151
|
Garg M, Sharma A, Vats S, Tiwari V, Kumari A, Mishra V, Krishania M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front Nutr 2021; 8:586815. [PMID: 34222296 PMCID: PMC8241910 DOI: 10.3389/fnut.2021.586815] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Around the world, cereals are stapled foods and good sources of vitamins A, B, and E. As cereals are inexpensive and consumed in large quantities, attempts are being made to enrich cereals using fortification and biofortification in order to address vitamin deficiency disorders in a vulnerable population. The processing and cooking of cereals significantly affect vitamin content. Depending on grain structure, milling can substantially reduce vitamin content, while cooking methods can significantly impact vitamin retention and bioaccessibility. Pressure cooking has been reported to result in large vitamin losses, whereas minimal vitamin loss was observed following boiling. The fortification of cereal flour with vitamins B1, B2, B3, and B9, which are commonly deficient, has been recommended; and in addition, region-specific fortification using either synthetic or biological vitamins has been suggested. Biofortification is a relatively new concept and has been explored as a method to generate vitamin-rich crops. Once developed, biofortified crops can be utilized for several years. A recent cereal biofortification success story is the enrichment of maize with provitamin A carotenoids.
Collapse
Affiliation(s)
- Monika Garg
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anjali Sharma
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Shreya Vats
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vandita Tiwari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anita Kumari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vibhu Mishra
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| | - Meena Krishania
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| |
Collapse
|
152
|
Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. PLANTS 2021; 10:plants10061146. [PMID: 34199861 PMCID: PMC8229257 DOI: 10.3390/plants10061146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
Plant diseases are globally causing substantial losses in staple crop production, undermining the urgent goal of a 60% increase needed to meet the food demand, a task made more challenging by the climate changes. Main consequences concern the reduction of food amount and quality. Crop diseases also compromise food safety due to the presence of pesticides and/or toxins. Nowadays, biotechnology represents our best resource both for protecting crop yield and for a science-based increased sustainability in agriculture. Over the last decades, agricultural biotechnologies have made important progress based on the diffusion of new, fast and efficient technologies, offering a broad spectrum of options for understanding plant molecular mechanisms and breeding. This knowledge is accelerating the identification of key resistance traits to be rapidly and efficiently transferred and applied in crop breeding programs. This review gathers examples of how disease resistance may be implemented in cereals by exploiting a combination of basic research derived knowledge with fast and precise genetic engineering techniques. Priming and/or boosting the immune system in crops represent a sustainable, rapid and effective way to save part of the global harvest currently lost to diseases and to prevent food contamination.
Collapse
|
153
|
Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Harish, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. CURRENT PLANT BIOLOGY 2021; 26:100203. [DOI: 10.1016/j.cpb.2021.100203] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
154
|
Kasote D, Sreenivasulu N, Acuin C, Regina A. Enhancing health benefits of milled rice: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:8099-8119. [PMID: 34036858 DOI: 10.1080/10408398.2021.1925629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Milled rice is an essential part of the regular diet for approximately half of the world's population. Its remarkable commercial value and consumer acceptance are mostly due to its promising cooking qualities, appealing sensory properties, and longer shelf life. However, the significant loss of the nutrient-rich bran layer during milling makes it less nutritious than the whole grain. Thus, enhancing the nutritive value of milled rice is vital in improving the health and wellbeing of rice consumers, particularly for those residing in the low-economic zones where rice is the primary source of calories and nutrition. This article provides a critical review on multiple frontiers of recent interventions, such as (1) infusing the genetic diversity to enrich amylose and resistant starch to reduce glycaemic index, (2) enhancing the minerals and vitamins through complementary fortification and biofortification as short and long-term interventions, and (3) developing transgenic solutions to improve the nutrient levels of milled rice. Additionally, the review highlights the benefits of functional ingredients of milled rice to human health and the potential of enhancing them in rice to address the triple burden of malnutrition. The potential merit of milled rice concerning food safety is also reviewed in this article.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| | - Nese Sreenivasulu
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Cecilia Acuin
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| |
Collapse
|
155
|
Fiaz S, Ahmar S, Saeed S, Riaz A, Mora-Poblete F, Jung KH. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Int J Mol Sci 2021; 22:5585. [PMID: 34070430 PMCID: PMC8197453 DOI: 10.3390/ijms22115585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sajjad Saeed
- Department of Forestry and Wildlife Management, University of Haripur, Haripur 22620, Pakistan
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Ki-Hung Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
156
|
Xia Y, Zuo S, Zheng Y, Liu J, Yang W, Tang X, Ke X, Zhuo Q, Yang X, Li Y, Fan B. Subchronic Oral Toxicity Study of Genetically Modified Rice Rich in β-Carotene in Wistar Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115526. [PMID: 34064012 PMCID: PMC8196761 DOI: 10.3390/ijerph18115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: a hybrid black rice rich in β-carotene carrying the psy and crtI genes (HJM) was evaluated in Wistar rats by a 90-day feeding study, aiming to assess its dietary safety. (2) Methods: the HJM rice and its parental line HS were included in rats' diets at levels of 73.5% and 75.5%, respectively. The AIN-93 diet was administered as a nutritional control. No adverse effects on animal behavior or weight gain were observed during the study. Blood samples were collected and analyzed, and standard hematological and biochemical parameters were compared. (3) Results: Some parameters were found to be significantly different, though they remained within the normal range for rats of this breed and age. In addition, upon sacrifice, various organs were weighed, and macroscopic and histopathological examinations were performed, with only minor changes to report. (4) Conclusions: HJM rice exhibited no adverse or toxic effects in Wistar rats in this 90-day study.
Collapse
Affiliation(s)
- Ying Xia
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
| | - Shanshan Zuo
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, China
| | - Yanhua Zheng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
| | - Jin Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
| | - Wenxiang Yang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
| | - Xiaoqiao Tang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
| | - Xianghong Ke
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
| | - Qin Zhuo
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (Q.Z.); (X.Y.)
| | - Xiaoguang Yang
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (Q.Z.); (X.Y.)
| | - Yang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
| | - Bolin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (Y.X.); (S.Z.); (Y.Z.); (J.L.); (W.Y.); (X.T.); (X.K.); (Y.L.)
- Correspondence: ; Tel.: +86-027-87528203
| |
Collapse
|
157
|
Girón-Calva PS, Pérez-Fons L, Sandmann G, Fraser PD, Christou P. Nitrogen inputs influence vegetative metabolism in maize engineered with a seed-specific carotenoid pathway. PLANT CELL REPORTS 2021; 40:899-911. [PMID: 33787959 DOI: 10.1007/s00299-021-02689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Metabolomic profiling of a maize line engineered with an endosperm-specific carotenogenic pathway revealed unexpected metabolic readjustments of primary metabolism in leaves and roots. High-carotenoid (HC) maize was engineered to accumulate high levels of carotenoids in the endosperm. The metabolic interventions influenced the flux through non-target pathways in tissues that were not affected by the targeted intervention. HC maize at the vegetative stage also showed a reduced susceptibility to insect feeding. It is unknown, however, whether the metabolic history of the embryo has any impact on the metabolite composition in vegetative tissues. We, therefore, compared HC maize and its isogenic counterpart (M37W) to test the hypothesis that boosting the carotenoid content in the endosperm triggers compensatory effects in core metabolism in vegetative tissues. Specifically, we investigated whether the metabolite composition of leaves and roots at the V6 stage differs between HC and M37W, and whether N inputs further alter the core metabolism of HC compared to M37W. We found an increase in the abundance of organic acids from the tricarboxylic acid (TCA) cycle in HC even under restricted N conditions. In contrast, low levels of carotenoids and chlorophyll were measured regardless of N levels. Sugars were also significantly depleted in HC under low N. We propose a model explaining the observed genotype-dependent and input-dependent effects, in which organic acids derived from the TCA cycle accumulate during vegetative growth and contribute to the increased demand for pyruvate and/or acetyl-CoA in the endosperm and embryo. This response may in part reflect the transgenerational priming of vegetative tissues in the embryo induced by the increased demand for metabolic precursors during seed development in the previous generation.
Collapse
Affiliation(s)
- Patricia S Girón-Calva
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Laura Pérez-Fons
- Department of Biological Sciences, Royal Holloway, University London, Egham, Surrey, UK
| | - Gerhard Sandmann
- Institute of Molecular Bioscience, J. W. Goethe University, Frankfurt am Main, Germany
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway, University London, Egham, Surrey, UK.
| | - Paul Christou
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain.
