151
|
Abstract
Large granular lymphocyte (LGL) leukemia is a clonal lymphoproliferative disease of mature T and natural killer cells. The etiology of LGL leukemia is unknown. IL-15 is an inflammatory cytokine that stimulates T and natural killer cells and is critical for their survival and proliferation. IL-15 signals through a heterotrimeric receptor that is composed of a private receptor, IL-15Rα and IL-2/IL-15Rβ and γ(c) shared with IL-2. Using a newly developed assay, we demonstrated increased levels of soluble IL-15Rα in the serum of patients with T-LGL leukemia. Furthermore, IL-15Rα mRNA levels were also up-regulated in the PBMCs of these patients. FACS analysis indicated that IL-15Rα was expressed both on monocytes as well as on some CD8+ leukemic cells of the patients. Interestingly, the mRNA levels of IFN-γ, a known inducer of IL-15Rα, were also up-regulated in patients' PBMCs. Moreover, PBMCs of some T-LGL patients proliferated at higher levels in response to exogenously added IL-15 compared with those of normal donors. In summary, our study demonstrated increased expression of IL-15Rα in T-LGL leukemia. It is conceivable that higher IL-15Rα expression may lower IL-15 response threshold in vivo and, therefore, may contribute to the pathogenesis of the disease.
Collapse
|
152
|
Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel) 2011; 3:3856-93. [PMID: 24213115 PMCID: PMC3763400 DOI: 10.3390/cancers3043856] [Citation(s) in RCA: 474] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 02/06/2023] Open
Abstract
Cytokines are molecular messengers that allow the cells of the immune system to communicate with one another to generate a coordinated, robust, but self-limited response to a target antigen. The growing interest over the past two decades in harnessing the immune system to eradicate cancer has been accompanied by heightened efforts to characterize cytokines and exploit their vast signaling networks to develop cancer treatments. The goal of this paper is to review the major cytokines involved in cancer immunotherapy and discuss their basic biology and clinical applications. The paper will also describe new cytokines in pre-clinical development, combinations of biological agents, novel delivery mechanisms, and potential directions for future investigation using cytokines.
Collapse
Affiliation(s)
- Sylvia Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; E-Mail:
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kim Margolin
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; E-Mail:
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
153
|
Rettinger E, Kuçi S, Naumann I, Becker P, Kreyenberg H, Anzaghe M, Willasch A, Koehl U, Bug G, Ruthardt M, Klingebiel T, Fulda S, Bader P. The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy 2011; 14:91-103. [PMID: 21973023 DOI: 10.3109/14653249.2011.613931] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AIMS Cytokine-induced killer (CIK) cells may serve as an alternative approach to adoptive donor lymphocyte infusions (DLI) for patients with acute leukemia relapsing after haplo-identical hematopoietic stem cell transplantation (HSCT). We investigated the feasibility of enhancing CIK cell-mediated cytotoxicity by interleukin (IL)-15 against acute myeloid and lymphoblastic leukemia/lymphoma cells. METHODS CIK cells were activated using IL-2 (CIK(IL-2)) or IL-15 (CIK(IL-15)) and phenotypically analyzed by fluorescence-activated cell sorting (FACS). Cytotoxic potential was measured by europium release assay. RESULTS CIK(IL-2) cells showed potent cytotoxicity against the T-lymphoma cell line H9, T-cell acute lymphoblastic leukemia (T-ALL) cell line MOLT-4 and subtype M4 acute myeloid leukemia (AML) cell line THP-1, but low cytotoxicity against the precursor B (pB)-cell ALL cell line Tanoue. IL-15 stimulation resulted in a significant enhancement of CIK cell-mediated cytotoxicity against acute lymphoblastic leukemia/lymphoma cell lines as well as against primary acute myeloid and defined lymphoblastic leukemia cells. However, the alloreactive potential of CIK(IL-15) cells remained low. Further analysis of CIK(IL-15) cells demonstrated that the NKG2D receptor is apparently involved in the recognition of target cells whereas killer-cell immunoglobulin-like receptor (KIR)-HLA mismatches contributed to a lesser extent to the CIK(IL-15) cell-mediated cytotoxicity. In this context, CD3 (+) CD8 (+) CD25 (+) CD56(-) CIK(IL-15) cell subpopulations were more effective in the lysis of AML cells, in contrast with CD56 (+) CIK(IL-15) cells, which showed the highest cytotoxic potential against ALL cells. CONCLUSIONS This study provides the first evidence that CIK(IL-15) cells may offer a therapeutic option for patients with refractory or relapsed leukemia following haplo-identical HSCT.
Collapse
Affiliation(s)
- Eva Rettinger
- University Children's Hospital of Frankfurt/Main and Department of Pediatric Hematology, Oncology and Hemostaseology, Goethe-University Frankfurt/Main, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Subleski JJ, Jiang Q, Weiss JM, Wiltrout RH. The split personality of NKT cells in malignancy, autoimmune and allergic disorders. Immunotherapy 2011; 3:1167-84. [PMID: 21995570 PMCID: PMC3230042 DOI: 10.2217/imt.11.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy.
Collapse
Affiliation(s)
- Jeff J Subleski
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Qun Jiang
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Jonathan M Weiss
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Robert H Wiltrout
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| |
Collapse
|
155
|
Alonso-Arias R, Moro-García MA, Vidal-Castiñeira JR, Solano-Jaurrieta JJ, Suárez-García FM, Coto E, López-Larrea C. IL-15 preferentially enhances functional properties and antigen-specific responses of CD4+CD28(null) compared to CD4+CD28+ T cells. Aging Cell 2011; 10:844-52. [PMID: 21635686 DOI: 10.1111/j.1474-9726.2011.00725.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the most prominent changes during T-cell aging in humans is the accumulation of CD28(null) T cells, mainly CD8+ and also CD4+ T cells. Enhancing the functional properties of these cells may be important as they provide an antigen-specific defense against chronic infections. Recent studies have shown that IL-15 does in fact play an appreciable role in CD4 memory T cells under physiological conditions. We found that treatment with IL-15 increased the frequency of elderly CD4+CD28(null) T cells by the preferential proliferation of these cells compared to CD4+CD28+ T cells. IL-15 induced an activated phenotype in CD4+CD28(null) T cells. Although the surface expression of IL-15R α-chain was not increased, the transcription factor STAT-5 was preferentially activated. IL-15 augmented the cytotoxic properties of CD4+CD28(null) T cells by increasing both the mRNA transcription and storage of granzyme B and perforin for the cytolytic effector functions. Moreover, pretreatment of CD4+CD28(null) T cells with IL-15 displayed a synergistic effect on the IFN-γ production in CMV-specific responses, which was not observed in CD4+CD28+ T cells. IL-15 could play a role enhancing the effector response of CD4+CD28(null) T cells against their specific chronic antigens.
Collapse
Affiliation(s)
- Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias, C ⁄ Julián Clavería s ⁄ n,Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
156
|
McPhee CG, Sproule TJ, Shin DM, Bubier JA, Schott WH, Steinbuck MP, Avenesyan L, Morse HC, Roopenian DC. MHC class I family proteins retard systemic lupus erythematosus autoimmunity and B cell lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4695-704. [PMID: 21964024 DOI: 10.4049/jimmunol.1101776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dysregulation of the T cell-dependent Ab response can lead to numerous immunological disorders, ranging from systemic lupus erythematosus to B cell lymphomas. Cellular processes governed by MHC class II proteins play a major role in this response and its dysregulation. The extent to which processes controlled by the diverse family of MHC class I proteins impact such autoimmune and neoplastic disorders, however, is less clear. In this study, we genetically dissect the contributions of individual MHC class I family members and the pathological processes under their control in the systemic lupus erythematosus-like disease of BXSB.Yaa mice and B cell lymphomagenesis of SJL mice. This study reveals a powerful repressive regulatory axis comprised of MHC class I-dependent CD8(+) T cells and NK cells. These results indicate that the predominant role of the MHC class I protein family in such immunological disorders is to protect from more aggressive diseases.
