151
|
Takahashi A. Social Stress and Aggression in Murine Models. Curr Top Behav Neurosci 2021; 54:181-208. [PMID: 34432257 DOI: 10.1007/7854_2021_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Throughout life, animals engage in a variety of social interactions ranging from the affiliative mother-offspring interaction and juvenile play to aggressive conflict. Deprivation of the appropriate social interaction during early development is stressful and disrupts the development of appropriate social behaviors and emotional responses later in life. Additionally, agonistic encounters can induce stress responses in both dominant and subordinate individuals. This review focuses on the social stress that escalates aggressive behavior of animals and discusses the known neurobiological and physiological mechanisms underlying the link between social stress and aggression. Social instigation, a brief exposure to a rival without physical contact, induces aggressive arousal in dominant animals and escalates aggressive behaviors in the following agonistic encounter. Furthermore, the experience of winning an aggressive encounter is known to be as rewarding as addictive drugs, and the experience of repeatedly winning induces addiction-like behavioral and neurobiological changes and leads to abnormal aggressive behaviors. Social isolation stress in early development from neonatal to juvenile and adolescent periods also affects aggressive behavior, but these effects largely depend on the strain, sex, and species as well as the stage of development in which isolation stress is experienced. In conclusion, understanding neurobiological mechanisms underlying the link between social stress and aggression will provide an important insight for the development of more effective and tolerable treatments for maladaptive aggression in humans.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
152
|
Bisaz R, Bessières B, Miranda JM, Travaglia A, Alberini CM. Recovery of memory from infantile amnesia is developmentally constrained. ACTA ACUST UNITED AC 2021; 28:300-306. [PMID: 34400531 PMCID: PMC8372561 DOI: 10.1101/lm.052621.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Episodic memories formed during infancy are rapidly forgotten, a phenomenon associated with infantile amnesia, the inability of adults to recall early-life memories. In both rats and mice, infantile memories, although not expressed, are actually stored long term in a latent form. These latent memories can be reinstated later in life by certain behavioral reminders or by artificial reactivations of neuronal ensembles activated at training. Whether the recovery of infantile memories is limited by developmental age, maternal presence, or contingency of stimuli presentation remains to be determined. Here, we show that the return of inhibitory avoidance memory in rats following a behavioral reactivation consisting of an exposure to the context (conditioned stimuli [CS]) and footshock (unconditioned stimuli [US]) given in a temporally unpaired fashion, is evident immediately after US and is limited by the developmental age at which the reactivations are presented; however, it is not influenced by maternal presence or the time interval between training and reactivation. We conclude that one limiting factor for infantile memory reinstatement is developmental age, suggesting that a brain maturation process is necessary to allow the recovery of a “lost” infantile memory.
Collapse
Affiliation(s)
- Reto Bisaz
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Janelle M Miranda
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
153
|
Conditional Inactivation of Limbic Neuropeptide Y-1 Receptors Increases Vulnerability to Diet-Induced Obesity in Male Mice. Int J Mol Sci 2021; 22:ijms22168745. [PMID: 34445453 PMCID: PMC8395771 DOI: 10.3390/ijms22168745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
NPY and its Y1 cognate receptor (Y1R) have been shown to be involved in the regulation of stress, anxiety, depression and energy homeostasis. We previously demonstrated that conditional knockout of Npy1r gene in the excitatory neurons of the forebrain of adolescent male mice (Npy1rrfb mice) decreased body weight growth and adipose tissue and increased anxiety. In the present study, we used the same conditional system to examine whether the targeted disruption of the Npy1r gene in limbic areas might affect susceptibility to obesity and associated disorders during adulthood in response to a 3-week high-fat diet (HFD) regimen. We demonstrated that following HFD exposure, Npy1rrfb male mice showed increased body weight, visceral adipose tissue, and blood glucose levels, hyperphagia and a dysregulation of calory intake as compared to control Npy1r2lox mice. These results suggest that low expression of Npy1r in limbic areas impairs habituation to high caloric food and causes high susceptibility to diet-induced obesity and glucose intolerance in male mice, uncovering a specific contribution of the limbic Npy1r gene in the dysregulation of the eating/satiety balance.
Collapse
|
154
|
Harmon-Jones SK, Richardson R. Maternal care, infant fear memory retention, and the moderating role of variations in separation-induced ultrasonic vocalizations. Dev Psychobiol 2021; 63:e22177. [PMID: 34363691 DOI: 10.1002/dev.22177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023]
Abstract
Individual differences in parental care predict variations in offspring anxiety across species. Here, we examined whether between- and within-litter variations in maternal licking (a measure of rodent maternal care) predict infant rats' retention of an aversive association (a predictor of later anxiety-like behavior) and whether the relationship between maternal licking and infant fear memory is moderated by variations in infants' solicitation of maternal care. Unique marks were drawn on each pup, coded for fading, and touched up daily across the first week of life. Mark fading was used as an index of maternal licking where greater fading suggested more maternal licking the previous day. Separation-induced ultrasonic vocalizations (USVs) were recorded to measure individual differences in solicitation of maternal care. Infants were fear conditioned at postnatal day (P) 17 and tested for fear of the conditioned stimulus (CS) 1 week later. Across litters, mark fading negatively predicted CS-elicited fear at test for male, but not female, offspring. This relationship was moderated by number of USVs emitted at P1, such that mark fading only predicted CS-elicited fear for males that emitted a low number of USVs. These results suggest that offspring solicitation may moderate the relationship between maternal care and fear/anxiety.
Collapse
Affiliation(s)
| | - Rick Richardson
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
155
|
López-Rodríguez D, Aylwin CF, Delli V, Sevrin E, Campanile M, Martin M, Franssen D, Gérard A, Blacher S, Tirelli E, Noël A, Lomniczi A, Parent AS. Multi- and Transgenerational Outcomes of an Exposure to a Mixture of Endocrine-Disrupting Chemicals (EDCs) on Puberty and Maternal Behavior in the Female Rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87003. [PMID: 34383603 PMCID: PMC8360047 DOI: 10.1289/ehp8795] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The effects of endocrine-disrupting chemicals (EDCs) on fertility and reproductive development represent a rising concern in modern societies. Although the neuroendocrine control of sexual maturation is a major target of EDCs, little is known about the potential role of the hypothalamus in puberty and ovulation disruption transmitted across generations. OBJECTIVES We hypothesized that developmental exposure to an environmentally relevant dose of EDC mixture could induce multi- and/or transgenerational alterations of sexual maturation and maternal care in female rats through epigenetic reprograming of the hypothalamus. We investigated the transmission of a disrupted reproductive phenotype via the maternal germline or via nongenomic mechanisms involving maternal care. METHODS Adult female Wistar rats were exposed prior to and during gestation and until the end of lactation to a mixture of the following 13 EDCs: di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), vinclozolin, prochloraz, procymidone, linuron, epoxynaxole, dichlorodiphenyldichloroethylene, octyl methoxynimmate, 4-methylbenzylidene camphor (4-MBC), butylparaben, and acetaminophen. Perinatally exposed offspring (F1) were mated with unexposed males to generate germ cell (F2) and transgenerationally exposed (F3 and F4) females. Sexual maturation, maternal behavior, and hypothalamic targets of exposure were studied across generations. RESULTS Germ cell (F2) and transgenerationally (F3) EDC-exposed females, but not F1, displayed delayed pubertal onset and altered folliculogenesis. We reported a transgenerational alteration of key hypothalamic genes controlling puberty and ovulation (Kiss1, Esr1, and Oxt), and we identified the hypothalamic polycomb group of epigenetic repressors as actors of this mechanism. Furthermore, we found a multigenerational reduction of maternal behavior (F1-F3) induced by a loss in hypothalamic dopaminergic signaling. Using a cross-fostering paradigm, we identified that the reduction in maternal phenotype was normalized in EDC-exposed pups raised by unexposed dams, but no reversal of the pubertal phenotype was achieved. DISCUSSION Rats developmentally exposed to an EDC mixture exhibited multi- and transgenerational disruption of sexual maturation and maternal care via hypothalamic epigenetic reprogramming. These results raise concerns about the impact of EDC mixtures on future generations. https://doi.org/10.1289/EHP8795.