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
158
|
Dias MG, Borge GIA, Kljak K, Mandić AI, Mapelli-Brahm P, Olmedilla-Alonso B, Pintea AM, Ravasco F, Tumbas Šaponjac V, Sereikaitė J, Vargas-Murga L, Vulić JJ, Meléndez-Martínez AJ. European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content. Foods 2021; 10:912. [PMID: 33919309 PMCID: PMC8143354 DOI: 10.3390/foods10050912] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies indicate that diets including carotenoid-rich foods have positive effects on human health. Some of these compounds are precursors of the essential nutrient vitamin A. The present work is aimed at implementing a database of carotenoid contents of foods available in the European market. Factors affecting carotenoid content were also discussed. Analytical data available in peer-reviewed scientific literature from 1990 to 2018 and obtained by HPLC/UHPLC were considered. The database includes foods classified according to the FoodEx2 system and will benefit compilers, nutritionists and other professionals in areas related to food and human health. The results show the importance of food characterization to ensure its intercomparability, as large variations in carotenoid levels are observed between species and among varieties/cultivars/landraces. This highlights the significance of integrating nutritional criteria into agricultural choices and of promoting biodiversity. The uncertainty quantification associated with the measurements of the carotenoid content was very rarely evaluated in the literature consulted. According to the EuroFIR data quality evaluation system for food composition tables, the total data quality index mean was 24 in 35, reflecting efforts by researchers in the analytical methods, and less resources in the sampling plan documentation.
Collapse
Affiliation(s)
- M. Graça Dias
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal; (M.G.D.); (F.R.)
| | - Grethe Iren A. Borge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO 1433 Ås, Norway;
| | - Kristina Kljak
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10 000 Zagreb, Croatia;
| | - Anamarija I. Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Paula Mapelli-Brahm
- Food Colour & Quality Laboratory, Department of Nutrition & Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | | | - Adela M. Pintea
- Chemistry and Biochemistry Department, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Francisco Ravasco
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal; (M.G.D.); (F.R.)
| | - Vesna Tumbas Šaponjac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.T.Š.); (J.J.V.)
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | | | - Jelena J. Vulić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.T.Š.); (J.J.V.)
| | - Antonio J. Meléndez-Martínez
- Food Colour & Quality Laboratory, Department of Nutrition & Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
159
|
|
160
|
Yunus FM, Jalal C, Zello GA, Afsana K, Vandenberg A, DellaValle DM. Determination of an Acceptable Portion Size of Daal for a Bangladeshi Community-Based Iron Intervention in Adolescent Girls: A Feasibility Study. Nutrients 2021; 13:1080. [PMID: 33810220 PMCID: PMC8065999 DOI: 10.3390/nu13041080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Widely consumed daal (lentils) in Bangladesh are an ideal vehicle for iron (Fe) fortification; however, an acceptable portion size in meals needs to be determined to carry out a community feeding study in at-risk adolescent girls. A non-randomized crossover trial was conducted with n = 100 Bangladeshi girls (12.9 ± 2.0 years of age). Two recipes (thin and thick) and three portion sizes (25 g, 37.5 g, 50 g of raw lentil) of daal were served with 250 g of cooked white rice in a counter-balanced manner over 12 weeks. Each meal was fed to participants 5 days/week for two weeks. Ratings of hunger, satiety, and palatability were measured before and after each meal using Visual Analog Scales (VAS). The thick preparation in the 37.5 g portion (~200 g cooked) elicited higher VAS ratings of hunger, satiety, and palatability compared to all other meals. The 50 g portion of the thin preparation had VAS ratings similar to those of the 37.5 g thick preparation. Consuming the 37.5 g portion of fortified daal would provide 6.9 mg Fe/day to girls in a community-based effectiveness study. This would meet ~86% and ~46% of the Recommended Dietary Allowance (RDA) for Fe for girls aged 9-13 and 14-18 years, respectively.
Collapse
Affiliation(s)
- Fakir Md. Yunus
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada; (F.M.Y.); (G.A.Z.)
| | - Chowdhury Jalal
- Nutrition International, 180 Elgin Street, Suite 1000, Ottawa, ON K2P 2K3, Canada;
| | - Gordon A. Zello
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada; (F.M.Y.); (G.A.Z.)
| | - Kaosar Afsana
- James P Grant School of Public Health, BRAC University, 68 Shahid Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh;
| | - Albert Vandenberg
- College of Agriculture and Bio-Resources, The University of Saskatchewan, Agriculture Building 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Diane M. DellaValle
- Department of Sports Medicine, King’s College, 133 N River St, Wilkes-Barre, PA 18711, USA
| |
Collapse
|
161
|
Kawakami Y, Bhullar NK. Delineating the future of iron biofortification studies in rice: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2099-2113. [PMID: 32974681 DOI: 10.1093/jxb/eraa446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Iron (Fe) deficiency in humans is a widespread problem worldwide. Fe biofortification of rice (Oryza sativa) is a promising approach to address human Fe deficiency. Since its conceptualization, various biofortification strategies have been developed, some of which have resulted in significant increases in grain Fe concentration. However, there are still many aspects that have not yet been addressed in the studies to date. In this review, we first overview the important rice Fe biofortification strategies reported to date and the complications associated with them. Next, we highlight the key outstanding questions and hypotheses related to rice Fe biofortification. Finally, we make suggestions for the direction of future rice biofortification studies.
Collapse
Affiliation(s)
- Yuta Kawakami
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
162
|
Khan T, Khan MA, Karam K, Ullah N, Mashwani ZUR, Nadhman A. Plant in vitro Culture Technologies; A Promise Into Factories of Secondary Metabolites Against COVID-19. FRONTIERS IN PLANT SCIENCE 2021; 12:610194. [PMID: 33777062 PMCID: PMC7994895 DOI: 10.3389/fpls.2021.610194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/15/2021] [Indexed: 05/11/2023]
Abstract
The current pandemic has caused chaos throughout the world. While there are few vaccines available now, there is the need for better treatment alternatives in line with preventive measures against COVID-19. Along with synthetic chemical compounds, phytochemicals cannot be overlooked as candidates for drugs against severe respiratory coronavirus 2 (SARS-CoV-2). The important role of secondary metabolites or phytochemical compounds against coronaviruses has been confirmed by studies that reported the anti-coronavirus role of glycyrrhizin from the roots of Glycyrrhiza glabra. The study demonstrated that glycyrrhizin is a very promising phytochemical against SARS-CoV, which caused an outbreak in 2002-2003. Similarly, many phytochemical compounds (apigenin, betulonic acid, reserpine, emodin, etc.) were isolated from different plants such as Isatis indigotica, Lindera aggregate, and Artemisia annua and were employed against SARS-CoV. However, owing to the geographical and seasonal variation, the quality of standard medicinal compounds isolated from plants varies. Furthermore, many of the important medicinal plants are either threatened or on the verge of endangerment because of overharvesting for medicinal purposes. Therefore, plant biotechnology provides a better alternative in the form of in vitro culture technology, including plant cell cultures, adventitious roots cultures, and organ and tissue cultures. In vitro cultures can serve as factories of secondary metabolites/phytochemicals that can be produced in bulk and of uniform quality in the fight against COVID-19, once tested. Similarly, environmental and molecular manipulation of these in vitro cultures could provide engineered drug candidates for testing against COVID-19. The in vitro culture-based phytochemicals have an additional benefit of consistency in terms of yield as well as quality. Nonetheless, as the traditional plant-based compounds might prove toxic in some cases, engineered production of promising phytochemicals can bypass this barrier. Our article focuses on reviewing the potential of the different in vitro plant cultures to produce medicinally important secondary metabolites that could ultimately be helpful in the fight against COVID-19.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Kashmala Karam
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| |
Collapse
|
163
|
Li ZJ, Wang YZ, Wang LR, Shi TQ, Sun XM, Huang H. Advanced Strategies for the Synthesis of Terpenoids in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2367-2381. [PMID: 33595318 DOI: 10.1021/acs.jafc.1c00350] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoids are an important class of secondary metabolites that play an important role in food, agriculture, and other fields. Microorganisms are rapidly emerging as a promising source for the production of terpenoids. As an oleaginous yeast, Yarrowia lipolytica contains a high lipid content which indicates that it must produce high amounts of acetyl-CoA, a necessary precursor for the biosynthesis of terpenoids. Y. lipolytica has a complete eukaryotic mevalonic acid (MVA) pathway but it has not yet seen commercial use due to its low productivity. Several metabolic engineering strategies have been developed to improve the terpenoids production of Y. lipolytica, including developing the orthogonal pathway for terpenoid synthesis, increasing the catalytic efficiency of terpenoids synthases, enhancing the supply of acetyl-CoA and NADPH, expressing rate-limiting genes, and modifying the branched pathway. Moreover, most of the acetyl-CoA is used to produce lipid, so it is an effective strategy to strike a balance of precursor distribution by rewiring the lipid biosynthesis pathway. Lastly, the latest developed non-homologous end-joining strategy for improving terpenoid production is introduced. This review summarizes the status and metabolic engineering strategies of terpenoids biosynthesis in Y. lipolytica and proposes new insights to move the field forward.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
164
|
Tiozon RJN, Fernie AR, Sreenivasulu N. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
165
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
166
|
Chaturvedi S, Chaudhary R, Tiwari S. Contribution of Crop Biofortification in Mitigating Vitamin Deficiency Globally. GENOME ENGINEERING FOR CROP IMPROVEMENT 2021:112-130. [DOI: 10.1002/9781119672425.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
167
|
Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells 2021; 10:cells10020346. [PMID: 33562333 PMCID: PMC7915772 DOI: 10.3390/cells10020346] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of the most economically important plant and crop species are enriched with the availability of high-quality reference genome sequences forming the basis of gene discovery which control the important biochemical pathways. The transcriptomics and proteomics resources have also been made available for many of these plant species that intensify the understanding at expression levels. However, still we lack integrated studies spanning genomics–transcriptomics–proteomics, connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless, for the past few decades, emphasis has been more on metabolome which plays a crucial role in defining the phenotype (trait) during crop improvement. The emergence of modern high throughput metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical types of metabolites and new pathways, also helped in improving the understanding of known existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very important for development of improved lines with high precision in crop breeding. Along with other-omics sciences, metabolomics studies have helped in characterization and annotation of a new gene(s) function. Hereby, we summarize several areas in the field of crop development where metabolomics studies have made its remarkable impact. We also assess the recent research on metabolomics, together with other omics, contributing toward genetic engineering to target traits and key pathway(s).