Collapse
|
157
|
Olurinde MO, Shen CH, Drake A, Bai A, Chen J. Persistence of tumor-infiltrating CD8 T cells is tumor-dependent but antigen-independent. Cell Mol Immunol 2011; 8:415-23. [PMID: 21666707 PMCID: PMC3381361 DOI: 10.1038/cmi.2011.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
How tumor-infiltrating lymphocytes (TILs) that are tumor-specific but functionally tolerant persist in the antigen-expressing tumor tissue is largely unknown. We have previously developed a modified TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model where prostate cancer cells express the T-cell epitope SIYRYYGL (SIY) recognized by CD8 T cells expressing the 2C T-cell receptor (TCR) (referred to as TRP-SIY mice). In TRP-SIY mice, activated 2C T cells rapidly become tolerant following infiltration into the prostate tumor. In this study, we show that tolerant 2C T cells persist in the prostate tumor of TRP-SIY mice by proliferating slowly in a tumor-dependent, but antigen-, interleukin (IL)-7- and IL-15-independent manner. We also show that disappearance of 2C T cells from the lymphoid organs of TRP-SIY mice are due to antigen-induced T-cell contraction rather than altered trafficking or generalized T-cell depletion in the mice. Finally, we show that clonal T cells unreactive to SIY are equally capable of persisting in the prostate tumor. These findings suggest that while functional tolerance of TILs is induced by antigen, persistence of tolerant TILs in the tumor tissue is mediated by a novel mechanism: slow proliferation independent of antigen and homeostatic cytokines. These results also allow CD8 T-cell survival in the tumor environment to be compared with T-cell survival in chronic infection.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Flow Cytometry
- Humans
- Immune Tolerance
- Influenza A Virus, H1N1 Subtype
- Interleukin-15/immunology
- Interleukin-7/immunology
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/cytology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Prostate/immunology
- Prostate/metabolism
- Prostate/pathology
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Real-Time Polymerase Chain Reaction
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Transduction, Genetic
Collapse
|
158
|
Moon EK, Carpenito C, Sun J, Wang LCS, Kapoor V, Predina J, Powell DJ, Riley JL, June CH, Albelda SM. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 2011; 17:4719-30. [PMID: 21610146 PMCID: PMC3612507 DOI: 10.1158/1078-0432.ccr-11-0351] [Citation(s) in RCA: 425] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Adoptive T-cell immunotherapy with tumor infiltrating lymphocytes or genetically-modified T cells has yielded dramatic results in some cancers. However, T cells need to traffic properly into tumors to adequately exert therapeutic effects. EXPERIMENTAL DESIGN The chemokine CCL2 was highly secreted by malignant pleural mesotheliomas (MPM; a planned tumor target), but the corresponding chemokine receptor (CCR2) was minimally expressed on activated human T cells transduced with a chimeric antibody receptor (CAR) directed to the MPM tumor antigen mesothelin (mesoCAR T cells). The chemokine receptor CCR2b was thus transduced into mesoCAR T cells using a lentiviral vector, and the modified T cells were used to treat established mesothelin-expressing tumors. RESULTS CCR2b transduction led to CCL2-induced calcium flux and increased transmigration, as well as augmentation of in vitro T-cell killing ability. A single intravenous injection of 20 million mesoCAR + CCR2b T cells into immunodeficient mice bearing large, established tumors (without any adjunct therapy) resulted in a 12.5-fold increase in T-cell tumor infiltration by day 5 compared with mesoCAR T cells. This was associated with significantly increased antitumor activity. CONCLUSIONS CAR T cells bearing a functional chemokine receptor can overcome the inadequate tumor localization that limits conventional CAR targeting strategies and can significantly improve antitumor efficacy in vivo.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/immunology
- Chemokines/biosynthesis
- Cytotoxicity, Immunologic/immunology
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mesothelin
- Mesothelioma/genetics
- Mesothelioma/immunology
- Mesothelioma/metabolism
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Pleural Neoplasms/genetics
- Pleural Neoplasms/immunology
- Pleural Neoplasms/metabolism
- Receptors, CCR2/genetics
- Receptors, CCR2/immunology
- Receptors, CCR2/metabolism
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- Single-Chain Antibodies/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Johannessen I, Bieleski L, Urquhart G, Watson S, Wingate P, Haque T, Crawford D. Epstein-Barr virus, B cell lymphoproliferative disease, and SCID mice: Modeling T cell immunotherapy in vivo. J Med Virol 2011; 83:1585-96. [DOI: 10.1002/jmv.22164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
160
|
Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B. Persistent viral infections and immune aging. Ageing Res Rev 2011; 10:362-9. [PMID: 20727987 DOI: 10.1016/j.arr.2010.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 12/12/2022]
Abstract
Immunosenescence comprises a set of dynamic changes occurring to both, the innate as well as the adaptive immune system that accompany human aging and result in complex manifestations of still poorly defined deficiencies in the elderly population. One of the most prominent alterations during aging is the continuous involution of the thymus gland which is almost complete by the age of 50. Consequently, the output of naïve T cells is greatly diminished in elderly individuals which puts pressure on homeostatic forces to maintain a steady T cell pool for most of adulthood. In a great proportion of the human population, this fragile balance is challenged by persistent viral infections, especially Cytomegalovirus (CMV), that oblige certain T cell clones to monoclonally expand repeatedly over a lifetime which then occupy space within the T cell pool. Eventually, these inflated memory T cell clones become exhausted and their extensive accumulation accelerates the age-dependent decline of the diversity of the T cell pool. As a consequence, infectious diseases are more frequent and severe in elderly persons and immunological protection following vaccination is reduced. This review therefore aims to shed light on how various types of persistent viral infections, especially CMV, influence the aging of the immune system and highlight potential measures to prevent the age-related decline in immune function.
Collapse
|
161
|
Li Q, Rao RR, Araki K, Pollizzi K, Odunsi K, Powell JD, Shrikant PA. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 2011; 34:541-53. [PMID: 21511183 PMCID: PMC3083826 DOI: 10.1016/j.immuni.2011.04.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 02/17/2011] [Accepted: 04/06/2011] [Indexed: 12/20/2022]
Abstract
The cell-intrinsic mechanisms guiding naive CD8+ T cells for clonal expansion and memory generation via homeostatic proliferation (HP) are unclear. Here, we have shown that HP of naive CD8+ T cells requires IL-7-, but not IL-15-induced mTOR kinase activation. HP-induced mTOR enhances transcription factor T-bet for functional maturation and CD122 expression, which sensitizes for an IL-15-dependent memory transition by favoring transcription factor Eomesodermin over T-bet. Inhibition of mTOR blocks T-bet and CD122 expression but preserves memory in an IL-15-independent manner by promoting Eomesodermin expression. The ability of rapamycin to augment HP-induced memory was cell-intrinsic given that silencing mTOR in CD8+ T cells generated identical outcomes. Strikingly, HP-induced CD8+ T cell memory generated by IL-15-dependent or -independent mechanisms demonstrated identical tumor efficacy. These results indicate a central role for mTOR in HP-induced CD8+ T cell responses and demonstrate the importance for CD8+ memory in HP-induced tumor efficacy.
Collapse
Affiliation(s)
- Qingsheng Li
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| | - Rajesh R. Rao
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory, University School of Medicine, Atlanta, Georgia 30322
| | - Kristen Pollizzi
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| | - Jonathan D. Powell
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Protul A. Shrikant
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| |
Collapse
|
162
|
Zhao Y, Cheng K, Wu Y, Peng XC, Chen Y, Tan BX, Ge J, Dong H, Wei M, Gao F, Su JM, Hou JM, Liu JY. Interleukin-15 enhances T-cell responses by stimulation with dendritic cells. Clin Transl Oncol 2011; 13:275-280. [PMID: 21493189 DOI: 10.1007/s12094-011-0653-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Cytokines play important roles in regulating immune responses. Interleukin-2 (IL-2) has usually been used as an adjuvant to enhance antitumour immune responses. However, its crucial role in activation-induced cell death, inhibition of homeostatic proliferation of CD8+ memory T cells and its notable biological side effects impair its prospect of application. IL-15 has several similar functions to IL-2 and shows potential advantages over IL-2, and is being investigated to enhance antitumour dendritic cell (DC) vaccine strategies in our ongoing studies. OBJECTIVE In this preliminary study, we evaluated the ability of IL-15, compared with IL-2, to act as an adjuvant to enhance T-cell responses activated by DCs in vitro. MATERIALS AND METHODS Bone marrow-derived DCs (BMDCs) were pulsed with tumour antigens and used to stimulate lymphocyte responses in the presence of IL-15 or IL-2. The activated T lymphocytes were examined by flow cytometric analysis, and interferon-γ (IFN-γ) enzyme-linked immunospot and cytotoxicity assays. RESULTS IL-15 was observed to activate lymphocytes with comparable phenotype characteristics of activated/memory CD8+ lymphocytes, compared with IL-2. Both in primary and secondary stimulation with DCs, when using IL-15 as an adjuvant, activated lymphocytes showed higher proportions of IFN-γ-secreting subsets. In secondary stimulation with BMDCs in the presence of IL-15, the activated lymphocytes showed a stronger cytotoxicity to antigen-specific tumour target cells. CONCLUSIONS Our study suggested that IL-15 might be a prospective adjuvant for a DC vaccine strategy against cancers. The further observation that IL-15 acts as an adjuvant for an antitumour DC vaccine strategy is worth investigating.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood 2011; 117:4787-95. [PMID: 21385847 DOI: 10.1182/blood-2010-10-311456] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
IL-15 uses the heterotrimeric receptor IL-2/IL-15Rβ and the γ chain shared with IL-2 and the cytokine-specific IL-15Rα. Although IL-15 shares actions with IL-2 that include activation of natural killer (NK) and CD8 T cells, IL-15 is not associated with capillary leak syndrome, activation-induced cell death, or with a major effect on the number of functional regulatory T cells. To prepare for human trials to determine whether IL-15 is superior to IL-2 in cancer therapy, recombinant human IL-15 (rhIL-15) was produced under current good manufacturing practices. A safety study in rhesus macaques was performed in 4 groups of 6 animals each that received vehicle diluent control or rhIL-15 at 10, 20, or 50 μg/kg/d IV for 12 days. The major toxicity was grade 3/4 transient neutropenia. Bone marrow examinations demonstrated increased marrow cellularity, including cells of the neutrophil series. Furthermore, neutrophils were observed in sinusoids of enlarged livers and spleens, suggesting that IL-15 mediated neutrophil redistribution from the circulation to tissues. The observation that IL-15 administration was associated with increased numbers of circulating NK and CD8 central and effector-memory T cells, in conjunction with efficacy studies in murine tumor models, supports the use of multiple daily infusions of rhIL-15 in patients with metastatic malignancies.
