151
|
Lim CW, Baek W, Jung J, Kim JH, Lee SC. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int J Mol Sci 2015; 16:15251-70. [PMID: 26154766 PMCID: PMC4519898 DOI: 10.3390/ijms160715251] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022] Open
Abstract
The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Jangho Jung
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Jung-Hyun Kim
- Department of Home Economics Education, Chung-Ang University, Seoul 156-756, Korea.
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
152
|
Lim CW, Baek W, Jung J, Kim JH, Lee SC. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int J Mol Sci 2015; 16:15251-15270. [PMID: 26154766 DOI: 10.3390/ijms16071525111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 05/20/2023] Open
Abstract
The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses--especially ABA receptors--have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Jangho Jung
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Jung-Hyun Kim
- Department of Home Economics Education, Chung-Ang University, Seoul 156-756, Korea.
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
153
|
Priya R, Siva R. Analysis of phylogenetic and functional diverge in plant nine-cis epoxycarotenoid dioxygenase gene family. JOURNAL OF PLANT RESEARCH 2015; 128:519-34. [PMID: 25929830 DOI: 10.1007/s10265-015-0726-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/15/2014] [Indexed: 05/27/2023]
Abstract
During different environmental stress conditions, plant growth is regulated by the hormone abscisic acid (an apocarotenoid). In the biosynthesis of abscisic acid, the oxidative cleavage of cis-epoxycarotenoid catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the crucial step. The NCED genes were isolated in numerous plant species and those genes were phylogenetically investigated to understand the evolution of NCED genes in various plant lineages comprising lycophyte, gymnosperm, dicot and monocot. A total of 93 genes were obtained from 48 plant species to statistically estimate their sequence conservation and functional divergence. Selaginella moellendorffii appeared to be evolutionarily distinct from those of the angiosperms, insisting the substantial influence of natural selection pressure on NCED genes. Further, using exon-intron structure analysis, the gene structures of NCED were found to be conserved across some species. In addition, the substitution rate ratio of non-synonymous (Ka) versus synonymous (Ks) mutations using the Bayesian inference approach, depicted the critical amino acid residues for functional divergence. A significant functional divergence was found between some subgroups through the co-efficient of type-I functional divergence. Our results suggest that the evolution of NCED genes occurred by duplication, diversification and exon intron loss events. The site-specific profile and functional diverge analysis revealed NCED genes might facilitate the tissue-specific functional divergence in NCED sub-families, that could combat different environmental stress conditions aiding plant survival.
Collapse
Affiliation(s)
- R Priya
- School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | | |
Collapse
|
154
|
Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, Schubert A, Ruyter-Spira C, Bouwmeester HJ, Lovisolo C, Cardinale F. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. PLANTA 2015; 241:1435-51. [PMID: 25716094 DOI: 10.1007/s00425-015-2266-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/10/2015] [Indexed: 05/02/2023]
Abstract
Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress. Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Kondhare K, Farrell A, Kettlewell P, Hedden P, Monaghan J. Pre-maturity α-amylase in wheat: The role of abscisic acid and gibberellins. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
156
|
Lu Y, Peng JJ, Yu ZB, Du JJ, Xu JN, Wang XY. Thylakoid membrane oxidoreductase LTO1/AtVKOR is involved in ABA-mediated response to osmotic stress in Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 154:28-38. [PMID: 25171375 DOI: 10.1111/ppl.12268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/04/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Arabidopsis lumen thiol oxidoreductase 1 (LTO1) - the At4g35760 gene product - was previously found to be related to reactive oxygen species (ROS) accumulation. Here, we show that ROS accumulated in a mutant Arabidopsis line (lto1-2, mutant of LTO1/AtVKOR) under osmotic stress at a higher level than that observed in wild-type and transgenic complemented plants of the lto1-2 mutant (lto1-2C, transgenic complemented plants of lto1-2). Because ROS accumulation in osmotic stress is triggered by abscisic acid (ABA), an ABA-responsive gene, Annexin 1 (AnnAt1), was selected to study the response. Osmotic stress or exogenous ABA can significantly upregulate the transcription of AnnAt1 in wild-type and lto1-2C plants. Only a slight change in the transcriptional abundance of AnnAt1 was observed under osmotic stress in the lto1-2 mutant, but exogenous ABA application could increase the expression of AnnAt1, which suggested that exogenous ABA had a partial complementation role. Because the transcription of AnnAt1 is regulated by ABRE (ABA-responsive elements) binding proteins (AREBs)/ABRE binding factors (ABFs), the expression of AREBs/ABFs was also analyzed. The transcription of AREBs/ABFs in the lto1-2 mutant was not induced by osmotic stress but was significantly upregulated by exogenous ABA, which significantly differs from the wild-type and lto1-2C plant responses. Similarly, the expression of another ABA-responsive gene, RD29B (responsive to desiccation stress gene 29B), in the lto1-2 mutant was also upregulated by exogenous ABA. The partial complementation of mutants by ABA indicated that the ABA signal transduction pathway was not significantly affected in the lto1-2 mutant. Taken together, these results suggest that LTO1 is involved in ABA-mediated response to osmotic stress, possibly by affecting the biosynthesis of endogenous ABA.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | | | | | | | | | | |
Collapse
|
157
|
Estrada-Melo AC, Chao, Reid MS, Jiang CZ. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. HORTICULTURE RESEARCH 2015; 2:15013. [PMID: 26504568 PMCID: PMC4595983 DOI: 10.1038/hortres.2015.13] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 08/15/2023]
Abstract
The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy.
Collapse
Affiliation(s)
| | - Chao
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Michael S Reid
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, USA
| |
Collapse
|
158
|
Zheng X, Xie Z, Zhu K, Xu Q, Deng X, Pan Z. Isolation and characterization of carotenoid cleavage dioxygenase 4 genes from different citrus species. Mol Genet Genomics 2015; 290:1589-603. [DOI: 10.1007/s00438-015-1016-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/16/2015] [Indexed: 01/03/2023]
|
159
|
Wu X, Gong F, Yang L, Hu X, Tai F, Wang W. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize. FRONTIERS IN PLANT SCIENCE 2015; 5:801. [PMID: 25653661 PMCID: PMC4299431 DOI: 10.3389/fpls.2014.00801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/22/2014] [Indexed: 05/29/2023]
Abstract
ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China e-mail:
| |
Collapse
|
160
|
Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, Li L, Gao D. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica). FRONTIERS IN PLANT SCIENCE 2015; 6:1248. [PMID: 26793222 PMCID: PMC4707674 DOI: 10.3389/fpls.2015.01248] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/21/2015] [Indexed: 05/07/2023]
Abstract
Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach.
Collapse
Affiliation(s)
- Dongling Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Zhenzhen Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Peiyong Du
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Wei Xiao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Qiuping Tan
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Xiude Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Ling Li
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- *Correspondence: Ling Li
| | - Dongsheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- Dongsheng Gao
| |
Collapse
|
161
|
Estrada-Melo AC, Reid MS, Jiang CZ. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. HORTICULTURE RESEARCH 2015. [PMID: 26504568 DOI: 10.1038/hortres.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy.