Collapse
|
168
|
Affiliation(s)
- Uriel Urquiza-Garcia
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
169
|
Mallikarjuna Swamy BP, Marundan S, Samia M, Ordonio RL, Rebong DB, Miranda R, Alibuyog A, Rebong AT, Tabil MA, Suralta RR, Alfonso AA, Biswas PS, Kader MA, Reinke RF, Boncodin R, MacKenzie DJ. Development and characterization of GR2E Golden rice introgression lines. Sci Rep 2021; 11:2496. [PMID: 33510272 PMCID: PMC7843986 DOI: 10.1038/s41598-021-82001-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Golden Rice with β-carotene in the grain helps to address the problem of vitamin A deficiency. Prior to commercialize Golden Rice, several performance and regulatory checkpoints must be achieved. We report results of marker assisted backcross breeding of the GR2E trait into three popular rice varieties followed by a series of confined field tests of event GR2E introgression lines to assess their agronomic performance and carotenoid expression. Results from confined tests in the Philippines and Bangladesh have shown that GR2E introgression lines matched the performance of the recurrent parents for agronomic and yield performance, and the key components of grain quality. Moreover, no differences were observed in terms of pest and disease reaction. The best performing lines identified in each genetic background had significant amounts of carotenoids in the milled grains. These lines can supply 30–50% of the estimated average requirements of vitamin A.
Collapse
Affiliation(s)
| | - Severino Marundan
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Mercy Samia
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Reynante L Ordonio
- Philippines Rice Research Institute (PhilRice), Maligaya, Science City of Munoz, Philippines
| | - Democrito B Rebong
- Philippines Rice Research Institute (PhilRice), Maligaya, Science City of Munoz, Philippines
| | - Ronalyn Miranda
- Philippines Rice Research Institute (PhilRice), Maligaya, Science City of Munoz, Philippines
| | - Anielyn Alibuyog
- Philippines Rice Research Institute (PhilRice), Maligaya, Science City of Munoz, Philippines
| | - Anna Theresa Rebong
- Philippines Rice Research Institute (PhilRice), Maligaya, Science City of Munoz, Philippines
| | - Ma Angela Tabil
- Philippines Rice Research Institute (PhilRice), Maligaya, Science City of Munoz, Philippines
| | - Roel R Suralta
- Philippines Rice Research Institute (PhilRice), Maligaya, Science City of Munoz, Philippines
| | - Antonio A Alfonso
- Philippines Rice Research Institute (PhilRice), Maligaya, Science City of Munoz, Philippines
| | - Partha Sarathi Biswas
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | - Md Abdul Kader
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | - Russell F Reinke
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Raul Boncodin
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Donald J MacKenzie
- Institute for International Crop Improvement, Donald Danforth Plant Science Center, Saint Louis, MO, USA
| |
Collapse
|
170
|
Christopher A, Sarkar D, Shetty K. Elicitation of Stress-Induced Phenolic Metabolites for Antimicrobial Applications against Foodborne Human Bacterial Pathogens. Antibiotics (Basel) 2021; 10:109. [PMID: 33498658 PMCID: PMC7910900 DOI: 10.3390/antibiotics10020109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 01/31/2023] Open
Abstract
Foodborne bacterial pathogens in consumed foods are major food safety concerns worldwide, leading to serious illness and even death. An exciting strategy is to use novel phenolic compounds against bacterial pathogens based on recruiting the inducible metabolic responses of plant endogenous protective defense against biotic and abiotic stresses. Such stress-inducible phenolic metabolites have high potential to reduce bacterial contamination, and particularly improve safety of plant foods. The stimulation of plant protective response by inducing biosynthesis of stress-inducible phenolics with antimicrobial properties is among the safe and effective strategies that can be targeted for plant food safety and human gut health benefits. Metabolically driven elicitation with physical, chemical, and microbial elicitors has shown significant improvement in the biosynthesis of phenolic metabolites with antimicrobial properties in food and medicinal plants. Using the above rationale, this review focuses on current advances and relevance of metabolically driven elicitation strategies to enhance antimicrobial phenolics in plant food models for bacterial-linked food safety applications. Additionally, the specific objective of this review is to explore the potential role of redox-linked pentose phosphate pathway (PPP) regulation for enhancing biosynthesis of stress-inducible antibacterial phenolics in elicited plants, which are relevant for wider food safety and human health benefits.
Collapse
Affiliation(s)
| | | | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (A.C.); (D.S.)
| |
Collapse
|
171
|
Lynch JH, Huang XQ, Dudareva N. Silent constraints: the hidden challenges faced in plant metabolic engineering. Curr Opin Biotechnol 2021; 69:112-117. [PMID: 33429160 DOI: 10.1016/j.copbio.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Metabolic engineering is embraced as a method to sustainably enhance production of valuable phytochemicals with beneficial properties. However, successful production of these compounds in plants is not always predictable even when the pathways are fully known, frequently due to the lack of comprehensive understanding of plant metabolism as a whole, and interconnections between different primary, secondary, and hormone metabolic networks. Here, we highlight critical hidden constraints, including substrate availability, silent metabolism, and metabolic crosstalk, that impair engineering strategies. We explore how these constraints have historically been manifested in engineering attempts and propose how modern advancements will enable future strategies to overcome these impediments.
Collapse
Affiliation(s)
- Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
172
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
173
|
Wu L, Han L, Li Q, Wang G, Zhang H, Li L. Using Interactome Big Data to Crack Genetic Mysteries and Enhance Future Crop Breeding. MOLECULAR PLANT 2021; 14:77-94. [PMID: 33340690 DOI: 10.1016/j.molp.2020.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
The functional genes underlying phenotypic variation and their interactions represent "genetic mysteries". Understanding and utilizing these genetic mysteries are key solutions for mitigating the current threats to agriculture posed by population growth and individual food preferences. Due to advances in high-throughput multi-omics technologies, we are stepping into an Interactome Big Data era that is certain to revolutionize genetic research. In this article, we provide a brief overview of current strategies to explore genetic mysteries. We then introduce the methods for constructing and analyzing the Interactome Big Data and summarize currently available interactome resources. Next, we discuss how Interactome Big Data can be used as a versatile tool to dissect genetic mysteries. We propose an integrated strategy that could revolutionize genetic research by combining Interactome Big Data with machine learning, which involves mining information hidden in Big Data to identify the genetic models or networks that control various traits, and also provide a detailed procedure for systematic dissection of genetic mysteries,. Finally, we discuss three promising future breeding strategies utilizing the Interactome Big Data to improve crop yields and quality.
