowel disease (IBD) refers to long-term medical conditions that involve inflammation of the digestive tract, and the global incidence and prevalence of IBD are on the rise. Gut microbes play an important role in maintaining the intestinal health of the host, and the occurrence, development, and therapeutic effects of IBD are closely related to the structural and functional changes of gut microbes. Published studies have shown that the natural products from traditional Chinese medicine have direct or indirect regulatory impacts on the composition and metabolism of the gut microbes. In this review, we summarize the research progress of several groups of natural products, i.e., flavonoids, alkaloids, saponins, polysaccharides, polyphenols, and terpenoids, for the therapeutic activities in relieving IBD symptoms. The role of gut microbes and their intestinal metabolites in managing the IBD is presented, with focusing on the mechanism of action of those natural products. Traditional Chinese medicine alleviated IBD symptoms by regulating gut microbes, providing important theoretical and practical basis for the treatment of variable inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Wen-Wen Cheng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Bao-Hong Liu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Xiao-Ting Hou
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Huan Meng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Dan Wang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University College of Medicine, Yanji, Jilin Province 133002, P. R. China
| | - Shuo Yuan
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, P. R. China
| | - Qing-Gao Zhang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| |
Collapse
|
174
|
Fanizzi F, D'Amico F, Zanotelli Bombassaro I, Zilli A, Furfaro F, Parigi TL, Cicerone C, Fiorino G, Peyrin-Biroulet L, Danese S, Allocca M. The Role of Fecal Microbiota Transplantation in IBD. Microorganisms 2024; 12:1755. [PMID: 39338430 PMCID: PMC11433743 DOI: 10.3390/microorganisms12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota dysbiosis has a critical role in the pathogenesis of inflammatory bowel diseases, prompting the exploration of novel therapeutic approaches like fecal microbiota transplantation, which involves the transfer of fecal microbiota from a healthy donor to a recipient with the aim of restoring a balanced microbial community and attenuating inflammation. Fecal microbiota transplantation may exert beneficial effects in inflammatory bowel disease through modulation of immune responses, restoration of mucosal barrier integrity, and alteration of microbial metabolites. It could alter disease course and prevent flares, although long-term durability and safety data are lacking. This review provides a summary of current evidence on fecal microbiota transplantation in inflammatory bowel disease management, focusing on its challenges, such as variability in donor selection criteria, standardization of transplant protocols, and long-term outcomes post-transplantation.
Collapse
Affiliation(s)
- Fabrizio Fanizzi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Isadora Zanotelli Bombassaro
- Department of Gastroenterology and Endoscopy, Santa Casa de Misericordia de Porto Alagre, Porto Alegre 90020-090, Brazil
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, Nutrition-Genetics and Exposure to Environmental Risks Research Unit (NGERE), University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Fédération Hospitalo-Universitaire CARE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
175
|
Govaert M, Rotsaert C, Vannieuwenhuyse C, Duysburgh C, Medlin S, Marzorati M, Jarrett H. Survival of Probiotic Bacterial Cells in the Upper Gastrointestinal Tract and the Effect of the Surviving Population on the Colonic Microbial Community Activity and Composition. Nutrients 2024; 16:2791. [PMID: 39203927 PMCID: PMC11357584 DOI: 10.3390/nu16162791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Many health-promoting effects have been attributed to the intake of probiotic cells. However, it is important that probiotic cells arrive at the site of their activity in a viable state in order to exert their beneficial effects. Careful selection of the appropriate probiotic formulation is therefore required as mainly the type of probiotic species/strain and the administration strategy may affect survival of the probiotic cells during the upper gastrointestinal (GIT) passage. Therefore, the current study implemented Simulator of the Human Microbial Ecosystem (SHIME®) technology to investigate the efficacy of different commercially available probiotic formulations on the survival and culturability of probiotic bacteria during upper GIT passage. Moreover, Colon-on-a-Plate (CoaP™) technology was applied to assess the effect of the surviving probiotic bacteria on the gut microbial community (activity and composition) of three human donors. Significantly greater survival and culturability rates were reported for the delayed-release capsule formulation (>50%) as compared to the powder, liquid, and standard capsule formulations (<1%) (p < 0.05), indicating that the delayed-release capsule was most efficacious in delivering live bacteria cells. Indeed, administration of the delayed-release capsule probiotic digest resulted in enhanced production of SCFAs and shifted gut microbial community composition towards beneficial bacterial species. These results thus indicate that careful selection of the appropriate probiotic formulation and administration strategy is crucial to deliver probiotic cells in a viable state at the site of their activity (distal ileum and colon).
Collapse
Affiliation(s)
- Marlies Govaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Chloë Rotsaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | | | - Cindy Duysburgh
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Sophie Medlin
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Harry Jarrett
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| |
Collapse
|
176
|
Shah T, Guo X, Song Y, Fang Y, Ding L. Comparative Analysis of Gut Bacterial Diversity in Wild and Domestic Yaks on the Qinghai-Tibetan Plateau. Animals (Basel) 2024; 14:2380. [PMID: 39199914 PMCID: PMC11350814 DOI: 10.3390/ani14162380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota is a diverse and complex population, and it has a key role in the host's health and adaptability to the environment. The present study investigated the fecal bacterial community of wild grazing (WG) and domestic grazing (DG) yaks on natural grazing pastures, analyzing the gut microbiota using 16S rRNA sequencing to assess bacterial diversity. A total of 48 yak fecal samples were selected from two different grazing habitats. The DG group had more crude proteins and non-fiber carbohydrates. The WG group had more OM, insoluble dietary fiber such as NDF, ADF, ether extract, and TC. There were 165 and 142 unique operational taxonomic units (OTUs) in the WG and DG groups, respectively. Shannon index analysis revealed a higher bacterial diversity in the WG group than in the DG group. At the phylum level, Firmicutes were the dominant bacterial taxa in both groups. The relative abundance of Firmicutes in the WG group was higher than in the DG group. At the family level, the WG group had a significantly higher abundance of Ruminococcaceae (p < 0.001) and Rikenellaceae (p < 0.001) than the DG group. The abundances of Alloprevotella and Succinivibrio were more pronounced in the DG group than in the WG group at the genus level. This study presents a novel understanding of the bacterial communities of ruminants and their potential applications for livestock production.