Collapse
|
164
|
Kim GY, Hong C, Park JH. Seeing is believing: illuminating the source of in vivo interleukin-7. Immune Netw 2011; 11:1-10. [PMID: 21494371 PMCID: PMC3072672 DOI: 10.4110/in.2011.11.1.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 12/31/2022] Open
Abstract
Interleukin-7 (IL-7) is an essential cytokine for T cells. However, IL-7 is not produced by T cells themselves such that T cells are dependent on extrinsic IL-7. In fact, in the absence of IL-7, T cell development in the thymus as well as survival of naive T cells in the periphery is severely impaired. Furthermore, modulating IL-7 availability in vivo either by genetic means or other experimental approaches determines the size, composition and function of the T cell pool. Consequently, understanding IL-7 expression is critical for understanding T cell immunity. Until most recently, however, the spatiotemporal expression of in vivo IL-7 has remained obscured. Shortage of such information was partly due to scarce expression of IL-7 itself but mainly due to the lack of adequate reagents to monitor IL-7 expression in vivo. This situation dramatically changed with a recent rush of four independent studies that describe the generation and characterization of IL-7 reporter mice, all utilizing bacterial artificial chromosome transgene technology. The emerging consensus of these studies confirmed thymic stromal cells as the major producers of IL-7 but also identified IL-7 reporter activities in various peripheral tissues including skin, intestine and lymph nodes. Strikingly, developmental and environmental cues actively modulated IL-7 reporter activities in vivo suggesting that IL-7 regulation might be a new mechanism of shaping T cell development and homeostasis. Collectively, the availability of these new tools opens up new venues to assess unanswered questions in IL-7 biology in T cells and beyond.
Collapse
Affiliation(s)
- Grace Yoonhee Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
165
|
Hänninen A, Maksimow M, Alam C, Morgan DJ, Jalkanen S. Ly6C supports preferential homing of central memory CD8+ T cells into lymph nodes. Eur J Immunol 2011; 41:634-44. [PMID: 21308682 DOI: 10.1002/eji.201040760] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/22/2010] [Accepted: 12/21/2010] [Indexed: 11/06/2022]
Abstract
Ly6C is a murine cell-surface antigen expressed by plasma cells, subsets of myeloid cells and many T cells, including memory T cells. We previously documented that Ly6C crosslinking induces LFA-1 clustering on naïve CD8(+) T cells. Here, we show that in vitro and in vivo differentiation of naïve CD8(+) T cells into central (Tcm) but not effector (Tem) memory T cells enhances Ly6C expression, and its crosslinking induces strong LFA-1 clustering on Tcm. Blocking Ly6C function inhibits in vivo Tcm homing to LNs as efficiently as blocking L-selectin but it does not potentiate the inhibition provided by blocking either L-selectin or LFA-1 function. Thus, Ly6C, L-selectin and LFA-1 all appear to be part of a common homing pathway. In vitro, Ly6C crosslinking enhances Tcm adherence to ICAM-1 in the presence of CCL21. In summary, Tcm homing involves Ly6C, in addition to L-selectin and LFA-1, and appears to potentiate firm adhesion of Tcm to ICAM-1 in synergy with a chemokine. We propose that Ly6C augments Tcm compartmentalization into LNs during their homing.
Collapse
Affiliation(s)
- Arno Hänninen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
166
|
Fortner KA, Lees RK, MacDonald HR, Budd RC. Fas (CD95/APO-1) limits the expansion of T lymphocytes in an environment of limited T-cell antigen receptor/MHC contacts. Int Immunol 2011; 23:75-88. [PMID: 21266499 DOI: 10.1093/intimm/dxq466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fas-deficient mice (Fas(lpr/lpr)) and humans have profoundly dysregulated T lymphocyte homeostasis, which manifests as an accumulation of CD4(+) and CD8(+) T cells as well as an unusual population of CD4(-)CD8(-)TCRαβ(+) T cells. To date, no unifying model has explained both the increased T-cell numbers and the origin of the CD4(-)CD8(-)TCRαβ(+) T cells. As Fas(lpr/lpr) mice raised in a germ-free environment still manifest lymphadenopathy, we considered that this process is primarily driven by recurrent low-avidity TCR signaling in response to self-peptide/MHC as occurs during homeostatic proliferation. In these studies, we developed two independent systems to decrease the number of self-peptide/MHC contacts. First, expression of MHC class I was reduced in OT-I TCR transgenic mice. Although OT-I Fas(lpr/lpr) mice did not develop lymphadenopathy characteristic of Fas(lpr/lpr) mice, in the absence of MHC class I, OT-I Fas(lpr/lpr) T cells accumulated as both CD8(+) and CD4(-)CD8(-) T cells. In the second system, re-expression of β(2)m limited to thymic cortical epithelial cells of Fas(lpr/lpr) β(2)m-deficient mice yielded a model in which polyclonal CD8(+) thymocytes entered a peripheral environment devoid of MHC class I. These mice accumulated significantly greater numbers of CD4(-)CD8(-)TCRαβ(+) T cells than conventional Fas(lpr/lpr) mice. Thus, Fas shapes the peripheral T-cell repertoire by regulating the survival of a subset of T cells proliferating in response to limited self-peptide/MHC contacts.
Collapse
Affiliation(s)
- Karen A Fortner
- Immunobiology Program, Department of Medicine, The University of Vermont College of Medicine, Burlington, VT 05405-0068, USA.
| | | | | | | |
Collapse
|
167
|
Sun JC, Beilke JN, Bezman NA, Lanier LL. Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. ACTA ACUST UNITED AC 2011; 208:357-68. [PMID: 21262959 PMCID: PMC3039854 DOI: 10.1084/jem.20100479] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Like memory T cells, natural killer cells that undergo homeostatic expansion in mice self-renew and retain the ability to respond to subsequent viral infection. Cells of the immune system undergo homeostatic proliferation during times of lymphopenia induced by certain viral infections or caused by chemotherapy and radiation treatment. Natural killer (NK) cells are no exception and can rapidly expand in number when placed into an environment devoid of these cells. We explored the lifespan and function of mouse NK cells that have undergone homeostatic proliferation in various settings of immunodeficiency. Adoptive transfer of mature NK cells into lymphopenic mice resulted in the generation of a long-lived population of NK cells. These homeostasis-driven NK cells reside in both lymphoid and nonlymphoid organs for >6 mo and, similar to memory T cells, self-renew and slowly turn over at steady state. Furthermore, homeostatically expanded NK cells retained their functionality many months after initial transfer and responded robustly to viral infection. These findings highlight the ability of mature NK cells to self-renew and possibly persist in the host for months or years and might be of clinical importance during NK cell adoptive immunotherapy for the treatment of certain cancers.
Collapse
Affiliation(s)
- Joseph C Sun
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|
168
|
Fousteri G, Dave A, Juedes A, Juntti T, Morin B, Togher L, Farber DL, von Herrath M. Increased memory conversion of naïve CD8 T cells activated during late phases of acute virus infection due to decreased cumulative antigen exposure. PLoS One 2011; 6:e14502. [PMID: 21253594 PMCID: PMC3017078 DOI: 10.1371/journal.pone.0014502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/16/2010] [Indexed: 11/28/2022] Open
Abstract
Background Memory CD8 T cells form an essential part of protective immunity against viral infections. Antigenic load, costimulation, CD4-help, cytokines and chemokines fluctuate during the course of an antiviral immune response thus affecting CD8 T cell activation and memory conversion. Methodology/Principal Findings In the present study, naïve TCR transgenic LCMV-specific P14 CD8 T cells engaged at a late stage during the acute antiviral LCMV response showed reduced expansion kinetics but greater memory conversion in the spleen. Such late activated cells displayed a memory precursor effector phenotype already at the peak of the systemic antiviral response, suggesting that the environment determined their fate during antigen encounter. In the spleen, the majority of late transferred cells exhibited a central memory phenotype compared to the effector memory displayed by the early transferred cells. Increasing the inflammatory response by exogenous administration of IFNγ, PolyI:C or CpG did not affect memory conversion in the late transferred group, suggesting that the diverging antigen load early versus later during acute infection had determined their fate. In agreement, reduction in the LCMV antigenic load after ribavirin treatment enhanced the contribution of early transferred cells to the long lasting memory pool. Conclusions/Significance Our results show that naïve CD8 cells, exposed to reduced duration or concentration of antigen during viral infection convert into memory more efficiently, an observation that could have significant implications for vaccine design.