Collapse
Affiliation(s)
- Leiming Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongwei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
174
|
Turnbull C, Lillemo M, Hvoslef-Eide TAK. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom - A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:630396. [PMID: 33719302 PMCID: PMC7943453 DOI: 10.3389/fpls.2021.630396] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 05/02/2023]
Abstract
Products derived from agricultural biotechnology is fast becoming one of the biggest agricultural trade commodities globally, clothing us, feeding our livestock, and fueling our eco-friendly cars. This exponential growth occurs despite asynchronous regulatory schemes around the world, ranging from moratoriums and prohibitions on genetically modified (GM) organisms, to regulations that treat both conventional and biotech novel plant products under the same regulatory framework. Given the enormous surface area being cultivated, there is no longer a question of acceptance or outright need for biotech crop varieties. Recent recognition of the researchers for the development of a genome editing technique using CRISPR/Cas9 by the Nobel Prize committee is another step closer to developing and cultivating new varieties of agricultural crops. By employing precise, efficient, yet affordable genome editing techniques, new genome edited crops are entering country regulatory schemes for commercialization. Countries which currently dominate in cultivating and exporting GM crops are quickly recognizing different types of gene-edited products by comparing the products to conventionally bred varieties. This nuanced legislative development, first implemented in Argentina, and soon followed by many, shows considerable shifts in the landscape of agricultural biotechnology products. The evolution of the law on gene edited crops demonstrates that the law is not static and must adjust to the mores of society, informed by the experiences of 25 years of cultivation and regulation of GM crops. The crux of this review is a consolidation of the global legislative landscape on GM crops, as it stands, building on earlier works by specifically addressing how gene edited crops will fit into the existing frameworks. This work is the first of its kind to synthesize the applicable regulatory documents across the globe, with a focus on GM crop cultivation, and provides links to original legislation on GM and gene edited crops.
Collapse
|
175
|
Li Y, Yang C, Ahmad H, Maher M, Fang C, Luo J. Benefiting others and self: Production of vitamins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:210-227. [PMID: 33289302 DOI: 10.1111/jipb.13047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Vitamins maintain growth and development in humans, animals, and plants. Because plants serve as essential producers of vitamins, increasing the vitamin contents in plants has become a goal of crop breeding worldwide. Here, we begin with a summary of the functions of vitamins. We then review the achievements to date in elucidating the molecular mechanisms underlying how vitamins are synthesized, transported, and regulated in plants. We also stress the exploration of variation in vitamins by the use of forward genetic approaches, such as quantitative trait locus mapping and genome-wide association studies. Overall, we conclude that exploring the diversity of vitamins could provide new insights into plant metabolism and crop breeding.
Collapse
Affiliation(s)
- Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
176
|
Barnum CR, Endelman BJ, Shih PM. Utilizing Plant Synthetic Biology to Improve Human Health and Wellness. FRONTIERS IN PLANT SCIENCE 2021; 12:691462. [PMID: 34504505 PMCID: PMC8421571 DOI: 10.3389/fpls.2021.691462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/03/2021] [Indexed: 05/13/2023]
Abstract
Plants offer a vast source of bioactive chemicals with the potential to improve human health through the prevention and treatment of disease. However, many potential therapeutics are produced in small amounts or in species that are difficult to cultivate. The rapidly evolving field of plant synthetic biology provides tools to capitalize on the inventive chemistry of plants by transferring metabolic pathways for therapeutics into far more tenable plants, increasing our ability to produce complex pharmaceuticals in well-studied plant systems. Plant synthetic biology also provides methods to enhance the ability to fortify crops with nutrients and nutraceuticals. In this review, we discuss (1) the potential of plant synthetic biology to improve human health by generating plants that produce pharmaceuticals, nutrients, and nutraceuticals and (2) the technological challenges hindering our ability to generate plants producing health-promoting small molecules.
Collapse
Affiliation(s)
- Collin R. Barnum
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Benjamin J. Endelman
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Patrick M. Shih,
| |
Collapse
|
177
|
Zheng X, Kuijer HNJ, Al-Babili S. Carotenoid Biofortification of Crops in the CRISPR Era. Trends Biotechnol 2020; 39:857-860. [PMID: 33384170 DOI: 10.1016/j.tibtech.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/15/2023]
Abstract
Carotenoids are micronutrients important for human health. The continuous improvements in clustered regularly interspaced short palindromic repeats (CRISPR)-based genome-editing techniques make rapid, DNA/transgene-free and targeted multiplex genetic modification a reality, thus promising to accelerate the breeding and generation of 'golden' staple crops. We discuss here the progress and future prospects of CRISPR/Cas9 applications for carotenoid biofortification.
Collapse
Affiliation(s)
- Xiongjie Zheng
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Hendrik N J Kuijer
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
178
|
Zheng X, Zhu K, Ye J, Price EJ, Deng X, Fraser PD. The effect of β-cyclocitral treatment on the carotenoid content of transgenic Marsh grapefruit (Citrus paradisi Macf.) suspension-cultured cells. PHYTOCHEMISTRY 2020; 180:112509. [PMID: 32966904 DOI: 10.1016/j.phytochem.2020.112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This work reports the development of suspension culture system of transgenic Marsh grapefruit (Citrus paradisi Macf., Rutaceae) callus overexpressing bacterial phytoene synthase; and the use of this suspension culture to investigate the effects of β-cyclocitral on carotenoid content and composition. At a β-cyclocitral concentration of 0.5 mM and after ten days cultivation, analysis of the carotenoids showed a significant increase in the content of β-, α-carotene, and phytoene predominantly. The maximal increase in total provitamin A carotenoids content following β-cyclocitral application was ~2-fold higher than the control, reaching 245.8 μg/g DW. The trend for increased transcript levels of biosynthetic genes PSY and ZDS correlated with the enhancement of the content of these carotenes following β-cyclocitral treatment and GC-MS based metabolite profiling showed significant changes of metabolite levels across intermediary metabolism. These findings suggest that β-cyclocitral can act as a chemical elicitor, to enhance the formation of carotenes in citrus suspension-cultured cells (SCC), which could be utilized in studying the regulation of carotenoid biosynthesis and biotechnological application to the renewable production of nutritional carotenoids.
Collapse
Affiliation(s)
- Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Elliott J Price
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK; Faculty of Sports Studies, Masaryk University, Brno, Czech Republic; RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China.
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
179
|
Gaikwad KB, Rani S, Kumar M, Gupta V, Babu PH, Bainsla NK, Yadav R. Enhancing the Nutritional Quality of Major Food Crops Through Conventional and Genomics-Assisted Breeding. Front Nutr 2020; 7:533453. [PMID: 33324668 PMCID: PMC7725794 DOI: 10.3389/fnut.2020.533453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Nutritional stress is making over two billion world population malnourished. Either our commercially cultivated varieties of cereals, pulses, and oilseed crops are deficient in essential nutrients or the soils in which these crops grow are becoming devoid of minerals. Unfortunately, our major food crops are poor sources of micronutrients required for normal human growth. To overcome the problem of nutritional deficiency, greater emphasis should be laid on the identification of genes/quantitative trait loci (QTLs) pertaining to essential nutrients and their successful deployment in elite breeding lines through marker-assisted breeding. The manuscript deals with information on identified QTLs for protein content, vitamins, macronutrients, micro-nutrients, minerals, oil content, and essential amino acids in major food crops. These QTLs can be utilized in the development of nutrient-rich crop varieties. Genome editing technologies that can rapidly modify genomes in a precise way and will directly enrich the nutritional status of elite varieties could hold a bright future to address the challenge of malnutrition.
Collapse
Affiliation(s)
- Kiran B. Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sushma Rani
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Manjeet Kumar
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vikas Gupta
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Prashanth H. Babu
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
180
|
|
181
|
Stout AJ, Mirliani AB, Soule-Albridge EL, Cohen JM, Kaplan DL. Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods. Metab Eng 2020; 62:126-137. [PMID: 32890703 PMCID: PMC7666109 DOI: 10.1016/j.ymben.2020.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023]
Abstract
Metabolic engineering of mammalian cells has to-date focused primarily on biopharmaceutical protein production or the manipulation of native metabolic processes towards therapeutic aims. However, significant potential exists for expanding these techniques to diverse applications by looking across the taxonomic tree to bioactive metabolites not synthesized in animals. Namely, cross-taxa metabolic engineering of mammalian cells could offer value in applications ranging fromfood and nutrition to regenerative medicine and gene therapy. Towards the former, recent advances in meat production through cell culture suggest the potential to produce meat with fine cellular control, where tuning composition through cross-taxa metabolic engineering could enhance nutrition and food-functionality. Here we demonstrate this possibility by engineering primary bovine and immortalized murine muscle cells with prokaryotic enzymes to endogenously produce the antioxidant carotenoids phytoene, lycopene and β-carotene. These phytonutrients offer general nutritive value and protective effects against diseases associated with red and processed meat consumption, and so offer a promising proof-of-concept for nutritional engineering in cultured meat. We demonstrate the phenotypic integrity of engineered cells, the ability to tune carotenoid yields, and the antioxidant functionality of these compounds in vitro towards both nutrition and food-quality objectives. Our results demonstrate the potential for tailoring the nutritional profile of cultured meats. They further lay a foundation for heterologous metabolic engineering of mammalian cells for applications outside of the clinical realm.
