151
|
Huang S, Chen S, Liang Z, Zhang C, Yan M, Chen J, Xu G, Fan X, Zhang Y. Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner. Sci Rep 2015; 5:18192. [PMID: 26644084 PMCID: PMC4672285 DOI: 10.1038/srep18192] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/16/2015] [Indexed: 01/03/2023] Open
Abstract
The morphological plasticity of root systems is critical for plant survival, and understanding the mechanisms underlying root adaptation to nitrogen (N) fluctuation is critical for sustainable agriculture; however, the molecular mechanism of N-dependent root growth in rice remains unclear. This study aimed to identify the role of the complementary high-affinity NO3− transport protein OsNAR2.1 in NO3−-regulated rice root growth. Comparisons with wild-type (WT) plants showed that knockdown of OsNAR2.1 inhibited lateral root (LR) formation under low NO3− concentrations, but not under low NH4+ concentrations. 15N-labelling NO3− supplies (provided at concentrations of 0–10 mM) demonstrated that (i) defects in LR formation in mutants subjected to low external NO3− concentrations resulted from impaired NO3− uptake, and (ii) the mutants had significantly fewer LRs than the WT plants when root N contents were similar between genotypes. LR formation in osnar2.1 mutants was less sensitive to localised NO3− supply than LR formation in WT plants, suggesting that OsNAR2.1 may be involved in a NO3−-signalling pathway that controls LR formation. Knockdown of OsNAR2.1 inhibited LR formation by decreasing auxin transport from shoots to roots. Thus, OsNAR2.1 probably functions in both NO3− uptake and NO3−-signalling.
Collapse
Affiliation(s)
- Shuangjie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Si Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhihao Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chenming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ming Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
152
|
Li G, Song H, Li B, Kronzucker HJ, Shi W. Auxin Resistant1 and PIN-FORMED2 Protect Lateral Root Formation in Arabidopsis under Iron Stress. PLANT PHYSIOLOGY 2015; 169:2608-23. [PMID: 26468517 PMCID: PMC4677891 DOI: 10.1104/pp.15.00904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/13/2015] [Indexed: 05/20/2023]
Abstract
A stunted root system is a significant symptom of iron (Fe) toxicity, yet little is known about the effects of excess Fe on lateral root (LR) development. In this work, we show that excess Fe has different effects on LR development in different portions of the Arabidopsis (Arabidopsis thaliana) root system and that inhibitory effects on the LR initiation are only seen in roots newly formed during excess Fe exposure. We show that root tip contact with Fe is both necessary and sufficient for LR inhibition and that the auxin, but not abscisic acid, pathway is engaged centrally in the initial stages of excess Fe exposure. Furthermore, Fe stress significantly reduced PIN-FORMED2 (PIN2)-green fluorescent protein (GFP) expression in root tips, and pin2-1 mutants exhibited significantly fewer LR initiation events under excess Fe than the wild type. Exogenous application of both Fe and glutathione together increased PIN2-GFP expression and the number of LR initiation events compared with Fe treatment alone. The ethylene inhibitor aminoethoxyvinyl-glycine intensified Fe-dependent inhibition of LR formation in the wild type, and this inhibition was significantly reduced in the ethylene overproduction mutant ethylene overproducer1-1. We show that Auxin Resistant1 (AUX1) is a critical component in the mediation of endogenous ethylene effects on LR formation under excess Fe stress. Our findings demonstrate the relationship between excess Fe-dependent PIN2 expression and LR formation and the potential role of AUX1 in ethylene-mediated LR tolerance and suggest that AUX1 and PIN2 protect LR formation in Arabidopsis during the early stages of Fe stress.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Haiyan Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Baohai Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Herbert J Kronzucker
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| |
Collapse
|
153
|
Root architecture, plant size and soil nutrient variation in natural populations of Arabidopsis thaliana. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9808-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
154
|
in 't Zandt D, Le Marié C, Kirchgessner N, Visser EJW, Hund A. High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5507-17. [PMID: 26105997 PMCID: PMC4585423 DOI: 10.1093/jxb/erv307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant's root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3(-) leaching and N2O emission. Roots of maize (Zea mays L.) were grown without N in split-nutrient rhizoslides. One side of the slides was exposed to high N after 15 d of root development, and root elongation was measured for another 15 d, described in a time course model and parameterized. The elongation rates of crown axile roots on the N-treated side of the plant followed a logistic increase to a maximum of 5.3cm d(-1); 95% of the maximum were reached within 4 d. At the same time, on the untreated side, axile root elongation dropped linearly to 1.2cm d(-1) within 6.4 d and stayed constant thereafter. Twice as many lateral roots were formed on the crown axis on the N side compared to the untreated side. Most strikingly, the elongation rates of laterals of the N side increased linearly with most of the roots reaching an asymptote ~8 d after start of the N treatment. By contrast, laterals on the side without N did not show any detectable elongation beyond the first day after their emergence. We conclude that split-nutrient rhizoslides have great potential to improve our knowledge about nitrogen responsiveness and selection for contrasting genotypes.
Collapse
Affiliation(s)
- Dina in 't Zandt
- Department of Experimental Plant Ecology, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Crop Science, Swiss Federal Institute of Technology Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland
| | - Chantal Le Marié
- Crop Science, Swiss Federal Institute of Technology Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland
| | - Norbert Kirchgessner
- Crop Science, Swiss Federal Institute of Technology Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Andreas Hund
- Crop Science, Swiss Federal Institute of Technology Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
155
|
Abscisic Acid: Hidden Architect of Root System Structure. PLANTS 2015; 4:548-72. [PMID: 27135341 PMCID: PMC4844405 DOI: 10.3390/plants4030548] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/15/2023]
Abstract
Plants modulate root growth in response to changes in the local environment, guided by intrinsic developmental genetic programs. The hormone Abscisic Acid (ABA) mediates responses to different environmental factors, such as the presence of nitrate in the soil, water stress and salt, shaping the structure of the root system by regulating the production of lateral roots as well as controlling root elongation by modulating cell division and elongation. Curiously, ABA controls different aspects of root architecture in different plant species, perhaps providing some insight into the great diversity of root architecture in different plants, both from different taxa and from different environments. ABA is an ancient signaling pathway, acquired well before the diversification of land plants. Nonetheless, how this ancient signaling module is implemented or interacts within a larger signaling network appears to vary in different species. This review will examine the role of ABA in the control of root architecture, focusing on the regulation of lateral root formation in three plant species, Arabidopsis thaliana, Medicago truncatula and Oryza sativa. We will consider how the implementation of the ABA signaling module might be a target of natural selection, to help contribute to the diversity of root architecture in nature.
Collapse
|
156
|
Yu C, Liu Y, Zhang A, Su S, Yan A, Huang L, Ali I, Liu Y, Forde BG, Gan Y. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS One 2015; 10:e0135196. [PMID: 26258667 PMCID: PMC4530940 DOI: 10.1371/journal.pone.0135196] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/19/2015] [Indexed: 12/30/2022] Open
Abstract
MADS-box transcription factors are vital regulators participating in plant growth and development process and the functions of most of them are still unknown. ANR1 was reported to play a key role in controlling lateral root development through nitrate signal in Arabidopsis. OsMADS25 is one of five ANR1-like genes in Oryza Sativa and belongs to the ANR1 clade. Here we have investigated the role of OsMADS25 in the plant’s responses to external nitrate in Oryza Sativa. Our results showed that OsMADS25 protein was found in the nucleus as well as in the cytoplasm. Over-expression of OsMADS25 significantly promoted lateral and primary root growth as well as shoot growth in a nitrate-dependent manner in Arabidopsis. OsMADS25 overexpression in transgenic rice resulted in significantly increased primary root length, lateral root number, lateral root length and shoot fresh weight in the presence of nitrate. Down-regulation of OsMADS25 in transgenic rice exhibited significantly reduced shoot and root growth in the presence of nitrate. Furthermore, over-expression of OsMADS25 in transgenic rice promoted nitrate accumulation and significantly increased the expressions of nitrate transporter genes at high rates of nitrate supply while down-regulation of OsMADS25 produced the opposite effect. Taken together, our findings suggest that OsMADS25 is a positive regulator control lateral and primary root development in rice.