Collapse
Affiliation(s)
| | - Michael S Reid
- Department of Plant Sciences, University of California Davis , Davis, CA, USA
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service , Davis, CA, USA
| |
Collapse
|
162
|
Yin X, He D, Gupta R, Yang P. Physiological and proteomic analyses on artificially aged Brassica napus seed. FRONTIERS IN PLANT SCIENCE 2015; 6:112. [PMID: 25763006 PMCID: PMC4340179 DOI: 10.3389/fpls.2015.00112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/11/2015] [Indexed: 05/04/2023]
Abstract
Plant seeds lose their viability when they are exposed to long term storage or controlled deterioration treatments, by a process known as seed aging. Based on previous studies, artificially aging treatments have been developed to accelerate the process of seed aging in order to understand its underlying mechanisms. In this study, we used Brassica napus seeds to investigate the mechanisms of aging initiation. B. napus seeds were exposed to artificially aging treatment (40°C and 90% relative humidity) and their physio-biochemical characteristics were analyzed. Although the treatment delayed germination, it did not increase the concentration of cellular reactive oxygen species (ROS). Comparative proteomic analysis was conducted among the control and treated seeds at different stages of germination. The proteins responded to the treatment were mainly involved in metabolism, protein modification and destination, stress response, development, and miscellaneous enzymes. Except for peroxiredoxin, no changes were observed in the accumulation of other antioxidant enzymes in the artificially aged seeds. Increased content of abscisic acid (ABA) was observed in the artificially treated seeds which might be involved in the inhibition of germination. Taken together, our results highlight the involvement of ABA in the initiation of seed aging in addition to the ROS which was previously reported to mediate the seed aging process.
Collapse
Affiliation(s)
- Xiaojian Yin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Dongli He
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Ravi Gupta
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National UniversityMiryang, South Korea
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- *Correspondence: Pingfang Yang, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuchang Moshan, Wuhan 430074, China e-mail:
| |
Collapse
|
163
|
|
164
|
Wang ZY, Gehring C, Zhu J, Li FM, Zhu JK, Xiong L. The Arabidopsis Vacuolar Sorting Receptor1 is required for osmotic stress-induced abscisic acid biosynthesis. PLANT PHYSIOLOGY 2015; 167:137-52. [PMID: 25416474 PMCID: PMC4281004 DOI: 10.1104/pp.114.249268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Chris Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Jianhua Zhu
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Feng-Min Li
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Jian-Kang Zhu
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Liming Xiong
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| |
Collapse
|
165
|
Bharti N, Tripathi S, Bhatla SC. Photomodulation of strigolactone biosynthesis and accumulation during sunflower seedling growth. PLANT SIGNALING & BEHAVIOR 2015; 10:e1049792. [PMID: 26252191 PMCID: PMC4622531 DOI: 10.1080/15592324.2015.1049792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Present investigations report the presence of strigolactones (SLs) and photomodulation of their biosynthesis in sunflower seedlings (roots, cotyledons and first pair of leaves) during early phase of seedling development. Qualitative analyses and characterization by HPLC, ESI-MS and FT-IR revealed the presence of more than one type of SLs. Orobanchyl acetate was detected both in roots and leaves. Five-deoxystrigol, sorgolactone and orobanchol were exclusively detected in seedling roots. Sorgomol was detectable only in leaves. HPLC eluted fraction from seedling roots and leaves co-chromatographing with GR24 (a synthetic SL) could also bring about germination in Orobanche cernua (a weed) seeds, which are established to exhibit SL - mediated germination, thereby indicating the SL identity of the eluates using this bioassay. SLs accumulation was always more in the roots of light-grown seedlings, it being maximum at 4 d stage. Although significant activity of carotenoid cleavage dioxygenase (CCD, the enzyme critical for SL biosynthesis) was detected in 2 d old seedling roots, SLs remained undetectable in cotyledons at all stages of development and also in the roots of 2 d old light and dark-grown seedlings. Roots of light-grown seedlings showed maximum CCD activity during early (2 d) stage of development, thereby confirming photomodulation of enzyme activity. These observations indicate the migration of a probable light-sensitized signaling molecule (yet to be identified) or a SL precursor from light exposed aerial parts to the seedling roots maintained in dark. Thus, a photomodulation and migration of SL precursor/s is evident from the present work.
Collapse
Affiliation(s)
- Niharika Bharti
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| | - Smita Tripathi
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
- Present address: Shivaji College, Department of Botany, University of Delhi, Raja Garden, India
| | - Satish Chander Bhatla
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
- Correspondence to: Satish Chander Bhatla;
| |
Collapse
|
166
|
Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty DR, Tan BC. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. PLANT PHYSIOLOGY 2014; 166:2028-39. [PMID: 25341533 PMCID: PMC4256885 DOI: 10.1104/pp.114.247486] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The maize (Zea mays) gibberellin (GA)-deficient mutant dwarf1 (d1) displays dwarfism and andromonoecy (i.e. forming anthers in the female flower). Previous characterization indicated that the d1 mutation blocked three steps in GA biosynthesis; however, the locus has not been isolated and characterized. Here, we report that D1 encodes a GA 3-oxidase catalyzing the final step of bioactive GA synthesis. Recombinant D1 is capable of converting GA20 to GA1, GA20 to GA3, GA5 to GA3, and GA9 to GA4 in vitro. These reactions are widely believed to take place in the cytosol. However, both in vivo GFP fusion analysis and western-blot analysis of organelle fractions using a D1-specific antibody revealed that the D1 protein is dual localized in the nucleus and cytosol. Furthermore, the upstream gibberellin 20-oxidase1 (ZmGA20ox1) protein was found dual localized in the nucleus and cytosol as well. These results indicate that bioactive GA can be synthesized in the cytosol and the nucleus, two compartments where GA receptor Gibberellin-insensitive dwarf protein1 exists. Furthermore, the D1 protein was found to be specifically expressed in the stamen primordia in the female floret, suggesting that the suppression of stamen development is mediated by locally synthesized GAs.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| | - Mingming Hou
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| | - Lijuan Liu
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| | - Shan Wu
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| | - Yun Shen
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| | - Kanako Ishiyama
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| | - Masatomo Kobayashi
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| | - Donald R McCarty
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| | - Bao-Cai Tan
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories 852, Hong Kong (Y.C., M.H., Y.S., B.-C.T.);Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China (M.H., B.-C.T.);Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (L.L., S.W., D.R.M.); andExperimental Plant Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan (K.I., M.K.)