Collapse
Affiliation(s)
- Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Addison B Mirliani
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Erin L Soule-Albridge
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA; W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
182
|
Zhu K, Zheng X, Ye J, Jiang Q, Chen H, Mei X, Wurtzel ET, Deng X. Building the Synthetic Biology Toolbox with Enzyme Variants to Expand Opportunities for Biofortification of Provitamin A and Other Health-Promoting Carotenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12048-12057. [PMID: 33073979 DOI: 10.1021/acs.jafc.0c04740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carotenoids are a large class of structures that are important in human health and include both provitamin A and nonprovitamin A compounds. Vitamin A deficiency is a global health problem that can be alleviated by enriching provitamin A carotenoids in a range of food crops. Suitable plants for biofortification are those with high levels of the provitamin A biosynthetic precursor, lycopene, which is enzymatically converted by lycopene β-cyclase (LCYB) to β-carotene, a provitamin A carotenoid. Crops, such as citrus, naturally accumulate high levels of provitamin A and other health-promoting carotenoids. Such plants may have useful genes to expand the synthetic biology toolbox for producing a range of phenotypes, including both high provitamin A crops and crops with unique compositions of health-promoting carotenoids. To examine enzyme variants having different activity levels, we introduced two citrus LCYB alleles into tomato, a plant with fruit rich in lycopene. Overexpression in tomato of the stronger allele of the citrus chromoplast-specific lycopene β-cyclase (CsLCYb2a) produced "golden" transgenic tomato fruits with 9.3-fold increased levels of β-carotene at up to 1.5 mg/g dry weight. The use of the weaker allele, CsLCYb2b, also led to enhanced levels of β-carotene but in the context of a more heterogeneous composition of carotenoids. From a synthetic biology standpoint, these allelic differences have value for producing cultivars with unique carotenoid profiles. Overexpression of the citrus LCYB genes was accompanied by increased expression of other genes encoding carotenoid biosynthetic enzymes and increased size and number of chromoplasts needed to sequester the elevated levels of carotenoids in the transgenic tomato fruits. The overexpression of the citrus LCYB genes also led to a pleiotropic effect on profiles of phytohormones and primary metabolites. Our findings show that enzyme variants are essential synthetic biology parts needed to create a wider range of metabolic engineering products. In this case, strong and weak variants of LCYB proved useful in creating dietary sources to alleviate vitamin A deficiency or, alternatively, to create crops with a heterogeneous composition including provitamin A and healthful, nonprovitamin A carotenoids.
Collapse
Affiliation(s)
- Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Department of Biological Sciences, Lehman College, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qihang Jiang
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongyan Chen
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuehan Mei
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
- The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016-4309, United States
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
183
|
Metabolomics integrated with transcriptomics: assessing the central metabolism of marine red yeast Sporobolomyces pararoseus under salinity stress. Arch Microbiol 2020; 203:889-899. [PMID: 33074377 DOI: 10.1007/s00203-020-02082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Salinity stress is one of the most serious environmental issues in agricultural regions worldwide. Excess salinity inhibits root growth of various crops, and results in reductions of yield. It is of crucial to understand the molecular mechanisms mediating salinity stress responses for enhancing crops' salt tolerance. Marine red yeast Sporobolomyces pararoseus should have evolved some unique salt-tolerant mechanism, because they long-term live in high-salt ecosystems. However, little research has conducted so far by considering S. pararoseus as model microorganisms to study salt-tolerant mechanisms. Here, we successfully integrated metabolomics with transcriptomic profiles of S. pararoseus in response to salinity stress. Screening of metabolite features with untargeted metabolic profiling, we characterized 4862 compounds from the LC-MS/MS-based datasets. The integrated results showed that amino acid metabolism, carbohydrate metabolism, and lipid metabolism is significantly enriched in response to salt stress. Co-expression network analysis showed that 28 genes and 8 metabolites play an important role in the response of S. pararoseus, which provides valuable clues for subsequent validation. Together, the results provide valuable information for assessing the central metabolism of mediating salt responses in S. pararoseus and offer inventories of target genes for salt tolerance improvement via genetic engineering.
Collapse
|
184
|
Van Der Straeten D, Bhullar NK, De Steur H, Gruissem W, MacKenzie D, Pfeiffer W, Qaim M, Slamet-Loedin I, Strobbe S, Tohme J, Trijatmiko KR, Vanderschuren H, Van Montagu M, Zhang C, Bouis H. Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat Commun 2020; 11:5203. [PMID: 33060603 PMCID: PMC7567076 DOI: 10.1038/s41467-020-19020-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Ending all forms of hunger by 2030, as set forward in the UN-Sustainable Development Goal 2 (UN-SDG2), is a daunting but essential task, given the limited timeline ahead and the negative global health and socio-economic impact of hunger. Malnutrition or hidden hunger due to micronutrient deficiencies affects about one third of the world population and severely jeopardizes economic development. Staple crop biofortification through gene stacking, using a rational combination of conventional breeding and metabolic engineering strategies, should enable a leap forward within the coming decade. A number of specific actions and policy interventions are proposed to reach this goal.
Collapse
Affiliation(s)
- Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium.
| | - Navreet K Bhullar
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Hans De Steur
- Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Wilhelm Gruissem
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | | | - Matin Qaim
- Department of Agricultural Economics and Rural Development, University of Goettingen, Platz der Goettinger Sieben 5, 37073, Goettingen, Germany
| | | | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Joe Tohme
- International Center for Tropical Agriculture, CIAT, Cali, Colombia
| | | | - Hervé Vanderschuren
- Tropical Crop Improvement Lab, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Biotech, University of Liège, Gembloux, Belgium
| | - Marc Van Montagu
- International Plant Biotechnology Outreach, B-9052, Zwijnaarde, Belgium
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Howarth Bouis
- International Food Policy Research Institute, Washington, DC, USA.
| |
Collapse
|
185
|
Spider Silk Fibroin Protein Heterologously Produced in Rice Seeds Reduce Diabetes and Hypercholesterolemia in Mice. PLANTS 2020; 9:plants9101282. [PMID: 32998453 PMCID: PMC7650732 DOI: 10.3390/plants9101282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 11/16/2022]
Abstract
Silk fibroin proteins are biomaterials with diverse applications. These spider and silkworm proteins have specific biological effects when consumed by mammals; in addition to reducing blood pressure and blood glucose and cholesterol levels, they have anti-human immunodeficiency virus activity. In the present study, rice (Oryza sativa) was engineered to produce the C-terminus of the major ampullate spidroin protein from the spider Araneus ventricosus under the control of a Prolamin promoter. Homozygous transgenic rice lines were identified, and the therapeutic effect of this spider silk fibroin protein on the lipid and glucose metabolism was analyzed in a mouse model. Feeding fat-fed mice, the transgenic rice seeds for four weeks reduced serum concentrations of triglycerides, total cholesterol, low-density lipoprotein cholesterol, glutamic oxaloacetic transaminase, and glutamic pyruvic transaminase, and lowered blood glucose levels. This is the first study to investigate the effects of consumption of rice seeds heterologously expressing spider silk fibroin protein in a mammalian model. Our findings suggest that functional foods containing spider silk fibroin protein might be useful as potential pharmaceutical materials for preventing and treating diabetes, hyperlipidemia, and hypercholesterolemia.