Collapse
Affiliation(s)
- Chunyan Yu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Aidong Zhang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sha Su
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - An Yan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Brian G. Forde
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
157
|
Zaman M, Kurepin LV, Catto W, Pharis RP. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1777-1785. [PMID: 25267003 DOI: 10.1002/jsfa.6938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 06/03/2023]
Abstract
Crop yield, vegetative or reproductive, depends on access to an adequate supply of essential mineral nutrients. At the same time, a crop plant's growth and development, and thus yield, also depend on in situ production of plant hormones. Thus optimizing mineral nutrition and providing supplemental hormones are two mechanisms for gaining appreciable yield increases. Optimizing the mineral nutrient supply is a common and accepted agricultural practice, but the co-application of nitrogen-based fertilizers with plant hormones or plant growth regulators is relatively uncommon. Our review discusses possible uses of plant hormones (gibberellins, auxins, cytokinins, abscisic acid and ethylene) and specific growth regulators (glycine betaine and polyamines) to enhance and optimize crop yield when co-applied with nitrogen-based fertilizers. We conclude that use of growth-active gibberellins, together with a nitrogen-based fertilizer, can result in appreciable and significant additive increases in shoot dry biomass of crops, including forage crops growing under low-temperature conditions. There may also be a potential for use of an auxin or cytokinin, together with a nitrogen-based fertilizer, for obtaining additive increases in dry shoot biomass and/or reproductive yield. Further research, though, is needed to determine the potential of co-application of nitrogen-based fertilizers with abscisic acid, ethylene and other growth regulators.
Collapse
Affiliation(s)
- Mohammad Zaman
- Ballance Agri-Nutrients Limited New Zealand, Private Bag 12503, Tauranga Mail Centre, Tauranga, 3143, New Zealand
| | - Leonid V Kurepin
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - Warwick Catto
- Ballance Agri-Nutrients Limited New Zealand, Private Bag 12503, Tauranga Mail Centre, Tauranga, 3143, New Zealand
| | - Richard P Pharis
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
158
|
Effect of PGRs in adventitious root culture in vitro: present scenario and future prospects. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2015. [DOI: 10.1007/s12210-015-0445-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
159
|
Młodzińska E, Kłobus G, Christensen MD, Fuglsang AT. The plasma membrane H(+) -ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. PHYSIOLOGIA PLANTARUM 2015; 154:270-82. [PMID: 25382626 DOI: 10.1111/ppl.12305] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/19/2014] [Indexed: 05/21/2023]
Abstract
In this study the role of the plasma membrane (PM) H(+) -ATPase for growth and development of roots as response to nitrogen starvation is studied. It is known that root development differs dependent on the availability of different mineral nutrients. It includes processes such as initiation of lateral root primordia, root elongation and increase of the root biomass. However, the signal transduction mechanisms, which enable roots to sense changes in different mineral environments and match their growth and development patterns to actual conditions in the soil, are still unknown. Most recent comments have focused on one of the essential macroelements, namely nitrogen, and its role in the modification of the root architecture of Arabidopsis thaliana. As yet, not all elements of the signal transduction pathway leading to the perception of the nitrate stimulus, and hence to anatomical changes of the root, which allow for adaptation to variable ion concentrations in the soil, are known. Our data demonstrate that primary and lateral root length were shorter and lower in aha2 mutant lines compared with wild-type plants in response to a variable nitrogen source. This suggests that the PM proton pump AHA2 (Arabidopsis plasma membrane H(+) -ATPase isoform 2) is important for root growth and development during different nitrogen regimes. This is possible by controlling the pH homeostasis in the root during growth and development as shown by pH biosensors.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, 50-328, Poland
| | - Grażyna Kłobus
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, 50-328, Poland
| | - Monica Daugbjerg Christensen
- PUMPkin - Centre for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Thoe Fuglsang
- PUMPkin - Centre for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
160
|
Sun H, Li J, Song W, Tao J, Huang S, Chen S, Hou M, Xu G, Zhang Y. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2449-59. [PMID: 25784715 PMCID: PMC4986861 DOI: 10.1093/jxb/erv030] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Increasing evidence shows that partial nitrate nutrition (PNN) can be attributed to improved plant growth and nitrogen-use efficiency (NUE) in rice. Nitric oxide (NO) is a signalling molecule involved in many physiological processes during plant development and nitrogen (N) assimilation. It remains unclear whether molecular NO improves NUE through PNN. Two rice cultivars (cvs Nanguang and Elio), with high and low NUE, respectively, were used in the analysis of NO production, nitrate reductase (NR) activity, lateral root (LR) density, and (15)N uptake under PNN, with or without NO production donor and inhibitors. PNN increased NO accumulation in cv. Nanguang possibly through the NIA2-dependent NR pathway. PNN-mediated NO increases contributed to LR initiation, (15)NH₄(+)/(15)NO₃(-) influx into the root, and levels of ammonium and nitrate transporters in cv. Nanguang but not cv. Elio. Further results revealed marked and specific induction of LR initiation and (15)NH₄(+)/(15)NO₃(-) influx into the roots of plants supplied with NH₄(+)+sodium nitroprusside (SNP) relative to those supplied with NH₄(+) alone, and considerable inhibition upon the application of cPTIO or tungstate (NR inhibitor) in addition to PNN, which is in agreement with the change in NO fluorescence in the two rice cultivars. The findings suggest that NO generated by the NR pathway plays a pivotal role in improving the N acquisition capacity by increasing LR initiation and the inorganic N uptake rate, which may represent a strategy for rice plants to adapt to a fluctuating nitrate supply and increase NUE.
Collapse
Affiliation(s)
- Huwei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Song
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuangjie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Si Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengmeng Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
161
|
Zhan A, Lynch JP. Reduced frequency of lateral root branching improves N capture from low-N soils in maize. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2055-65. [PMID: 25680794 PMCID: PMC4378636 DOI: 10.1093/jxb/erv007] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 05/17/2023]
Abstract
Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing countries, while in developed countries, intensive N fertilization is a primary economic, energy, and environmental cost for crop production. We tested the hypothesis that under low-N conditions, maize (Zea mays) lines with few but long (FL) lateral roots would have greater axial root elongation, deeper rooting, and greater N acquisition than lines with many but short (MS) lateral roots. Maize recombinant inbred lines contrasting in lateral root number and length were grown with adequate and suboptimal N in greenhouse mesocosms and in the field in the USA and South Africa (SA). In low-N mesocosms, the FL phenotype had substantially reduced root respiration and greater rooting depth than the MS phenotype. In low-N fields in the USA and SA, the FL phenotype had greater rooting depth, shoot N content, leaf photosynthesis, and shoot biomass than the MS phenotype. The FL phenotype yielded 31.5% more than the MS phenotype under low N in the USA. Our results are consistent with the hypothesis that sparse but long lateral roots improve N capture from low-N soils. These results with maize probably pertain to other species. The FL lateral root phenotype merits consideration as a selection target for greater crop N efficiency.
Collapse
Affiliation(s)
- Ai Zhan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
162
|
McAllister CH, Good AG. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS One 2015; 10:e0121830. [PMID: 25830496 PMCID: PMC4382294 DOI: 10.1371/journal.pone.0121830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.