Collapse
Affiliation(s)
| | - Carlos Francisco Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | | - Elena Sevrin
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marzia Campanile
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marion Martin
- Lille Neuroscience & Cognition (LilNCog), Institut national de la santé et de la recherche médicale (Inserm), CHU Lille, Lille, France
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Arlette Gérard
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ezio Tirelli
- Department of Psychology: Cognition and Behavior, University of Liège, Liège, Belgium
| | - Agnès Noël
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liège, Liège, Belgium
| |
Collapse
|
156
|
Antunes DF, Teles MC, Zuelling M, Friesen CN, Oliveira RF, Aubin‐Horth N, Taborsky B. Early social deprivation shapes neuronal programming of the social decision-making network in a cooperatively breeding fish. Mol Ecol 2021; 30:4118-4132. [PMID: 34133783 PMCID: PMC8457231 DOI: 10.1111/mec.16019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
The early social environment an animal experiences may have pervasive effects on its behaviour. The social decision-making network (SDMN), consisting of interconnected brain nuclei from the forebrain and midbrain, is involved in the regulation of behaviours during social interactions. In species with advanced sociality such as cooperative breeders, offspring are exposed to a large number and a great diversity of social interactions every day of their early life. This diverse social environment may have life-long consequences on the development of several neurophysiological systems within the SDMN, although these effects are largely unknown. We studied these life-long effects in a cooperatively breeding fish, Neolamprologus pulcher, focusing on the expression of genes involved in the monoaminergic and stress response systems in the SDMN. N. pulcher fry were raised until an age of 2 months either with their parents, subordinate helpers and same-clutch siblings (+F), or with same-clutch siblings only (-F). Analysis of the expression of glucocorticoid receptor, mineralocorticoid receptor, corticotropin releasing factor, dopamine receptors 1 and 2, serotonin transporter and DNA methyltransferase 1 genes showed that early social experiences altered the neurogenomic profile of the preoptic area. Moreover, the dopamine receptor 1 gene was up-regulated in the preoptic area of -F fish compared to +F fish. -F fish also showed up-regulation of GR1 expression in the dorsal medial telencephalon (functional equivalent to the basolateral amygdala), and in the dorsolateral telencephalon (functional equivalent to the hippocampus). Our results suggest that early social environment has life-long effects on the development of several neurophysiological systems within the SDMN.
Collapse
Affiliation(s)
- Diogo F. Antunes
- Division of Behavioural EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| | - Magda C. Teles
- Instituto Gulbenkian de CiênciaOeirasPortugal
- ISPA‐Instituto UniversitárioLisbonPortugal
| | - Matthew Zuelling
- Division of Evolutionary EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| | - Caitlin N. Friesen
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| | - Rui F. Oliveira
- Instituto Gulbenkian de CiênciaOeirasPortugal
- ISPA‐Instituto UniversitárioLisbonPortugal
- Champalimaud ResearchLisbonPortugal
| | - Nadia Aubin‐Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Barbara Taborsky
- Division of Behavioural EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| |
Collapse
|
157
|
Taff CC, Zimmer C, Scheck D, Ryan TA, Houtz JL, Smee MR, Hendry TA, Vitousek MN. Plumage manipulation alters associations between behaviour, physiology, the internal microbiome and fitness. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
158
|
Abstract
Animal and humans exposed to stress early in life are more likely to suffer from long-term behavioral, mental health, metabolic, immune, and cardiovascular health consequences. The hypothalamus plays a nodal role in programming, controlling, and regulating stress responses throughout the life course. Epigenetic reprogramming in the hippocampus and the hypothalamus play an important role in adapting genome function to experiences and exposures during the perinatal and early life periods and setting up stable phenotypic outcomes. Epigenetic programming during development enables one genome to express multiple cell type identities. The most proximal epigenetic mark to DNA is a covalent modification of the DNA itself by enzymatic addition of methyl moieties. Cell-type-specific DNA methylation profiles are generated during gestational development and define cell and tissue specific phenotypes. Programming of neuronal phenotypes and sex differences in the hypothalamus is achieved by developmentally timed rearrangement of DNA methylation profiles. Similarly, other stations in the life trajectory such as puberty and aging involve predictable and scheduled reorganization of DNA methylation profiles. DNA methylation and other epigenetic marks are critical for maintaining cell-type identity in the brain, across the body, and throughout life. Data that have emerged in the last 15 years suggest that like its role in defining cell-specific phenotype during development, DNA methylation might be involved in defining experiential identities, programming similar genes to perform differently in response to diverse experiential histories. Early life stress impact on lifelong phenotypes is proposed to be mediated by DNA methylation and other epigenetic marks. Epigenetic marks, as opposed to genetic mutations, are reversible by either pharmacological or behavioral strategies and therefore offer the potential for reversing or preventing disease including behavioral and mental health disorders. This chapter discusses data testing the hypothesis that DNA methylation modulations of the HPA axis mediate the impact of early life stress on lifelong behavioral and physical phenotypes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
159
|
Laubach ZM, Greenberg JR, Turner JW, Montgomery TM, Pioon MO, Sawdy MA, Smale L, Cavalcante RG, Padmanabhan KR, Lalancette C, vonHoldt B, Faulk CD, Dolinoy DC, Holekamp KE, Perng W. Early-life social experience affects offspring DNA methylation and later life stress phenotype. Nat Commun 2021; 12:4398. [PMID: 34285226 PMCID: PMC8292380 DOI: 10.1038/s41467-021-24583-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Studies in rodents and captive primates suggest that the early-life social environment affects future phenotype, potentially through alterations to DNA methylation. Little is known of these associations in wild animals. In a wild population of spotted hyenas, we test the hypothesis that maternal care during the first year of life and social connectedness during two periods of early development leads to differences in DNA methylation and fecal glucocorticoid metabolites (fGCMs) later in life. Here we report that although maternal care and social connectedness during the den-dependent life stage are not associated with fGCMs, greater social connectedness during the subadult den-independent life stage is associated with lower adult fGCMs. Additionally, more maternal care and social connectedness after den independence correspond with higher global (%CCGG) DNA methylation. We also note differential DNA methylation near 5 genes involved in inflammation, immune response, and aging that may link maternal care with stress phenotype.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, USA MI, USA.
- BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.
- Mara Hyena Project, Masai Mara National Reserve, Narok, Kenya.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Julia R Greenberg
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, USA MI, USA
- Mara Hyena Project, Masai Mara National Reserve, Narok, Kenya
| | - Julie W Turner
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, USA MI, USA
- BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Mara Hyena Project, Masai Mara National Reserve, Narok, Kenya
| | - Tracy M Montgomery
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, USA MI, USA
- Mara Hyena Project, Masai Mara National Reserve, Narok, Kenya
- Max Planck Institute of Animal Behavior, Department for the Ecology of Animal Societies, Konstanz, Germany
| | - Malit O Pioon
- Mara Hyena Project, Masai Mara National Reserve, Narok, Kenya
| | - Maggie A Sawdy
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, USA MI, USA
| | - Laura Smale
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | | | | | | | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Dana C Dolinoy
- Epigenomics Core, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, USA MI, USA
- BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Mara Hyena Project, Masai Mara National Reserve, Narok, Kenya
| | - Wei Perng
- Department of Epidemiology and Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
160
|
Kringel D, Malkusch S, Lötsch J. Drugs and Epigenetic Molecular Functions. A Pharmacological Data Scientometric Analysis. Int J Mol Sci 2021; 22:7250. [PMID: 34298869 PMCID: PMC8311652 DOI: 10.3390/ijms22147250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions of drugs with the classical epigenetic mechanism of DNA methylation or histone modification are increasingly being elucidated mechanistically and used to develop novel classes of epigenetic therapeutics. A data science approach is used to synthesize current knowledge on the pharmacological implications of epigenetic regulation of gene expression. Computer-aided knowledge discovery for epigenetic implications of current approved or investigational drugs was performed by querying information from multiple publicly available gold-standard sources to (i) identify enzymes involved in classical epigenetic processes, (ii) screen original biomedical scientific publications including bibliometric analyses, (iii) identify drugs that interact with epigenetic enzymes, including their additional non-epigenetic targets, and (iv) analyze computational functional genomics of drugs with epigenetic interactions. PubMed database search yielded 3051 hits on epigenetics and drugs, starting in 1992 and peaking in 2016. Annual citations increased to a plateau in 2000 and show a downward trend since 2008. Approved and investigational drugs in the DrugBank database included 122 compounds that interacted with 68 unique epigenetic enzymes. Additional molecular functions modulated by these drugs included other enzyme interactions, whereas modulation of ion channels or G-protein-coupled receptors were underrepresented. Epigenetic interactions included (i) drug-induced modulation of DNA methylation, (ii) drug-induced modulation of histone conformations, and (iii) epigenetic modulation of drug effects by interference with pharmacokinetics or pharmacodynamics. Interactions of epigenetic molecular functions and drugs are mutual. Recent research activities on the discovery and development of novel epigenetic therapeutics have passed successfully, whereas epigenetic effects of non-epigenetic drugs or epigenetically induced changes in the targets of common drugs have not yet received the necessary systematic attention in the context of pharmacological plasticity.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
161
|
Yue A, Bai Y, Shi Y, Luo R, Rozelle S, Medina A, Sylvia S. Parental Migration and Early Childhood Development in Rural China. Demography 2021; 57:403-422. [PMID: 32166535 DOI: 10.1007/s13524-019-00849-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nearly one-quarter of all children under age 2 in China are left behind in the countryside as parents migrate to urban areas for work. We use a four-wave longitudinal survey following young children from 6 to 30 months of age to provide first evidence on the effects of parental migration on development, health, and nutritional outcomes in the critical first stages of life. We find that maternal migration has a negative effect on cognitive development: migration before children reach 12 months of age reduces cognitive development by 0.3 standard deviations at age 2. Possible mechanisms include reduced dietary diversity and engagement in stimulating activities, both known to be causally associated with skill development in early life. We find no effects on other dimensions of physical and social-emotional health.