Collapse
Affiliation(s)
- Georgia Fousteri
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Amy Dave
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Amy Juedes
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Therese Juntti
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Bret Morin
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Lisa Togher
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Donna L. Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Matthias von Herrath
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
169
|
Mumprecht S, Schürch C, Scherrer S, Claus C, Ochsenbein AF. Chronic myelogenous leukemia maintains specific CD8(+) T cells through IL-7 signaling. Eur J Immunol 2010; 40:2720-30. [PMID: 20836157 DOI: 10.1002/eji.201040404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease of hematopoietic stem cells. The disease progresses after several years from an initial chronic phase to a blast phase. Leukemia-specific T cells are regularly detected in CML patients and may be involved in the immunological control of the disease. Here, we analyzed the role of leukemia-specific CD8(+) T cells in CML disease control and the mechanism that maintains CD8(+) T-cell immunosurveillance in a retroviral-induced murine CML model. To study antigen-specific immune responses, the glycoprotein of the lymphocytic choriomeningitis virus was used as model leukemia antigen. Leukemia-specific CTL activity was detectable in vivo in CML mice and depletion of CD8(+) T cells rapidly led to disease progression. CML-specific CTL were characterized by the expression of the IL-7 receptor α-chain. In addition, leukemia cells produced IL-7 that was crucial for the maintenance of leukemia-specific CTL and for disease control. Therefore, CML cells maintain the specific CD8(+) T-cell-mediated immune control by IL-7 secretion. This results in prolonged control of disease and probably contributes to the characteristic chronic phase of the disease.
Collapse
Affiliation(s)
- Sabine Mumprecht
- Tumor Immunology, Department of Clinical Research, University of Berne, Berne, Switzerland
| | | | | | | | | |
Collapse
|
170
|
IL-15 aggravates atherosclerotic lesion development in LDL receptor deficient mice. Vaccine 2010; 29:976-83. [PMID: 21115056 DOI: 10.1016/j.vaccine.2010.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/05/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Interleukin 15 (IL-15) is a pro-inflammatory cytokine involved in inflammatory diseases and IL-15 is expressed in atherosclerotic plaques. METHODS To establish the role of IL-15 in atherosclerosis we studied the effect of IL-15 on atherosclerosis associated cells in vitro and in vivo by neutralizing IL-15 using a DNA vaccination strategy. RESULTS Upon feeding a Western type diet LDLr(-/-) mice do express higher levels of IL-15 within the spleen and the number of IL-15 expressing cells among blood leukocytes and spleen cells is increased. Addition of IL-15 to macrophages induces the expression TNF-α and CCL-2. After the mice were vaccinated against IL-15, we observe a reduction in plaque size of 75% plaque. Unexpectedly, the relative number of macrophages within the plaque was 2-fold higher in IL-15 vaccinated mice than in control mice. Vaccination against IL-15 leads to an increased cytotoxicity against IL-15 overexpressing target cells, resulting in a reduction in IL-15 expressing cells and macrophages in blood and spleen and a decreased CD4/CD8 ratio. CONCLUSION Hypercholesterolemia leads to upregulation of IL-15 within spleen and blood. DNA vaccination against IL-15 does markedly reduces atherosclerotic lesion size, but does not promote lesion stability.
Collapse
|
171
|
Fortner KA, Bouillet P, Strasser A, Budd RC. Apoptosis regulators Fas and Bim synergistically control T-lymphocyte homeostatic proliferation. Eur J Immunol 2010; 40:3043-53. [PMID: 21061436 PMCID: PMC3334341 DOI: 10.1002/eji.201040577] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/22/2010] [Accepted: 08/26/2010] [Indexed: 12/23/2022]
Abstract
The size of the peripheral T-lymphocyte compartment is governed by complex homeostatic mechanisms that balance T-cell proliferation and death. Proliferation and survival signals are mediated in part by recurrent self-peptide/MHC-TCR interactions and signaling by the common γ chain-containing cytokine receptors, including those for IL-7 and IL-15. We have previously shown that the death receptor Fas (CD95/APO-1) regulates apoptosis in response to repeated TCR stimulation, whereas the Bcl-2 homology domain 3-only protein Bim mediates cytokine withdrawal-induced apoptosis. We therefore reasoned that these two molecules might cooperate in the regulation of homeostatic proliferation. In this study, we observe that the combined loss of Fas and Bim synergistically enhances the accumulation of T cells in lymphopenic host mice, and this is particularly pronounced for the unusual CD4(-) CD8(-) TCRαβ(+) T cells that are characteristic of Fas-deficient (Fas(lpr/lpr) ) mice. Our findings demonstrate that these CD4(-) CD8(-) TCRαβ(+) T cells arise from homeostatic proliferation of CD8(+) T cells. These studies also underscore the profound rate of baseline T-cell proliferation that likely occurs in wild-type mice even in the absence of foreign antigen, and the consequent need for its coordinated regulation by multiple death-signaling pathways.
Collapse
Affiliation(s)
- Karen A Fortner
- Vermont Center for Immunology and Infectious Disease, The University of Vermont College of Medicine, Burlington, VT 05405-0068, USA.
| | | | | | | |
Collapse
|
172
|
Ellis JS, Guloglu FB, Tartar DM, Hoeman CM, Haymaker CL, Cascio JA, Wan X, Dhakal M, VanMorlan A, Yahng SH, Zaghouani H. APCs expressing high levels of programmed death ligand 2 sustain the development of CD4 T cell memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3149-57. [PMID: 20709947 PMCID: PMC3057906 DOI: 10.4049/jimmunol.1000810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The role APCs play in the transition of T cells from effector to memory remains largely undefined. This is likely due to the low frequency at which long-lived T cells arise, which hinders analysis of the events involved in memory development. In this study, we used TCR transgenic T cells to increase the frequency of long-lived T cells and developed a transfer model suitable for defining the contribution of APCs to the development of CD4 T cell memory. Accordingly, naive TCR transgenic T cells were stimulated in vitro with Ag presented by different types of APCs and transferred into MHC class II-deficient mice for parking, and the hosts were later analyzed for long-lived T cell frequency or challenged with suboptimal dose of Ag, and the long-lived cells-driven memory responses were measured. The findings indicate that B cells and CD8alpha(+) dendritic cells sustained elevated frequencies of long-lived T cells that yielded rapid and robust memory responses upon rechallenge with suboptimal dose of Ag. Furthermore, both types of APCs had significant programmed death (PD) ligand 2 expression prior to Ag stimulation, which was maintained at a high level during presentation of Ag to T cells. Blockade of PD ligand 2 interaction with its receptor PD-1 nullified the development of memory responses. These previously unrecognized findings suggest that targeting specific APCs for Ag presentation during vaccination could prove effective against microbial infections.
Collapse
Affiliation(s)
- Jason S. Ellis
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - F. Betul Guloglu
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Danielle M. Tartar
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Christine M. Hoeman
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Cara L. Haymaker
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Jason A. Cascio
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Xiaoxiao Wan
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Mermagya Dhakal
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Amie VanMorlan
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
- Department of Child Health, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Seung-Hi Yahng
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| | - Habib Zaghouani
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
- Department of Child Health, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia MO 65212
| |
Collapse
|
173
|
Rutishauser RL, Kaech SM. Generating diversity: transcriptional regulation of effector and memory CD8 T-cell differentiation. Immunol Rev 2010; 235:219-33. [PMID: 20536566 DOI: 10.1111/j.0105-2896.2010.00901.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SUMMARY In response to acute infections or vaccines, naive antigen-specific CD8(+) T cells proliferate and differentiate into effector cytotoxic lymphocytes that acquire the ability to kill infected cells. While the majority of differentiated effector cells die after pathogen clearance, a small number evade terminal differentiation, downregulate active effector functions, and survive as long-lived, self-renewing memory T cells. Our understanding of how effector CD8(+) T cells adopt these different cell fates has grown greatly in recent years. In this review, we discuss the transcriptional regulators that are known to support general effector differentiation, terminal effector differentiation, and memory cell formation. We propose that the diversity of activated CD8(+) T-cell differentiation states is achieved via gradients of activity or expression of transcriptional regulators that are regulated by the level of inflammation and antigenic signaling the T cells experience during infection.