Collapse
Affiliation(s)
- Chandra H. McAllister
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- * E-mail:
| | - Allen G. Good
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
163
|
D'Apuzzo E, Valkov VT, Parlati A, Omrane S, Barbulova A, Sainz MM, Lentini M, Esposito S, Rogato A, Chiurazzi M. PII Overexpression in Lotus japonicus Affects Nodule Activity in Permissive Low-Nitrogen Conditions and Increases Nodule Numbers in High Nitrogen Treated Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:432-42. [PMID: 25390190 DOI: 10.1094/mpmi-09-14-0285-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report here the first characterization of a GLNB1 gene coding for the PII protein in leguminous plants. The main purpose of this work was the investigation of the possible roles played by this multifunctional protein in nodulation pathways. The Lotus japonicus LjGLB1 gene shows a significant transcriptional regulation during the light-dark cycle and different nitrogen availability, conditions that strongly affect nodule formation, development, and functioning. We also report analysis of the spatial profile of expression of LjGLB1 in root and nodule tissues and of the protein's subcellular localization. Transgenic L. japonicus lines overexpressing the PII protein were obtained and tested for the analysis of the symbiotic responses in different conditions. The uncoupling of PII from its native regulation affects nitrogenase activity and nodule polyamine content. Furthermore, our results suggest the involvement of PII in the signaling of the nitrogen nutritional status affecting the legumes' predisposition for nodule formation.
Collapse
Affiliation(s)
- Enrica D'Apuzzo
- 1 Institute of Biosciences and Bioresources, CNR, Via P. Castellino 111, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Kudoyarova GR, Dodd IC, Veselov DS, Rothwell SA, Veselov SY. Common and specific responses to availability of mineral nutrients and water. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2133-44. [PMID: 25697793 PMCID: PMC4986719 DOI: 10.1093/jxb/erv017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/04/2015] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Changes in resource (mineral nutrients and water) availability, due to their heterogeneous distribution in space and time, affect plant development. Plants need to sense these changes to optimize growth and biomass allocation by integrating root and shoot growth. Since a limited supply of water or nutrients can elicit similar physiological responses (the relative activation of root growth at the expense of shoot growth), similar underlying mechanisms may affect perception and acquisition of either nutrients or water. This review compares root and shoot responses to availability of different macronutrients and water. Attention is given to the roles of root-to-shoot signalling and shoot-to-root signalling, with regard to coordinating changes in root and shoot growth and development. Involvement of plant hormones in regulating physiological responses such as stomatal and hydraulic conductance is revealed by measuring the effects of resource availability on phytohormone concentrations in roots and shoots, and their flow between roots and shoots in xylem and phloem saps. More specific evidence can be obtained by measuring the physiological responses of genotypes with altered hormone responses or concentrations. We discuss the similarity and diversity of changes in shoot growth, allocation to root growth, and root architecture under changes in water, nitrate, and phosphorus availability, and the possible involvement of abscisic acid, indole-acetic acid, and cytokinin in their regulation. A better understanding of these mechanisms may contribute to better crop management for efficient use of these resources and to selecting crops for improved performance under suboptimal soil conditions.
Collapse
Affiliation(s)
- Guzel R Kudoyarova
- Institute of Biology, Ufa Science Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054 Ufa, Russia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Dmitry S Veselov
- Institute of Biology, Ufa Science Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054 Ufa, Russia
| | - Shane A Rothwell
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | | |
Collapse
|
165
|
Ruiz Herrera LF, Shane MW, López-Bucio J. Nutritional regulation of root development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:431-43. [PMID: 25760021 DOI: 10.1002/wdev.183] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/24/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022]
Abstract
Mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) are essential for plant growth, development, and reproduction. Adequate provision of nutrients via the root system impacts greatly on shoot biomass and plant productivity and is therefore of crucial importance for agriculture. Nutrients are taken up at the root surface in ionic form, which is mediated by specific transport proteins. Noteworthy, root tips are able to sense the local and internal concentrations of nutrients to adjust growth and developmental processes, and ultimately, to increase or decrease the exploratory capacity of the root system. Recently, important progress has been achieved in identifying the mechanisms of nutrient sensing in wild- and cultivated species, including Arabidopsis, bean, maize, rice, lupin as well as in members of the Proteaceae and Cyperaceae families, which develop highly sophisticated root clusters as adaptations to survive in soils with very low fertility. Major findings include identification of transporter proteins and transcription factors regulating nutrient sensing, miRNAs as mobile signals and peptides as repressors of lateral root development under heterogeneous nutrient supply. Understanding the roles played by N, P, and Fe in gene expression and biochemical characterization of proteins involved in root developmental responses to homogeneous or heterogeneous N and P sources has gained additional interest due to its potential for improving fertilizer acquisition efficiency in crops.
Collapse
Affiliation(s)
- León Francisco Ruiz Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1', Ciudad Universitaria Morelia, Michoacán, México
| | - Michael W Shane
- School of Plant Biology, Faculty of Science, University of Western Australia, Crawley, Australia
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1', Ciudad Universitaria Morelia, Michoacán, México
| |
Collapse
|
166
|
Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. PLANTA 2015; 241:591-602. [PMID: 25399352 DOI: 10.1007/s00425-014-2204-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/04/2014] [Indexed: 05/06/2023]
Abstract
NADPH oxidase AtrbohD an d AtrbohF negatively modulate lateral root development by changing the peroxidase activity and increasing the local generation of superoxide in primary roots of Arabidopsis in an auxin-independent manner. NADPH oxidase subunits AtrbohD and AtrbohF play pivotal roles in regulating growth, development and stress responses in Arabidopsis. However, whether they modulate lateral root (LR) formation has not yet been addressed, and the detailed mechanisms underlying the process remain unanswered. Here, we show that two null double mutants atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF genes are disrupted, had remarkably higher LR density than wild-type (WT), or the single mutant atrbohD1 and atrbohF1. Compared to WT, the double mutants exhibited early emerged LRs and enhanced density of lateral root primordia (LRP). Unexpectedly, the production of superoxide (O2 (-)), but not hydrogen peroxide, in the mature area of the primary root containing LRs significantly increased in the double mutants relative to that in WT. Further experiments revealed that the local accumulation of O2 (-) led to the enhancement of LR density in the double mutants. Moreover, the deficiency of AtrbohD and AtrbohF caused a marked increase in peroxidase activity in the mature root zone, which contributed to the localized accumulation of O2 (-) and the elevated LR density in the double mutants. Furthermore, the double mutants were not sensitive to exogenous auxin naphthalene acetic acid or auxin transport inhibitor 1-N-naphthylphthalamic acid in terms of LR formation. The auxin response of LRP in vivo in atrbohD1/F1 was also similar to that in WT. Taken together, these results suggest that AtrbohD and AtrbohF negatively modulate LR development by controlling the local generation of superoxide in an auxin-independent manner. These findings provide new insights into the mechanisms of NADPH oxidase-mediated regulation of LR branching in Arabidopsis.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
| | | | | | | | | | | | | |
Collapse
|
167
|
Malekpoor Mansoorkhani F, Seymour G, Swarup R, Moeiniyan Bagheri H, Ramsey R, Thompson A. Environmental, developmental, and genetic factors controlling root system architecture. Biotechnol Genet Eng Rev 2015; 30:95-112. [DOI: 10.1080/02648725.2014.995912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
168
|
Satbhai SB, Ristova D, Busch W. Underground tuning: quantitative regulation of root growth. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1099-112. [PMID: 25628329 DOI: 10.1093/jxb/eru529] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation.