Collapse
Affiliation(s)
- Ai Yue
- Center for Experimental Economics in Education (CEEE), Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, China
| | - Yu Bai
- School of Economics, Minzu University of China, 27 Zhongguancun South Avenue, Beijing, China.
| | - Yaojiang Shi
- Center for Experimental Economics in Education (CEEE), Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, China
| | - Renfu Luo
- China Center for Agricultural Policy, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Scott Rozelle
- Freeman Spogli Institute for International Studies, Stanford University, Stanford, CA, USA
| | - Alexis Medina
- Freeman Spogli Institute for International Studies, Stanford University, Stanford, CA, USA
| | - Sean Sylvia
- Department of Health Policy and Management, Gillings School of Global Public Health and the Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
162
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
163
|
Valera-Marín G, Young LJ, Camacho F, Paredes RG, Rodríguez VM, Díaz NF, Portillo W. Raised without a father: monoparental care effects over development, sexual behavior, sexual reward, and pair bonding in prairie voles. Behav Brain Res 2021; 408:113264. [PMID: 33775781 PMCID: PMC8647045 DOI: 10.1016/j.bbr.2021.113264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Around 5 % of mammals are socially monogamous and both parents provide care to the pups (biparental, BP). Prairie voles are socially monogamous rodents extensively used to understand the neurobiological basis of pair bond formation and the consequences that the absence of one parent has in the offspring. Pair bonding, characterized by selective affiliation with a sexual partner, is facilitated in prairie voles by mating for 6 h or cohabitation without mating for 24 h. It was previously shown that prairie voles raised by their mother alone (monoparental, MP) show delayed pair bond formation upon reaching adulthood. In this study we evaluated the effects of BP and MP care provided on the offspring's development, ability to detect olfactory cues, preference for sexually relevant odors, display of sexual behavior, as well as the rewarding effects of mating. We also measured dopamine and serotonin concentration in the nucleus accumbens (ventral striatum) and dorsal striatum after cohabitation and mating (CM) to determine if differences in these neurotransmitters could underlie the delay in pair bond formation in MP voles. Our data showed that MP voles received less licking/grooming than BP voles, but no developmental differences between groups were found. No differences were found in the detection and discrimination of olfactory cues or preference for sexually relevant odors, as all groups innately preferred opposite sex odors. No differences were found in the display of sexual behavior. However, CM induced reinforcing properties only in BP males, followed by a preference for their sexual partner in BP but not MP males. BP males showed an increase in dopamine turnover (DOPAC/DA and HVA/DA) in the nucleus accumbens in comparison to MP voles. No differences in dopamine, serotonin or their metabolites were found in the dorsal striatum. Our results indicate that MP voles that received less licking behavior exhibit a delay in pair bond formation possibly because the sexual interaction is not rewarding enough.
Collapse
Affiliation(s)
- Guillermo Valera-Marín
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd., Atlanta, GA, 30329, United States
| | - Francisco Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Mexico
| | - Verónica M Rodríguez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Néstor F Díaz
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Col. Lomas Virreyes, Del. Miguel Hidalgo, Ciudad de México, 11000, Mexico.
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
164
|
Milligan Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, Villemagne V, Munyard K, Laws SM, Verdile G, Groth D. Chronic stress and Alzheimer's disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc 2021; 96:2209-2228. [PMID: 34159699 DOI: 10.1111/brv.12750] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022]
Abstract
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic-pituitary-adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals' risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.
Collapse
Affiliation(s)
- Ayeisha Milligan Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Hazel Quek
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - Anthony White
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - John Haynes
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Victor Villemagne
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Kylie Munyard
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Simon M Laws
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Giuseppe Verdile
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - David Groth
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| |
Collapse
|
165
|
Rêgo DDSB, Pires JM, Foresti ML, Mello L, Leslie ATFS. Does neonatal manipulation on continuous or alternate days change maternal behavior? Int J Dev Neurosci 2021; 81:759-765. [PMID: 34143504 DOI: 10.1002/jdn.10136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
Maternal separation and neonatal manipulation of pups produce changes in maternal behavior after the dam-pup reunion. Here, we examined whether continuous versus alternating days of neonatal manipulation during the first 8 postnatal days produces differential changes in maternal and non-maternal behaviors in rats. We found that both maternal separation protocols increased anogenital licking after dam-pup reunion, reflecting increased maternal care of pups.
Collapse
Affiliation(s)
| | - Jaime Moreira Pires
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | - Luiz Mello
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brasil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brasil
| | | |
Collapse
|
166
|
Girard-Buttoz C, Tkaczynski PJ, Samuni L, Fedurek P, Gomes C, Löhrich T, Manin V, Preis A, Valé PF, Deschner T, Wittig RM, Crockford C. Early maternal loss leads to short- but not long-term effects on diurnal cortisol slopes in wild chimpanzees. eLife 2021; 10:e64134. [PMID: 34133269 PMCID: PMC8208813 DOI: 10.7554/elife.64134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
The biological embedding model (BEM) suggests that fitness costs of maternal loss arise when early-life experience embeds long-term alterations to hypothalamic-pituitary-adrenal (HPA) axis activity. Alternatively, the adaptive calibration model (ACM) regards physiological changes during ontogeny as short-term adaptations. Both models have been tested in humans but rarely in wild, long-lived animals. We assessed whether, as in humans, maternal loss had short- and long-term impacts on orphan wild chimpanzee urinary cortisol levels and diurnal urinary cortisol slopes, both indicative of HPA axis functioning. Immature chimpanzees recently orphaned and/or orphaned early in life had diurnal cortisol slopes reflecting heightened activation of the HPA axis. However, these effects appeared short-term, with no consistent differences between orphan and non-orphan cortisol profiles in mature males, suggesting stronger support for the ACM than the BEM in wild chimpanzees. Compensatory mechanisms, such as adoption, may buffer against certain physiological effects of maternal loss in this species.
Collapse
Affiliation(s)
- Cédric Girard-Buttoz
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Patrick J Tkaczynski
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Liran Samuni
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Pawel Fedurek
- Division of Psychology, University of StirlingStirlingUnited Kingdom
| | - Cristina Gomes
- Tropical Conservation Institute, Florida International UniversityMiamiUnited States
| | - Therese Löhrich
- World Wide Fund for Nature, Dzanga Sangha Protected AreasBanguiCentral African Republic
- Robert Koch Institute, Epidemiology of Highly Pathogenic MicroorganismsBerlinGermany
| | - Virgile Manin
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Anna Preis
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Prince F Valé
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Centre Suisse de Recherches Scientifiques en Côte d'IvoireAbidjanCôte d'Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët BoignyAbidjanCôte d'Ivoire
| | - Tobias Deschner
- Interim Group Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Roman M Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Institut des Sciences Cognitives, CNRSLyonFrance
| |
Collapse
|
167
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
168
|
Kooiker CL, Birnie MT, Baram TZ. The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Front Behav Neurosci 2021; 15:673162. [PMID: 34079442 PMCID: PMC8166219 DOI: 10.3389/fnbeh.2021.673162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Early-life experiences influence a broad spectrum of behaviors throughout the lifespan that contribute to resilience or vulnerability to mental health disorders. Yet, how emotionally salient experiences early in life are encoded, stored, and processed and the mechanisms by which they influence future behaviors remain poorly understood. The paraventricular nucleus of the thalamus (PVT) is a key structure in modulating positive and negative experiences and behaviors in adults. However, little is known of the PVT's role in encoding and integrating emotionally salient experiences that occur during neonatal, infancy, and childhood periods. In this review, we (1) describe the functions and connections of the PVT and its regulation of behavior, (2) introduce novel technical approaches to elucidating the role of the PVT in mediating enduring changes in adult behaviors resulting from early-life experiences, and (3) conclude that PVT neurons of neonatal rodents are engaged by both positive and negative emotionally salient experiences, and their activation may enduringly govern future behavior-modulating PVT activity during emotionally salient contexts.
Collapse
Affiliation(s)
- Cassandra L. Kooiker
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Matthew T. Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
169
|
Burstein O, Simon N, Simchon-Tenenbaum Y, Rehavi M, Franko M, Shamir A, Doron R. Moderation of the transgenerational transference of antenatal stress-induced anxiety. Transl Psychiatry 2021; 11:268. [PMID: 33947833 PMCID: PMC8094124 DOI: 10.1038/s41398-021-01383-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Maternal stress has debilitating implications for both mother and child, including increased risk for anxiety. The current COVID-19 pandemic escalates these phenomena, thus, urging the need to further explore and validate feasible therapeutic options. Unlike the protracted nature of clinical studies, animal models could offer swift evidence. Prominent candidates for treatment are selective serotonin reuptake inhibitors (SSRIs) to the mother, that putatively accommodate maternal functioning, and, thereby, also protect the child. However, SSRIs might have deleterious effects. It is important to assess whether SSRIs and other pharmacotherapies can moderate the transference of anxiety by soothing maternal anxiety and to examine the extent of offspring's exposure to the drugs via lactation. To our knowledge, the possibility that antenatal stress exacerbates lactation-driven exposure to SSRIs has not been tested yet. Thirty ICR-outbred female mice were exposed to stress during gestation and subsequently administered with either the SSRI, escitalopram, or the novel herbal candidate, shan-zha, during lactation. Upon weaning, both dams' and pups' anxiety-like behavior and serum escitalopram levels were assessed. The major findings of the current study show that both agents moderated the antenatal stress-induced transgenerational transference of anxiety by ameliorating dams' anxiety. Interestingly though, pups' exposure to escitalopram via lactation was exacerbated by antenatal stress. The latter finding provides a significant insight into the mechanism of lactation-driven exposure to xenobiotics and calls for a further consideration vis-à-vis the administration of other drugs during breastfeeding.