| |
Collapse
|
167
|
Endo A, Nelson KM, Thoms K, Abrams SR, Nambara E, Sato Y. Functional characterization of xanthoxin dehydrogenase in rice. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1231-40. [PMID: 25014258 DOI: 10.1016/j.jplph.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) is a phytohormone that plays a key role in biotic and abiotic stress responses. ABA metabolic genes are promising targets for molecular breeding work to improve stress tolerance in crops. The accumulation of ABA does not always improve stress tolerance since stress-induced accumulation of ABA in pollen inhibits the normal course of gametogenesis, affecting grain yields in cereals. This effect highlights the importance of manipulating the ABA levels according to the type of tissues. The aim of this study was to assign an ABA biosynthetic enzyme, xanthoxin dehydrogenase (XanDH), as a functional marker to modulate ABA levels in rice. XanDH is a member of the short-chain dehydrogenase/reductase family that catalyzes the conversion of xanthoxin to abscisyl aldehyde (ABAld). Previously, this enzyme had only been identified in Arabidopsis, as AtABA2. In this study, a XanDH named OsABA2 was identified in rice. Phylogenetic analysis indicated that a single gene encodes for OsABA2 in the rice genome. Its amino acid sequence contains two motifs that are essential for cofactor binding and catalytic activity. Expression analysis of OsABA2 mRNA showed that the transcript level did not change in response to treatment with ABA or dehydration. Recombinant OsABA2 protein expressed in Escherichia coli converted xanthoxin to ABAld in an NAD-dependent manner. Moreover, expression of OsABA2 in an Arabidopsis aba2 mutant rescued the aba2 mutant phenotypes, characterized by reduced growth, increased water loss, and germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor or high concentration of glucose. These results indicate that OsABA2 is a rice XanDH that functions in ABA biosynthesis.
Collapse
Affiliation(s)
- Akira Endo
- Crop Breeding Research Division, National Agriculture and Food Research Organization (NARO), Hokkaido Agricultural Research Center, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan
| | - Ken M Nelson
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Ken Thoms
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C7, Canada
| | - Suzanne R Abrams
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C7, Canada
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada; The Center for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Yutaka Sato
- Crop Breeding Research Division, National Agriculture and Food Research Organization (NARO), Hokkaido Agricultural Research Center, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan.
| |
Collapse
|
168
|
Dai S, Li P, Chen P, Li Q, Pei Y, He S, Sun Y, Wang Y, Kai W, Zhao B, Liao Y, Leng P. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:299-308. [PMID: 25038474 DOI: 10.1016/j.plaphy.2014.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/21/2014] [Indexed: 05/09/2023]
Abstract
To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level.
Collapse
Affiliation(s)
- Shengjie Dai
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Ping Li
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Pei Chen
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Qian Li
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Yuelin Pei
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Suihuan He
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Yufei Sun
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Ya Wang
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Wenbin Kai
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Bo Zhao
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Yalan Liao
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| | - Ping Leng
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, PR China.
| |
Collapse
|
169
|
Ariizumi T, Kishimoto S, Kakami R, Maoka T, Hirakawa H, Suzuki Y, Ozeki Y, Shirasawa K, Bernillon S, Okabe Y, Moing A, Asamizu E, Rothan C, Ohmiya A, Ezura H. Identification of the carotenoid modifying gene PALE YELLOW PETAL 1 as an essential factor in xanthophyll esterification and yellow flower pigmentation in tomato (Solanum lycopersicum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:453-65. [PMID: 24888879 DOI: 10.1111/tpj.12570] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 05/18/2023]
Abstract
Xanthophylls, the pigments responsible for yellow to red coloration, are naturally occurring carotenoid compounds in many colored tissues of plants. These pigments are esterified within the chromoplast; however, little is known about the mechanisms underlying their accumulation in flower organs. In this study, we characterized two allelic tomato (Solanum lycopersicum L.) mutants, pale yellow petal (pyp) 1-1 and pyp1-2, that have reduced yellow color intensity in the petals and anthers due to loss-of-function mutations. Carotenoid analyses showed that the yellow flower organs of wild-type tomato contained high levels of xanthophylls that largely consisted of neoxanthin and violaxanthin esterified with myristic and/or palmitic acids. Functional disruption of PYP1 resulted in loss of xanthophyll esters, which was associated with a reduction in the total carotenoid content and disruption of normal chromoplast development. These findings suggest that xanthophyll esterification promotes the sequestration of carotenoids in the chromoplast and that accumulation of these esters is important for normal chromoplast development. Next-generation sequencing coupled with map-based positional cloning identified the mutant alleles responsible for the pyp1 phenotype. PYP1 most likely encodes a carotenoid modifying protein that plays a vital role in the production of xanthophyll esters in tomato anthers and petals. Our results provide insight into the molecular mechanism underlying the production of xanthophyll esters in higher plants, thereby shedding light on a longstanding mystery.
Collapse
Affiliation(s)
- Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Leng P, Yuan B, Guo Y. The role of abscisic acid in fruit ripening and responses to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4577-88. [PMID: 24821949 DOI: 10.1093/jxb/eru204] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a crucial role not only in fruit development and ripening, but also in adaptive responses to biotic and abiotic stresses. In these processes, the actions of ABA are under the control of complex regulatory mechanisms involving ABA metabolism, signal transduction, and transport. The endogenous ABA content is determined by the dynamic balance between biosynthesis and catabolism, processes which are regulated by 9-cis-epoxycarotenoid dioxygenase (NCED) and ABA 8'-hydroxylase (CYP707A), respectively. ABA conjugation by cytosolic UDP-glucosyltransferases, or release by β-glucosidases, is also important for maintaining ABA homeostasis. Recently, multiple putative ABA receptors localized at different subcellular sites have been reported. Among these is a major breakthrough in the field of ABA signalling-the identification of a signalling cascade involving the PYR/PYL/RCAR protein family, the type 2C protein phosphatases (PP2Cs), and subfamily 2 of the SNF1-related kinases (SnRK2s). With regard to transport, two ATP-binding cassette (ABC) proteins and two ABA transporters in the nitrate transporter 1/peptide transporter (NRT1/PTR) family have been identified. In this review, we summarize recent research progress on the role of ABA in fruit ripening, stress response, and transcriptional regulation, and also the functional verification of both ABA-responsive and ripening-related genes. In addition, we suggest possible commercial applications of genetic manipulation of ABA signalling to improve fruit quality and yields.
Collapse
Affiliation(s)
- Ping Leng
- College of Agronomy and Biotechnology, China Agricultural University, PR China
| | - Bing Yuan
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University BouleVard, Tucson, AZ, USA
| | - Yangdong Guo
- College of Agronomy and Biotechnology, China Agricultural University, PR China
| |
Collapse
|
171
|
Cloning and expression of two 9-cis-epoxycarotenoid dioxygenase genes during fruit development and under stress conditions from Malus. Mol Biol Rep 2014; 41:6795-802. [DOI: 10.1007/s11033-014-3565-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/25/2014] [Indexed: 11/27/2022]
|
172
|
Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li CB, Wei J, Kang L, Li J, Li C. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. THE PLANT CELL 2014; 26:3167-84. [PMID: 25005917 PMCID: PMC4145139 DOI: 10.1105/tpc.114.128272] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 05/18/2023]
Abstract
To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.