Collapse
Affiliation(s)
- Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
169
|
Drevon JJ, Alkama N, Bargaz A, Rodiño AP, Sungthongwises K, Zaman-Allah M. The Legume–Rhizobia Symbiosis. GRAIN LEGUMES 2015. [DOI: 10.1007/978-1-4939-2797-5_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
170
|
Yu P, White PJ, Li C. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types. PLANT SIGNALING & BEHAVIOR 2015; 10:e1013795. [PMID: 26443081 PMCID: PMC4883913 DOI: 10.1080/15592324.2015.1013795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition; China Agricultural University; Beijing, People's Republic of China
| | - Philip J White
- Ecological Sciences; The James Hutton Institute; Invergowrie, UK
- College of Science; King Saud University; Riyadh, Kingdom of Saudi Arabia
| | - Chunjian Li
- Department of Plant Nutrition; China Agricultural University; Beijing, People's Republic of China
- Correspondence to: Chunjian Li;
| |
Collapse
|
171
|
Reddy MM, Ulaganathan K. Nitrogen Nutrition, Its Regulation and Biotechnological Approaches to Improve Crop Productivity. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.618275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
172
|
Pellizzaro A, Clochard T, Cukier C, Bourdin C, Juchaux M, Montrichard F, Thany S, Raymond V, Planchet E, Limami AM, Morère-Le Paven MC. The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula. PLANT PHYSIOLOGY 2014; 166:2152-65. [PMID: 25367858 PMCID: PMC4256864 DOI: 10.1104/pp.114.250811] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
Elongation of the primary root during postgermination of Medicago truncatula seedlings is a multigenic trait that is responsive to exogenous nitrate. A quantitative genetic approach suggested the involvement of the nitrate transporter MtNPF6.8 (for Medicago truncatula NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER Family6.8) in the inhibition of primary root elongation by high exogenous nitrate. In this study, the inhibitory effect of nitrate on primary root elongation, via inhibition of elongation of root cortical cells, was abolished in npf6.8 knockdown lines. Accordingly, we propose that MtNPF6.8 mediates nitrate inhibitory effects on primary root growth in M. truncatula. pMtNPF6.8:GUS promoter-reporter gene fusion in Agrobacterium rhizogenes-generated transgenic roots showed the expression of MtNPF6.8 in the pericycle region of primary roots and lateral roots, and in lateral root primordia and tips. MtNPF6.8 expression was insensitive to auxin and was stimulated by abscisic acid (ABA), which restored the inhibitory effect of nitrate in npf6.8 knockdown lines. It is then proposed that ABA acts downstream of MtNPF6.8 in this nitrate signaling pathway. Furthermore, MtNPF6.8 was shown to transport ABA in Xenopus spp. oocytes, suggesting an additional role of MtNPF6.8 in ABA root-to-shoot translocation. (15)NO3(-)-influx experiments showed that only the inducible component of the low-affinity transport system was affected in npf6.8 knockdown lines. This indicates that MtNPF6.8 is a major contributor to the inducible component of the low-affinity transport system. The short-term induction by nitrate of the expression of Nitrate Reductase1 (NR1) and NR2 (genes that encode two nitrate reductase isoforms) was greatly reduced in the npf6.8 knockdown lines, supporting a role of MtNPF6.8 in the primary nitrate response in M. truncatula.
Collapse
Affiliation(s)
- Anthoni Pellizzaro
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Thibault Clochard
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Caroline Cukier
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Céline Bourdin
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Marjorie Juchaux
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Françoise Montrichard
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Steeve Thany
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Valérie Raymond
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Elisabeth Planchet
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Anis M Limami
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Marie-Christine Morère-Le Paven
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| |
Collapse
|
173
|
Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc Natl Acad Sci U S A 2014; 111:15267-72. [PMID: 25288754 DOI: 10.1073/pnas.1411375111] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To compete for nutrients in diverse soil microenvironments, plants proliferate lateral roots preferentially in nutrient-rich zones. For nitrate, root foraging involves local and systemic signaling; however, little is known about the genes that function in the systemic signaling pathway. By using nitrate enhancer DNA to screen a library of Arabidopsis transcription factors in the yeast one-hybrid system, the transcription factor gene TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) was identified. TCP20, which belongs to an ancient, plant-specific gene family that regulates shoot, flower, and embryo development, was implicated in nitrate signaling by its ability to bind DNA in more than 100 nitrate-regulated genes. Analysis of insertion mutants of TCP20 showed that they had normal primary and lateral root growth on homogenous nitrate media but were impaired in preferential lateral root growth (root foraging) on heterogeneous media in split-root plates. Inhibition of preferential lateral root growth was still evident in the mutants even when ammonium was uniformly present in the media, indicating that the TCP20 response was to nitrate. Comparison of tcp20 mutants with those of nlp7 mutants, which are defective in local control of root growth but not in the root-foraging response, indicated that TCP20 function is independent of and distinct from NLP7 function. Further analysis showed that tcp20 mutants lack systemic control of root growth regardless of the local nitrate concentrations. These results indicate that TCP20 plays a key role in the systemic signaling pathway that directs nitrate foraging by Arabidopsis roots.
Collapse
|
174
|
Li Y, Krouk G, Coruzzi GM, Ruffel S. Finding a nitrogen niche: a systems integration of local and systemic nitrogen signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5601-10. [PMID: 24963003 DOI: 10.1093/jxb/eru263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ability of plants to sense their nitrogen (N) microenvironment in the soil and deploy strategic root growth in N-rich patches requires exquisite systems integration. Remarkably, this new paradigm for systems biology research has intrigued plant biologists for more than a century, when a split-root framework was first used to study how plants sense and respond to heterogeneous soil nutrient environments. This systemic N-signalling mechanism, allowing plants to sense and forage for mineral nutrients in resource-rich patches, has important implications for agriculture. In this review, we will focus on how advances in the post-genomic era have uncovered the gene regulatory networks underlying systemic N-signalling. After defining how local and systemic N-signalling can be experimentally distinguished for molecular study using a split-root system, the genetic factors that have been shown to mediate local and/or systemic N-signalling are reviewed. Second, the genetic mechanism of this regulatory system is broadened to the whole genome level. To do this, publicly available N-related transcriptomic datasets are compared with genes that have previously been identified as local and systemic N responders in a split-root transcriptome dataset. Specifically, (i) it was found that transcriptional reprogramming triggered by homogeneous N-treatments is composed of both local and systemic responses, (ii) the spatio-temporal signature of local versus systemic responsive genes is defined, and (iii) the conservation of systemic N-signalling between Arabidopsis and Medicago is assessed. Finally, the potential mediators, i.e. metabolites and phytohormones, of the N-related long-distance signals, are discussed.
Collapse
Affiliation(s)
- Ying Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Gabriel Krouk
- Institut de Biologie Intégrative des Plantes-Claude Grignon, Unité Mixte de Recherche 5004, Biochimie et Physiologie Moléculaire des Plantes, Agro-M/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/SupAgro/Université Montpellier 2, F-34060 Montpellier, France
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sandrine Ruffel
- Institut de Biologie Intégrative des Plantes-Claude Grignon, Unité Mixte de Recherche 5004, Biochimie et Physiologie Moléculaire des Plantes, Agro-M/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/SupAgro/Université Montpellier 2, F-34060 Montpellier, France
| |
Collapse
|
175
|
Yu P, White PJ, Hochholdinger F, Li C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. PLANTA 2014; 240:667-78. [PMID: 25143250 DOI: 10.1007/s00425-014-2150-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 05/03/2023]
Abstract
Mineral nutrients are distributed in a non-uniform manner in the soil. Plasticity in root responses to the availability of mineral nutrients is believed to be important for optimizing nutrient acquisition. The response of root architecture to heterogeneous nutrient availability has been documented in various plant species, and the molecular mechanisms coordinating these responses have been investigated particularly in Arabidopsis, a model dicotyledonous plant. Recently, progress has been made in describing the phenotypic plasticity of root architecture in maize, a monocotyledonous crop. This article reviews aspects of phenotypic plasticity of maize root system architecture, with special emphasis on describing (1) the development of its complex root system; (2) phenotypic responses in root system architecture to heterogeneous N availability; (3) the importance of phenotypic plasticity for N acquisition; (4) different regulation of root growth and nutrients uptake by shoot; and (5) root traits in maize breeding. This knowledge will inform breeding strategies for root traits enabling more efficient acquisition of soil resources and synchronizing crop growth demand, root resource acquisition and fertilizer application during crop growing season, thereby maximizing crop yields and nutrient-use efficiency and minimizing environmental pollution.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, People's Republic of China
| | | | | | | |
Collapse
|
176
|
Forde BG. Nitrogen signalling pathways shaping root system architecture: an update. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:30-36. [PMID: 24997289 DOI: 10.1016/j.pbi.2014.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/12/2014] [Indexed: 05/03/2023]
Abstract
Root system architecture is a fundamentally important trait for resource acquisition in both ecological and agronomic contexts. Because of the plasticity of root development and the almost infinite complexity of the soil, root system architecture is shaped by environmental factors to a much greater degree than shoot architecture. In attempting to understand how roots sense and respond to environmental cues, the striking effects of nitrate and other forms of nitrogen on root growth and branching have received particular attention. This minireview focuses on the latest advances in our understanding of the diverse nitrogen signalling pathways that are now known to act at multiple stages in the process of lateral root development, as well as on primary root growth.