Collapse
Affiliation(s)
- Or Burstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - Noam Simon
- School of Behavioral Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv-Yaffo, Israel
| | - Yaarit Simchon-Tenenbaum
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Moshe Rehavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Motty Franko
- Department of Psychology, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Education and Psychology, The Open University of Israel, Raanana, Israel
| | - Alon Shamir
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Mazor Mental Health Center, Akko, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University of Israel, Raanana, Israel.
| |
Collapse
|
170
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
171
|
Norholt H. Delivering Clinically on Our Knowledge of Oxytocin and Sensory Stimulation: The Potential of Infant Carrying in Primary Prevention. Front Psychol 2021; 11:590051. [PMID: 33995157 PMCID: PMC8116555 DOI: 10.3389/fpsyg.2020.590051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Oxytocin (OT) is one of the most intensively researched neuropeptides during the three past decades. In benign social contexts, OT exerts a range of desirable socioemotional, stress-reducing, and immunoregulatory effects in mammals and humans and influences mammalian parenting. Consequentially, research in potential pharmacological applications of OT toward human social deficits/disorders and physical illness has increased substantially. Regrettably, the results from the administration of exogenous OT are still relatively inconclusive. Research in rodent maternal developmental programming has demonstrated the susceptibility of offspring endogenous OT systems to maternal somatosensory stimulation, with consequences for behavioral, epigenetic, cognitive, and neurological outcomes. A translation of this animal research into practically feasible human parenting recommendations has yet to happen, despite the significant prevention potential implied by the maternal developmental programming research. Extended physical contact with full-term healthy infants in the months following birth (infant carrying) might constitute the human equivalent of those specific rodent maternal behaviors, found to positively influence emerging OT systems. Findings from both OT and maternal programming research parallel those found for infants exposed to such extended parental physical contact, whether through skin-to-skin contact or infant carrying. Clinical support of parents to engage in extended physical contact represents a feasible intervention to create optimum conditions for the development of infant OT systems, with potential beneficial long-term health effects.
Collapse
Affiliation(s)
- Henrik Norholt
- SomAffect - The Somatosensory & Affective Neuroscience Group, Liverpool, United Kingdom
| |
Collapse
|
172
|
Lauby SC, Fleming AS, McGowan PO. Beyond maternal care: The effects of extra-maternal influences within the maternal environment on offspring neurodevelopment and later-life behavior. Neurosci Biobehav Rev 2021; 127:492-501. [PMID: 33905789 DOI: 10.1016/j.neubiorev.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 01/26/2023]
Abstract
The early-life maternal environment has a profound and persistent effect on offspring neuroendocrine function, neurotransmitter systems, and behavior. Studies using rodent models suggest that early-life maternal care can influence the 'developmental programming' of offspring in part through altered epigenetic regulation of specific genes. The exploration of epigenetic regulation of these genes as a biological mechanism has been important to our understanding of how animals adapt to their environments and how these developmental trajectories may be altered. However, other non-maternal factors have been shown to act directly, or to interact with maternal care, to influence later-life phenotype. Based on accumulating evidence, including our research, we discuss other important influences on the developmental programming of offspring. We highlight early-life variations in temperature exposure and offspring genotype x environment interactions as prominent examples. We conclude with recommendations for future investigations on how early-life maternal care and extra-maternal influences lead to persistent changes in the brain and behavior of the offspring throughout development.
Collapse
Affiliation(s)
- Samantha C Lauby
- Department of Biological Sciences, University of Toronto Scarborough Campus, Scarborough, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alison S Fleming
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Patrick O McGowan
- Department of Biological Sciences, University of Toronto Scarborough Campus, Scarborough, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
173
|
The differential calibration of the HPA axis as a function of trauma versus adversity: A systematic review and p-curve meta-analyses. Neurosci Biobehav Rev 2021; 127:54-135. [PMID: 33857580 DOI: 10.1016/j.neubiorev.2021.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Although there is an abundance of evidence linking the function of the hypothalamic-pituitary-adrenal (HPA) axis to adverse early-life experiences, the precise nature of the association remains unclear. Some evidence suggests early-life adversity leads to cortisol hyper-reactivity, while other evidence suggests adversity leads to cortisol hypo-reactivity. Here, we distinguish between trauma and adversity, and use p-curves to interrogate the conflicting literature. In Study 1, trauma was operationalized according to DSM-5 criteria; the p-curve analysis included 68 articles and revealed that the literature reporting associations between trauma and blunted cortisol reactivity contains evidential value. Study 2 examined the relationship between adversity and cortisol reactivity. Thirty articles were included in the analysis, and p-curve demonstrated that adversity is related to heightened cortisol reactivity. These results support an inverted U-shaped function relating severity of adversity and cortisol reactivity, and underscore the importance of distinguishing between "trauma" and "adversity".
Collapse
|
174
|
Christensen J, Beveridge JK, Wang M, Orr SL, Noel M, Mychasiuk R. A Pilot Study Investigating the Role of Gender in the Intergenerational Relationships between Gene Expression, Chronic Pain, and Adverse Childhood Experiences in a Clinical Sample of Youth with Chronic Pain. EPIGENOMES 2021; 5:epigenomes5020009. [PMID: 34968296 PMCID: PMC8594698 DOI: 10.3390/epigenomes5020009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is a highly prevalent and costly issue that often emerges during childhood or adolescence and persists into adulthood. Adverse childhood experiences (ACEs) increase risk for several adverse health conditions, including chronic pain. Recent evidence suggests that parental trauma (ACEs, post-traumatic stress disorder (PTSD) symptoms) confers risk of poor health outcomes in their children. Intergenerational relationships between parental trauma and child chronic pain may be mediated by epigenetic mechanisms. A clinical sample of youth with chronic pain and their parents completed psychometrically sound questionnaires assessing ACEs, PTSD symptoms, and chronic pain, and provided a saliva sample. These were used to investigate the intergenerational relationships between four epigenetic biomarkers (COMT, DRD2, GR, and SERT), trauma, and chronic pain. The results indicated that the significant biomarkers were dependent upon the gender of the child, wherein parental ACEs significantly correlated with changes in DRD2 expression in female children and altered COMT expression in the parents of male children. Additionally, the nature of the ACE (maltreatment vs. household dysfunction) was associated with the specific epigenetic changes. There may be different pathways through which parental ACEs confer risk for poor outcomes for males and females, highlighting the importance of child gender in future investigations.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Jaimie K. Beveridge
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.K.B.); (M.N.)
| | - Melinda Wang
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Serena L. Orr
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.K.B.); (M.N.)
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.K.B.); (M.N.)
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
175
|
Epigenetics: A Missing Link Between Early Life Stress and Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33834398 DOI: 10.1007/978-981-33-6044-0_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Exposure to early life stress (ELS) represents a major risk factor for the development of psychiatric disorders, including depression. The susceptibility associated with ELS may result from persistent changes in gene transcription, which can occur through epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNA expression. Animal models and reports in humans described that negative stimuli can alter the neurodevelopment of an individual, affecting their behavior and cognitive development. It is currently hypothesized that levels of environmental adversity in this early developmental period are able to shape the experience-dependent maturation of stress-regulating pathways leading to long-lasting alterations in stress responsivity during adulthood. Here, we review key findings from animal and clinical studies examining the effects of prenatal and postnatal environment in shaping development of the neuroendocrine regulation of stress and the role of epigenetic mechanisms in the predisposition of depression.
Collapse
|
176
|
Carletto S, Malandrone F, Berchialla P, Oliva F, Colombi N, Hase M, Hofmann A, Ostacoli L. Eye movement desensitization and reprocessing for depression: a systematic review and meta-analysis. Eur J Psychotraumatol 2021; 12:1894736. [PMID: 33889310 PMCID: PMC8043524 DOI: 10.1080/20008198.2021.1894736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: In recent years, eye movement desensitization and reprocessing (EMDR) has been applied to different psychiatric conditions beyond post-traumatic stress disorder (PTSD), and an increasing number of studies have evaluated its effect on depression. To date, no quantitative synthesis of the efficacy of EMDR on depression has been conducted. Objective: To meta-analytically review the studies on EMDR for depression as the primary target for treatment. Method: Studies with a controlled design evaluating the effect of EMDR on depression were searched on six electronic databases (PubMed, Embase, CINAHL, PsycINFO, Cochrane database, and Francine Shapiro Library) and then selected by two independent reviewers. A systematic review and meta-analysis was conducted. Results: Eleven studies were included for qualitative synthesis. Nine studies were included in the meta-analysis, involving 373 participants. The overall effect size of EMDR for depressive symptoms is large (n = 9, Hedges' g = - 1.07; 95%CI [-1.66; - 0.48]), with high heterogeneity (I 2 = 84%), and corresponds to a 'number needed to treat' of 1.8. At follow-up (range 3-6 months), the effect remains significant but moderate (n = 3, Hedges' g = - 0.62; 95%CI [-0.97; - 0.28]; I 2 = 0%). The effect of EMDR compared with active controls is also moderate (n = 7, g = - 0.68; 95%CI [-0.92; - 0.43]; I 2 = 0%). No publication bias was found, although the results are limited by the small number and poor methodological quality of the included studies. Conclusions: Review findings suggest that EMDR may be considered an effective treatment for improving symptoms of depression, with effects comparable to other active treatments. However, findings need to be interpreted in light of the limited number of the studies and their quality. Further research is required to understand the longer-term of effects EMDR in treating depression and preventing depression relapse. Protocol registration: PROSPERO (CRD42018090086).