Collapse
Affiliation(s)
- Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongshuang Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
173
|
Lawson SS, Michler CH. Overexpression of AtSTO1 leads to improved salt tolerance in Populus tremula × P. alba. Transgenic Res 2014; 23:817-26. [PMID: 24929937 DOI: 10.1007/s11248-014-9808-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/30/2014] [Indexed: 11/29/2022]
Abstract
One of the major abiotic stress conditions limiting healthy growth of trees is salinity stress. The use of gene manipulation for increased tolerance to abiotic stress has been successful in many plant species. Overexpression of the Arabidopsis SALT TOLERANT1 (STO1) gene leads to increased concentrations of 9-cis-epoxycarotenoid dioxygenase3, a vital enzyme in Arabidopsis abscisic acid biosynthesis. In the present work, the Arabidopsis STO1 gene (AtSTO1) was overexpressed in poplar to determine if the transgene would confer enhanced salt tolerance to the generated transgenics. The results of multiple greenhouse trials indicated that the transgenic poplar lines had greater levels of resistance to NaCl than wild-type plants. Analysis using RT-PCR indicated a variation in the relative abundance of the STO1 transcript in the transgenics that coincided with tolerance to salt. Several physiological and morphological changes such as greater overall biomass, greater root biomass, improved photosynthesis, and greater pith size were observed in the transgenics when compared to controls undergoing salt stress. These results indicated overexpression of AtSTO1 improved salt tolerance in poplar.
Collapse
Affiliation(s)
- Shaneka S Lawson
- Northern Research Station, Hardwood Tree Improvement and Regeneration Center (HTIRC), USDA Forest Service, 195 Marstellar Street, West Lafayette, IN, 47907, USA,
| | | |
Collapse
|
174
|
Cloning and expression analysis of cDNAs encoding ABA 8'-hydroxylase in peanut plants in response to osmotic stress. PLoS One 2014; 9:e97025. [PMID: 24825163 PMCID: PMC4019641 DOI: 10.1371/journal.pone.0097025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/14/2014] [Indexed: 11/21/2022] Open
Abstract
Abscisic acid (ABA) catabolism is one of the determinants of endogenous ABA levels affecting numerous aspects of plant growth and abiotic-stress responses. The major ABA catabolic pathway is triggered by ABA 8'-hydroxylation catalysed by ABA 8'-hydroxylase, the cytochrome P450 CYP707A family. In this study, the full-length cDNAs of AhCYP707A1 and AhCYP707A2 were cloned and characterized from peanut. Expression analyses showed that AhCYP707A1 and AhCYP707A2 were expressed ubiquitously in peanut roots, stems, and leaves with different transcript accumulation levels, including the higher expression of AhCYP707A1 in roots. The expression of AhCYP707A2 was significantly up-regulated by 20% PEG6000 or 250 mmol/L NaCl in peanut roots, stems, and leaves, whereas the up-regulation of AhCYP707A1 transcript level by PEG6000 or NaCl was observed only in roots instead of leaves and stems. Due to the osmotic and ionic stresses of high concentration of NaCl to plants simultaneously, low concentration of LiCl (30 mmol/L, at which concentration osmotic status of cells is not seriously affected, the toxicity of Li+ being higher than that of Na+) was used to examine whether the effect of NaCl might be related to osmotic or ionic stress. The results revealed visually the susceptibility to osmotic stress and the resistance to salt ions in peanut seedlings. The significant up-regulation of AhCYP707A1, AhCYP707A2 and AhNCED1 transcripts and endogenous ABA levels by PEG6000 or NaCl instead of LiCl, showed that the osmotic stress instead of ionic stress affected the expression of those genes and the biosynthesis of ABA in peanut. The functional expression of AhCYP707A1 cDNA in yeast showed that the microsomal fractions prepared from yeast cell expressing recombinant AhCYP707A1 protein exhibited the catalytic activity of ABA 8'-hydroxylase. These results demonstrate that the expressions of AhCYP707A1 and AhCYP707A2 play an important role in ABA catabolism in peanut, particularly in response to osmotic stress.
Collapse
|
175
|
Sui X, Kiser PD, Che T, Carey PR, Golczak M, Shi W, von Lintig J, Palczewski K. Analysis of carotenoid isomerase activity in a prototypical carotenoid cleavage enzyme, apocarotenoid oxygenase (ACO). J Biol Chem 2014; 289:12286-99. [PMID: 24648526 PMCID: PMC4007427 DOI: 10.1074/jbc.m114.552836] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/19/2014] [Indexed: 11/06/2022] Open
Abstract
Carotenoid cleavage enzymes (CCEs) constitute a group of evolutionarily related proteins that metabolize a variety of carotenoid and non-carotenoid substrates. Typically, these enzymes utilize a non-heme iron center to oxidatively cleave a carbon-carbon double bond of a carotenoid substrate. Some members also isomerize specific double bonds in their substrates to yield cis-apocarotenoid products. The apocarotenoid oxygenase from Synechocystis has been hypothesized to represent one such member of this latter category of CCEs. Here, we developed a novel expression and purification protocol that enabled production of soluble, native ACO in quantities sufficient for high resolution structural and spectroscopic investigation of its catalytic mechanism. High performance liquid chromatography and Raman spectroscopy revealed that ACO exclusively formed all-trans products. We also found that linear polyoxyethylene detergents previously used for ACO crystallization strongly inhibited the apocarotenoid oxygenase activity of the enzyme. We crystallized the native enzyme in the absence of apocarotenoid substrate and found electron density in the active site that was similar in appearance to the density previously attributed to a di-cis-apocarotenoid intermediate. Our results clearly demonstrated that ACO is in fact a non-isomerizing member of the CCE family. These results indicate that careful selection of detergent is critical for the success of structural studies aimed at elucidating structures of CCE-carotenoid/retinoid complexes.
Collapse
Affiliation(s)
- Xuewu Sui
- From the Departments of Pharmacology and
| | | | - Tao Che
- Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | - Paul R. Carey
- Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | | | - Wuxian Shi
- the Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988
| | | | | |
Collapse
|
176
|
Wilson ME, Basu MR, Bhaskara GB, Verslues PE, Haswell ES. Plastid osmotic stress activates cellular stress responses in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:119-28. [PMID: 24676856 PMCID: PMC4012573 DOI: 10.1104/pp.114.236620] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 05/21/2023]
Abstract
Little is known about cytoplasmic osmoregulatory mechanisms in plants, and even less is understood about how the osmotic properties of the cytoplasm and organelles are coordinately regulated. We have previously shown that Arabidopsis (Arabidopsis thaliana) plants lacking functional versions of the plastid-localized mechanosensitive ion channels Mechanosensitive Channel of Small Conductance-Like2 (MSL2) and MSL3 contain leaf epidermal plastids under hypoosmotic stress, even during normal growth and development. Here, we use the msl2 msl3 mutant as a model to investigate the cellular response to constitutive plastid osmotic stress. Under unstressed conditions, msl2 msl3 seedlings exhibited several hallmarks of drought or environmental osmotic stress, including solute accumulation, elevated levels of the compatible osmolyte proline (Pro), and accumulation of the stress hormone abscisic acid (ABA). Furthermore, msl2 msl3 mutants expressed Pro and ABA metabolism genes in a pattern normally seen under drought or osmotic stress. Pro accumulation in the msl2 msl3 mutant was suppressed by conditions that reduce plastid osmotic stress or inhibition of ABA biosynthesis. Finally, treatment of unstressed msl2 msl3 plants with exogenous ABA elicited a much greater Pro accumulation response than in the wild type, similar to that observed in plants under drought or osmotic stress. These results suggest that osmotic imbalance across the plastid envelope can elicit a response similar to that elicited by osmotic imbalance across the plasma membrane and provide evidence for the integration of the osmotic state of an organelle into that of the cell in which it resides.