Collapse
Affiliation(s)
- Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
177
|
Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. FRONTIERS IN PLANT SCIENCE 2014; 5:495. [PMID: 25324849 PMCID: PMC4179338 DOI: 10.3389/fpls.2014.00495] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/06/2014] [Indexed: 05/02/2023]
Abstract
Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR induction.
Collapse
Affiliation(s)
| | | | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
178
|
Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proc Natl Acad Sci U S A 2014; 111:14607-12. [PMID: 25246578 DOI: 10.1073/pnas.1412716111] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autoregulatory negative-feedback loops play important roles in fine-balancing tissue and organ development. Such loops are composed of short-range intercellular signaling pathways via cell-cell communications. On the other hand, leguminous plants use a long-distance negative-feedback system involving root-shoot communication to control the number of root nodules, root lateral organs that harbor symbiotic nitrogen-fixing bacteria known as rhizobia. This feedback system, known as autoregulation of nodulation (AON), consists of two long-distance mobile signals: root-derived and shoot-derived signals. Two Lotus japonicus CLAVATA3/endosperm surrounding region (CLE)-related small peptides, CLE root signal1 (CLE-RS1) and CLE-RS2, function as root-derived signals and are perceived by a shoot-acting AON factor, the hypernodulation aberrant root formation1 (HAR1) receptor protein, an ortholog of Arabidopsis CLAVATA1, which is responsible for shoot apical meristem homeostasis. This peptide-receptor interaction is necessary for systemic suppression of nodulation. How the onset of nodulation activates AON and how optimal nodule numbers are maintained remain unknown, however. Here we show that an RWP-RK-containing transcription factor, nodule inception (NIN), which induces nodule-like structures without rhizobial infection when expressed ectopically, directly targets CLE-RS1 and CLE-RS2. Roots constitutively expressing NIN systemically repress activation of endogenous NIN expression in untransformed roots of the same plant in a HAR1-dependent manner, leading to systemic suppression of nodulation and down-regulation of CLE expression. Our findings provide, to our knowledge, the first molecular evidence of a long-distance autoregulatory negative-feedback loop that homeostatically regulates nodule organ formation.
Collapse
|
179
|
Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun 2014; 5:4983. [PMID: 25236855 DOI: 10.1038/ncomms5983] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022] Open
Abstract
Legumes establish symbiotic associations with nitrogen-fixing bacteria (rhizobia) in root nodules to obtain nitrogen. Legumes control nodule number through long-distance communication between roots and shoots, maintaining the proper symbiotic balance. Rhizobial infection triggers the production of mobile CLE-RS1/2 peptides in Lotus japonicus roots; the perception of the signal by receptor kinase HAR1 in shoots presumably induces the production of an unidentified shoot-derived inhibitor (SDI) that translocates to roots and blocks further nodule development. Here we show that, CLE-RS1/2-HAR1 signalling activates the production of shoot-derived cytokinins, which have an SDI-like capacity to systemically suppress nodulation. In addition, we show that LjIPT3 is involved in nodulation-related cytokinin production in shoots. The expression of LjIPT3 is activated in an HAR1-dependent manner. We further demonstrate shoot-to-root long-distance transport of cytokinin in L. japonicus seedlings. These findings add essential components to our understanding of how legumes control nodulation to balance nutritional requirements and energy status.
Collapse
|
180
|
de Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O. Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. PLANT PHYSIOLOGY 2014; 166:384-95. [PMID: 25059707 PMCID: PMC4149722 DOI: 10.1104/pp.114.242388] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/21/2014] [Indexed: 05/20/2023]
Abstract
The degree of shoot branching is strongly affected by environmental conditions, such as nutrient availability. Here we demonstrate that nitrate limitation reduces shoot branching in Arabidopsis (Arabidopsis thaliana) both by delaying axillary bud activation and by attenuating the basipetal sequence of bud activation that is triggered following floral transition. Ammonium supply has similar effects, suggesting that they are caused by plant nitrogen (N) status, rather than direct nitrate signaling. We identify increased auxin export from active shoot apices, resulting in increased auxin in the polar auxin transport stream of the main stem, as a likely cause for the suppression of basal branches. Consistent with this idea, in the auxin response mutant axr1 and the strigolactone biosynthesis mutant more axillary growth1, increased retention of basal branches on low N is associated with a failure to increase auxin in the main stem. The complex interactions between the hormones that regulate branching make it difficult to rule out other mechanisms of N action, such as up-regulation of strigolactone synthesis. However, the proposed increase in auxin export from active buds can also explain how reduced shoot branching is achieved without compromising root growth, leading to the characteristic shift in relative biomass allocation to the root when N is limiting.
Collapse
Affiliation(s)
- Maaike de Jong
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Gilu George
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Veronica Ongaro
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Lisa Williamson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Barbara Willetts
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Karin Ljung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Hayley McCulloch
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| |
Collapse
|
181
|
Yang S, Zhang X, Cao Z, Zhao K, Wang S, Chen M, Hu X. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microb Biotechnol 2014; 7:611-20. [PMID: 25142808 PMCID: PMC4265079 DOI: 10.1111/1751-7915.12148] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 12/01/2022] Open
Abstract
Growth-promoting Sphingomonas paucimobilis ZJSH1, associated with Dendrobium officinale, a traditional Chinese medicinal plant, was characterized. At 90 days post-inoculation, strain ZJSH1 significantly promoted the growth of D. officinale seedlings, with increases of stems by 8.6% and fresh weight by 7.5%. Interestingly, the polysaccharide content extracted from the inoculated seedlings was 0.6% higher than that of the control. Similar growth promotion was observed with the transplants inoculated with strain ZJSH1. The mechanism of growth promotion was attributed to a combination of phytohormones and nitrogen fixation. Strain ZJSH1 was found using the Kjeldahl method to have a nitrogen fixation activity of 1.15 mg l−1, which was confirmed by sequencing of the nifH gene. Using high-performance liquid chromatography-mass spectrometry, strain ZJSH1 was found to produce various phytohormones, including salicylic acid (SA), indole-3-acetic acid (IAA), Zeatin and abscisic acid (ABA). The growth curve showed that strain ZJSH1 grew well in the seedlings, especially in the roots. Accordingly, much higher contents of SA, ABA, IAA and c-ZR were detected in the inoculated seedlings, which may play roles as both phytohormones and ‘Systemic Acquired Resistance’ drivers. Nitrogen fixation and secretion of plant growth regulators (SA, IAA, Zeatin and ABA) endow S. paucimobilis ZJSH1 with growth-promoting properties, which provides a potential for application in the commercial growth of D. officinale.