Collapse
Affiliation(s)
- Rachel L Rutishauser
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
174
|
Westwood JA, Berry LJ, Wang LX, Duong CP, Pegram HJ, Darcy PK, Kershaw MH. Enhancing adoptive immunotherapy of cancer. Expert Opin Biol Ther 2010; 10:531-45. [PMID: 20132063 DOI: 10.1517/14712591003610622] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Conventional therapies, including surgery, chemotherapy and radiotherapy have contributed much to cancer treatment. However, these treatment modalities fail in a large proportion of patients, and there is a great need for effective alternate therapies. Adoptive immunotherapy can be effective against some cancers that have failed all other treatment options, even when disease burdens are massive. AREAS COVERED IN THIS REVIEW This review gives a brief introduction of the historical origins of adoptive immunotherapy and then provides details of strategies for increasing the potency of cell transfer. Approaches for enhancing adoptive immunotherapy include: selecting the right type of cell; providing cytokine support; preconditioning patients and tuning the tumor microenvironment. The review also provides insights into the safety, feasibility and costs of this form of therapy. WHAT THE READER WILL GAIN This article will give the reader an appreciation of the potential of adoptive immunotherapy, as well as an understanding of some limitations and current approaches for optimizing the effectiveness of this approach. TAKE HOME MESSAGE With recent developments in knowledge of the interactions between the immune system and tumors, the field of adoptive immunotherapy is now poised to make dramatic contributions to cancer therapy.
Collapse
Affiliation(s)
- Jennifer A Westwood
- Peter MacCallum Cancer Centre, Cancer Immunology Research Program, St. Andrews Place, Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | |
Collapse
|
175
|
Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites. PLoS Pathog 2010; 6:e1000998. [PMID: 20657824 PMCID: PMC2904779 DOI: 10.1371/journal.ppat.1000998] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/11/2010] [Indexed: 12/02/2022] Open
Abstract
Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these “whole-parasite” vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines. Plasmodium infections are a global health crisis resulting in ∼300 million cases of malaria each year and ∼1 million deaths. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccines that induce sterilizing anti-malarial immunity in humans. Importantly, “whole parasite” anti-malarial RAS vaccines are currently under evaluation in clinical trials. In rodents, RAS-induced protection is largely mediated by CD8 T cells. However, the quantitative and qualitative characteristics of RAS-induced protective CD8 T cell responses are unknown. Here, we used surrogate markers of T cell activation to reveal the magnitude and kinetics of Plasmodium-specific CD8 T cell responses following RAS-immunization in both inbred and outbred mice. Our data show that, independent of host genetic background, extremely large memory CD8 T cell responses were required, but not always sufficient for sterilizing protection. These data have broad implications for evaluating total T cell responses to attenuated pathogen-vaccines and direct relevance for efforts to translate attenuated whole-Plasmodium vaccines to humans.
Collapse
|
176
|
Abstract
Cytokines that signal through the common-gamma chain are potent growth factors for T cells and natural killer cells. Interleukin (IL)-2, the gammac prototype, can mediate antitumor effects as a single agent or in the context of multimodality regimens but is limited by side effects and a propensity for expansion of regulatory T cells. IL-7, IL-15, and IL-21 each possess properties that can be exploited in the context of immunotherapy for cancer. Each has been demonstrated to mediate potent vaccine adjuvant effects in tumor models, and each can enhance the effectiveness of adoptive immunotherapies. Although the overlap among the agents is significant, IL-7 is uniquely immunorestorative and preferentially augments reactivity of naive populations, IL-15 potently augments reactivity of CD8 memory cells and natural killer cells, and IL-21 preferentially expands the inflammatory Th17 subset and may limit terminal differentiation of effector CD8 cells. Clinical trials of IL-7 and IL-21 have already been completed and, so far, demonstrate safety and biologic activity of these agents. Clinical trials of IL-15 are expected soon. Ultimately, these agents are expected to be most effective in the context of multimodal immunotherapy regimens, and careful clinical trial design will be needed to efficiently identify the proper doses, regimens, and settings in which to exploit their biologic properties for therapeutic gain.
Collapse
Affiliation(s)
- Natasha M. Fewkes
- Dunn School of Pathology, University of Oxford and The Pediatric Oncology Branch, Bethesda, MD
| | - Crystal L. Mackall
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
177
|
Abstract
Natural killer (NK) cells respond rapidly to transformed, stressed, or virally infected cells and provide a first-line immune defense against pathogen invasion and cancer. Thought to involve short-lived effector cells that are armed for battle, NK cells were not previously known to contribute in recall responses to pathogen re-encounter. Here, we highlight recent discoveries demonstrating that NK cells are not limited to driving primary immune responses to foreign antigen but can mount secondary responses contributing to immune memory. We also further characterize the phenotype and function of long-lived memory NK cells generated during viral infection.
Collapse
Affiliation(s)
- Joseph C. Sun
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Joshua N. Beilke
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
178
|
Shrikant PA, Rao R, Li Q, Kesterson J, Eppolito C, Mischo A, Singhal P. Regulating functional cell fates in CD8 T cells. Immunol Res 2010; 46:12-22. [PMID: 19859830 DOI: 10.1007/s12026-009-8130-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The attributes of specificity and memory enable CD8(+) T cells to provide long-lasting protection against a variety of challenges. Although, the importance of CD8(+) T cells for protection against intracellular infections and transformation is well-established, the functional type; effector phenotypes (Tc1, Tc2, Tc17 and/or Tcreg) and/or memory (effector or central), of CD8(+) T cells most desirable for tumor immunity is not established. To determine the tumor efficacy of various effector types and/or memory CD8 T cells, it is imperative to better understand intrinsic and extrinsic factors that regulate CD8(+) T cell differentiation and use this information to generate and test distinct functional cell types in tumor models. The focus of our laboratory investigations is to identify the extrinsic factors such as antigen strength, co-stimulatory molecules, cytokines, and small molecule modifiers that regulate intrinsic programs for various effector and/or memory cell fate in antigen specific CD8 T cells. The use of this information to generate immunity in murine tumor models has facilitated development of new adoptive cell transfer (ACT) as well as immunization strategies for cancer treatment.
Collapse
Affiliation(s)
- Protul A Shrikant
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | |
Collapse
|
179
|
Almanza G, Fernandez A, Volinia S, Cortez-Gonzalez X, Croce CM, Zanetti M. Selected microRNAs define cell fate determination of murine central memory CD8 T cells. PLoS One 2010; 5:e11243. [PMID: 20582165 PMCID: PMC2889817 DOI: 10.1371/journal.pone.0011243] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/24/2010] [Indexed: 12/03/2022] Open
Abstract
During an immune response T cells enter memory fate determination, a program that divides them into two main populations: effector memory and central memory T cells. Since in many systems protection appears to be preferentially mediated by T cells of the central memory it is important to understand when and how fate determination takes place. To date, cell intrinsic molecular events that determine their differentiation remains unclear. MicroRNAs are a class of small, evolutionarily conserved RNA molecules that negatively regulate gene expression, causing translational repression and/or messenger RNA degradation. Here, using an in vitro system where activated CD8 T cells driven by IL-2 or IL-15 become either effector memory or central memory cells, we assessed the role of microRNAs in memory T cell fate determination. We found that fate determination to central memory T cells is under the balancing effects of a discrete number of microRNAs including miR-150, miR-155 and the let-7 family. Based on miR-150 a new target, KChIP.1 (K (+) channel interacting protein 1), was uncovered, which is specifically upregulated in developing central memory CD8 T cells. Our studies indicate that cell fate determination such as surface phenotype and self-renewal may be decided at the pre-effector stage on the basis of the balancing effects of a discrete number of microRNAs. These results may have implications for the development of T cell vaccines and T cell-based adoptive therapies.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Antonio Fernandez
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Stefano Volinia
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
- Telethon Facility-Data Mining for Analysis of DNA Microarrays, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | - Xochitl Cortez-Gonzalez
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
180
|
Dai H, Wan N, Zhang S, Moore Y, Wan F, Dai Z. Cutting edge: programmed death-1 defines CD8+CD122+ T cells as regulatory versus memory T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:803-7. [PMID: 20548035 DOI: 10.4049/jimmunol.1000661] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent convincing data have shown that naturally occurring CD8(+)CD122(+) T cells are also regulatory T cells. Paradoxically, CD8(+)CD122(+) T cells have been well described as memory T cells. Given their critical role in tolerance versus long-term immunity, it is important to reconcile this profound dichotomy. In this study, we reported that CD8(+)CD122(+) T cells contain both programmed death-1 (PD-1)(-) and PD-1(+) populations. It was CD8(+)CD122(+)PD-1(+) T cells, but not their PD-1(-) counterparts, that suppressed T cell responses in vitro and in vivo. This suppression was largely dependent on their production of IL-10. Moreover, the costimulatory signaling of both CD28 and PD-1 is required for their optimal IL-10 production. In contrast, Ag-specific CD8(+)CD122(+)PD-1(-) T cells were bona fide memory T cells. Thus, CD8(+)CD122(+) T cells can be either regulatory T or memory T cells, depending on their PD-1 expression and Ag specificity. This study reconciles previously contradictory findings and has important implications for tolerance induction.