Collapse
|
186
|
|
187
|
Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M. Breeding and biotechnological interventions for trait improvement: status and prospects. PLANTA 2020; 252:54. [PMID: 32948920 PMCID: PMC7500504 DOI: 10.1007/s00425-020-03465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 05/06/2023]
Abstract
Present review describes the molecular tools and strategies deployed in the trait discovery and improvement of major crops. The prospects and challenges associated with these approaches are discussed. Crop improvement relies on modulating the genes and genomic regions underlying key traits, either directly or indirectly. Direct approaches include overexpression, RNA interference, genome editing, etc., while breeding majorly constitutes the indirect approach. With the advent of latest tools and technologies, these strategies could hasten the improvement of crop species. Next-generation sequencing, high-throughput genotyping, precision editing, use of space technology for accelerated growth, etc. had provided a new dimension to crop improvement programmes that work towards delivering better varieties to cope up with the challenges. Also, studies have widened from understanding the response of plants to single stress to combined stress, which provides insights into the molecular mechanisms regulating tolerance to more than one stress at a given point of time. Altogether, next-generation genetics and genomics had made tremendous progress in delivering improved varieties; however, the scope still exists to expand its horizon to other species that remain underutilized. In this context, the present review systematically analyses the different genomics approaches that are deployed for trait discovery and improvement in major species that could serve as a roadmap for executing similar strategies in other crop species. The application, pros, and cons, and scope for improvement of each approach have been discussed with examples, and altogether, the review provides comprehensive coverage on the advances in genomics to meet the ever-growing demands for agricultural produce.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
188
|
Efremov GI, Slugina MA, Shchennikova AV, Kochieva EZ. Differential Regulation of Phytoene Synthase PSY1 During Fruit Carotenogenesis in Cultivated and Wild Tomato Species ( Solanum section Lycopersicon). PLANTS 2020; 9:plants9091169. [PMID: 32916928 PMCID: PMC7569967 DOI: 10.3390/plants9091169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
In plants, carotenoids define fruit pigmentation and are involved in the processes of photo-oxidative stress defense and phytohormone production; a key enzyme responsible for carotene synthesis in fruit is phytoene synthase 1 (PSY1). Tomatoes (Solanum section Lycopersicon) comprise cultivated (Solanum lycopersicum) as well as wild species with different fruit color and are a good model to study carotenogenesis in fleshy fruit. In this study, we identified homologous PSY1 genes in five Solanum section Lycopersicon species, including domesticated red-fruited S. lycopersicum and wild yellow-fruited S. cheesmaniae and green-fruited S. chilense, S. habrochaites and S. pennellii. PSY1 homologs had a highly conserved structure, including key motifs in the active and catalytic sites, suggesting that PSY1 enzymatic function is similar in green-fruited wild tomato species and preserved in red-fruited S. lycopersicum. PSY1 mRNA expression directly correlated with carotenoid content in ripe fruit of the analyzed tomato species, indicating differential transcriptional regulation. Analysis of the PSY1 promoter and 5′-UTR sequence revealed over 30 regulatory elements involved in response to light, abiotic stresses, plant hormones, and parasites, suggesting that the regulation of PSY1 expression may affect the processes of fruit senescence, seed maturation and dormancy, and pathogen resistance. The revealed differences between green-fruited and red-fruited Solanum species in the structure of the PSY1 promoter/5′-UTR, such as the acquisition of ethylene-responsive element by S. lycopersicum, could reflect the effects of domestication on the transcriptional mechanisms regulating PSY1 expression, including induction of carotenogenesis during fruit ripening, which would contribute to red coloration in mature fruit.
Collapse
|
189
|
De S. Strategies of Plant Biotechnology to Meet the Increasing Demand of Food and Nutrition in India. ACTA ACUST UNITED AC 2020. [DOI: 10.21467/ias.10.1.7-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A groundbreaking application of biotechnology research during the recent past has been improvement of crop health and production. India being one of the most rapidly developing countries with an enormous population and remarkable biodiversity, plant biotechnology promises significant potential to contribute to characterization and conservation of the biodiversity, increasing its usefulness. However, India’s green revolution was noted to be insufficient to feed the country's teeming millions. Therefore, novel approaches in crop biotechnology had to be aimed at ensuring better productivity and quality of cultivars. This paper provides a comprehensive review of research undertaken mainly in the last couple of decades along with potential strategies in plant biotechnology focusing on specific grain and seed crops of key agricultural as well as dietary importance to meet the growing demand of food and nutrition in India, while also proposing potential application of relevant global research findings in the Indian context. The analysis would help address the ever-increasing worldwide socio-economic necessity for greater food security, particularly during times of crisis such as the recent Coronavirus Infectious Disease 2019 (COVID-19) pandemic.
Collapse
|
190
|
Müller M, Schneider M, Salathé M, Vayena E. Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning. J Med Internet Res 2020; 22:e17830. [PMID: 32865499 PMCID: PMC7490675 DOI: 10.2196/17830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022] Open
Abstract
Background The discovery of the CRISPR-Cas9–based gene editing method has opened unprecedented new potential for biological and medical engineering, sparking a growing public debate on both the potential and dangers of CRISPR applications. Given the speed of technology development and the almost instantaneous global spread of news, it is important to follow evolving debates without much delay and in sufficient detail, as certain events may have a major long-term impact on public opinion and later influence policy decisions. Objective Social media networks such as Twitter have shown to be major drivers of news dissemination and public discourse. They provide a vast amount of semistructured data in almost real-time and give direct access to the content of the conversations. We can now mine and analyze such data quickly because of recent developments in machine learning and natural language processing. Methods Here, we used Bidirectional Encoder Representations from Transformers (BERT), an attention-based transformer model, in combination with statistical methods to analyze the entirety of all tweets ever published on CRISPR since the publication of the first gene editing application in 2013. Results We show that the mean sentiment of tweets was initially very positive, but began to decrease over time, and that this decline was driven by rare peaks of strong negative sentiments. Due to the high temporal resolution of the data, we were able to associate these peaks with specific events and to observe how trending topics changed over time. Conclusions Overall, this type of analysis can provide valuable and complementary insights into ongoing public debates, extending the traditional empirical bioethics toolset.
Collapse
Affiliation(s)
- Martin Müller
- Digital Epidemiology Lab, School of Life Sciences, School of Computer and Communication Sciences, EPFL, Geneva, Switzerland
| | - Manuel Schneider
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marcel Salathé
- Digital Epidemiology Lab, School of Life Sciences, School of Computer and Communication Sciences, EPFL, Geneva, Switzerland
| | - Effy Vayena
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
191
|
Woźniak E, Tyczewska A, Twardowski T. Bioeconomy development factors in the European Union and Poland. N Biotechnol 2020; 60:2-8. [PMID: 32835869 DOI: 10.1016/j.nbt.2020.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Bioeconomy is not an autonomous sector of the economy, but rather a complex mechanism involving agriculture, industry, biotechnology, service sectors and consumers. To measure the size of the bioeconomy in European Union (EU) countries, it is necessary to create appropriate indicators that allow it to be monitored with reference to its current state, growth rate and sector description. In many countries, including Poland, there is no complete information or data collection system to monitor bioeconomy development directly, e.g. in the Polish Central Statistical Office. In response to these needs, several groups of indicators related to the circular economy, sustainable development and Europe 2020 were created by the European Commission (EC) in the Eurostat database. These indicators can help monitoring of bioeconomy development in EU countries. The present study discusses factors for bioeconomy development through an analysis of their social, economic and environmental aspects, as well as showing the value of the selected indicators in the EU and Poland. In addition, a separate section is dedicated to public perception of bioeconomy and to legislation regarding genetically modified organisms (GMOs). To date, many research studies have been reported on the public acceptance of bioeconomy issues in the EU, including renewable resources, biofuels, GMOs, bio-based products, food security and climate change. The awareness and perception of society on the bioeconomy, bio-based products and processes, and the sustainable use of resources can contribute to environmental sustainability, but intensified efforts are required to increase public acceptance.
Collapse
Affiliation(s)
- Ewa Woźniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Agata Tyczewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
192
|
Dasgupta A, Chowdhury N, De RK. Metabolic pathway engineering: Perspectives and applications. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 192:105436. [PMID: 32199314 DOI: 10.1016/j.cmpb.2020.105436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Metabolic engineering aims at contriving microbes as biocatalysts for enhanced and cost-effective production of countless secondary metabolites. These secondary metabolites can be treated as the resources of industrial chemicals, pharmaceuticals and fuels. Plants are also crucial targets for metabolic engineers to produce necessary secondary metabolites. Metabolic engineering of both microorganism and plants also contributes towards drug discovery. In order to implement advanced metabolic engineering techniques efficiently, metabolic engineers should have detailed knowledge about cell physiology and metabolism. Principle behind methodologies: Genome-scale mathematical models of integrated metabolic, signal transduction, gene regulatory and protein-protein interaction networks along with experimental validation can provide such knowledge in this context. Incorporation of omics data into these models is crucial in the case of drug discovery. Inverse metabolic engineering and metabolic control analysis (MCA) can help in developing such models. Artificial intelligence methodology can also be applied for efficient and accurate metabolic engineering. CONCLUSION In this review, we discuss, at the beginning, the perspectives of metabolic engineering and its application on microorganism and plant leading to drug discovery. At the end, we elaborate why inverse metabolic engineering and MCA are closely related to modern metabolic engineering. In addition, some crucial steps ensuring efficient and optimal metabolic engineering strategies have been discussed. Moreover, we explore the use of genomics data for the activation of silent metabolic clusters and how it can be integrated with metabolic engineering. Finally, we exhibit a few applications of artificial intelligence to metabolic engineering.