Collapse
Affiliation(s)
- Sara Carletto
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Francesca Malandrone
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesco Oliva
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nicoletta Colombi
- Biblioteca Federata di Medicina "Ferdinando Rossi", University of Turin, Turin, Italy
| | - Michael Hase
- Lüneburg Centre for Stress Medicine, Lüneburg, Germany
| | | | - Luca Ostacoli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
177
|
Rowell MK, Pillay N, Rymer TL. Problem Solving in Animals: Proposal for an Ontogenetic Perspective. Animals (Basel) 2021; 11:866. [PMID: 33803609 PMCID: PMC8002912 DOI: 10.3390/ani11030866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Problem solving, the act of overcoming an obstacle to obtain an incentive, has been studied in a wide variety of taxa, and is often based on simple strategies such as trial-and-error learning, instead of higher-order cognitive processes, such as insight. There are large variations in problem solving abilities between species, populations and individuals, and this variation could arise due to differences in development, and other intrinsic (genetic, neuroendocrine and aging) and extrinsic (environmental) factors. However, experimental studies investigating the ontogeny of problem solving are lacking. Here, we provide a comprehensive review of problem solving from an ontogenetic perspective. The focus is to highlight aspects of problem solving that have been overlooked in the current literature, and highlight why developmental influences of problem-solving ability are particularly important avenues for future investigation. We argue that the ultimate outcome of solving a problem is underpinned by interacting cognitive, physiological and behavioural components, all of which are affected by ontogenetic factors. We emphasise that, due to the large number of confounding ontogenetic influences, an individual-centric approach is important for a full understanding of the development of problem solving.
Collapse
Affiliation(s)
- Misha K. Rowell
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Tasmin L. Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| |
Collapse
|
178
|
Wang HQ, Wang ZZ, Chen NH. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacol Res 2021; 167:105542. [PMID: 33711432 DOI: 10.1016/j.phrs.2021.105542] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Depression has become one of the most prevalent neuropsychiatric disorders characterized by anhedonia, anxiety, pessimism, or even suicidal thoughts. Receptor theory has been pointed out to explain the pathogenesis of depression, while it is still subject to debate. Additionally, gene abnormality accounts for nearly 40-50% of depression risk, which is a significant factor contributing to the onset of depression. Accordingly, studying on receptors and their gene abnormality are critical parts of the research on internal causes of depression. This review summarizes the pathogenesis of depression from six of the most related receptors and their associated genes, including N-methyl-D-aspartate receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, glucocorticoid receptor, 5-hydroxytryptamine receptor, GABAA receptor α2, and dopamine receptor; and several "non-classic" receptors, such as metabotropic glutamate receptor, opioid receptor, and insulin receptor. These receptors have received considerable critical attention and are highly implicated in the onset of depression. We begin by providing the biological mechanisms of action of these receptors on the pathogenesis of depression. Then we review the historical and social context about these receptors. Finally, we discuss the limitations of the current state of knowledge and outline insights on future research directions, aiming to provide more novel targets and theoretical basis for the early prevention, accurate diagnosis and prompt treatment of depression.
Collapse
Affiliation(s)
- Hui-Qin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
179
|
Rodriguez V, Aas M, Vorontsova N, Trotta G, Gadelrab R, Rooprai NK, Alameda L. Exploring the Interplay Between Adversity, Neurocognition, Social Cognition, and Functional Outcome in People With Psychosis: A Narrative Review. Front Psychiatry 2021; 12:596949. [PMID: 33762975 PMCID: PMC7982734 DOI: 10.3389/fpsyt.2021.596949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
History of adversity is associated with subsequent psychosis, and with a spectrum of cognitive alterations in individuals with psychosis. These cognitive features go from neurocognitive aspects as working memory and attention, to complex social cognitive processes as theory of mind and emotional perception. Difficulties in these domains impact patients' social and occupational functioning, which has been shown to be more impaired in those previously exposed to childhood trauma. However, the interplay between adversity, neurocognition, and functioning is yet poorly understood. This narrative review aims to explore the evidence on whether deficits in neurocognitive and social cognitive domains may act as possible putative mechanism linking adversity with functioning in people with psychosis. We show available evidence supporting the link between adversity and poorer functioning in psychosis, especially in chronic stages; and replicated evidence suggesting associations of social cognition and, to a lesser extent, neurocognition with impairment in functioning in patients; although there is still an important gap in the literature testing particularly deficits in social cognition as mediator of the link between adversity and functional decline in psychosis. Targeting interventions focusing on neurocognition and social cognition in individuals with adversity and psychosis seems important, given the severe deterioration of these patients in these domains, although more research is needed to test whether such treatments can specifically improve functioning in individuals with psychosis and adversity. Literature aiming to understand the determinants of functional outcome should consider the pervasive impact of childhood adversity, and its related effects on cognition.
Collapse
Affiliation(s)
- Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Monica Aas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Department of Mental Health Research and Development, Vestre Viken Hospital Trust, Drammen, Norway
| | - Natasha Vorontsova
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Romayne Gadelrab
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Navneet Kaur Rooprai
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Departamento de Psiquiatría, Centro Investigación Biomedica en Red de Salud Mental (CIBERSAM), Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
180
|
Berretta E, Guida E, Forni D, Provenzi L. Glucocorticoid receptor gene (NR3C1) methylation during the first thousand days: Environmental exposures and developmental outcomes. Neurosci Biobehav Rev 2021; 125:493-502. [PMID: 33689802 DOI: 10.1016/j.neubiorev.2021.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
The first 1000 days from conception are a sensitive period for human development programming. During this period, environmental exposures may result in long-lasting epigenetic imprints that contribute to future developmental trajectories. The present review reports on the effects of adverse and protective environmental conditions occurring during the first 1000 days on glucocorticoid receptor gene (NR3C1) regulation in humans. Thirty-four studies were included. Wide variations emerged for biological tissues, number and position of analyzed CpG sites, and age at methylation and outcomes assessment. Increased NR3C1 methylation associated with first 1000 days stress exposures. Maternal caregiving behaviors significantly buffered precocious stress exposures. A less robust pattern of findings emerged for the association of NR3C1 methylation with physical health, neurobehavioral and neuroendocrine outcomes. Although drawing comprehensive conclusions is partially hindered by methodological limitations, the present review underlines the relevance of the first 1000 days from conception as a time window for developmental plasticity. Prospective cohort studies and epigenome-wide approaches may increase our understanding of dynamics epigenetic changes and their consequences for child development.
Collapse
Affiliation(s)
- Erica Berretta
- Experimental and Behavioral Neurophysiology Lab, Scientific Institute IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Elena Guida
- 0-3 Center for the At-Risk Infant, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Livio Provenzi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
181
|
Bliźniewska-Kowalska K, Gałecki P, Szemraj J, Talarowska M. Expression of Selected Genes Involved in Neurogenesis in the Etiopathogenesis of Depressive Disorders. J Pers Med 2021; 11:jpm11030168. [PMID: 33804468 PMCID: PMC7998568 DOI: 10.3390/jpm11030168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
(1) Background: The neurogenic theory suggests that impaired neurogenesis within the dentate gyrus of the hippocampus is one of the factors causing depression. Immunology also has an impact on neurotrophic factors. The aim of the study was to assess the importance of selected genes involved in the process of neurogenesis i.e., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and neuron-restrictive silencer factor (REST gene) in the etiopathogenesis of depressive disorders. (2) Methods: A total of 189 subjects took part in the study (95 depressed patients, 94 healthy controls). Sociodemographic data were collected. The severity of depressive symptoms was assessed using the Hamilton Depression Rating Scale (HDRS). RT-PCR was used to assess gene expression at the mRNA levels, while Enzyme-Linked Immunosorbent Assay (ELISA) was used to assess gene expression at the protein level. (3) Results: Expression of NGF, BDNF, REST genes is lower in depressed patients than in the control group, whereas the expression of GDNF gene is higher in patients with depressive disorders than in the group of healthy volunteers. (4) Conclusions: The expression of selected genes might serve as a biomarker of depression.
Collapse
Affiliation(s)
- Katarzyna Bliźniewska-Kowalska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
- Correspondence: ; Tel.: +48-608-203-624
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Monika Talarowska
- Department of Clinical Psychology, Institute of Psychology University of Lodz, 91-433 Lodz, Poland;
| |
Collapse
|
182
|
HUZARD D, RAPPENEAU V, MEIJER OC, TOUMA C, ARANGO-LIEVANO M, GARABEDIAN MJ, JEANNETEAU F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress 2021; 24:130-153. [PMID: 32755268 PMCID: PMC7907260 DOI: 10.1080/10253890.2020.1806226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.