Collapse
Affiliation(s)
- Tariq Shah
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, Institute of Qinghai–Tibetan Plateau, College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xusheng Guo
- Probiotics and Biological Feed Research Centre, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongwu Song
- Animal Husbandry and Veterinary Station, Gangcha County, Haibei 812399, China
| | - Yonggui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Luming Ding
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, Institute of Qinghai–Tibetan Plateau, College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
177
|
Cuevas-Sierra A, Chero-Sandoval L, Higuera-Gómez A, Vargas JA, Martínez-Urbistondo M, Castejón R, Martínez JA. Modulatory role of Faecalibacterium on insulin resistance and coagulation in patients with post-viral long haulers depending on adiposity. iScience 2024; 27:110450. [PMID: 39081294 PMCID: PMC11284562 DOI: 10.1016/j.isci.2024.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Patients with Post-viral long hauler encompass lasting symptoms and comorbid complexities, often exacerbated in individuals with excessive body weight. The aim was to study gut microbiota in 130 patients with post-viral long hauler stratified by body mass index (BMI) and the relationship between inflammation and microbiota. Significant higher values were found for anthropometric variables and markers of glucose and dyslipidemia in individuals with higher BMI, as well as elevated levels of C-reactive protein, fibrinogen, IL-6, uric acid, and D-dimer. An interactive association showed an interplay between Faecalibacterium, D-dimer levels, and insulin resistance. This investigation showed that anthropometric, biochemical, and inflammatory variables were impaired in patients with post-viral long haulers with higher BMI. In addition, gut microbiota differences were found between groups and a modification effect on Faecalibacterium abundance regarding insulin resistance and D-dimer. These findings suggest that considering adiposity and gut microbiota structure and composition may improve personalized clinical interventions in patients with chronic inflammation.
Collapse
Affiliation(s)
- Amanda Cuevas-Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Lourdes Chero-Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
- Department of Endocrinology and Nutrition of the University Clinical Hospital, University of Valladolid, 47002 Valladolid, Spain
| | - Andrea Higuera-Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - J. Antonio Vargas
- Internal Medicine Service of Puerta de Hierro Majadahonda University Hospital, 2822 Madrid, Spain
| | | | - Raquel Castejón
- Internal Medicine Service of Puerta de Hierro Majadahonda University Hospital, 2822 Madrid, Spain
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
- Centro de Medicina y Endocrinología, Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
178
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
179
|
Roslund MI, Nurminen N, Oikarinen S, Puhakka R, Grönroos M, Puustinen L, Kummola L, Parajuli A, Cinek O, Laitinen OH, Hyöty H, Sinkkonen A. Skin exposure to soil microbiota elicits changes in cell-mediated immunity to pneumococcal vaccine. Sci Rep 2024; 14:18573. [PMID: 39127736 PMCID: PMC11316737 DOI: 10.1038/s41598-024-68235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-β plasma levels and TGF-β decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.
Collapse
Affiliation(s)
- Marja I Roslund
- Natural Resources Institute Finland, Luke, Viikki and Turku, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Leena Puustinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Ondřej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06, Prague, Czech Republic
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Luke, Viikki and Turku, Finland.
| |
Collapse
|
180
|
Jauregui-Amezaga A, Smet A. The Microbiome in Inflammatory Bowel Disease. J Clin Med 2024; 13:4622. [PMID: 39200765 PMCID: PMC11354561 DOI: 10.3390/jcm13164622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The management of patients with inflammatory bowel disease (IBD) aims to control inflammation through the use of immunosuppressive treatments that target various points in the inflammatory cascade. However, the efficacy of these therapies in the long term is limited, and they often are associated with severe side effects. Although the pathophysiology of the disease is not completely understood, IBD is regarded as a multifactorial disease that occurs due to an inappropriate immune response in genetically susceptible individuals. The gut microbiome is considered one of the main actors in the development of IBD. Gut dysbiosis, characterised by significant changes in the composition and functionality of the gut microbiota, often leads to a reduction in bacterial diversity and anti-inflammatory anaerobic bacteria. At the same time, bacteria with pro-inflammatory potential increase. Although changes in microbiome composition upon biological agent usage have been observed, their role as biomarkers is still unclear. While most studies on IBD focus on the intestinal bacterial population, recent studies have highlighted the importance of other microbial populations, such as viruses and fungi, in gut dysbiosis. In order to modulate the aberrant immune response in patients with IBD, researchers have developed therapies that target different players in the gut microbiome. These innovative approaches hold promise for the future of IBD treatment, although safety concerns are the main limitations, as their effects on humans remain unknown.
Collapse
Affiliation(s)
- Aranzazu Jauregui-Amezaga
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
181
|
Gray SM, Moss AD, Herzog JW, Kashiwagi S, Liu B, Young JB, Sun S, Bhatt AP, Fodor AA, Balfour Sartor R. Mouse adaptation of human inflammatory bowel diseases microbiota enhances colonization efficiency and alters microbiome aggressiveness depending on the recipient colonic inflammatory environment. MICROBIOME 2024; 12:147. [PMID: 39113097 PMCID: PMC11304999 DOI: 10.1186/s40168-024-01857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. RESULTS Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. CONCLUSIONS Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.