Collapse
Affiliation(s)
- Hehua Dai
- Division of Immunology and Microbiology, University of Texas Health Science Center, Tyler, TX 75708, USA
| | | | | | | | | | | |
Collapse
|
181
|
Feng T, Wang L, Schoeb TR, Elson CO, Cong Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J Exp Med 2010; 207:1321-32. [PMID: 20498021 PMCID: PMC2882839 DOI: 10.1084/jem.20092253] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/15/2010] [Indexed: 11/04/2022] Open
Abstract
Little is known about how the microbiota regulates T cell proliferation and whether spontaneous T cell proliferation is involved in the pathogenesis of inflammatory bowel disease. In this study, we show that stimulation of innate pathways by microbiota-derived ligands and antigen-specific T cell stimulation are both required for intestinal inflammation. Microbiota-derived ligands promoted spontaneous T cell proliferation by activating dendritic cells (DCs) to produce IL-6 via Myd88, as shown by the spontaneous proliferation of T cells adoptively transferred into specific pathogen-free (SPF) RAG-/- mice, but not in germfree RAG-/- mice. Reconstitution of germfree RAG-/- mice with cecal bacterial lysate-pulsed DCs, but not with IL-6-/- or Myd88-/- DCs, restored spontaneous T cell proliferation. CBir1 TCR transgenic (CBir1 Tg) T cells, which are specific for an immunodominant microbiota antigen, induced colitis in SPF RAG-/- mice. Blocking the spontaneous proliferation of CBir1 Tg T cells by co-transferring bulk OT II CD4+ T cells abrogated colitis development. Although transferred OT II T cells underwent spontaneous proliferation in RAG-/- mice, the recipients failed to develop colitis because of the lack of cognate antigen in the intestinal lumen. Collectively, our data demonstrate that induction of colitis requires both spontaneous proliferation of T cells driven by microbiota-derived innate signals and antigen-specific T cell proliferation.
Collapse
Affiliation(s)
- Ting Feng
- Department of Microbiology, Division of Gastroenterology and Hepatology, Department of Medicine, and Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lanfang Wang
- Department of Microbiology, Division of Gastroenterology and Hepatology, Department of Medicine, and Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Trenton R. Schoeb
- Department of Microbiology, Division of Gastroenterology and Hepatology, Department of Medicine, and Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Charles O. Elson
- Department of Microbiology, Division of Gastroenterology and Hepatology, Department of Medicine, and Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yingzi Cong
- Department of Microbiology, Division of Gastroenterology and Hepatology, Department of Medicine, and Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
182
|
Bhadra R, Guan H, Khan IA. Absence of both IL-7 and IL-15 severely impairs the development of CD8 T cell response against Toxoplasma gondii. PLoS One 2010; 5:e10842. [PMID: 20520779 PMCID: PMC2877110 DOI: 10.1371/journal.pone.0010842] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/02/2010] [Indexed: 11/21/2022] Open
Abstract
CD8+ T cells play an essential role in the protection against both acute as well as chronic Toxoplasma gondii infection. Although the role of IL-15 has been reported to be important for the development of long-term CD8+ T cell immunity against the pathogen, the simultaneous roles played by both IL-15 and related γ-chain family cytokine IL-7 in the generation of this response during acute phase of infection has not been described. We demonstrate that while lack of IL-7 or IL-15 alone has minimal impact on splenic CD8+ T cell maturation or effector function development during acute Toxoplasmosis, absence of both IL-7 and IL-15 only in the context of infection severely down-regulates the development of a potent CD8+ T cell response. This impairment is characterized by reduction in CD44 expression, IFN-γ production, proliferation and cytotoxicity. However, attenuated maturation and decreased effector functions in these mice are essentially downstream consequences of reduced number of antigen-specific CD8+ T cells. Interestingly, the absence of both cytokines did not impair initial CD8+ T cell generation but affected their survival and differentiation into memory phenotype IL-7Rαhi cells. Significantly lack of both cytokines severely affected expression of Bcl-2, an anti-apoptotic protein, but minimally affected proliferation. The overarching role played by these cytokines in eliciting a potent CD8+ T cell immunity against T. gondii infection is further evidenced by poor survival and high parasite burden in anti IL-7 treated IL-15−/− mice. These studies demonstrate that the two cytokines, IL-7 and IL-15, are exclusively important for the development of protective CD8+ T cell immune response against T. gondii. To the best of our knowledge this synergism between IL-7 and IL-15 in generating an optimal CD8+ T cell immunity against intracellular parasite or any other infectious disease model has not been previously reported.
Collapse
Affiliation(s)
- Rajarshi Bhadra
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D. C., United States of America
| | - Hongbing Guan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Imtiaz A. Khan
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D. C., United States of America
- * E-mail:
| |
Collapse
|
183
|
Abstract
Adoptive transfer of mature T cells (ATMTC) through bone marrow (BM) transplantation, first attempted over 20 years ago, has recently emerged as a successful therapy for complete 22q deletion syndrome (22qDS). This provides a potential option to thymic transplantation (TT) for immune reconstitution in 22qDS. Compared to thymic transplant, ATMTC is an easier procedure to accomplish and is available at more centers. However, there are differences in the nature of the T-cell reconstitution that results. Predictably, more naïve T cells and recent thymic emigrants are present in patients treated with thymus transplant. There are no significant differences in mortality between the two procedures, but the number of patients is too limited to conclude that the procedures are equally effective. Adoptive transfer should be pursued as a reasonable treatment for 22qDS patients requiring immune reconstitution when thymus transplant is not available.
Collapse
|
184
|
MacLeod MKL, Kappler JW, Marrack P. Memory CD4 T cells: generation, reactivation and re-assignment. Immunology 2010; 130:10-5. [PMID: 20331469 PMCID: PMC2855788 DOI: 10.1111/j.1365-2567.2010.03260.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 12/21/2022] Open
Abstract
Immunological memory is one of the features that define the adaptive immune response: by generating specific memory cells after infection or vaccination, the host provides itself with a set of cells and molecules that can prevent future infections and disease. Despite the obvious importance of memory cells, memory CD4 T cells are incompletely understood. Here we discuss recent progress in understanding which activated T cells surmount the barrier to enter into the memory pool and, once generated, what signals are important for memory cell survival. There is still, however, little understanding of how (or even whether) memory CD4 T cells are useful once they have been created; a surprising thought considering the critical role CD4 T cells play in all adaptive primary immune responses. In light of this, we will discuss how CD4 T memory T cells respond to reactivation in vivo and whether they are malleable to a re-assignment of their effector response.
Collapse
|
185
|
|
186
|
Winstead CJ, Reilly CS, Moon JJ, Jenkins MK, Hamilton SE, Jameson SC, Way SS, Khoruts A. CD4+CD25+Foxp3+ regulatory T cells optimize diversity of the conventional T cell repertoire during reconstitution from lymphopenia. THE JOURNAL OF IMMUNOLOGY 2010; 184:4749-60. [PMID: 20357265 DOI: 10.4049/jimmunol.0904076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The functional capacity of the adaptive immune system is dependent on the size and the diversity of the T cell population. In states of lymphopenia, T cells are driven to proliferate to restore the T cell population size. However, different T cell clones proliferate at different rates, and some T cells experience burst-like expansion called spontaneous lymphopenia-induced proliferation (LIP). These T cells are likely receiving stimulation from cognate Ags and are most responsible for inflammatory pathology that can emerge in lymphopenic states. Foxp3(+) regulatory T cells (Tregs) selectively inhibit spontaneous LIP, which may contribute to their ability to prevent lymphopenia-associated autoimmunity. We hypothesized that another potential negative consequence of unrestrained spontaneous LIP is constriction of the total T cell repertoire. We demonstrate that the absence of Foxp3(+) Tregs during the period of immune reconstitution results in the development of TCR repertoire "holes" and the loss of Ag-specific responsiveness to infectious microorganisms. In contrast, the presence of Tregs during the period of immune reconstitution preserves optimal TCR diversity and foreign Ag responsiveness. This finding contrasts with the generally accepted immunosuppressive role of Tregs and provides another example of Treg activity that actually enhances immune function.
Collapse
Affiliation(s)
- Colleen J Winstead
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55414, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Jeras M, Bricl I, Zorec R, Švajger U. Induction/engineering, detection, selection, and expansion of clinical-grade human antigen-specific CD8 cytotoxic T cell clones for adoptive immunotherapy. J Biomed Biotechnol 2010; 2010:705215. [PMID: 20224660 PMCID: PMC2836183 DOI: 10.1155/2010/705215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 01/28/2010] [Indexed: 02/02/2023] Open
Abstract
Adoptive transfer of effector antigen-specific immune cells is becoming a promising treatment option in allogeneic transplantation, infectious diseases, cancer, and autoimmune disorders. Within this context, the important role of CD8+ cytotoxic T cells (CTLs) is objective of intensive studies directed to their in vivo and ex vivo induction, detection, selection, expansion, and therapeutic effectiveness. Additional questions that are being addressed by the scientific community are related to the establishment and maintenance of their longevity and memory state as well as to defining critical conditions underlying their transitions between discrete, but functionally different subtypes. In this article we review and comment latest approaches and techniques used for preparing large amounts of antigen-specific CTLs, suitable for clinical use.