Collapse
Affiliation(s)
- Damien HUZARD
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Virginie RAPPENEAU
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Onno C. MEIJER
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Chadi TOUMA
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Margarita ARANGO-LIEVANO
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Freddy JEANNETEAU
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
- Corresponding author:
| |
Collapse
|
183
|
In Touch with the Heartbeat: Newborns' Cardiac Sensitivity to Affective and Non-Affective Touch. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052212. [PMID: 33668108 PMCID: PMC7956468 DOI: 10.3390/ijerph18052212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
The sense of touch is the first manner of contact with the external world, providing a foundation for the development of sensorimotor skills and socio-affective behaviors. In particular, affective touch is at the core of early interpersonal interactions and the developing bodily self, promoting the balance between internal physiological state and responsiveness to external environment. The aim of the present study is to investigate whether newborns are able to discriminate between affective touch and non-affective somatosensory stimulations and whether affective touch promotes a positive physiological state. We recorded full-term newborns' (N = 30) heart rate variability (HRV)-which reflects oscillations of heart rate associated with autonomic cardio-respiratory regulation-while newborns were presented with two minutes of affective (stroking) and non-affective (tapping) touch alternated with two minutes of resting in a within-subject design. The results revealed that non-affective touch elicits a decrease in HRV, whereas affective touch does not result in a change of HRV possibly indicating maintenance of calm physiological state. Thus, newborns showed cardiac sensitivity to different types of touch, suggesting that early somatosensory stimulation represents scaffolding for development of autonomic self-regulation with important implications on infant's ability to adaptively respond to the surrounding social and physical environment.
Collapse
|
184
|
Roberge CL, Wallin CM, Tilson K, Brummelte S. A nutty idea: Exploring a novel method using a hazelnut cocoa spread to temporarily increase maternal care behavior within a rat litter. Dev Psychobiol 2021; 63:1606-1610. [PMID: 33641158 DOI: 10.1002/dev.22114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 11/08/2022]
Abstract
Maternal care plays a crucial role for infant development. In humans, skin-to-skin care is often used for preterm infants to reduce acute stress and improve long-term developmental outcome. Here we propose a new translational approach to study the effects of acute increases in maternal care on offspring development in rodents. First, pilot studies determined that dams spent more time licking pups covered in hazelnut cocoa spread (Nutella® )) than any other studied substance. For the main experiment, Sprague-Dawley rats were bred in-house, and Nutella® was applied four times a day to treatment pups (2 males/females per litter) of seven litters from PN2 to 5. Control pups (2 males/females per litter) were handled similarly without applying any substance. Maternal licking and grooming behavior was observed for 30 min following each Nutella® application. Nutella® -covered pups received significantly more licking and grooming compared to control pups within each litter. There was no difference in body weight or basal serum corticosterone levels between Nutella® -covered and control pups on PN5, suggesting that the Nutella® application and subsequent increased maternal licking was not stressful for the pups. Future studies will investigate whether this increase in maternal care can protect pups from stress- or pain-induced rises in corticosterone.
Collapse
Affiliation(s)
| | - Chela M Wallin
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Kristy Tilson
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Suanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
185
|
Seo MK, Choi AJ, Seog DH, Lee JG, Park SW. Early Enriched Environment Prevents Epigenetic p11 Gene Changes Induced by Adulthood Stress in Mice. Int J Mol Sci 2021; 22:ijms22041928. [PMID: 33672075 PMCID: PMC7919643 DOI: 10.3390/ijms22041928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Positive experiences in early life may improve the capacity to cope with adulthood stress through epigenetic modification. We investigated whether an enriched environment (EE) in the postnatal period affected epigenetic changes in the p11 gene induced by chronic unpredictable stress (CUS) in adult C57BL/6J mice. EE was introduced for 5 weeks during postnatal days 21–55. After EE, the mice were subjected to CUS for 4 weeks. EE prevented depression-like behavior induced by adult CUS. EE prevented a decrease in p11 mRNA and histone H3 acetylation induced by CUS, with changes in the expression of histone deacetylase 5. Moreover, EE prevented changes in trimethylation of histone H3 lysine 4 (H3K4) and H3K27 induced by CUS. Furthermore, EE had positive effects on behavior and epigenetic alterations in adult mice without CUS. These results suggest that one of the underlying mechanisms of early-life EE may involve epigenetic modification of the hippocampal p11 gene promoter.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
| | | | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea;
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan 48108, Korea
- Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
- Correspondence: (J.G.L.); (S.W.P.); Tel.: +82-51-797-3300 (J.G.L.); +82-51-890-6071 (S.W.P.); Fax: +82-51-894-6709 (J.G.L. & S.W.P.)
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
- Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
- Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
- Correspondence: (J.G.L.); (S.W.P.); Tel.: +82-51-797-3300 (J.G.L.); +82-51-890-6071 (S.W.P.); Fax: +82-51-894-6709 (J.G.L. & S.W.P.)
| |
Collapse
|
186
|
Alteba S, Portugalov A, Hillard CJ, Akirav I. Inhibition of Fatty Acid Amide Hydrolase (FAAH) During Adolescence and Exposure to Early Life Stress may Exacerbate Depression-like Behaviors in Male and Female Rats. Neuroscience 2021; 455:89-106. [PMID: 33359656 DOI: 10.1016/j.neuroscience.2020.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress (ELS) is associated with later onset of depression. Early cannabis use may be a risk factor that interacts with environmental factors to increase the risk of psychopathologies. We aimed to examine the long-term effects of ELS on depression- and anxiety-like behavior, and examine whether chronic fatty acid amide hydrolase (FAAH) inhibition during mid-adolescence could ameliorate or exacerbate ELS effects on behavior. Male and female rats were exposed to ELS during post-natal days (P) 7-14, injected with the FAAH inhibitor URB597 (0.4 mg/kg, i.p.) or vehicle for 2 weeks during mid-adolescence (P30-45) or late-adolescence (P45-60). Rats were tested in adulthood for behavior and alterations in CB1 receptors (CB1r) and glucocorticoid receptors (GRs) in the brains' stress circuit. ELS produced decreased social preference, impaired social recognition, increased learned helplessness and anxiety-like behavior. Administering URB597 during mid-adolescence did not prevent the deleterious long-term effects of ELS on behavior in males and females. When URB597 was administered during late-adolescence, it ameliorated ELS-induced depression- and anxiety-like behavior. Moreover, in males, ELS and URB597 decreased CB1r levels in the prefrontal cortex (PFC) and CA1 and GRs in the PFC and basolateral amygdala (BLA). In females, ELS and URB decreased CB1r in the BLA and GRs in the CA1 and BLA. The findings suggest that mid-adolescence, as opposed to late-adolescence, may not be a potential developmental period for chronic treatment with FAAH inhibitors and that sex-dependent alterations in CB1r and GRs expression in the BLA-PFC-CA1 circuit may contribute to the depressive behavioral phenotype.