Collapse
|
177
|
Dong T, Xu ZY, Park Y, Kim DH, Lee Y, Hwang I. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:277-89. [PMID: 24676855 PMCID: PMC4012586 DOI: 10.1104/pp.114.239210] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The phytohormone abscisic acid (ABA) is crucial for plant growth and adaptive responses to various stress conditions. Plants continuously adjust the ABA level to meet physiological needs, but how ABA homeostasis occurs is not fully understood. This study provides evidence that UGT71B6, an ABA uridine diphosphate glucosyltransferase (UGT), and its two closely related homologs, UGT71B7 and UGT71B8, play crucial roles in ABA homeostasis and in adaptation to dehydration, osmotic stress, and high-salinity stresses in Arabidopsis (Arabidopsis thaliana). UGT RNA interference plants that had low levels of these three UGT transcripts displayed hypersensitivity to exogenous ABA and high-salt conditions during germination and exhibited a defect in plant growth. However, the ectopic expression of UGT71B6 in the atbg1 (for β-glucosidase) mutant background aggravated the ABA-deficient phenotype of atbg1 mutant plants. In addition, modulation of the expression of the three UGTs affects the expression of CYP707A1 to CYP707A4, which encode ABA 8'-hydroxylases; four CYP707As were expressed at higher levels in the UGT RNA interference plants but at lower levels in the UGT71B6:GFP-overexpressing plants. Based on these data, this study proposes that UGT71B6 and its two homologs play a critical role in ABA homeostasis by converting active ABA to an inactive form (abscisic acid-glucose ester) depending on intrinsic cellular and environmental conditions in plants.
Collapse
|
178
|
Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S. Abscisic acid and abiotic stress tolerance - different tiers of regulation. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:486-96. [PMID: 24655384 DOI: 10.1016/j.jplph.2013.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 05/21/2023]
Abstract
Abiotic stresses affect plant growth, metabolism and sustainability in a significant way and hinder plant productivity. Plants combat these stresses in myriad ways. The analysis of the mechanisms underlying abiotic stress tolerance has led to the identification of a highly complex, yet tightly regulated signal transduction pathway consisting of phosphatases, kinases, transcription factors and other regulatory elements. It is becoming increasingly clear that also epigenetic processes cooperate in a concerted manner with ABA-mediated gene expression in combating stress conditions. Dynamic stress-induced mechanisms, involving changes in the apoplastic pool of ABA, are transmitted by a chain of phosphatases and kinases, resulting in the expression of stress inducible genes. Processes involving DNA methylation and chromatin modification as well as post transcriptional, post translational and epigenetic control mechanisms, forming multiple tiers of regulation, regulate this gene expression. With recent advances in transgenic technology, it has now become possible to engineer plants expressing stress-inducible genes under the control of an inducible promoter, enhancing their ability to withstand adverse conditions. This review briefly discusses the synthesis of ABA, components of the ABA signal transduction pathway and the plants' responses at the genetic and epigenetic levels. It further focuses on the role of RNAs in regulating stress responses and various approaches to develop stress-tolerant transgenic plants.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India; G(o) Unit, Okinawa Institute of Science and Technology, 1919-1, Onnason, Okinawa, Japan
| | - Purva Bhalothia
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India
| | - Prashali Bansal
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India; Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Mahesh Kumar Basantani
- Division of Endocrinology, University of Pittsburgh, 200 Lothrop Street, BST E1140, Pittsburgh, PA 15261, USA
| | - Vandana Bharti
- Department of Biotechnology, St. Columba's College, Vinoba Bhave University, Hazaribagh, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
179
|
Caldeira CF, Bosio M, Parent B, Jeanguenin L, Chaumont F, Tardieu F. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. PLANT PHYSIOLOGY 2014; 164:1718-30. [PMID: 24420931 PMCID: PMC3982736 DOI: 10.1104/pp.113.228379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2013] [Indexed: 05/03/2023]
Abstract
Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1-2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture.
Collapse
Affiliation(s)
- Cecilio F. Caldeira
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Mickael Bosio
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Boris Parent
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Linda Jeanguenin
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - François Chaumont
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | | |
Collapse
|
180
|
Van Norman JM, Zhang J, Cazzonelli CI, Pogson BJ, Harrison PJ, Bugg TDH, Chan KX, Thompson AJ, Benfey PN. Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative. Proc Natl Acad Sci U S A 2014; 111:E1300-9. [PMID: 24639533 PMCID: PMC3977299 DOI: 10.1073/pnas.1403016111] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In plants, continuous formation of lateral roots (LRs) facilitates efficient exploration of the soil environment. Roots can maximize developmental capacity in variable environmental conditions through establishment of sites competent to form LRs. This LR prepattern is established by a periodic oscillation in gene expression near the root tip. The spatial distribution of competent (prebranch) sites results from the interplay between this periodic process and primary root growth; yet, much about this oscillatory process and the formation of prebranch sites remains unknown. We find that disruption of carotenoid biosynthesis results in seedlings with very few LRs. Carotenoids are further required for the output of the LR clock because inhibition of carotenoid synthesis also results in fewer sites competent to form LRs. Genetic analyses and a carotenoid cleavage inhibitor indicate that an apocarotenoid, distinct from abscisic acid or strigolactone, is specifically required for LR formation. Expression of a key carotenoid biosynthesis gene occurs in a spatially specific pattern along the root's axis, suggesting spatial regulation of carotenoid synthesis. These results indicate that developmental prepatterning of LRs requires an uncharacterized carotenoid-derived molecule. We propose that this molecule functions non-cell-autonomously in establishment of the LR prepattern.