Collapse
Affiliation(s)
- Simon M Gray
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anh D Moss
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Jeremy W Herzog
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saori Kashiwagi
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Bo Liu
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline B Young
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Aadra P Bhatt
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- National Gnotobiotic Rodent Resource Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
182
|
Arjomand Fard N, Wine E. Clostridium perfringens: A Potential Pathobiont in Inflammatory Bowel Disease. J Crohns Colitis 2024; 18:981-982. [PMID: 38366889 PMCID: PMC11302961 DOI: 10.1093/ecco-jcc/jjae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Nazanin Arjomand Fard
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Eytan Wine
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton Clinic Health Academy, Room 4-577, 11405 87th Ave., Edmonton, AB. T6G 1C9, Canada
| |
Collapse
|
183
|
Aslam R, Herrles L, Aoun R, Pioskowik A, Pietrzyk A. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100289. [PMID: 39105129 PMCID: PMC11298874 DOI: 10.1016/j.jacig.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 08/07/2024]
Abstract
Asthma, a chronic inflammatory disorder of the airways, is a prevalent childhood chronic disease with a substantial global health burden. The complex etiology and pathogenesis of asthma involve genetic and environmental factors, posing challenges in diagnosis, severity prediction, and therapeutic strategies. Recent studies have highlighted the significant role of the gut microbiota and its interaction with the immune system in the development of asthma. Dysbiosis, an imbalance in microbial composition, has been associated with respiratory diseases through the gut-lung axis. This axis is an interaction between the gut and lungs, allowing microbial metabolites to influence the host immune system. This systematic review examines the association between gut microbiota composition, measured using 16S rRNA sequencing, during infancy and childhood, and the subsequent development of atopic wheeze and asthma. The results suggest that higher alpha diversity of bacteria such as Bifidobacterium, Faecalibacterium, and Roseburia may have protective effects against asthmatic outcomes. Conversely, lower relative abundances of bacteria like Bacteroides and certain fungi, including Malassezia, were associated with asthma. These findings highlight the potential of early screening and risk assessment of gut microbiota to identify individuals at risk of asthma. Furthermore, investigations targeting gut microbiota, such as dietary modifications and probiotic supplementation, may hold promise for asthma prevention and management. Future research should focus on identifying specific microbial signatures associated with asthma susceptibility and further investigate approaches like fecal microbiota transplantation. Understanding the role of gut microbiota in asthma pathogenesis can contribute to early detection and development of interventions to mitigate the risk of asthmatic pathogenesis in childhood.
Collapse
Affiliation(s)
- Rabbiya Aslam
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Laura Herrles
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Raquel Aoun
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Pioskowik
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Pietrzyk
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
184
|
Öhnstedt E, Doñas C, Parv K, Pang Y, Lofton Tomenius H, Carrasco López M, Gannavarapu VR, Choi J, Ovezik M, Frank P, Jorvid M, Roos S, Vågesjö E, Phillipson M. Oral administration of CXCL12-expressing Limosilactobacillus reuteri improves colitis by local immunomodulatory actions in preclinical models. Am J Physiol Gastrointest Liver Physiol 2024; 327:G140-G153. [PMID: 38780469 DOI: 10.1152/ajpgi.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Treatments of colitis, inflammation of the intestine, rely on induction of immune suppression associated with systemic adverse events, including recurrent infections. This treatment strategy is specifically problematic in the increasing population of patients with cancer with immune checkpoint inhibitor (ICI)-induced colitis, as immune suppression also interferes with the ICI-treatment response. Thus, there is a need for local-acting treatments that reduce inflammation and enhance intestinal healing. Here, we investigated the effect and safety of bacterial delivery of short-lived immunomodulating chemokines to the inflamed intestine in mice with colitis. Colitis was induced by dextran sulfate sodium (DSS) alone or in combination with ICI (anti-PD1 and anti-CTLA-4), and Limosilactobacillus reuteri R2LC (L. reuteri R2LC) genetically modified to express the chemokine CXCL12-1α (R2LC_CXCL12, emilimogene sigulactibac) was given perorally. In addition, the pharmacology and safety of the formulated drug candidate, ILP100-Oral, were evaluated in rabbits. Peroral CXCL12-producing L. reuteri R2LC significantly improved colitis symptoms already after 2 days in mice with overt DSS and ICI-induced colitis, which in benchmarking experiments was demonstrated to be superior to treatments with anti-TNF-α, anti-α4β7, and corticosteroids. The mechanism of action involved chemokine delivery to Peyer's patches (PPs), confirmed by local CXCR4 signaling, and increased numbers of colonic, regulatory immune cells expressing IL-10 and TGF-β1. No systemic exposure or engraftment could be detected in mice, and product feasibility, pharmacology, and safety were confirmed in rabbits. In conclusion, peroral CXCL12-producing L. reuteri R2LC efficiently ameliorates colitis, enhances mucosal healing, and has a favorable safety profile.NEW & NOTEWORTHY Colitis symptoms are efficiently reduced by peroral administration of probiotic bacteria genetically modified to deliver CXCL12 locally to the inflamed intestine in several mouse models.