Collapse
Affiliation(s)
- Shirley Alteba
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa 3498838, Israel
| | - Anna Portugalov
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa 3498838, Israel
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | - Irit Akirav
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
187
|
Sakamoto T, Ishio Y, Ishida Y, Mogi K, Kikusui T. Low maternal licking/grooming stimulation increases pain sensitivity in male mouse offspring. Exp Anim 2021; 70:13-21. [PMID: 32741955 PMCID: PMC7887629 DOI: 10.1538/expanim.20-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Deprivation of maternal care has been associated with higher pain sensitivity in offspring. In the present study, we hypothesized that the maternal licking/grooming behavior was an important factor for the development of the pain regulatory system. To test this hypothesis, we used male F2 offspring of early-weaned (EW) F1 mother mice that exhibit lower frequency of licking/grooming behavior. The formalin test revealed that F2 offspring of EW F1 dams showed significantly higher pain behavior than F2 offspring of normally-weaned (NW) F1 dams. We found that the mRNA levels of transient receptor potential vanilloid 1 (TRPV1), a nociceptor, were higher in the lumbosacral dorsal root ganglion (DRG) of F2 offspring of EW F1 dams than those of F2 offspring of NW F1 dams, suggesting that the higher pain sensitivity may be attributed to low licking/grooming, which may result in developmental changes in nociceptive neurons. In the DRG, mRNA levels of Mas-related G-protein coupled receptor B4 (MrgprB4), a marker of sensory neurons that detect gentle stroking, was also up-regulated in the F2 offspring of EW F1 dams. Considering that gentle touch alleviates pain, Mrgprb4 up-regulation may reflect a compensatory change. The present findings indicate important implications of maternal licking/grooming behavior in the development of the pain regulatory system.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yukino Ishio
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yuiko Ishida
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
188
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
189
|
Bongartz H, Seiß EA, Bock J, Schaper F. Glucocorticoids attenuate interleukin-6-induced c-Fos and Egr1 expression and impair neuritogenesis in PC12 cells. J Neurochem 2021; 157:532-549. [PMID: 33454999 DOI: 10.1111/jnc.15305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/15/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine primarily known for immune regulation. There is also growing evidence that IL-6 triggers neurogenesis and impacts neural development, both life-long occurring processes that can be impaired by early-life and adult stress. Stress induces the release of glucocorticoids by activation of the hypothalamic-pituitary-adrenal (HPA) axis. On the cellular level, glucocorticoids act via the ubiquitously expressed glucocorticoid receptor. Thus, we aimed to elucidate whether glucocorticoids affect IL-6-induced neural development. Here, we show that IL-6 signalling induces neurite outgrowth in adrenal pheochromocytoma PC12 cells in a mitogen-activated protein kinase (MAPK) pathway-dependent manner, since neurite outgrowth was diminished upon Mek-inhibitor treatment. Using quantitative biochemical approaches, such as qRT-PCR analysis of Hyper-IL-6 treated PC12 cells, we show that neurite outgrowth induced by IL-6 signalling is accompanied by early and transient MAPK-dependent mRNA expression of immediate early genes coding for proteins such as early growth response protein 1 (Egr1) and c-Fos. This correlates with reduced proliferation and prolonged G0/G1 cell cycle arrest as determined by monitoring the cellular DNA content using flow cytometry. These results indicate for IL-6 signalling-induced neural differentiation. Interestingly, the glucocorticoid Dexamethasone impairs early IL-6 signalling-induced mRNA expression of c-Fos and Egr1 and restrains neurite outgrowth. Impaired Egr1 and c-Fos expression in neural development is implicated in the aetiology of neuropathologies. Thus, it appears likely that stress-induced release of glucocorticoids, as well as therapeutically administered glucocorticoids, contribute to the development of neuropathologies by reducing the expression of Egr1 and c-Fos, and by restraining IL-6-dependent neural differentiation.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Elena Anne Seiß
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jörg Bock
- Institute of Biology, PG "Epigenetics and Structural Plasticity", Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany.,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
190
|
Horii Y, Nakajima S, Akieda-Asai S, Ohta R, Kawaguchi M. Maternal traits during lactation period reduce the anxiety-related behavior in male offspring: Results from a fostering study in Hatano rats. Physiol Behav 2021; 229:113209. [PMID: 33080275 DOI: 10.1016/j.physbeh.2020.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
The Hatano strains of the Sprague Dawley rats have been selectively bred to create high- (HAA) and low- (LAA) active avoidance variants. We previously reported that HAA rats display more anxiety-related behavior than LAA rats, but whether this strain difference is affected by postnatal environmental factors remains unclear. In this study, we performed in- and cross-fostering between the HAA and LAA strains and investigated the effect of postnatal maternal traits on the emotional responses in each strain of the male offspring. We evaluated the effect of the fostering treatment on the emotional responses of the male offspring using the elevated plus maze test. The male LAA offspring reared by HAA dam showed higher anxiety-related behavior than those reared by LAA dam. Next, we quantified and typed various maternal behavior under the in- and cross-fostering conditions during the lactation period using a snapshot sampling method. This method allowed us to evaluate potential maternal traits that may influence the emotional responses of the offspring observed in our first experiment. We found that HAA dams showed long-term resting without offspring and offspring arrangement compared with LAA dams. These findings suggest that postnatal environmental factors may alter anxiety-related behavior in the male LAA offspring and that less direct contact with their offspring during the lactation period may induce anxiety-related behavior in male offspring.
Collapse
Affiliation(s)
- Yasuyuki Horii
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Shingo Nakajima
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Kanagawa 257-8523, Japan
| | - Maiko Kawaguchi
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
191
|
Antunes DF, Reyes-Contreras M, Glauser G, Taborsky B. Early social experience has life-long effects on baseline but not stress-induced cortisol levels in a cooperatively breeding fish. Horm Behav 2021; 128:104910. [PMID: 33309816 DOI: 10.1016/j.yhbeh.2020.104910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
In cooperatively breeding cichlid fish, the early social environment has lifelong effects on the offspring's behaviour, life-history trajectories and brain gene expression. Here, we asked whether the presence or absence of parents and subordinate helpers during early life also shapes fluctuating levels of cortisol, the major stress hormone in the cichlid Neolamprologus pulcher. To non-invasively characterize baseline and stress-induced cortisol levels, we adapted the 'static' holding-water method often used to collect waterborne steroid hormones in aquatic organisms by including a flow-through system allowing for repeated sampling without handling of the experimental subjects. We used 8-year-old N. pulcher either raised with (+F) or without (-F) parents and helpers in early life. We found that N. pulcher have a peak of their circadian cortisol cycle in the early morning, and that they habituated to the experimental procedure after four days. Therefore, we sampled the experimental fish in the afternoon after four days of habituation. -F fish had significantly lower baseline cortisol levels, whereas stress-induced cortisol levels did not differ between treatments. Thus, we show that the early social environment has life-long effects on aspects of the physiological stress system of the Hypothalamic-Pituitary-Interrenal (HPI) axis. We discuss how these differences in physiological state may have contributed to the specialization in different social and life-history trajectories of this species.
Collapse
Affiliation(s)
- Diogo F Antunes
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Switzerland.
| | - Maria Reyes-Contreras
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Switzerland
| | - Barbara Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Switzerland
| |
Collapse
|
192
|
The codevelopment of internalizing symptoms, externalizing symptoms, and cognitive ability across childhood and adolescence. Dev Psychopathol 2021; 32:1375-1389. [PMID: 31588887 DOI: 10.1017/s0954579419001330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cognitive ability, externalizing symptoms, and internalizing symptoms are correlated in children. However, it is not known why they combine in the general child population over time. To address this, we used data on 17,318 children participating in the UK Millennium Cohort Study and followed-up five times between ages 3 and 14 years. We fitted three parallel-process latent growth curve models to identify the parallel unfolding of children's trajectories of internalizing symptoms, externalizing symptoms, and cognitive ability across this period. We also examined the effects of time-invariant (ethnicity, birth weight, maternal education and age at birth, and breastfeeding status) and time-varying covariates (maternal psychological distress and socioeconomic disadvantage) on the growth parameters of the trajectories. The results showed that the intercepts of the trajectories of cognitive ability and, particularly, externalizing symptoms were inversely correlated. Their linear slopes were also inversely correlated, suggesting parallel development. Internalizing symptoms were correlated positively with externalizing symptoms and inversely (and more modestly) with cognitive ability at baseline, but the slope of internalizing symptoms correlated (positively) only with the slope of externalizing symptoms. The covariates predicted 9% to 41% of the variance in the intercepts and slopes of all domains, suggesting they are important common risk factors. Overall, it appears that externalizing symptoms develop in parallel with both cognitive ability and internalizing symptoms from early childhood through to middle adolescence. Children on an increasing trajectory of externalizing symptoms are likely both increasing in internalizing symptoms and decreasing in cognitive skills as well, and are thus an important group to target for intervention.
Collapse
|
193
|
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front Behav Neurosci 2021; 14:601939. [PMID: 33519393 PMCID: PMC7838595 DOI: 10.3389/fnbeh.2020.601939] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis is a complex system of neuroendocrine pathways and feedback loops that function to maintain physiological homeostasis. Abnormal development of the hypothalamic-pituitary-adrenal (HPA) axis can further result in long-term alterations in neuropeptide and neurotransmitter synthesis in the central nervous system, as well as glucocorticoid hormone synthesis in the periphery. Together, these changes can potentially lead to a disruption in neuroendocrine, behavioral, autonomic, and metabolic functions in adulthood. In this review, we will discuss the regulation of the HPA axis and its development. We will also examine the maternal-fetal hypothalamic-pituitary-adrenal axis and disruption of the normal fetal environment which becomes a major risk factor for many neurodevelopmental pathologies in adulthood, such as major depressive disorder, anxiety, schizophrenia, and others.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Natalie J. Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage A. Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna I. Bautista
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M. Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
194
|
Associations between stress reactivity and behavior problems for previously institutionalized youth across puberty. Dev Psychopathol 2021; 32:1854-1863. [PMID: 33427186 DOI: 10.1017/s0954579420001297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Megan Gunnar's pubertal stress recalibration hypothesis was supported in a recent study of previously institutionalized (PI) youth such that increases in pubertal stage were associated with increases in cortisol stress reactivity. This work provides evidence that puberty may open up a window of recalibration for PI youth, resulting in a shift from a blunted to a more typical cortisol stress response. Using the same sample (N = 132), the current study aimed to elucidate whether increases in cortisol are associated with increases in adaptive functioning or whether they further underlie potential links to developmental psychopathology. Specifically, we examined the bidirectional associations between cortisol stress reactivity and both internalizing and externalizing symptoms across three timepoints during the pubertal period. Youth reported on their own internalizing symptoms and parents reported on youths' externalizing symptoms. Cortisol reactivity was assessed during the Trier social stress test. Analyses revealed no associations between cortisol reactivity and externalizing symptoms across puberty for PI youth. However, longitudinal bidirectional associations did emerge for internalizing symptoms such that increases in cortisol reactivity predicted increases in internalizing symptoms and increases in internalizing symptoms predicted increases in cortisol reactivity. Findings suggest that recalibrating to more normative levels of cortisol reactivity may not always be associated with adaptive outcomes for PI youth.