Collapse
Affiliation(s)
- Suijuan Yang
- College of Life Science, Zhejiang Sci-Tech University, Road 2, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
182
|
Tian H, De Smet I, Ding Z. Shaping a root system: regulating lateral versus primary root growth. TRENDS IN PLANT SCIENCE 2014; 19:426-31. [PMID: 24513255 DOI: 10.1016/j.tplants.2014.01.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/04/2014] [Accepted: 01/14/2014] [Indexed: 05/22/2023]
Abstract
Primary and lateral roots comprise root systems, which are vital to the growth and survival of plants. Several molecular mechanisms associated with primary and lateral root growth have been described, including some common regulatory factors for their initiation and development. However, in this opinion article, we discuss the distinct growth behavior of lateral roots in response to environmental cues, such as salinity, gravity, and nutrient availability, which are mediated via specific regulators. We propose that differential growth dynamics between primary and lateral roots are crucial for plants to adapt to the ever-changing environmental conditions.
Collapse
Affiliation(s)
- Huiyu Tian
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Ive De Smet
- Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
183
|
Bourion V, Martin C, de Larambergue H, Jacquin F, Aubert G, Martin-Magniette ML, Balzergue S, Lescure G, Citerne S, Lepetit M, Munier-Jolain N, Salon C, Duc G. Unexpectedly low nitrogen acquisition and absence of root architecture adaptation to nitrate supply in a Medicago truncatula highly branched root mutant. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2365-80. [PMID: 24706718 PMCID: PMC4036509 DOI: 10.1093/jxb/eru124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To complement N2 fixation through symbiosis, legumes can efficiently acquire soil mineral N through adapted root architecture. However, root architecture adaptation to mineral N availability has been little studied in legumes. Therefore, this study investigated the effect of nitrate availability on root architecture in Medicago truncatula and assessed the N-uptake potential of a new highly branched root mutant, TR185. The effects of varying nitrate supply on both root architecture and N uptake were characterized in the mutant and in the wild type. Surprisingly, the root architecture of the mutant was not modified by variation in nitrate supply. Moreover, despite its highly branched root architecture, TR185 had a permanently N-starved phenotype. A transcriptome analysis was performed to identify genes differentially expressed between the two genotypes. This analysis revealed differential responses related to the nitrate acquisition pathway and confirmed that N starvation occurred in TR185. Changes in amino acid content and expression of genes involved in the phenylpropanoid pathway were associated with differences in root architecture between the mutant and the wild type.
Collapse
Affiliation(s)
| | - Chantal Martin
- INRA, UMR1347 Agroécologie, BP 86510, F-21065 Dijon, France
| | | | | | | | - Marie-Laure Martin-Magniette
- INRA, UMR518 MIA, F-75231 Paris, France AgroParisTech, UMR MIA, F-75231 Paris, France INRA, UMR1165 URGV, F-91057 Evry, France UEVE, UMR URGV, F-91057 Evry, France CNRS, ERL8196 UMR URGV, F-91057 Evry, France
| | - Sandrine Balzergue
- INRA, UMR1165 URGV, F-91057 Evry, France UEVE, UMR URGV, F-91057 Evry, France CNRS, ERL8196 UMR URGV, F-91057 Evry, France
| | - Geoffroy Lescure
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, F-78026 Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, F-78026 Versailles, France
| | - Marc Lepetit
- USC1342 INRA, UMR113 IRD-CIRAD-SupAgro-UM2, Symbioses Tropicales et Méditerranéennes, Campus de Baillarguet, TA A-82/J, F-34398 Montpellier Cedex 5, France
| | | | | | - Gérard Duc
- INRA, UMR1347 Agroécologie, BP 86510, F-21065 Dijon, France
| |
Collapse
|
184
|
Lonhienne TGA, Trusov Y, Young A, Rentsch D, Näsholm T, Schmidt S, Paungfoo-Lonhienne C. Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis. Sci Rep 2014; 4:5055. [PMID: 24852366 PMCID: PMC4031471 DOI: 10.1038/srep05055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 12/02/2022] Open
Abstract
Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.
Collapse
Affiliation(s)
- Thierry G. A. Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yuri Trusov
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Anthony Young
- Plant Pathology Herbarium, Queensland Primary Industries and Fisheries, QLD, 4068, Australia
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Torgny Näsholm
- Department of Forest Ecology and Management, and Department of Forest Genetics and Plant Physiology, SLU, SE-901 83 Umeå, Sweden
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | |
Collapse
|
185
|
Malagoli P, Le Deunff E. An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs. ANNALS OF BOTANY 2014; 113:1007-19. [PMID: 24709791 PMCID: PMC3997640 DOI: 10.1093/aob/mcu022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Background and Aims An updated version of a mechanistic structural-functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions. Methods The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow-Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root. Key Results Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0-30 and 30-60 cm) contained 75-88 % of the total root length and biomass, and accounted for 90-95 % of N taken up at harvest. Conclusions This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels.
Collapse
Affiliation(s)
- Philippe Malagoli
- Clermont Universités, Université Blaise Pascal, UMR 547 PIAF, BP 10448, F-63000 Clermont Ferrand, France
- INRA, UMR 547 PIAF, F-63100 Clermont Ferrand, France
- For correspondence. E-mail
| | - Erwan Le Deunff
- Université de Caen Basse-Normandie, UMR EVA, F-14032 Caen cedex, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie Nutritions NCS, F-14032 Caen cedex, France
| |
Collapse
|
186
|
Jiang H, Xu Z, Aluru MR, Dong L. Plant chip for high-throughput phenotyping of Arabidopsis. LAB ON A CHIP 2014; 14:1281-93. [PMID: 24510109 DOI: 10.1039/c3lc51326b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report on the development of a vertical and transparent microfluidic chip for high-throughput phenotyping of Arabidopsis thaliana plants. Multiple Arabidopsis seeds can be germinated and grown hydroponically over more than two weeks in the chip, thus enabling large-scale and quantitative monitoring of plant phenotypes. The novel vertical arrangement of this microfluidic device not only allows for normal gravitropic growth of the plants but also, more importantly, makes it convenient to continuously monitor phenotypic changes in plants at the whole organismal level, including seed germination and root and shoot growth (hypocotyls, cotyledons, and leaves), as well as at the cellular level. We also developed a hydrodynamic trapping method to automatically place single seeds into seed holding sites of the device and to avoid potential damage to seeds that might occur during manual loading. We demonstrated general utility of this microfluidic device by showing clear visible phenotypes of the immutans mutant of Arabidopsis, and we also showed changes occurring during plant-pathogen interactions at different developmental stages. Arabidopsis plants grown in the device maintained normal morphological and physiological behaviour, and distinct phenotypic variations consistent with a priori data were observed via high-resolution images taken in real time. Moreover, the timeline for different developmental stages for plants grown in this device was highly comparable to growth using a conventional agar plate method. This prototype plant chip technology is expected to lead to the establishment of a powerful experimental and cost-effective framework for high-throughput and precise plant phenotyping.
Collapse
Affiliation(s)
- Huawei Jiang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
187
|
Ma W, Li J, Qu B, He X, Zhao X, Li B, Fu X, Tong Y. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:70-9. [PMID: 24460551 DOI: 10.1111/tpj.12448] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/10/2014] [Accepted: 01/17/2014] [Indexed: 05/03/2023]
Abstract
In plants, the plasticity of root architecture in response to nitrogen availability largely determines nitrogen acquisition efficiency. One poorly understood root growth response to low nitrogen availability is an observed increase in the number and length of lateral roots (LRs). Here, we show that low nitrogen-induced Arabidopsis LR growth depends on the function of the auxin biosynthesis gene TAR2 (tryptophan aminotransferase related 2). TAR2 was expressed in the pericycle and the vasculature of the mature root zone near the root tip, and was induced under low nitrogen conditions. In wild type plants, low nitrogen stimulated auxin accumulation in the non-emerged LR primordia with more than three cell layers and LR emergence. Conversely, these low nitrogen-mediated auxin accumulation and root growth responses were impaired in the tar2-c null mutant. Overexpression of TAR2 increased LR numbers under both high and low nitrogen conditions. Our results suggested that TAR2 is required for reprogramming root architecture in response to low nitrogen conditions. This finding suggests a new strategy for improving nitrogen use efficiency through the engineering of TAR2 expression in roots.