Collapse
Affiliation(s)
| | - Jingyuan Zhang
- Department of Biology, Duke Center for Systems Biology and
| | - Christopher I. Cazzonelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Barry J. Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Peter J. Harrison
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and
| | - Timothy D. H. Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and
| | - Kai Xun Chan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Andrew J. Thompson
- Cranfield Soil and Agri-Food Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Philip N. Benfey
- Department of Biology, Duke Center for Systems Biology and
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708
| |
Collapse
|
181
|
Acanda Y, Martínez Ó, Prado MJ, González MV, Rey M. EMS mutagenesis and qPCR-HRM prescreening for point mutations in an embryogenic cell suspension of grapevine. PLANT CELL REPORTS 2014; 33:471-481. [PMID: 24362838 DOI: 10.1007/s00299-013-1547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/12/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
KEY MESSAGE Embryogenic suspension cultures are suitable for EMS mutagenesis in grapevine, and HRM prescreening of EMS-treated somatic embryo clusters allows rapid detection of point mutations before plant regeneration. ABSTRACT Somatic embryogenesis is an excellent system for induced mutagenesis and clonal propagation in woody plants. Our work was focused on establishing a procedure for inducing ethyl methanesulfonate (EMS) mutagenesis in grapevine. Embryogenic cell aggregates (ECAs) growing in liquid medium were treated with increasing concentrations of EMS. We found that EMS dramatically affects the viability of ECAs at concentrations above 20 mM (25.5 ± 2.9 % survival), whereas concentrations above 10 mM affect embryogenic potential (22.1 ± 1.7 % of ECAs gave rise to embryos). Embryo masses generated from EMS-treated embryogenic cell aggregates were prescreened by quantitative PCR-High Resolution Melting (qPCR-HRM) to detect single nucleotide polymorphisms (SNPs) in a 1,000-bp VvNCED1-encoding DNA fragment, which served as the target gene. Detected mutations were verified in regenerated plants by PCR and sequencing. qPCR-HRM analysis of the difference plots for the fluorescence signals allowed detection of a mutation in a sample from an embryogenic aggregate treated with 10 mM EMS. To confirm the nature of the mutation, embryos from this aggregate were recovered and germinated, and leaves were collected for PCR and sequencing analysis. The alignment of sequences from regenerated plants with the wild-type sequence revealed a transitional mutation (G/C to A/T) in the 1,000-bp VvNCED1-encoding region. To our knowledge, this is the first time that EMS mutagenesis has been performed using an embryogenic cell suspension of grapevine.
Collapse
Affiliation(s)
- Yosvanis Acanda
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
| | | | | | | | | |
Collapse
|
182
|
Enzymology of the carotenoid cleavage dioxygenases: Reaction mechanisms, inhibition and biochemical roles. Arch Biochem Biophys 2014; 544:105-11. [DOI: 10.1016/j.abb.2013.10.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
|
183
|
Yang YZ, Tan BC. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis. PLoS One 2014; 9:e87283. [PMID: 24475264 PMCID: PMC3903620 DOI: 10.1371/journal.pone.0087283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/20/2013] [Indexed: 02/02/2023] Open
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Bao-Cai Tan
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- * E-mail:
| |
Collapse
|
184
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
185
|
Sui X, Kiser PD, von Lintig J, Palczewski K. Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys 2013; 539:203-13. [PMID: 23827316 PMCID: PMC3818509 DOI: 10.1016/j.abb.2013.06.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Carotenoids and their metabolic derivatives serve critical functions in both prokaryotic and eukaryotic cells, including pigmentation, photoprotection and photosynthesis as well as cell signaling. These organic compounds are also important for visual function in vertebrate and non-vertebrate organisms. Enzymatic transformations of carotenoids to various apocarotenoid products are catalyzed by a family of evolutionarily conserved, non-heme iron-containing enzymes named carotenoid cleavage oxygenases (CCOs). Studies have revealed that CCOs are critically involved in carotenoid homeostasis and essential for the health of organisms including humans. These enzymes typically display a high degree of regio- and stereo-selectivity, acting on specific positions of the polyene backbone located in their substrates. By oxidatively cleaving and/or isomerizing specific double bonds, CCOs generate a variety of apocarotenoid isomer products. Recent structural studies have helped illuminate the mechanisms by which CCOs mobilize their lipophilic substrates from biological membranes to perform their characteristic double bond cleavage and/or isomerization reactions. In this review, we aim to integrate structural and biochemical information about CCOs to provide insights into their catalytic mechanisms.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Philip D. Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| |
Collapse
|
186
|
Rodrigo MJ, Alquézar B, Alós E, Medina V, Carmona L, Bruno M, Al-Babili S, Zacarías L. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4461-78. [PMID: 24006419 PMCID: PMC3808326 DOI: 10.1093/jxb/ert260] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8'-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and Mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7',8' double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7',8' double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration.
Collapse
Affiliation(s)
- María J. Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Berta Alquézar
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Enriqueta Alós
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Víctor Medina
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Lourdes Carmona
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Mark Bruno
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Salim Al-Babili
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
187
|
Ma G, Zhang L, Matsuta A, Matsutani K, Yamawaki K, Yahata M, Wahyudi A, Motohashi R, Kato M. Enzymatic formation of β-citraurin from β-cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit. PLANT PHYSIOLOGY 2013; 163:682-95. [PMID: 23966550 PMCID: PMC3793050 DOI: 10.1104/pp.113.223297] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/17/2013] [Indexed: 05/20/2023]
Abstract
In this study, the pathway of β-citraurin biosynthesis, carotenoid contents and the expression of genes related to carotenoid metabolism were investigated in two varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. The results suggested that CitCCD4 (for Carotenoid Cleavage Dioxygenase4) was a key gene contributing to the biosynthesis of β-citraurin. In the flavedo of Yamashitabeni-wase, the expression of CitCCD4 increased rapidly from September, which was consistent with the accumulation of β-citraurin. In the flavedo of Miyagawa-wase, the expression of CitCCD4 remained at an extremely low level during the ripening process, which was consistent with the absence of β-citraurin. Functional analysis showed that the CitCCD4 enzyme exhibited substrate specificity. It cleaved β-cryptoxanthin and zeaxanthin at the 7,8 or 7',8' position. But other carotenoids tested in this study (lycopene, α-carotene, β-carotene, all-trans-violaxanthin, and 9-cis-violaxanthin) were not cleaved by the CitCCD4 enzyme. The cleavage of β-cryptoxanthin and zeaxanthin by CitCCD4 led to the formation of β-citraurin. Additionally, with ethylene and red light-emitting diode light treatments, the gene expression of CitCCD4 was up-regulated in the flavedo of Yamashitabeni-wase. These increases in the expression of CitCCD4 were consistent with the accumulation of β-citraurin in the two treatments. These results might provide new strategies to improve the carotenoid contents and compositions of citrus fruits.