Collapse
Affiliation(s)
- Abhijit Dasgupta
- Department of Data Science, School of Interdisciplinary Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Nirmalya Chowdhury
- Department of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
| | - Rajat K De
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India.
| |
Collapse
|
193
|
Mishiba KI, Nishida K, Inoue N, Fujiwara T, Teranishi S, Iwata Y, Takeda S, Koizumi N. Genetic engineering of eggplant accumulating β-carotene in fruit. PLANT CELL REPORTS 2020; 39:1029-1039. [PMID: 32382812 DOI: 10.1007/s00299-020-02546-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Genetic engineering of eggplant using fruit-specific EEF48 promoter-driven bacterial PSY gene, crtB, confers β-carotene accumulation in fruit. Eggplant (Solanum melongena L.) is globally cultivated especially in Asia and is an important source of nutrients in the diets of low-income consumers in developing countries. Since fruits of eggplant have low provitamin A carotenoid content, it is expected to develop eggplant with high carotenoid content for combatting vitamin A deficiency. To achieve this, the present study implemented a metabolic engineering strategy to modify the carotenoid biosynthetic pathway in eggplant. Expression analysis of carotenogenic genes in eggplant tissues showed that the expression of the endogenous phytoene synthase (PSY) was low in fruit and callus. Orange-colored calluses were generated from ectopic expression of crtB gene, which encodes bacterial PSY, in eggplant cells. The orange calluses accumulated > 20 μg g-1 FW of β-carotene, which was approximately 150-fold higher than that of the untransformed calluses. These observations suggest that the PSY expression is the rate-limiting step for β-carotene production in callus and fruit. Since the orange calluses did not regenerate plants, we chose eggplant EEF48 gene, which is presumably expressed in fruit. We amplified its promoter region by TAIL-PCR and showed that the EEF48 promoter is indeed active in eggplant fruit. Subsequently, transgenic eggplant lines having EEF48 promoter-driven crtB were produced. Among the transgenic lines produced, one line set fruit containing 1.50 μg g-1 FW of β-carotene, which was 30-fold higher than that of the untransformed fruits (0.05 μg g-1 FW). The self-pollinated progenies showed a 3:1 segregation ratio for the presence and absence of the transgene, which was linked to the β-carotene accumulation in fruit. These results provide a strategy for improvement of carotenoid content in eggplant fruit.
Collapse
Affiliation(s)
- Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Kae Nishida
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Naoto Inoue
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Tomoya Fujiwara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Shunji Teranishi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Satomi Takeda
- Graduate School of Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
194
|
Chettry U, Chrungoo NK. A multifocal approach towards understanding the complexities of carotenoid biosynthesis and accumulation in rice grains. Brief Funct Genomics 2020; 19:324-335. [PMID: 32240289 DOI: 10.1093/bfgp/elaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are mostly C40 terpenoids that participate in several important functions in plants including photosynthesis, responses to various forms of stress, signal transduction and photoprotection. While the antioxidant potential of carotenoids is of particular importance for human health, equally important is the role of β-carotene as the precursor for vitamin A in the human diet. Rice, which contributes upto 40% of dietary energy for mankind, contains very low level of β-carotene, thereby making it an important crop for enhancing β-carotene accumulation in its grains and consequently targeting vitamin A deficiency. Biosynthesis of carotenoids in the endosperm of white rice is blocked at the first enzymatic step wherein geranylgeranyl diphosphate is converted to phytoene by the action of phytoene synthase (PSY). Strategies aimed at enhancing β-carotene levels in the endosperm of white rice identified Narcissus pseudonarcissus (npPSY) and bacterial CRT1 as the regulators of the carotenoid biosynthetic pathway in rice. Besides transcriptional regulation of PSY, posttranscriptional regulation of PSY expression by OR gene, molecular synergism between ε-LCY and β-LCY and epigenetic control of CRITSO through SET DOMAIN containing protein appear to be the other regulatory nodes which regulate carotenoid biosynthesis and accumulation in rice grains. In this review, we elucidate a comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops that will enable us to identify an effective tool to alleviate carotenoid content in rice grains.
Collapse
Affiliation(s)
- Upasna Chettry
- Department of Botany, North-Eastern Hill University, Shillong 793022, India
| | - Nikhil K Chrungoo
- Department of Botany, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
195
|
DeLisi C, Patrinos A, MacCracken M, Drell D, Annas G, Arkin A, Church G, Cook-Deegan R, Jacoby H, Lidstrom M, Melillo J, Milo R, Paustian K, Reilly J, Roberts RJ, Segrè D, Solomon S, Woolf D, Wullschleger SD, Yang X. The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges. BIODESIGN RESEARCH 2020; 2020:1016207. [PMID: 37849905 PMCID: PMC10521736 DOI: 10.34133/2020/1016207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/29/2020] [Indexed: 10/19/2023] Open
Abstract
The long atmospheric residence time of CO2 creates an urgent need to add atmospheric carbon drawdown to CO2 regulatory strategies. Synthetic and systems biology (SSB), which enables manipulation of cellular phenotypes, offers a powerful approach to amplifying and adding new possibilities to current land management practices aimed at reducing atmospheric carbon. The participants (in attendance: Christina Agapakis, George Annas, Adam Arkin, George Church, Robert Cook-Deegan, Charles DeLisi, Dan Drell, Sheldon Glashow, Steve Hamburg, Henry Jacoby, Henry Kelly, Mark Kon, Todd Kuiken, Mary Lidstrom, Mike MacCracken, June Medford, Jerry Melillo, Ron Milo, Pilar Ossorio, Ari Patrinos, Keith Paustian, Kristala Jones Prather, Kent Redford, David Resnik, John Reilly, Richard J. Roberts, Daniel Segre, Susan Solomon, Elizabeth Strychalski, Chris Voigt, Dominic Woolf, Stan Wullschleger, and Xiaohan Yang) identified a range of possibilities by which SSB might help reduce greenhouse gas concentrations and which might also contribute to environmental sustainability and adaptation. These include, among other possibilities, engineering plants to convert CO2 produced by respiration into a stable carbonate, designing plants with an increased root-to-shoot ratio, and creating plants with the ability to self-fertilize. A number of serious ecological and societal challenges must, however, be confronted and resolved before any such application can be fully assessed, realized, and deployed.
Collapse
Affiliation(s)
- Charles DeLisi
- Department of Biomedical Engineering and Program in Bioinformatics, College of Engineering, Boston University, Boston MA 02215, USA
| | | | | | - Dan Drell
- Department of Energy, Washington, DC, USA
| | - George Annas
- Center for Health Law, Ethics & Human Rights at the Boston University School of Public Health, School of Medicine, Boston University, USA
| | - Adam Arkin
- Department of Bioengineering, University of California, Berkeley CA, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Cambridge MA, USA
| | - Robert Cook-Deegan
- School for the Future of Innovation in Society, Arizona State University, Barrett & O’Connor Washington Center, 1800 I Street, NW, Washington, DC 20006, USA
| | - Henry Jacoby
- Sloan School of Management, MIT, Cambridge MA, USA
| | - Mary Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle Washington, USA
| | - Jerry Melillo
- The Ecosystems Center of the Marine Biological Laboratory in Woods Hole, MAUSA
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Keith Paustian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins CO 80523, USA
| | - John Reilly
- MIT Joint Program on the Science and Policy of Global Change, MIT, Cambridge MA, USA
| | | | - Daniel Segrè
- Department of Biology and Program in Bioinformatics, Boston University, Boston MA 02215, USA
| | - Susan Solomon
- Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge MA, USA
| | - Dominic Woolf
- Soil and Crop Sciences Section, School of Integrated Plant Sciences, Cornell University, Ithaca NY, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
196
|
Das P, Adak S, Lahiri Majumder A. Genetic Manipulation for Improved Nutritional Quality in Rice. Front Genet 2020; 11:776. [PMID: 32793287 PMCID: PMC7393646 DOI: 10.3389/fgene.2020.00776] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Food with higher nutritional value is always desired for human health. Rice is the prime staple food in more than thirty developing countries, providing at least 20% of dietary protein, 3% of dietary fat and other essential nutrients. Several factors influence the nutrient content of rice which includes agricultural practices, post-harvest processing, cultivar type as well as manipulations followed by selection through breeding and genetic means. In addition to mutation breeding, genetic engineering approach also contributed significantly for the generation of nutrition added varieties of rice in the last decade or so. In the present review, we summarize the research update on improving the nutritional characteristics of rice by using genetic engineering and mutation breeding approach. We also compare the conventional breeding techniques of rice with modern molecular breeding techniques toward the generation of nutritionally improved rice variety as compared to other cereals in areas of micronutrients and availability of essential nutrients such as folate and iron. In addition to biofortification, our focus will be on the efforts to generate low phytate in seeds, increase in essential fatty acids or addition of vitamins (as in golden rice) all leading to the achievements in rice nutrition science. The superiority of biotechnology over conventional breeding being already established, it is essential to ascertain that there are no serious negative agronomic consequences for consumers with any difference in grain size or color or texture, when a nutritionally improved variety of rice is generated through genetic engineering technology.