Collapse
Affiliation(s)
- Emelie Öhnstedt
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | - Hava Lofton Tomenius
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Venkata Ram Gannavarapu
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jacqueline Choi
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Ovezik
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agriculture, Uppsala, Sweden
| | - Evelina Vågesjö
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mia Phillipson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- The Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
185
|
Bak MTJ, Demers K, Hammoudi N, Allez M, Silverberg MS, Fuhler GM, Parikh K, Pierik MJ, Stassen LPS, van der Woude CJ, Doukas M, van Ruler O, de Vries AC. Systematic review: Patient-related, microbial, surgical, and histopathological risk factors for endoscopic post-operative recurrence in patients with Crohn's disease. Aliment Pharmacol Ther 2024; 60:310-326. [PMID: 38887827 DOI: 10.1111/apt.18040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Risk stratification for endoscopic post-operative recurrence (ePOR) in Crohn's disease (CD) is required to identify patients who would benefit most from initiation of prophylactic medication and intensive monitoring of recurrence. AIMS To assess the current evidence on patient-related, microbial, surgical and histopathological risk factors for ePOR in patients with CD after ileocolic (re-)resection. METHODS Multiple online databases (Embase, MEDLINE, Web of Science and Cochrane Library) were searched up to March 2024. Studies with reported associations of patient-related, microbial, surgical and/or histopathological factors for ePOR (i.e., Rutgeerts' score ≥i2 or modified Rutgeerts' score ≥i2a) were included. The risk of bias was assessed with the Newcastle-Ottawa Scale for observational cohort studies and case-control studies. RESULTS In total, 47 studies were included (four RCTs, 29 cohort studies, 12 case-control studies, one cross-sectional study and one individual participant data meta-analysis) including 6006 patients (median sample size 87 patients [interquartile range 46-170]). Risk of bias assessment revealed a poor quality in 41% of the studies. An association was reported in multiple studies of ePOR with active smoking at and post-surgery, male sex and prior bowel resection. A heterogeneous association with ePOR was reported for other risk factors included in the current guidelines (penetrating disease, perianal disease, younger age, extensive small bowel disease and presence of granulomas in the resection specimen or myenteric plexitis in the resection margin), and other patient-related, microbial, surgical and histopathological factors. CONCLUSION Risk factors for ePOR in international guidelines are not consistently reported as risk factors in current literature except for active smoking and prior bowel resection. To develop evidence-based, personalised strategies, large prospective studies are warranted to identify risk factors for ePOR. Validation studies of promising (bio)markers are also required.
Collapse
Affiliation(s)
- Michiel T J Bak
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Karlijn Demers
- Research Institute for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Nassim Hammoudi
- Gastroenterology Department, Hôpital Saint-Louis - APHP, Université Paris Cité, INSERM U1160, Paris, France
| | - Matthieu Allez
- Gastroenterology Department, Hôpital Saint-Louis - APHP, Université Paris Cité, INSERM U1160, Paris, France
| | - Mark S Silverberg
- Inflammatory Bowel Disease Centre, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kaushal Parikh
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marieke J Pierik
- Research Institute for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Laurents P S Stassen
- Research Institute for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oddeke van Ruler
- Department of Surgery, IJsselland Hospital, Capelle aan den IJssel, the Netherlands
- Department of Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
186
|
Duysburgh C, Velumani D, Garg V, Cheong JWY, Marzorati M. Combined Supplementation of Inulin and Bacillus coagulans Lactospore Demonstrates Synbiotic Potential in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME ®) Model. J Diet Suppl 2024; 21:737-755. [PMID: 39087597 DOI: 10.1080/19390211.2024.2380262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Prebiotic and probiotic combinations may lead to a synbiotic effect, demonstrating superior health benefits over either component alone. Using the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®) model, the effects of repeated supplementation with inulin (prebiotic, which is expected to provide a source of nutrition for the live microorganisms in the gut to potentially support optimal digestive health), Bacillus coagulans lactospore (probiotic), and a low and high dose of a synbiotic combination of the two on the gut microbial community activity and composition were evaluated. Test product supplementation increased the health-promoting short-chain fatty acids acetate and butyrate compared with levels recorded during the control period, demonstrating a stimulation of saccharolytic fermentation. This was likely the result of the increased abundance of several saccharolytic bacterial groups, including Megamonas, Bifidobacterium, and Faecalibacterium, following test product supplementation. The stimulation of acetate and butyrate production, as well as the increased abundance of saccharolytic bacterial groups were more evident in treatment week 3 compared with treatment week 1, demonstrating the value of repeated product administration. Further, the synbiotic formulations tended to result in greater changes compared with prebiotic or probiotic alone. Overall, the findings demonstrate a synbiotic potential for inulin and B. coagulans lactospore and support repeated administration of these products, indicating a potential for promoting gut health.
Collapse
Affiliation(s)
| | - Deepapriya Velumani
- Haleon (GlaxoSmithKline Consumer Healthcare Pte Ltd), Rochester Park, Singapore
| | - Vandana Garg
- Haleon (GlaxoSmithKline Consumer Healthcare Pte Ltd), Rochester Park, Singapore
| | | | | |
Collapse
|
187
|
López-Bermudo L, Moreno-Chamba B, Salazar-Bermeo J, Hayward NJ, Morris A, Duncan GJ, Russell WR, Cárdenas A, Ortega Á, Escudero-López B, Berná G, Martí Bruña N, Duncan SH, Neacsu M, Martin F. Persimmon Fiber-Rich Ingredients Promote Anti-Inflammatory Responses and the Growth of Beneficial Anti-Inflammatory Firmicutes Species from the Human Colon. Nutrients 2024; 16:2518. [PMID: 39125398 PMCID: PMC11314113 DOI: 10.3390/nu16152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Persimmon fruit processing-derived waste and by-products, such as peels and pomace, are important sources of dietary fiber and phytochemicals. Revalorizing these by-products could help promote circular nutrition and agricultural sustainability while tackling dietary deficiencies and chronic diseases. In this study, fiber-rich fractions were prepared from the by-products of Sharoni and Brilliant Red persimmon varieties. These fractions were quantified for their phenolic composition and assessed for their ability to promote the growth of beneficial human colonic Firmicutes species and for their in vitro anti-inflammatory potential. Gallic and protocatechuic acids, delphinidin, and cyanidin were the main phenolics identified. Faecalibacterium prausnitzii strains showed significantly higher growth rates in the presence of the Brilliant Red fraction, generating more than double butyrate as a proportion of the total short-chain fatty acids (39.5% vs. 17.8%) when compared to glucose. The fiber-rich fractions significantly decreased the inflammatory effect of interleukin-1β in Caco-2 cells, and the fermented fractions (both from Sharoni and Brilliant Red) significantly decreased the inflammatory effect of interleukin-6 and tumor necrosis factor-α in the RAW 264.7 cells. Therefore, fiber-rich fractions from persimmon by-products could be part of nutritional therapies as they reduce systemic inflammation, promote the growth of beneficial human gut bacteria, and increase the production of beneficial microbial metabolites such as butyrate.