Collapse
|
195
|
Wanner NM, Colwell M, Drown C, Faulk C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin Epigenetics 2021; 13:4. [PMID: 33407853 PMCID: PMC7789000 DOI: 10.1186/s13148-020-00993-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. RESULTS F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. CONCLUSIONS These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Chelsea Drown
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA.
| |
Collapse
|
196
|
Carozza S, Leong V. The Role of Affectionate Caregiver Touch in Early Neurodevelopment and Parent-Infant Interactional Synchrony. Front Neurosci 2021; 14:613378. [PMID: 33584178 PMCID: PMC7873991 DOI: 10.3389/fnins.2020.613378] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Though rarely included in studies of parent–infant interactions, affectionate touch plays a unique and vital role in infant development. Previous studies in human and rodent models have established that early and consistent affectionate touch from a caregiver confers wide-ranging and holistic benefits for infant psychosocial and neurophysiological development. We begin with an introduction to the neurophysiological pathways for the positive effects of touch. Then, we provide a brief review of how affectionate touch tunes the development of infant somatosensory, autonomic (stress regulation), and immune systems. Affective touch also plays a foundational role in the establishment of social affiliative bonds and early psychosocial behavior. These touch-related bonding effects are known to be mediated primarily by the oxytocin system, but touch also activates mesocorticolimbic dopamine and endogenous opioid systems which aid the development of social cognitive processes such as social learning and reward processing. We conclude by proposing a unique role for affectionate touch as an essential pathway to establishing and maintaining parent-infant interactional synchrony at behavioral and neural levels. The limitations of the current understanding of affectionate touch in infant development point to fruitful avenues for future research.
Collapse
Affiliation(s)
- Sofia Carozza
- Department of Physiology, Development and Neuroscience, Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Leong
- Division of Psychology, Nanyang Technological University, Singapore, Singapore.,Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
197
|
Bruno F, Splendiani A, Tommasino E, Conson M, Quarantelli M, Saporito G, Carolei A, Sacco S, Di Cesare E, Barile A, Masciocchi C, Pistoia F. Multimodal MRI Assessment of Thalamic Structural Changes in Earthquake Survivors. Diagnostics (Basel) 2021; 11:diagnostics11010070. [PMID: 33406665 PMCID: PMC7824088 DOI: 10.3390/diagnostics11010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022] Open
Abstract
Moving from the central role of the thalamus in the integration of inner and external stimuli and in the implementation of a stress-related response, the objective of the present study was to investigate the presence of any MRI structural and volumetric changes of the thalamic structures in earthquake witnesses. Forty-one subjects were included, namely 18 university students belonging to the experimental earthquake-exposed group (8 males and 10 females, mean age 24.5 ± 1.8 years) and a control group of 23 students not living in any earthquake-affected areas at the time of the earthquake (14 males and 9 females, mean age 23.7 ± 2.0 years). Instrumental MRI evaluation was performed using a 3-Tesla scanner, by acquiring a three-dimensional fast spoiled gradient-echo (FSPGR) sequence for volumetric analysis and an EPI (echoplanar imaging) sequence to extract fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values. As compared to the control one, the experimental group showed significantly lower gray matter volume in the mediodorsal nucleus of the left thalamus (p < 0.001). The dominant hemisphere thalamus in the experimental group showed higher mean ADC values and lower mean FA values as compared to the control group.
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
- Correspondence:
| | - Alessandra Splendiani
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| | - Emanuele Tommasino
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| | - Massimiliano Conson
- Laboratory of Developmental Neuropsychology, Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, 80100 Naples, Italy;
| | - Gennaro Saporito
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| | - Antonio Carolei
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| | - Simona Sacco
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| | - Ernesto Di Cesare
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| | - Antonio Barile
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| | - Carlo Masciocchi
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| | - Francesca Pistoia
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.S.); (E.T.); (G.S.); (A.C.); (S.S.); (E.D.C.); (A.B.); (C.M.); (F.P.)
| |
Collapse
|
198
|
Zhang DD, Fang J, Zhang L, Yuan JY, Wan YH, Su PY, Tao FB, Sun Y. Pubertal recalibration of cortisol reactivity following early life parent-child separation. J Affect Disord 2021; 278:320-326. [PMID: 32979563 DOI: 10.1016/j.jad.2020.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The hypothalamic-pituitary-adrenocortical (HPA) axis had been proved to calibrate to early-life adversity and puberty may reverse the calibration. This study examines the consequences of prolonged parent-child separation on HPA axis reactivity and the pubertal recalibration hypothesis. METHODS Totally of 144 participants aged 8.75 to 15.25 (mean age 12.50 years, SD: 1.32) were enrolled from rural areas of Chizhou city, Anhui Province of China in 2019. Data on parent-child separation was collected from parents. Self-reported Peterson Pubertal Development Scale was used to assess pubertal maturation and HPA axis stress reactivity was measured using the Trier Social Stress Test for Children. RESULTS For children at early stage of puberty, childhood parent-child separation experiences were associated with blunted HPA axis reactivity (B = -1.888, p = 0.034); while for those at later stage of puberty, HPA axis reactivity was similar between children experienced early childhood separation and those without separation (AUCi: B = -0.426, p = 0.878). In contrast, for children experienced persistent parent-child separation, blunted HPA axis reactivity was observed (all p < 0.05). LIMITATIONS Due to the cross-sectional nature of this study, conclusions about causality remain speculative. CONCLUSIONS The effect of parent-child separation on dysregulation of HPA axis acts in a time-dependent manner. This finding provides support for the pubertal recalibration hypothesis suggesting that a focus of improving environment in adolescence would help those individuals reared initially in non-supportive conditions.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei, Anhui Province 230032, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics, Hefei, Anhui Province, China
| | - Jiao Fang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei, Anhui Province 230032, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics, Hefei, Anhui Province, China
| | - Lei Zhang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei, Anhui Province 230032, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics, Hefei, Anhui Province, China
| | - Jing-Yi Yuan
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei, Anhui Province 230032, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics, Hefei, Anhui Province, China
| | - Yu-Hui Wan
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei, Anhui Province 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of People's Republic of China, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics, Hefei, Anhui Province, China
| | - Pu-Yu Su
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei, Anhui Province 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of People's Republic of China, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics, Hefei, Anhui Province, China
| | - Fang-Biao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei, Anhui Province 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of People's Republic of China, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics, Hefei, Anhui Province, China
| | - Ying Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei, Anhui Province 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of People's Republic of China, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics, Hefei, Anhui Province, China.
| |
Collapse
|
199
|
Bölükbas I, Mundorf A, Freund N. Maternal separation in rats induces neurobiological and behavioral changes on the maternal side. Sci Rep 2020; 10:22431. [PMID: 33384453 PMCID: PMC7775452 DOI: 10.1038/s41598-020-80087-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
The time after parturition is a sensitive period for mothers where they are prone to develop psychopathological symptoms. Studies investigating dams after separation from their pups (maternal separation, MS) showed that MS induces alterations similar to postpartum depression. This study aims to give further details on affected behavior and neurobiology of dams after MS. MS in rats from postnatal day 2-20 over four hours daily was performed. Upon reunion, maternal behavior, and ultrasonic vocalization (USV) of dams were measured. On the day of weaning, dams were tested for anxiety-like behavior in the elevated-plus-maze and marble burying test. Then Morc1 mRNA in the medial prefrontal cortex and Nr3c1 encoding the glucocorticoid receptor mRNA in the hippocampus were measured using real-time PCR to examine possible neurobiological correlates in psychopathology and social behavior. GABA and glutamate serum levels were analyzed by high-performance liquid chromatography as peripheral markers for stress-induced psychopathology. MS in dams increased maternal care towards pups even though both groups show high levels of maternal behavior even in late lactation. Furthermore, the emission of 50-kHz and 22-kHz USVs increased significantly. No differences in anxiety-like behavior were detected. MS further reduced Morc1 but not Nr3c1 expression. Serum GABA but not glutamate levels were significantly increased in separated dams. This study reinforces the benefit of investigating dams after MS for studying postpartum stress. Subclinical markers mainly connected to depression, namely Morc1 and GABA, proved to be useful allowing for earlier detection of symptoms of critical postpartum stress.
Collapse
Affiliation(s)
- Ibrahim Bölükbas
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, 44780, Bochum, Germany.
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, 44780, Bochum, Germany
| |
Collapse
|
200
|
Cho C, Chan C, Martin LJ. Can Male Mice Develop Preference Towards Gentle Stroking by an Experimenter? Neuroscience 2020; 464:26-32. [PMID: 33385489 DOI: 10.1016/j.neuroscience.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/05/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Gentle stroking, a type of affective touch that holds hedonic and rewarding value, is critical to our daily inter-individual communication. This positive socio-emotional aspect of touch is conveyed through a subclass of C afferents known as C-Tactile fibers in humans with an analogous system in rodents proposed. Here, we describe a novel tactile conditioned place preference paradigm using mice and demonstrate that gentle stroking by an experimenter is rewarding. In order to investigate the relationship between tactile preference and innate sociability, mice were subjected to the classic three-chambered test of social approach, where mice displayed significant preference towards the experimenter's hand. These findings suggest that gentle stroking evoked by an experimenter can play an important role in reward and preference and establish an affiliative relationship between mice and humans. Future research can potentially use this model to examine fiber type involvement and elucidate the significance of these findings for activation of the reward system.
Collapse
Affiliation(s)
- C Cho
- Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - C Chan
- Dept. of Psychology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - L J Martin
- Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada; Dept. of Psychology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada.
| |
Collapse
|