Collapse
Affiliation(s)
- Matjaž Jeras
- Tissue Typing Center, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
- Cell Engineering Laboratory, Celica, Biomedical Center, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Irena Bricl
- Tissue Typing Center, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Cell Engineering Laboratory, Celica, Biomedical Center, Technology Park 24, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Urban Švajger
- Tissue Typing Center, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| |
Collapse
|
188
|
Jenq RR, van den Brink MRM. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat Rev Cancer 2010; 10:213-21. [PMID: 20168320 DOI: 10.1038/nrc2804] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The year 2009 marked the fiftieth anniversary of the first successful allogeneic haematopoietic stem cell transplant (HSCT). The field of HSCT has pioneered some of the most exciting areas of research today. HSCT was the original stem cell therapy, the first cancer immune therapy and the earliest example of individualized cancer therapy. In this Timeline article we review the history of the development of HSCT and major advances made in the past 50 years. We highlight accomplishments made by researchers who continue to strive to improve outcomes for patients and increase the availability of this potentially life-saving therapy for patients with otherwise incurable malignancies.
Collapse
Affiliation(s)
- Robert R Jenq
- Department of Immunology and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
189
|
Benito-Miguel M, García-Carmona Y, Balsa A, Pérez de Ayala C, Cobo-Ibáñez T, Martín-Mola E, Miranda-Carús ME. A dual action of rheumatoid arthritis synovial fibroblast IL-15 expression on the equilibrium between CD4+CD25+ regulatory T cells and CD4+CD25- responder T cells. THE JOURNAL OF IMMUNOLOGY 2010; 183:8268-79. [PMID: 20007590 DOI: 10.4049/jimmunol.0900007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously described that fibroblast-like cells from the synovium of rheumatoid arthritis patients (RASFib) constitutively express intracellular and surface IL-15, which induces activation of cocultured T cells. Our objective was to study the effect of RASFib IL-15 expression on the function of human CD4(+)CD25(+) regulatory T cells (Treg). RASFib, through their constitutive IL-15 expression, were able to induce the proliferation of human Tregs stimulated through their TCR, and at the same time potentiated their suppressive action on the cytokine secretion of CD4(+)CD25(-) responder T cells (Tresp). In parallel, constitutive RASFib IL-15 expression mediated an up-regulated response of Tresp. Subsequently, total CD4(+) T cells, containing natural proportions of Treg and Tresp, secreted an increased amount of pathogenic cytokines when cocultured with RASFib despite the presence of proliferating Treg with superior regulatory potency. In summary, RASFib IL-15 exerts a dual action on the equilibrium between Treg and Tresp by potentiating the suppressive effect of Treg while augmenting the proinflammatory action of Tresp; the result is a shift of the Treg/Tresp balance toward a proinflammatory state. This alteration of the Treg/Tresp equilibrium is not observed in the presence of osteoarthritis synovial fibroblasts or dermal fibroblasts, which do not constitutively express surface IL-15. Additionally, Treg with superior suppressive potency were present in the peripheral blood and the synovial fluid of RA patients, but this enhanced immunoregulatory activity was not able to overcome the increased secretion of pathogenic cytokines by RA-Tresp, indicating that rheumatoid arthritis patients demonstrate an altered Treg/Tresp equilibrium in vivo.
Collapse
|
190
|
Identification of human idiotype-specific T cells in lymphoma and myeloma. Curr Top Microbiol Immunol 2010; 344:193-210. [PMID: 20549471 DOI: 10.1007/82_2010_70] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiotype protein, among the first identified tumor-specific antigens, has been found to stimulate both humoral and cellular responses in lymphoma and myeloma patients. With the increasing use of B cell depletion treatments such as rituximab in clinic, the cellular response mediated by idiotype-specific T cells has become increasingly important as an adjunct therapy for lymphoma and myeloma. Here, we review the idiotype protein as a tumor antigen and the characteristics of the T cell response elicited idiotype vaccination. We also analyze the T cell epitopes that have been identified in idiotype protein and introduce our new findings of additional T cell epitopes derived from the Ig light chain. Finally, we propose new directions in the generation of idiotype-specific T cells for tumor therapy.
Collapse
|
191
|
Abstract
The explosion of new discoveries in the field of immunology has provided new insights into mechanisms that promote an immune response directed against a transplanted organ. Central to the allograft response are T lymphocytes. This review summarizes the current literature on allorecognition, costimulation, memory T cells, T cell migration, and their role in both acute and chronic graft destruction. An in depth understanding of the cellular mechanisms that result in both acute and chronic allograft rejection will provide new strategies and targeted therapeutics capable of inducing long-lasting, allograft-specific tolerance.
Collapse
Affiliation(s)
- Elizabeth Ingulli
- Department of Pediatrics, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
192
|
Abstract
PURPOSE OF REVIEW This review details the role of memory T cells in physiologic and allospecific immunity, and summarizes the effects of immunosuppressive agents used to manipulate their function in the context of organ transplantation. RECENT FINDINGS Memory T cells are lymphocytes with characteristics that are thought to promote anamnestic immune responses. They have a unique capacity to generate rapid effector functions upon secondary exposure to a pathogen, and this capacity is achieved through truncated requirements for antigen presentation, reduced activation thresholds, and enhanced trafficking and adhesion mechanisms. In general, these same mechanisms also appear to evoke improved efficiency in mediating allograft rejection. The phenotype of these cells has been increasingly well defined and associated with a characteristic pattern of susceptibility to immunosuppressive agents. This knowledge is now being exploited in the development of immune therapeutic regimens to selectively mollify T memory cell effects. SUMMARY A specific targeting of memory T cells has potential to prevent allograft rejection in a more precise manner than current means of immunosuppression. However, these benefits will be balanced by the reciprocal risk of susceptibility to recurrent infection.
Collapse
|
193
|
Cottalorda A, Mercier BC, Mbitikon-Kobo FM, Arpin C, Teoh DYL, McMichael A, Marvel J, Bonnefoy-Bérard N. TLR2 engagement on memory CD8(+) T cells improves their cytokine-mediated proliferation and IFN-gamma secretion in the absence of Ag. Eur J Immunol 2009; 39:2673-81. [PMID: 19634192 DOI: 10.1002/eji.200939627] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Persistence of memory CD8(+) T cells is known to be largely controlled by common gamma chain cytokines, such as IL-2, IL-7 and IL-15. However, other molecules may be involved in this phenomenon. We show here that TLR2(-/-) mice have a decreased frequency of memory phenotype CD8(+) T cells when compared with WT mice. This prompted us to investigate the role of TLR2 in the homeostasis of memory CD8(+) T cells. We describe here a new TLR2-dependent mechanism which, in the absence of specific antigen, directly controls memory CD8(+) T-cell proliferation and IFN-gamma secretion. We demonstrate that TLR2 engagement on memory CD8(+) T cells increases their proliferation and expansion induced by IL-7 both in vitro and in vivo. We also show that TLR2 ligands act in synergy with IL-2 to induce IFN-gamma secretion in vitro. Both conclusions are obtained with spontaneously arising memory phenotype and antigen-specific memory CD8(+) T cells. Altogether, our data support the idea that continuous TLR2 signaling in response to microbial stimuli or endogenous danger signals might directly contribute to the maintenance of the diversity memory CD8(+) T cells in the organism.
Collapse
|
194
|
Yin J, Dai A, Laddy DJ, Yan J, Arango T, Khan AS, Lewis MG, Andersen H, Kutzler MA, Draghia-Akli R, Weiner DB, Boyer JD. High dose of plasmid IL-15 inhibits immune responses in an influenza non-human primates immunogenicity model. Virology 2009; 393:49-55. [PMID: 19683780 PMCID: PMC4118595 DOI: 10.1016/j.virol.2009.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/12/2009] [Accepted: 07/10/2009] [Indexed: 01/08/2023]
Abstract
Interleukin (IL)-15, is a cytokine that is important for the maintenance of long-lasting, high-avidity T cell response to invading pathogens and has, therefore, been used in vaccine and therapeutic platforms as an adjuvant. In addition to pure protein delivery, plasmids encoding the IL-15 gene have been utilized. However, it is critical to determine the appropriate dose to maximize the adjuvanting effects. We immunized rhesus macaques with different doses of IL-15 expressing plasmid in an influenza non-human primate immunogenicity model. We found that co-immunization of rhesus macaques with a Flu DNA-based vaccine and low doses of plasmid encoding macaque IL-15 enhanced the production of IFN-gamma (0.5 mg) and the proliferation of CD4(+) and CD8(+) T cells, as well as T(CM) levels in proliferating CD8(+) T cells (0.25 mg). Whereas, high doses of IL-15 (4 mg) decrease the production of IFN-gamma and the proliferation of CD4(+) and CD8(+) T cells and T(CM) levels in the proliferating CD4(+) and CD8(+) T cells. In addition, the data of hemagglutination inhibition (HI) antibody titer suggest that although not significantly different, there appears to be a slight increase in antibodies at lower doses of IL-15. Importantly, however, the higher doses of IL-15 decrease the antibody levels significantly. This study demonstrates the importance of optimizing DNA-based cytokine adjuvants.