Collapse
Affiliation(s)
- Lucía López-Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bryan Moreno-Chamba
- Institute of Research, Development and Innovation in Sanitary Biotechnology of Elche, Miguel Hernández University, 03202 Elche, Spain; (B.M.-C.)
- Institute of Food Engineering for Development, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Julio Salazar-Bermeo
- Institute of Research, Development and Innovation in Sanitary Biotechnology of Elche, Miguel Hernández University, 03202 Elche, Spain; (B.M.-C.)
- Institute of Food Engineering for Development, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Nicholas J. Hayward
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amanda Morris
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gary J. Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Wendy R. Russell
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Antonio Cárdenas
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángeles Ortega
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Blanca Escudero-López
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Genoveva Berná
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nuria Martí Bruña
- Institute of Research, Development and Innovation in Sanitary Biotechnology of Elche, Miguel Hernández University, 03202 Elche, Spain; (B.M.-C.)
| | - Sylvia H. Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Madalina Neacsu
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
188
|
Worsley SF, Davies CS, Lee CZ, Mannarelli ME, Burke T, Komdeur J, Dugdale HL, Richardson DS. Longitudinal gut microbiome dynamics in relation to age and senescence in a wild animal population. Mol Ecol 2024; 33:e17477. [PMID: 39010794 DOI: 10.1111/mec.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
In humans, gut microbiome (GM) differences are often correlated with, and sometimes causally implicated in, ageing. However, it is unclear how these findings translate in wild animal populations. Studies that investigate how GM dynamics change within individuals, and with declines in physiological condition, are needed to fully understand links between chronological age, senescence and the GM, but have rarely been done. Here, we use longitudinal data collected from a closed population of Seychelles warblers (Acrocephalus sechellensis) to investigate how bacterial GM alpha diversity, composition and stability are associated with host senescence. We hypothesised that GM diversity and composition will differ, and become more variable, in older adults, particularly in the terminal year prior to death, as the GM becomes increasingly dysregulated due to senescence. However, GM alpha diversity and composition remained largely invariable with respect to adult age and did not differ in an individual's terminal year. Furthermore, there was no evidence that the GM became more heterogenous in senescent age groups (individuals older than 6 years), or in the terminal year. Instead, environmental variables such as season, territory quality and time of day, were the strongest predictors of GM variation in adult Seychelles warblers. These results contrast with studies on humans, captive animal populations and some (but not all) studies on non-human primates, suggesting that GM deterioration may not be a universal hallmark of senescence in wild animal species. Further work is needed to disentangle the factors driving variation in GM-senescence relationships across different host taxa.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Chuen Zhang Lee
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Nature Seychelles, Mahé, Republic of Seychelles
| |
Collapse
|
189
|
Zheng B, Wang L, Yi Y, Yin J, Liang A. Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian J Pharm Sci 2024; 19:100943. [PMID: 39246510 PMCID: PMC11375318 DOI: 10.1016/j.ajps.2024.100943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
Collapse
Affiliation(s)
- Baoxin Zheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
190
|
Liu J. Aged garlic therapeutic intervention targeting inflammatory pathways in pathogenesis of bowel disorders. Heliyon 2024; 10:e33986. [PMID: 39130474 PMCID: PMC11315124 DOI: 10.1016/j.heliyon.2024.e33986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, manifest as a result of intricate interactions involving genetic predisposition, environmental factors, intestinal microbiota dynamics, and immune dysregulation, ultimately leading to persistent mucosal inflammation. Addressing this complex pathology requires a nuanced understanding to inform targeted therapeutic strategies. Consequently, our study explored the viability of Aged Garlic Extract (AGE) as an alternative therapeutic regimen for IBD management. Utilizing gas chromatography-mass spectrometry (GC-MS) and scanning electron microscopy (SEM), we characterized AGE, revealing distinctions from Fresh Garlic Extract (FGE), particularly the absence of allicin in AGE and accompanying structural alterations. In In-Vivo experiments employing an IBD rat model, AGE intervention exhibited remarkable antioxidant, antibacterial, and anti-inflammatory properties. Noteworthy outcomes included improved survival rates, mitigation of intestinal damage, restoration of gut microbial diversity, reinforcement of tight junctions, and reversal of mitochondrial dysfunction. Collectively, these effects contributed to the preservation of enterocyte integrity and the attenuation of inflammation. In conclusion, the unique chemical composition of AGE, coupled with its substantial influence on gut microbiota, antioxidant defenses, and inflammatory pathways, positions it as a promising adjunctive therapy for the management of IBD. These observations, synergistically considered with existing research, provide significant insights into the potential utility of AGE in addressing the intricate pathophysiology inherent to IBD. The potential strength of study and rationale of using AGE against IBD includes exploring alternative therapeutic regimens if conventional treatments are associated with side effects, identification of potential hotspots/pathways involved in disease progression and study can provide economically cheaper and naturally occurring alternative to patient community who are struggling to afford expensive medications. These promising findings underscore the necessity for additional investigations to ascertain the feasibility of clinical translation, thereby substantiating the potential therapeutic role of AGE in the management of IBD.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| |
Collapse
|
191
|
Liu M, Deng X, Zhao Y, Everaert N, Zhang H, Xia B, Schroyen M. Alginate Oligosaccharides Enhance Antioxidant Status and Intestinal Health by Modulating the Gut Microbiota in Weaned Piglets. Int J Mol Sci 2024; 25:8029. [PMID: 39125598 PMCID: PMC11311613 DOI: 10.3390/ijms25158029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.