Collapse
Affiliation(s)
| | | | - Asami Matsuta
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka 422–8529, Japan
| | - Kazuki Matsutani
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka 422–8529, Japan
| | - Kazuki Yamawaki
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka 422–8529, Japan
| | - Masaki Yahata
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka 422–8529, Japan
| | - Anung Wahyudi
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka 422–8529, Japan
| | - Reiko Motohashi
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka 422–8529, Japan
| | - Masaya Kato
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka 422–8529, Japan
| |
Collapse
|
188
|
Li Q, Ji K, Sun Y, Luo H, Wang H, Leng P. The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:24-35. [PMID: 23802911 DOI: 10.1111/tpj.12272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 05/24/2023]
Abstract
In plants, β-glucosidases (BG) have been implicated in developmental and pathogen defense, and are thought to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA; however, there is no genetic evidence for the role of BG genes in ripening and biotic/abiotic stress in fruits. To clarify the role of BG genes in fruit, eight Fa/FvBG genes encoding β-glucosidase were isolated using information from the GenBank strawberry nucleotide database. Of the Fa/FvBG genes examined, expression of FaBG3 was the highest, showing peaks at the mature stage, coincident with the changes observed in ABA content. To verify the role of this gene, we suppressed the expression of FaBG3 via inoculation with Agrobacterium tumefaciens containing tobacco rattle virus carrying a FaBG3 fragment (RNAi). The expression of FaBG3 in FaBG3-RNAi-treated fruit was markedly reduced, and the ABA content was lower than that of the control. FaBG3-RNAi-treated fruit did not exhibit full ripening, and were firmer, had lower sugar content, and were pale compared with the control due to down-regulation of ripening-related genes. FaBG3-RNAi-treated fruit with reduced ABA levels were much more resistant to Botrytis cinerea fungus but were more sensitive to dehydration stress than control fruit. These results indicate that FaBG3 may play key roles in fruit ripening, dehydration stress and B. cinerea fungal infection in strawberries via modulation of ABA homeostasis and transcriptional regulation of ripening-related genes.
Collapse
Affiliation(s)
- Qian Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
189
|
Danquah A, de Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 2013; 32:40-52. [PMID: 24091291 DOI: 10.1016/j.biotechadv.2013.09.006] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023]
Abstract
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.
Collapse
Affiliation(s)
- Agyemang Danquah
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Axel de Zelicourt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Jean Colcombet
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Heribert Hirt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| |
Collapse
|
190
|
|
191
|
Bai S, Saito T, Sakamoto D, Ito A, Fujii H, Moriguchi T. Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy. PLANT & CELL PHYSIOLOGY 2013; 54:1132-51. [PMID: 23624675 DOI: 10.1093/pcp/pct067] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The transcriptomes of endodormant and ecodormant Japanese pear (Pyrus pyrifolia Nakai 'Kosui') flower buds were analyzed using RNA-seq technology and compared. Among de novo assembly of 114,191 unigenes, 76,995 unigenes were successfully annotated by BLAST searches against various databases. Gene Ontology (GO) enrichment analysis revealed that oxidoreductases were enriched in the molecular function category, a result consistent with previous observations of notable changes in hydrogen peroxide concentration during endodormancy release. In the GO categories related to biological process, the abundance of DNA methylation-related gene transcripts also significantly changed during endodormancy release, indicating the involvement of epigenetic regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also showed the changes in transcript abundance of genes involved in the metabolism of various phytohormones. Genes for both ABA and gibberellin biosynthesis were down-regulated, whereas the genes encoding their degradation enzymes were up-regulated during endodormancy release. In the ethylene pathway, 1-aminocyclopropane-1-carboxylate synthase (ACS), a gene encoding the rate-limiting enzyme for ethylene biosynthesis, was induced towards endodormancy release. All of these results indicated the involvement of phytohormones in endodormancy release. Furthermore, the expression of dormancy-associated MADS-box (DAM) genes was down-regulated concomitant with endodormancy release, although changes in the abundance of these gene transcripts were not as significant as those identified by transcriptome analysis. Consequently, characterization of the Japanese pear transcriptome during the transition from endormancy to ecodormancy will provide researchers with useful information for data mining and will facilitate further experiments on endodormancy especially in rosaceae fruit trees.
Collapse
Affiliation(s)
- Songling Bai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605 Japan
| | | | | | | | | | | |
Collapse
|
192
|
Xu ZY, Kim DH, Hwang I. ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. PLANT CELL REPORTS 2013; 32:807-13. [PMID: 23430173 DOI: 10.1007/s00299-013-1396-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 05/12/2023]
Abstract
The plant hormone abscisic acid (ABA) plays pivotal roles in many important physiological processes including stomatal closure, seed dormancy, growth and various environmental stresses. In these responses, ABA action is under the control of complex regulatory mechanisms involving homeostasis, perception and signaling. Recent studies provide new insights into these processes, which are of great importance in understanding the mechanisms underlying the evolutionary principle of how plants can survive as a sessile organism under ever-changing environmental conditions. They also form the basis for designing plants that have an enhanced resistance to various stresses in particular abiotic stress.
Collapse
Affiliation(s)
- Zheng-Yi Xu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
193
|
Speirs J, Binney A, Collins M, Edwards E, Loveys B. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1907-16. [PMID: 23630325 PMCID: PMC3638820 DOI: 10.1093/jxb/ert052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.
Collapse
Affiliation(s)
- Jim Speirs
- Commonwealth Scientific and Industrial Research Organisation, PO Box 350, Glen Osmond, South Australia 5062, Australia.
| | | | | | | | | |
Collapse
|
194
|
Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. FRONTIERS IN PLANT SCIENCE 2013; 4:63. [PMID: 23531630 PMCID: PMC3607800 DOI: 10.3389/fpls.2013.00063] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/05/2013] [Indexed: 05/18/2023]
Abstract
Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.
Collapse
Affiliation(s)
- Erwann Arc
- Institut Jean-Pierre Bourgin (UMR1318 INRA – AgroParisTech), Institut National de la Recherche Agronomique, Saclay Plant ScienceVersailles, France
- UFR de Physiologie végétale, AgroParisTechParis, France
| | - Julien Sechet
- Institut Jean-Pierre Bourgin (UMR1318 INRA – AgroParisTech), Institut National de la Recherche Agronomique, Saclay Plant ScienceVersailles, France
| | - Françoise Corbineau
- Germination et Dormance des Semences, UR5 UPMC-EAC 7180 CNRS, Université Pierre et Marie Curie-Paris 6Paris, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin (UMR1318 INRA – AgroParisTech), Institut National de la Recherche Agronomique, Saclay Plant ScienceVersailles, France
- UFR de Physiologie végétale, AgroParisTechParis, France
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin (UMR1318 INRA – AgroParisTech), Institut National de la Recherche Agronomique, Saclay Plant ScienceVersailles, France
| |
Collapse
|
195
|
Wang Y, Wang Y, Ji K, Dai S, Hu Y, Sun L, Li Q, Chen P, Sun Y, Duan C, Wu Y, Luo H, Zhang D, Guo Y, Leng P. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 64:70-9. [PMID: 23376370 DOI: 10.1016/j.plaphy.2012.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/24/2012] [Indexed: 05/20/2023]
Abstract
Cucumber (Cucumis sativus L.), a kind of fruit usually harvested at the immature green stage, belongs to non-climacteric fruit. To investigate the contribution of abscisic acid (ABA) to cucumber fruit development and ripening, variation in ABA level was investigated and a peak in ABA level was found in pulp before fruit get fully ripe. To clarify this point further, exogenous ABA was applied to cucumber fruits at two different development stages. Results showed that ABA application at the turning stage promotes cucumber fruit ripening, while application at the immature green stage had inconspicuous effects. In addition, with the purpose of understanding the transcriptional regulation of ABA, two partial cDNAs of CsNCED1 and CsNCED2 encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthetic pathway; one partial cDNA of CsCYP707A1 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA and two partial cDNAs of CsBG1 and CsBG2 for β-glucosidase (BG) that hydrolyzes ABA glucose ester (ABA-GE) to release active ABA were cloned from cucumber. The DNA and deduced amino acid sequences of these obtained genes respectively showed high similarities to their homologous genes in other plants. Real-time PCR analysis revealed that ABA content may be regulated by its biosynthesis (CsNCEDs), catabolism (CsCYP707A1) and reactivation genes (CsBGs) at the transcriptional level during cucumber fruit development and ripening, in response to ABA application, dehydration and pollination, among which CsNCED1, CsCYP707A1 and CsBG1 were highly expressed in pulp and may play more important roles in regulating ABA metabolism.