Collapse
Affiliation(s)
- Jiangmei Yin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505 SCL, 422 Curie Blvd. Philadelphia, PA 19104, USA
| | - Anlan Dai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505 SCL, 422 Curie Blvd. Philadelphia, PA 19104, USA
| | - Dominick J. Laddy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505 SCL, 422 Curie Blvd. Philadelphia, PA 19104, USA
| | - Jian Yan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505 SCL, 422 Curie Blvd. Philadelphia, PA 19104, USA
| | - Tatiana Arango
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505 SCL, 422 Curie Blvd. Philadelphia, PA 19104, USA
| | - Amir S. Khan
- VGX Pharmaceuticals, Inc., The Woodlands, TX 77381, USA
| | | | | | | | | | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505 SCL, 422 Curie Blvd. Philadelphia, PA 19104, USA
| | - Jean D. Boyer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505 SCL, 422 Curie Blvd. Philadelphia, PA 19104, USA
| |
Collapse
|
195
|
Kraynyak KA, Kutzler MA, Cisper NJ, Laddy DJ, Morrow MP, Waldmann TA, Weiner DB. Plasmid-encoded interleukin-15 receptor alpha enhances specific immune responses induced by a DNA vaccine in vivo. Hum Gene Ther 2009; 20:1143-56. [PMID: 19530914 PMCID: PMC2829284 DOI: 10.1089/hum.2009.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/16/2009] [Indexed: 11/12/2022] Open
Abstract
Plasmid-encoded DNA vaccines appear to be a safe and effective method for delivering antigen; however, the immunogenicity of such vaccines is often suboptimal. Cytokine adjuvants including interleukin (IL)-12, RANTES, granulocyte-macrophage colony-stimulating factor, IL-15, and others have been used to augment the immune response against DNA vaccines. In particular, IL-15 binds to a unique high-affinity receptor, IL-15R alpha; is trans-presented to CD8(+) T cells expressing the common betagamma chain; and has been shown to play a role in the generation, maintenance, and proliferation of antigen-specific CD8(+) T cells. In this study, we took the unique approach of using both a cytokine and its receptor as an adjuvant in an HIV-1 vaccine strategy. To study IL-15R alpha expression, a unique monoclonal antibody (KK1.23) was generated to confirm receptor expression in vitro. Coimmunization of IL-15 and IL-15R alpha plasmids with HIV-1 antigenic plasmids in mice enhanced the antigen-specific immune response 2-fold over IL-15 immunoadjuvant alone. Furthermore, plasmid-encoded IL-15R alpha augments immune responses in the absence of IL-15, suggesting its role as a novel adjuvant. Moreover, pIL-15R alpha enhanced the cellular, but not the humoral, immune response as measured by antigen-specific IgG antibody. This is the first report describing that IL-15R alpha itself can act as an adjuvant by enhancing an antigen-specific T cell response. Uniquely, pIL-15 and pIL-15R alpha adjuvants combined, but not the receptor alpha chain alone, may be useful as a strategy for generating and maintaining memory CD8(+) T cells in a DNA vaccine.
Collapse
Affiliation(s)
- Kimberly A. Kraynyak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Michele A. Kutzler
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Neil J. Cisper
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Dominick J. Laddy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Matthew P. Morrow
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Thomas A. Waldmann
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
196
|
Abstract
The administration of cytokines that modulate endogenous or transferred T-cell immunity could improve current approaches to clinical immunotherapy. Interleukin-2 (IL-2) is used most commonly for this purpose, but causes systemic toxicity and preferentially drives the expansion of CD4(+)CD25(+)Foxp3(+) regulatory T cells, which can inhibit antitumor immunity. IL-15 belongs to the gamma(c) cytokine family and possesses similar properties to IL-2, including the ability to induce T-cell proliferation. Whereas IL-2 promotes apoptosis and limits the survival of CD8(+) memory T cells, IL-15 is required for the establishment and maintenance of CD8(+) T-cell memory. However, limited data are available to guide the clinical use of IL-15. Here, we demonstrate in nonhuman primates that IL-15 administration expands memory CD8(+) and CD4(+) T cells, and natural killer (NK) cells in the peripheral blood, with minimal increases in CD4(+)CD25(+)Foxp3(+) regulatory T cells. Daily administration of IL-15 resulted in persistently elevated plasma IL-15 levels and transient toxicity. Intermittent administration of IL-15 allowed clearance of IL-15 between doses and was safe for more than 3 weeks. These findings demonstrate that IL-15 has profound immunomodulatory properties distinct from those described for IL-2, and suggest that intermittent administration of IL-15 should be considered in clinical studies.
Collapse
|
197
|
Abstract
Apoptosis or programmed cell death plays a central role in regulating not only the development of lymphocytes but also in their homeostasis. A breakdown in apoptosis related signaling mechanisms could result in the development of autoimmune disorders. The past decade has witnessed an explosive increase in knowledge with respect to various apoptotic signaling pathways and their aberrant behavior in autoimmune disorders. Although Fas/FasL mediated signaling appears to be a common paradigm that has emerged from studies in various autoimmune disorders, examples suggesting a role for other cell death pathways have also surfaced. Understanding the definitive role of apoptosis in various autoimmune disorders is likely to define novel targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Kanteti V Prasad
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
198
|
Malaguarnera L, Cristaldi E, Malaguarnera M. The role of immunity in elderly cancer. Crit Rev Oncol Hematol 2009; 74:40-60. [PMID: 19577481 DOI: 10.1016/j.critrevonc.2009.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 02/08/2023] Open
Abstract
The increased incidence of malignancies in elderly patients living in industrialized countries has led to both identify the causes that alter the normal homeostatic balance in elderly and designate the specific treatments. The progressive decline of the immune system (immunosenescence) involving cellular and molecular alterations impact both innate and adaptive immunity. The immunosenescence leads to increased incidence of infectious diseases morbidity and mortality as well as heightened rates of other immune disorders such as autoimmunity, cancer, and inflammatory conditions. Here, we summarize the knowledge on the major changes in the immune system associated with aging in primary lymphoid organs as well as a description of molecular mechanisms, and the impact on cancer development.
Collapse
|
199
|
Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 2009; 9:480-90. [PMID: 19543225 PMCID: PMC2814538 DOI: 10.1038/nri2580] [Citation(s) in RCA: 827] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Common cytokine receptor gamma-chain (gamma(c)) family cytokines have crucial roles in the development, proliferation, survival and differentiation of multiple cell lineages of both the innate and adaptive immune systems. In this Review, we focus on our current understanding of the distinct and overlapping effects of interleukin-2 (IL-2), IL-7, IL-9, IL-15 and IL-21, as well as the IL-7-related cytokine thymic stromal lymphopoietin (TSLP), on the survival and proliferation of conventional alphabeta T cells, gammadelta T cells and regulatory T cells. This knowledge potentially allows for the therapeutic manipulation of immune responses for the treatment of cancer, autoimmunity, allergic diseases and immunodeficiency, as well as for vaccine development.
Collapse
Affiliation(s)
- Yrina Rochman
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | | | | |
Collapse
|
200
|
Huarte E, Fisher J, Turk MJ, Mellinger D, Foster C, Wolf B, Meehan KR, Fadul CE, Ernstoff MS. Ex vivo expansion of tumor specific lymphocytes with IL-15 and IL-21 for adoptive immunotherapy in melanoma. Cancer Lett 2009; 285:80-8. [PMID: 19501956 DOI: 10.1016/j.canlet.2009.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/23/2009] [Accepted: 05/04/2009] [Indexed: 12/17/2022]
Abstract
Although T central memory cells have been described as the most effective T-cell subtype against tumor growth, little is known about the requirements needed for their optimal ex vivo generation. Hence, our goal is to establish a protocol that will lead to consistent ex vivo generation of lymphocytes skewed toward a central memory phenotype. Antigen-specific T-cell lines were generated by ex vivo stimulation with Class-I and Class-II melanoma peptide pulsed dendritic cells in the presence of either IL-2 or IL-15 plus IL-21. Tumor specific lymphocytes of both central memory and effector characteristics were consistently generated from healthy donors and melanoma patients. IL15/IL21 cultures result in a cell population with a lower proportion of CD4(+)CD25(high)FoxP3(+) regulatory cells and higher number of CD8(+) and CD56(+) cells, and consequently render a higher yield of cells with a greater cytolytic activity and IFN-gamma production against melanoma cell lines.
Collapse
|