Collapse
Affiliation(s)
- Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Xiong Deng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Bing Xia
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
192
|
Han L, Liu X, Lan Y, Hua Y, Fan Z, Li Y. Metagenomic analysis demonstrates distinct changes in the gut microbiome of Kawasaki diseases children. Front Immunol 2024; 15:1416185. [PMID: 39104524 PMCID: PMC11298399 DOI: 10.3389/fimmu.2024.1416185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Background Kawasaki disease (KD) has been considered as the most common required pediatric cardiovascular diseases among the world. However, the molecular mechanisms of KD were not fully underlined, leading to a confused situation in disease management and providing precious prognosis prediction. The disorders of gut microbiome had been identified among several cardiovascular diseases and inflammation conditions. Therefore, it is urgent to elucidate the characteristics of gut microbiome in KD and demonstrate its potential role in regulating intravenous immunoglobulin (IVIG) resistance and coronary artery injuries. Methods A total of 96 KD children and 62 controls were enrolled in the study. One hundred forty fecal samples had been harvested from KD patients, including individuals before or after IVIG treatment, with or without early coronary artery lesions and IVIG resistance. Fecal samples had been collected before and after IVIG administration and stored at -80°C. Then, metagenomic analysis had been done using Illumina NovaSeq 6000 platform. After that, the different strains and functional differences among comparisons were identified. Results First, significant changes had been observed between KD and their controls. We found that the decrease of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides uniformis, and Bacteroides ovatus and the increase of pathogenic bacteria Finegoldia magna, Abiotrophia defectiva, and Anaerococcus prevotii perhaps closely related to the incidence of KD. Then, metagenomic and responding functional analysis demonstrated that short-chain fatty acid pathways and related strains were associated with different outcomes of therapeutic efficacies. Among them, the reduction of Bacteroides thetaiotaomicron, the enrichment of Enterococcus faecalis and antibiotic resistance genes had been found to be involved in IVIG resistance of KD. Moreover, our data also revealed several potential pathogenetic microbiome of that KD patients with coronary artery lesions. Conclusion These results strongly proved that distinct changes in the gut microbiome of KD and the dysfunction of gut microbiomes should be responsible for the pathogenesis of KD and significantly impact the prognosis of KD.
Collapse
Affiliation(s)
- Linli Han
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Liu
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
193
|
Li SZ, Wu QY, Fan Y, Guo F, Hu XM, Zuo YG. Gut Microbiome Dysbiosis in Patients with Pemphigus and Correlation with Pathogenic Autoantibodies. Biomolecules 2024; 14:880. [PMID: 39062594 PMCID: PMC11274803 DOI: 10.3390/biom14070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pemphigus is a group of potentially life-threatening autoimmune bullous diseases induced by pathogenic autoantibodies binding to the surface of epidermal cells. The role of the gut microbiota (GM) has been described in various autoimmune diseases. However, the impact of the GM on pemphigus is less understood. This study aimed to investigate whether there was alterations in the composition and function of the GM in pemphigus patients compared to healthy controls (HCs). METHODS Fecal samples were collected from 20 patients with active pemphigus (AP), 11 patients with remission pemphigus (PR), and 47 HCs. To sequence the fecal samples, 16S rRNA was applied, and bioinformatic analyses were performed. RESULTS We found differences in the abundance of certain bacterial taxa among the three groups. At the family level, the abundance of Prevotellaceae and Coriobacteriaceae positively correlated with pathogenic autoantibodies. At the genus level, the abundance of Klebsiella, Akkermansia, Bifidobacterium, Collinsella, Gemmiger, and Prevotella positively correlated with pathogenic autoantibodies. Meanwhile, the abundance of Veillonella and Clostridium_XlVa negatively correlated with pathogenic autoantibodies. A BugBase analysis revealed that the sum of potentially pathogenic bacteria was elevated in the AP group in comparison to the PR group. Additionally, the proportion of Gram-negative bacteria in the PR group was statistically significantly lower in comparison to the HC group. CONCLUSION The differences in GM composition among the three groups, and the correlation between certain bacterial taxa and pathogenic autoantibodies of pemphigus, support a linkage between the GM and pemphigus.
Collapse
Affiliation(s)
- Si-Zhe Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Qing-Yang Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Feng Guo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Xiao-Min Hu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| |
Collapse
|
194
|
Kalam N, Balasubramaniam VRMT. Crosstalk between COVID-19 and the gut-brain axis: a gut feeling. Postgrad Med J 2024; 100:539-554. [PMID: 38493312 DOI: 10.1093/postmj/qgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.
Collapse
Affiliation(s)
- Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
195
|
An S, Cho EY, Hwang J, Yang H, Hwang J, Shin K, Jung S, Kim BT, Kim KN, Lee W. Methane gas in breath test is associated with non-alcoholic fatty liver disease. J Breath Res 2024; 18:046005. [PMID: 38968933 DOI: 10.1088/1752-7163/ad5faf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Although the associations between a patient's body mass index (BMI) and metabolic diseases, as well as their breath test results, have been studied, the relationship between breath hydrogen/methane levels and metabolic diseases needs to be further clarified. We aimed to investigate how the composition of exhaled breath gases relates to metabolic disorders, such as diabetes mellitus, dyslipidemia, hypertension, and nonalcoholic fatty liver disease (NAFLD), and their key risk factors. An analysis was performed using the medical records, including the lactulose breath test (LBT) data of patients who visited the Ajou University Medical Center, Suwon, Republic of Korea, between January 2016 and December 2021. The patients were grouped according to four different criteria for LBT hydrogen and methane levels. Of 441 patients, 325 (72.1%) had positive results for methane only (hydrogen < 20 parts per million [ppm] and methane ⩾ 3 ppm). BMIs and NAFLD prevalence were higher in patients with only methane positivity than in patients with hydrogen and methane positivity (hydrogen ⩾ 20 ppm and methane ⩾ 3 ppm). According to a multivariate analysis, the odds ratio of only methane positivity was 2.002 (95% confidence interval [CI]: 1.244-3.221,P= 0.004) for NAFLD. Our results demonstrate that breath methane positivity is related to NAFLD and suggest that increased methane gas on the breath tests has the potential to be an easily measurable biomarker for NAFLD diagnosis.