Collapse
|
197
|
Li P, Xiao Z, Sun J, Oyang X, Xie X, Li Z, Tian X, Li J. Metabolic regulations in lettuce root under combined exposure to perfluorooctanoic acid and perfluorooctane sulfonate in hydroponic media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138382. [PMID: 32481221 DOI: 10.1016/j.scitotenv.2020.138382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been detected in many agricultural products in contaminated fields and in supply chains. Roots are the main organ in plants to uptake and bio-accumulate PFASs, but the changes of metabolic regulation in roots by PFASs are largely unexplored. Here, lettuce exposed to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at different concentrations (500, 1000, 2000 and 5000 ng/L) was investigated via metabolomics. Many key metabolites, such as antioxidants, lipids, amino acids, fatty acids, carbohydrates, linolenic acid derivatives, purine and nucleosides, were significantly altered. Tyrosine metabolism, purine metabolism, isoquinoline alkaloid biosynthesis and terpenoid backbone biosynthesis were altered in roots by PFOA and PFOS. Tricarboxylic acid cycle was perturbed by 5000 ng/L exposure. Activation of antioxidant defense pathways, reallocation of carbon and nitrogen metabolism, regulation of energy metabolism and purine metabolism were reprogrammed in roots. Lettuce employed multiple strategies to increase tolerance to PFOA and PFOS, which includes the adjustment of membrane composition, elevation of inorganic nitrogen fixation and respiration, accumulation of sucrose and regulation of signaling molecules. The results of this study offer insights into the molecular reprogramming of plant roots in response to PFAS exposure and provide important information for the risk assessment of PFASs in environment.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China; Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Zhiyong Xiao
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Jiang Sun
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xihui Oyang
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xiaocan Xie
- Department of Vegetable Science, Beijing Key laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhifang Li
- Department of Vegetable Science, Beijing Key laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
198
|
Shehryar K, Khan RS, Iqbal A, Hussain SA, Imdad S, Bibi A, Hamayun L, Nakamura I. Transgene Stacking as Effective Tool for Enhanced Disease Resistance in Plants. Mol Biotechnol 2020; 62:1-7. [PMID: 31538309 DOI: 10.1007/s12033-019-00213-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction of more than one gene into crop plants simultaneously or sequentially, called transgene stacking, has been a more effective strategy for conferring higher and durable insect and disease resistance in transgenic plants than single-gene technology. Transgenes can be stacked against one or more pathogens or for traits such as herbicide tolerance or anthocyanin pigmentation. Polygenic agronomic traits can be improved by multiple gene transformation. The most widely engineered stacked traits are insect resistance and herbicide tolerance as these traits may lead to lesser use of pesticides, higher yield, and efficient control of weeds. In this review, we summarize transgene stacking of two or more transgenes into crops for different agronomic traits, potential applications of gene stacking, its limitations and future prospects.
Collapse
Affiliation(s)
- Kashmala Shehryar
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Sawera Imdad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Anam Bibi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Laila Hamayun
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ikuo Nakamura
- Graduate School of Horticulture, Chiba University Japan, Matsudo, Chiba, Japan
| |
Collapse
|
199
|
Haque E, Tabuchi H, Monden Y, Suematsu K, Shirasawa K, Isobe S, Tanaka M. QTL analysis and GWAS of agronomic traits in sweetpotato ( Ipomoea batatas L.) using genome wide SNPs. BREEDING SCIENCE 2020; 70:283-291. [PMID: 32714050 PMCID: PMC7372034 DOI: 10.1270/jsbbs.19099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/08/2019] [Indexed: 05/16/2023]
Abstract
While sweetpotato (Ipomoea batatas L.) improvement has generally been done by field-based selection, molecular genetic studies on traits of interest, i.e., molecular markers are needed for enhancing the breeding program of this world's 7th most important crop, as such markers facilitate marker-assisted selection. Here, we performed a combined approach of QTLs analyses and GWAS of storage root β-carotene content (BC), dry-matter (DM) and starch content (SC) using the genetic linkage maps constructed with 5,952 and 5,640 SNPs obtained from F1 progenies between cultivars 'J-Red' and 'Choshu'. BC was negatively correlated with DM (r = -0.45) and SC (r = -0.51), while DM was positively correlated with SC (r = 0.94). In both parental maps, a total of five, two and five QTL regions on linkage groups 7 and 8 were associated with BC, DM and SC, respectively. In GWAS of BC, one strong signal (P = 1.04 × 10-9) was observed on linkage group 8, which co-located with one of the above QTL regions. The SNPs markers found here, particularly for β-carotene, would be useful base resources for future marker-assisted selection program with this trait.
Collapse
Affiliation(s)
- Emdadul Haque
- Kyushu Okinawa Agricultural Research Center, NARO, 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
| | - Hiroaki Tabuchi
- Kyushu Okinawa Agricultural Research Center, NARO, 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
| | - Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Keisuke Suematsu
- Kyushu Okinawa Agricultural Research Center, NARO, 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Masaru Tanaka
- Kyushu Okinawa Agricultural Research Center, NARO, 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
200
|
Hayashi S, Watanabe M, Kobayashi M, Tohge T, Hashimoto T, Shoji T. Genetic Manipulation of Transcriptional Regulators Alters Nicotine Biosynthesis in Tobacco. PLANT & CELL PHYSIOLOGY 2020; 61:1041-1053. [PMID: 32191315 DOI: 10.1093/pcp/pcaa036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/14/2020] [Indexed: 05/13/2023]
Abstract
The toxic alkaloid nicotine is produced in the roots of Nicotiana species and primarily accumulates in leaves as a specialized metabolite. A series of metabolic and transport genes involved in the nicotine pathway are coordinately upregulated by a pair of jasmonate-responsive AP2/ERF-family transcription factors, NtERF189 and NtERF199, in the roots of Nicotiana tabacum (tobacco). In this study, we explored the potential of manipulating the expression of these transcriptional regulators to alter nicotine biosynthesis in tobacco. The transient overexpression of NtERF189 led to alkaloid production in the leaves of Nicotiana benthamiana and Nicotiana alata. This ectopic production was further enhanced by co-overexpressing a gene encoding a basic helix-loop-helix-family MYC2 transcription factor. Constitutive and leaf-specific overexpression of NtERF189 increased the accumulation of foliar alkaloids in transgenic tobacco plants but negatively affected plant growth. By contrast, in a knockout mutant of NtERF189 and NtERF199 obtained through CRISPR/Cas9-based genome editing, alkaloid levels were drastically reduced without causing major growth defects. Metabolite profiling revealed the impact of manipulating the nicotine pathway on a wide range of nitrogen- and carbon-containing metabolites. Our findings provide insights into the biotechnological applications of engineering metabolic pathways by targeting transcription factors.
Collapse
Affiliation(s)
- Shunya Hayashi
- Department of Biological Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0101 Japan
| | - Mutsumi Watanabe
- Department of Biological Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0101 Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Takayuki Tohge
- Department of Biological Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0101 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Takashi Hashimoto
- Department of Biological Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0101 Japan
| | - Tsubasa Shoji
- Department of Biological Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0101 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| |
Collapse
|