Collapse
Affiliation(s)
- Wenying Ma
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Trevisan S, Manoli A, Quaggiotti S. NO signaling is a key component of the root growth response to nitrate in Zea mays L. PLANT SIGNALING & BEHAVIOR 2014; 9:e28290. [PMID: 24613869 PMCID: PMC4091522 DOI: 10.4161/psb.28290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 05/18/2023]
Abstract
Roots are considered to be a vital organ system of plants due to their involvement in water and nutrient uptake, anchorage, propagation, storage functions, secondary metabolite (including hormones) biosynthesis, and accumulation. Crops are strongly dependent on the availability of nitrogen in soil and on the efficiency of nitrogen utilization for biomass production and yield. However, knowledge about molecular responses to nitrogen fluctuations mainly derives from the study of model species. Nitric oxide (NO) has been proposed to be implicated in plant adaptation to environment, but its exact role in the response of plants to nutritional stress is still under evaluation. Recently a novel role for NO production and scavenging, thanks to the coordinate spatio-temporal expression of nitrate reductase and non-symbiotic hemoglobins, in the maize root response to nitrate has been postulated. This control of NO homeostasis is preferentially accomplished by the cells of the root transition zone (TZ) which seem to represent the most nitrate responsive portion of maize root. The TZ is already known to function as a sensory center able to gather information from the external environment and to re-elaborate them in an adequate response. These results indicate that it could play a central role also for nitrate sensing by roots. A lot of work is still needed to identify and characterize other upstream and downstream signals involved in the "nitrate-NO" pathway, leading to root architecture adjustments and finally to stress adaptation.
Collapse
Affiliation(s)
- Sara Trevisan
- Department of Agriculture, Food, Natural Resources, Animals, and Environment (DAFNAE); University of Padua; Agripolis, Legnaro (PD), Italy
| | - Alessandro Manoli
- Department of Agriculture, Food, Natural Resources, Animals, and Environment (DAFNAE); University of Padua; Agripolis, Legnaro (PD), Italy
| | - Silvia Quaggiotti
- Department of Agriculture, Food, Natural Resources, Animals, and Environment (DAFNAE); University of Padua; Agripolis, Legnaro (PD), Italy
| |
Collapse
|
189
|
Giehl RFH, Gruber BD, von Wirén N. It's time to make changes: modulation of root system architecture by nutrient signals. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:769-78. [PMID: 24353245 DOI: 10.1093/jxb/ert421] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Root growth and development are of outstanding importance for the plant's ability to acquire water and nutrients from different soil horizons. To cope with fluctuating nutrient availabilities, plants integrate systemic signals pertaining to their nutritional status into developmental pathways that regulate the spatial arrangement of roots. Changes in the plant nutritional status and external nutrient supply modulate root system architecture (RSA) over time and determine the degree of root plasticity which is based on variations in the number, extension, placement, and growth direction of individual components of the root system. Roots also sense the local availability of some nutrients, thereby leading to nutrient-specific modifications in RSA, that result from the integration of systemic and local signals into the root developmental programme at specific steps. An in silico analysis of nutrient-responsive genes involved in root development showed that the majority of these specifically responded to the deficiency of individual nutrients while a minority responded to more than one nutrient deficiency. Such an analysis provides an interesting starting point for the identification of the molecular players underlying the sensing and transduction of the nutrient signals that mediate changes in the development and architecture of root systems.
Collapse
Affiliation(s)
- Ricardo F H Giehl
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, D-06466, Gatersleben, Germany
| | | | | |
Collapse
|
190
|
Nanjareddy K, Blanco L, Arthikala MK, Affantrange XA, Sánchez F, Lara M. Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:281-98. [PMID: 24387000 DOI: 10.1111/jipb.12156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/31/2013] [Indexed: 05/15/2023]
Abstract
Nitrogen-limited conditions are considered to be a prerequisite for legume-rhizobial symbiosis, but the effects of nitrate-rich conditions on symbiotic status remain poorly understood. We addressed this issue by examining rhizobial (Rhizobim tropici) and arbusclar mycorrhizal (Glomus intraradices) symbiosis in Phaseolus vulgaris L. cv. Negro Jamapa under nitrate pre-incubation and continuous nitrate conditions. Our results indicate that nitrate pre-incubation, independent of the concentration, did not affect nodule development. However, the continuous supply of nitrate at high concentrations impaired nodule maturation and nodule numbers. Low nitrate conditions, in addition to positively regulating nodule number, biomass, and nitrogenase activity, also extended the span of nitrogen-fixing activity. By contrast, for arbuscular mycorrhizae, continuous 10 and 50 mmol/L nitrate increased the percent root length colonization, concomitantly reduced arbuscule size, and enhanced ammonia transport without affecting phosphate transport. Therefore, in this manuscript, we have proposed the importance of nitrate as a positive regulator in promoting both rhizobial and mycorrhizal symbiosis in the common bean.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- Genómica Funcional de Eucariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México; Escuela Nacional de Estudios Superiores-UNAM, León, Blvd.UNAM 2011, Predio El Saucillo y El Potrero, Comunidad de los Tepetates, León, Gto. C.P.37684, Mexico
| | | | | | | | | | | |
Collapse
|
191
|
Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN, Sawa S, Fukuda H, von Wirén N, Takahashi H. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci U S A 2014; 111:2029-34. [PMID: 24449877 PMCID: PMC3918772 DOI: 10.1073/pnas.1319953111] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.
Collapse
Affiliation(s)
- Takao Araya
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- RIKEN Plant Science Center, Yokohama 230-0045, Japan
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Mayu Miyamoto
- RIKEN Plant Science Center, Yokohama 230-0045, Japan
| | | | | | - Soichi Kojima
- RIKEN Plant Science Center, Yokohama 230-0045, Japan
| | | | - Shinichiro Sawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; and
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; and
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- RIKEN Plant Science Center, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| |
Collapse
|
192
|
Hachiya T, Sugiura D, Kojima M, Sato S, Yanagisawa S, Sakakibara H, Terashima I, Noguchi K. High CO2 triggers preferential root growth of Arabidopsis thaliana via two distinct systems under low pH and low N stresses. PLANT & CELL PHYSIOLOGY 2014; 55:269-80. [PMID: 24401956 PMCID: PMC3913443 DOI: 10.1093/pcp/pcu001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/17/2013] [Indexed: 05/04/2023]
Abstract
Biomass allocation between shoots and roots is an important strategy used by plants to optimize growth in various environments. Root to shoot mass ratios typically increase in response to high CO2, a trend particularly evident under abiotic stress. We investigated this preferential root growth (PRG) in Arabidopsis thaliana plants cultivated under low pH/high CO2 or low nitrogen (N)/high CO2 conditions. Previous studies have suggested that changes in plant hormone, carbon (C) and N status may be related to PRG. We therefore examined the mechanisms underlying PRG by genetically modifying cytokinin (CK) levels, C and N status, and sugar signaling, performing sugar application experiments and determining primary metabolites, plant hormones and expression of related genes. Both low pH/high CO2 and low N/high CO2 stresses induced increases in lateral root (LR) number and led to high C/N ratios; however, under low pH/high CO2 conditions, large quantities of C were accumulated, whereas under low N/high CO2 conditions, N was severely depleted. Analyses of a CK-deficient mutant and a starchless mutant, in conjunction with sugar application experiments, revealed that these stresses induce PRG via different mechanisms. Metabolite and hormone profile analysis indicated that under low pH/high CO2 conditions, excess C accumulation may enhance LR number through the dual actions of increased auxin and decreased CKs.