Collapse
Affiliation(s)
- Sanggwon An
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eui-Young Cho
- Department of Nursing Science, Paichai University, 155-40 Baejae-ro, Seo-gu, Daejeon 35345, Republic of Korea
| | - Junho Hwang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunseong Yang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyusik Shin
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Susie Jung
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Bom-Taeck Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Kyu-Nam Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Wooyoung Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
196
|
Chen W, Li Y, Wang W, Gao S, Hu J, Xiang B, Wu D, Jiao N, Xu T, Zhi M, Zhu L, Zhu R. Enhanced microbiota profiling in patients with quiescent Crohn's disease through comparison with paired healthy first-degree relatives. Cell Rep Med 2024; 5:101624. [PMID: 38942021 PMCID: PMC11293350 DOI: 10.1016/j.xcrm.2024.101624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Prior studies indicate no correlation between the gut microbes of healthy first-degree relatives (HFDRs) of patients with Crohn's disease (CD) and the development of CD. Here, we utilize HFDRs as controls to examine the microbiota and metabolome in individuals with active (CD-A) and quiescent (CD-R) CD, thereby minimizing the influence of genetic and environmental factors. When compared to non-relative controls, the use of HFDR controls identifies fewer differential taxa. Faecalibacterium, Dorea, and Fusicatenibacter are decreased in CD-R, independent of inflammation, and correlated with fecal short-chain fatty acids (SCFAs). Validation with a large multi-center cohort confirms decreased Faecalibacterium and other SCFA-producing genera in CD-R. Classification models based on these genera distinguish CD from healthy individuals and demonstrate superior diagnostic power than models constructed with markers identified using unrelated controls. Furthermore, these markers exhibited limited discriminatory capabilities for other diseases. Finally, our results are validated across multiple cohorts, underscoring their robustness and potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wanning Chen
- Department of Gastroenterology, the Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P.R. China
| | - Yichen Li
- Medical College, Jiaying University, Meizhou 514031, P. R. China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China
| | - Wenxia Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China
| | - Sheng Gao
- Department of Gastroenterology, the Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P.R. China
| | - Jun Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China
| | - Bingjie Xiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China
| | - Dingfeng Wu
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058, Zhejiang, P.R. China
| | - Na Jiao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058, Zhejiang, P.R. China
| | - Tao Xu
- Medical College, Jiaying University, Meizhou 514031, P. R. China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Min Zhi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China.
| | - Lixin Zhu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China.
| | - Ruixin Zhu
- Department of Gastroenterology, the Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P.R. China.
| |
Collapse
|
197
|
Koester ST, Chow A, Pepper-Tunick E, Lee P, Eckert M, Brenchley L, Gardner P, Song HJ, Li N, Schiffenbauer A, Volochayev R, Bayat N, McLean JS, Rider LG, Shenoi S, Stevens AM, Dey N. Familial clustering of dysbiotic oral and fecal microbiomes in juvenile dermatomyositis. Sci Rep 2024; 14:16158. [PMID: 38997299 PMCID: PMC11245510 DOI: 10.1038/s41598-024-60225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2024] [Indexed: 07/14/2024] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare immune-mediated disease of childhood with putative links to microbial exposures. In this multi-center, prospective, observational cohort study, we evaluated whether JDM is associated with discrete oral and gut microbiome signatures. We generated 16S rRNA sequencing data from fecal, saliva, supragingival, and subgingival plaque samples from JDM probands (n = 28). To control for genetic and environmental determinants of microbiome community structure, we also profiled microbiomes of unaffected family members (n = 27 siblings, n = 26 mothers, and n = 17 fathers). Sample type (oral-vs-fecal) and nuclear family unit were the predominant variables explaining variance in microbiome diversity, more so than having a diagnosis of JDM. The oral and gut microbiomes of JDM probands were more similar to their own unaffected siblings than they were to the microbiomes of other JDM probands. In a sibling-paired within-family analysis, several potentially immunomodulatory bacterial taxa were differentially abundant in the microbiomes of JDM probands compared to their unaffected siblings, including Faecalibacterium (gut) and Streptococcus (oral cavity). While microbiome features of JDM are often shared by unaffected family members, the loss or gain of specific fecal and oral bacteria may play a role in disease pathogenesis or be secondary to immune dysfunction in susceptible individuals.
Collapse
Affiliation(s)
- Sean T Koester
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Kansas School of Medicine, Kansas City, USA
| | - Albert Chow
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Loma Linda University, Loma Linda, USA
| | - Evan Pepper-Tunick
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Peggy Lee
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Mary Eckert
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laurie Brenchley
- Office of the Clinical Director, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Gardner
- Office of the Clinical Director, NIDCR, National Institutes of Health, Bethesda, MD, USA
- Oral Oncology at BC Cancer, Vancouver, BC, Canada
| | - Hyun Jung Song
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Naisi Li
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rita Volochayev
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nastaran Bayat
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
- Social and Scientific Systems, Inc., A DLH Holdings Corp. Company, Silver Spring, MD, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Susan Shenoi
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Anne M Stevens
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
- Janssen, a Wholly Owned Subsidiary of Johnson & Johnson, Raritan, USA
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, WA, USA.