Collapse
Affiliation(s)
- Yanping Wang
- College of Agronomy and Biotechnology, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Molecular cloning and characterization of SoNCED, a novel gene encoding 9-cis-epoxycarotenoid dioxygenase from sugarcane (Saccharum officinarum L.). Genes Genomics 2013. [DOI: 10.1007/s13258-013-0065-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
197
|
CALIANDRO ROSANNA, NAGEL KERSTINA, KASTENHOLZ BERND, BASSI ROBERTO, LI ZHIRONG, NIYOGI KRISHNAK, POGSON BARRYJ, SCHURR ULRICH, MATSUBARA SHIZUE. Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress. PLANT, CELL & ENVIRONMENT 2013; 36:438-53. [PMID: 22860767 PMCID: PMC3640260 DOI: 10.1111/j.1365-3040.2012.02586.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/16/2012] [Indexed: 05/07/2023]
Abstract
Functions of α- and β-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α- to β-branch carotenoid composition (α/β-ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β-branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β-ratios (lut5, szl1npq1) or without xanthophyll-cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β-ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β-ratios. The results highlight the importance of proper regulation of the α- and β-branch carotenoid pathways for whole-plant acclimation, not only leaf photoprotection, under photo-oxidative stress.
Collapse
Affiliation(s)
- ROSANNA CALIANDRO
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - KERSTIN A NAGEL
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - BERND KASTENHOLZ
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - ROBERTO BASSI
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
- Dipartimento di Biotecnologie, Università degli Studi di Verona37134 Verona, Italy
| | - ZHIRONG LI
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of California
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720-3102, USA
| | - KRISHNA K NIYOGI
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of California
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720-3102, USA
| | - BARRY J POGSON
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National UniversityCanberra, ACT 0200, Australia
| | - ULRICH SCHURR
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - SHIZUE MATSUBARA
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| |
Collapse
|
198
|
Babu R, Rojas NP, Gao S, Yan J, Pixley K. Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:389-99. [PMID: 23052023 PMCID: PMC3555234 DOI: 10.1007/s00122-012-1987-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 09/15/2012] [Indexed: 05/05/2023]
Abstract
Vitamin A deficiency (VAD) compromises immune function and is the leading cause of preventable blindness in children in many developing countries. Biofortification, or breeding staple food crops that are rich in micronutrients, provides a sustainable way to fight VAD and other micronutrient malnutrition problems. Polymorphisms, with associated molecular markers, have recently been identified for two loci, LcyE (lycopene epsilon cyclase) and CrtRB1 (β-carotene hydroxylase 1) that govern critical steps in the carotenoid biosynthetic pathway in maize endosperm, thereby enabling the opportunity to integrate marker-assisted selection (MAS) into carotenoid breeding programs. We validated the effects of 3 polymorphisms (LcyE5'TE, LcyE3'Indel and CrtRB1-3'TE) in 26 diverse tropical genetic backgrounds. CrtRB1-3'TE had a two-ten fold effect on enhancing beta-carotene (BC) and total provitamin A (proA) content. Reduced-function, favorable polymorphisms within LcyE resulted in 0-30 % reduction in the ratio of alpha- to beta-branch carotenoids, and increase in proA content (sometimes statistically significant). CrtRB1-3'TE had large, significant effect on enhancing BC and total ProA content, irrespective of genetic constitution for LcyE5'TE. Genotypes with homozygous favorable CrtRB1-3'TE alleles had much less zeaxanthin and an average of 25 % less total carotenoid than other genotypes, suggesting that feedback inhibition may be reducing the total flux into the carotenoid pathway. Because this feedback inhibition was most pronounced in the homozygous favorable LcyE (reduced-function) genotypes, and because maximum total proA concentrations were achieved in genotypes with homozygous unfavorable or heterozygous LcyE, we recommend not selecting for both reduced-function genes in breeding programs. LcyE exhibited significant segregation distortion (SD) in all the eight, while CrtRB1 in five of eight digenic populations studied, with favorable alleles of both the genes frequently under-represented. MAS using markers reported herein can efficiently increase proA carotenoid concentration in maize.
Collapse
Affiliation(s)
- Raman Babu
- CIMMYT, Apdo Postal 6-641, 06600, Mexico, D. F., Mexico.
| | | | | | | | | |
Collapse
|
199
|
Fan XD, Wang JQ, Yang N, Dong YY, Liu L, Wang FW, Wang N, Chen H, Liu WC, Sun YP, Wu JY, Li HY. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Gene 2013; 512:392-402. [PMID: 23063936 DOI: 10.1016/j.gene.2012.09.100] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 11/24/2022]
Abstract
Salt, saline-alkali and drought stresses are major environmental constraints for the production and yield of soybean worldwide. To identify genes responsible for stress tolerance, the transcriptional profiles of genes in leaves and roots of seedlings (two-leaf stage) of the soybean inbred line HJ-1 were examined after 48 h under various stress conditions; salt (120 mM NaCl), saline-alkali (70 mM NaCl and 50mM NaHCO(3)) and drought (2% PEG 8000). Gene expression at the transcriptional level was investigated using high-throughput Illumina sequencing technology and bioinformatics tools. Under salt, saline-alkali and drought stress, 874, 1897, and 535 genes, respectively, were up-regulated in leaves, and 1822, 1731 and 1690 genes, respectively, were up-regulated in roots, compared with expression in the corresponding organ in control plants. Comparisons among salt, saline-alkali and drought stress yielded similar results in terms of the percentage of genes classified into each GO category. Moreover, 69 genes differentially expressed in both organs with similar expression patterns clustered together in the taxonomic tree across all conditions. Furthermore, comparison of gene expression among salt, saline-alkali and drought treated plants revealed that genes associated with calcium-signaling and nucleic acid pathways were up-regulated in the responses to all three stresses, indicating a degree of cross-talk among these pathways. These results could provide new insights into the stress tolerance mechanisms of soybean.
Collapse
Affiliation(s)
- Xiu-Duo Fan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Zhang M, Li Z. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One 2013; 8:e52126. [PMID: 23326325 PMCID: PMC3542365 DOI: 10.1371/journal.pone.0052126] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Yajun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Jiachang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Yitao Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Yuesen Yue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
- * E-mail:
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|