Collapse
Affiliation(s)
- Takushi Hachiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Daisuke Sugiura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Shigeru Sato
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ko Noguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
193
|
Glycerol affects root development through regulation of multiple pathways in Arabidopsis. PLoS One 2014; 9:e86269. [PMID: 24465999 PMCID: PMC3899222 DOI: 10.1371/journal.pone.0086269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022] Open
Abstract
Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P) and H2O2 contents in seedlings, and decreased phosphate levels in roots. Upon glycerol treatment, G3P level and root development did not change in glycerol kinase mutant gli1, but G3P level increased in gpdhc1 and fad-gpdh mutants, which resulted in more severely impaired root development. Overexpression of the FAD-GPDH gene attenuated the alterations in G3P, phosphate and H2O2 levels, leading to increased tolerance to exogenous glycerol, which suggested that FAD-GPDH plays an important role in modulating this response. Free indole-3-acetic acid (IAA) content increased by 46%, and DR5pro::GUS staining increased in the stele cells of the root meristem under glycerol treatment, suggesting that glycerol likely alters normal auxin distribution. Decreases in PIN1 and PIN7 expression, β-glucuronidase (GUS) staining in plants expressing PIN7pro::GUS and green fluorescent protein (GFP) fluorescence in plants expressing PIN7pro::PIN7-GFP were observed, indicating that polar auxin transport in the root was downregulated under glycerol treatment. Analyses with auxin-related mutants showed that TIR1 and ARF7 were involved in regulating root growth under glycerol treatment. Glycerol-treated plants showed significant reductions in root meristem size and cell number as revealed by CYCB1;1pro::GUS staining. Furthermore, the expression of CDKA and CYCB1 decreased significantly in treated plants compared with control plants, implying possible alterations in cell cycle progression. Our data demonstrated that glycerol treatment altered endogenous levels of G3P, phosphate and ROS, affected auxin distribution and cell division in the root meristem, and eventually resulted in modifications of root development.
Collapse
|
194
|
Mounier E, Pervent M, Ljung K, Gojon A, Nacry P. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. PLANT, CELL & ENVIRONMENT 2014; 37:162-74. [PMID: 23731054 DOI: 10.1111/pce.12143] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 05/18/2023]
Abstract
To optimize their nitrogen nutrition, plants are able to direct root growth in nitrate-rich patches. This depends in Arabidopsis on the NRT1.1 nitrate transporter/sensor. NRT1.1 was shown to display on homogenous medium, an auxin transport activity that lowers auxin accumulation in lateral roots and inhibits their growth at low nitrate. Using a split-root system, we explored the hypothesis that preferential lateral root growth in the nitrate-rich side involves the NRT1.1-dependent repression of lateral root growth in the low nitrate side. Data show that NRT1.1 acts locally to modulate both auxin levels and meristematic activity in response to the low nitrate concentration directly experienced by lateral roots leading to a repression of their growth. A stimulatory role of NRT1.1 in the high nitrate side, which does not rely on changes in auxin levels, is also observed. Altogether, our data suggest that NRT1.1 allows preferential root colonization of nitrate-rich patches by both preventing root growth in response to low nitrate, through modulation of auxin traffic, and stimulating root growth in response to high nitrate, through a yet uncharacterized mechanism. In addition, transcriptional regulation of NRT1.1 affects both mechanisms allowing plants to modulate the effect of nitrate on root branching.
Collapse
Affiliation(s)
- Emmanuelle Mounier
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, 34060, Montpellier Cedex 1, France
| | | | | | | | | |
Collapse
|
195
|
Canales J, Moyano TC, Villarroel E, Gutiérrez RA. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. FRONTIERS IN PLANT SCIENCE 2014; 5:22. [PMID: 24570678 PMCID: PMC3917222 DOI: 10.3389/fpls.2014.00022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/20/2014] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than 2000 genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and 11 highly co-expressed gene clusters (modules). Four of these gene network modules have robust nitrate responsive functions such as transport, signaling, and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants.
Collapse
Affiliation(s)
| | | | | | - Rodrigo A. Gutiérrez
- *Correspondence: Rodrigo A. Gutiérrez, Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Pontifical Catholic University of Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile e-mail:
| |
Collapse
|
196
|
Bellini C, Pacurar DI, Perrone I. Adventitious roots and lateral roots: similarities and differences. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:639-66. [PMID: 24555710 DOI: 10.1146/annurev-arplant-050213-035645] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.
Collapse
Affiliation(s)
- Catherine Bellini
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE90187 Umeå, Sweden; , ,
| | | | | |
Collapse
|
197
|
Rubio-Asensio JS, López-Berenguer C, García-de la Garma J, Burger M, Bloom AJ. Root Strategies for Nitrate Assimilation. SOIL BIOLOGY 2014. [DOI: 10.1007/978-3-642-54276-3_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
198
|
Yu P, Li X, Yuan L, Li C. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. PHYSIOLOGIA PLANTARUM 2014; 150:133-44. [PMID: 23724916 DOI: 10.1111/ppl.12075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/20/2013] [Indexed: 05/03/2023]
Abstract
Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | | | | | | |
Collapse
|
199
|
Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:185-200. [PMID: 24220653 PMCID: PMC3883287 DOI: 10.1093/jxb/ert358] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is derived mainly from the study of model species. Nitric oxide (NO) has been recently proposed to be implicated in plant responses to environmental stresses, but its exact role in the response of plants to nutritional stress is still under evaluation. In this work, the role of NO production by maize roots after nitrate perception was investigated by focusing on the regulation of transcription of genes involved in NO homeostasis and by measuring NO production in roots. Moreover, its involvement in the root growth response to nitrate was also investigated. The results provide evidence that NO is produced by nitrate reductase as an early response to nitrate supply and that the coordinated induction of non-symbiotic haemoglobins (nsHbs) could finely regulate the NO steady state. This mechanism seems to be implicated on the modulation of the root elongation in response to nitrate perception. Moreover, an improved agar-plate system for growing maize seedlings was developed. This system, which allows localized treatments to be performed on specific root portions, gave the opportunity to discern between localized and systemic effects of nitrate supply to roots.
Collapse
Affiliation(s)
- Alessandro Manoli
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Maura Begheldo
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Sara Trevisan
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Silvia Quaggiotti
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
200
|
Song W, Sun H, Li J, Gong X, Huang S, Zhu X, Zhang Y, Xu G. Auxin distribution is differentially affected by nitrate in roots of two rice cultivars differing in responsiveness to nitrogen. ANNALS OF BOTANY 2013; 112:1383-93. [PMID: 24095838 PMCID: PMC3806541 DOI: 10.1093/aob/mct212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/05/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Although ammonium (NH4(+)) is the preferred form of nitrogen over nitrate (NO3(-)) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3(-) nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3(-) availability are not known. METHODS Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in 'Nanguang' and 'Elio' rice cultivars, which show high and low responsiveness to NO3(-), respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants. KEY RESULTS Initiation of LRs was enhanced by PNN after 7 d cultivation in 'Nanguang' but not in 'Elio'. Auxin concentration in the roots of 'Nanguang' increased by approx. 24 % after 5 d cultivation with PNN compared with NH4(+) as the sole nitrogen source, but no difference was observed in 'Elio'. More auxin flux into the LR zone in 'Nanguang' roots was observed in response to NO3(-) compared with NH4(+) treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in 'Nanguang' than in 'Elio'. CONCLUSIONS The results indicate that higher NO3(-) responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar 'Nanguang'.
Collapse
Affiliation(s)
- Wenjing Song
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huwei Sun
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Li
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianpo Gong
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuangjie Huang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xudong Zhu
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yali Zhang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China
- For correspondence.
| | - Guohua Xu
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|