- Microbiome Research Initiative, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
198
|
Ebrahiminejad A, Sepahi AA, Yadegar A, Meyfour A. Pasteurized form of a potential probiotic lactobacillus brevis IBRC-M10790 exerts anti-inflammatory effects on inflammatory bowel disease in vitro. BMC Complement Med Ther 2024; 24:258. [PMID: 38987744 PMCID: PMC11234635 DOI: 10.1186/s12906-024-04576-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal system. So far, no treatment has been identified that can completely cure IBD. Lactobacillus brevis is hypothesized to be beneficial in preventing inflammation. This study aimed to evaluate the potential probiotic effects of live and pasteurized L. brevis IBRC-M10790 on the in vitro cell co-culture model of IBD. METHODS An in vitro intestinal model was established using a transwell co-culture system of Caco-2 intestinal epithelial cells and RAW264.7 macrophages. Inflammatory conditions were induced in RAW264.7 cells using lipopolysaccharide. The effects of live and pasteurized L. brevis IBRC-M10790 on inflammatory mediators and epithelial barrier markers were investigated. RESULTS L. brevis IBRC-M10790 was able to significantly decrease the proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and increase the anti-inflammatory cytokine (IL-10) in the in vitro co-culture system. In addition, L. brevis increased adherens and tight junction (TJ) markers (ZO-1, E-cadherin, and Occludin) in Caco-2 intestinal epithelial cells. Based on the results, pasteurized L. brevis showed a higher protective effect than live L. brevis. CONCLUSIONS Our findings suggest that live and pasteurized forms of L. brevis possess probiotic properties and can mitigate inflammatory conditions in IBD.
Collapse
Affiliation(s)
- Ardeshir Ebrahiminejad
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
199
|
Cao X, Fang Y, Bandan P, Suo L, Jiacuo G, Wu Y, Cuoji A, Zhuoga D, Chen Y, Ji D, Quzhen C, Zhang K. Age-specific composition of milk microbiota in Tibetan sheep and goats. Appl Microbiol Biotechnol 2024; 108:411. [PMID: 38980443 PMCID: PMC11233330 DOI: 10.1007/s00253-024-13252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
This study investigates the dynamic changes in milk nutritional composition and microbial communities in Tibetan sheep and goats during the first 56 days of lactation. Milk samples were systematically collected at five time points (D0, D7, D14, D28, D56) post-delivery. In Tibetan sheep, milk fat, protein, and casein contents were highest on D0, gradually decreased, and stabilized after D14, while lactose and galactose levels showed the opposite trend. Goat milk exhibited similar initial peaks, with significant changes particularly between D0, D7, D14, and D56. 16S rRNA gene sequencing revealed increasing microbial diversity in both species over the lactation period. Principal coordinates analysis identified distinct microbial clusters corresponding to early (D0-D7), transitional (D14-D28), and mature (D56) stages. Core phyla, including Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, dominated the milk microbiota, with significant temporal shifts. Core microbes like Lactobacillus, Leuconostoc, and Streptococcus were common in both species, with species-specific taxa observed (e.g., Pediococcus in sheep, Shewanella in goats). Furthermore, we observed a highly shared core microbiota in sheep and goat milk, including Lactobacillus, Leuconostoc, and Streptococcus. Spearman correlation analysis highlighted significant relationships between specific microbial genera and milk nutrients. For instance, Lactobacillus positively correlated with total solids, non-fat milk solids, protein, and casein, while Mannheimia negatively correlated with protein content. This study underscores the complex interplay between milk composition and microbial dynamics in Tibetan sheep and goats, informing strategies for livestock management and nutritional enhancement. KEY POINTS: • The milk can be classified into three types based on the microbiota composition • The changes of milk microbiota are closely related to the variations in nutrition • Filter out microbiota with species specificity and age specificity in the milk.
Collapse
Affiliation(s)
- Xi Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100, Yangling, China
| | - Yumeng Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100, Yangling, China
| | - Pingcuo Bandan
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Langda Suo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Gesang Jiacuo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Awang Cuoji
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Deqing Zhuoga
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100, Yangling, China
| | - De Ji
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China.
| | - Ciren Quzhen
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China.
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100, Yangling, China.
| |
Collapse
|
200
|
Guan Y, Zhao S, Li J, Zhang W, Guo Z, Luo Y, Jiang X, Li J, Liu J, Chen X, Zhao Z, Zhang Z. Insights from metagenomics into gut microbiome associated with acute coronary syndrome therapy. Front Microbiol 2024; 15:1369478. [PMID: 39035441 PMCID: PMC11258018 DOI: 10.3389/fmicb.2024.1369478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Acute coronary syndrome (ACS) is a predominant cause of mortality, and the prompt and precise identification of this condition is crucial to minimize its impact. Recent research indicates that gut microbiota is associated with the onset, progression, and treatment of ACS. To investigate its role, we sequenced the gut microbiota of 38 ACS patients before and after percutaneous coronary intervention and statin therapy at three time points, examining differential species and metabolic pathways. We observed a decrease in the abundance of Parabacteroides, Escherichia, and Blautia in patients after treatment and an increase in the abundance of Gemalla, Klebsiella variicola, Klebsiella pneumoniae, and others. Two pathways related to sugar degradation were more abundant in patients before treatment, possibly correlated with disorders of sugar metabolism and risk factors, such as hyperglycemia, insulin resistance, and insufficient insulin secretion. Additionally, seven pathways related to the biosynthesis of vitamin K2 and its homolog were reduced after treatment, suggesting that ACS patients may gradually recover after therapy. The gut microbiota of patients treated with different statins exhibited notable differences after treatment. Rosuvastatin appeared to promote the growth of anti-inflammatory bacteria while reducing pro-inflammatory bacteria, whereas atorvastatin may have mixed effects on pro-inflammatory and anti-inflammatory bacteria while increasing the abundance of Bacteroides. Our research will provide valuable insights and enhance comprehension of ACS, leading to better patient diagnosis and therapy.
Collapse
Affiliation(s)
- Yuee Guan
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Shuru Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Jing Li
- University of Science and Technology of China, Hefei, China
| | - Wenqian Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi'an, China
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, China
| | - Zhonghao Guo
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yi Luo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofei Jiang
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jun Li
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jianxiong Liu
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xi Chen
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Zhe Zhang
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
- Department of Cardiology, The Zhuhai National Hi-tech Industrial Development District People’s Hospital (Zhuhai People’s Hospital Medical Group, High-tech Zone), Zhuhai, China
| |
Collapse
|