151
|
De Boer AA, Monk JM, Robinson LE. Docosahexaenoic acid decreases pro-inflammatory mediators in an in vitro murine adipocyte macrophage co-culture model. PLoS One 2014; 9:e85037. [PMID: 24465472 PMCID: PMC3896343 DOI: 10.1371/journal.pone.0085037] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/24/2013] [Indexed: 01/28/2023] Open
Abstract
Paracrine interactions between adipocytes and macrophages contribute to chronic inflammation in obese adipose tissue. Dietary strategies to mitigate such inflammation include long-chain polyunsaturated fatty acids, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, which act through PPARγ-dependent and independent pathways. We utilized an in vitro co-culture model designed to mimic the ratio of macrophages:adipocytes in obese adipose tissue, whereby murine 3T3-L1 adipocytes were cultured with RAW 264.7 macrophages in direct contact, or separated by a trans-well membrane (contact-independent mechanism), with 125 µM of albumin-complexed DHA, EPA, palmitic acid (PA), or albumin alone (control). Thus, we studied the effect of physical cell contact versus the presence of soluble factors, with or without a PPARγ antagonist (T0070907) in order to elucidate putative mechanisms. After 12 hr, DHA was the most anti-inflammatory, decreasing MCP1 and IL-6 secretion in the contact system (−57%, −63%, respectively, p≤0.05) with similar effects in the trans-well system. The trans-well system allowed for isolation of cell types for inflammatory mediator analysis. DHA decreased mRNA expression (p<0.05) of Mcp1 (−7.1 fold) and increased expression of the negative regulator, Mcp1-IP (+1.5 fold). In macrophages, DHA decreased mRNA expression of pro-inflammatory M1 polarization markers (p≤0.05), Nos2 (iNOS; −7 fold), Tnfα (−4.2 fold) and Nfκb (−2.3 fold), while increasing anti-inflammatory Tgfβ1 (+1.7 fold). Interestingly, the PPARγ antagonist co-administered with DHA or EPA in co-culture reduced (p≤0.05) adiponectin cellular protein, without modulating other cytokines (protein or mRNA). Overall, our findings suggest that DHA may lessen the degree of MCP1 and IL-6 secreted from adipocytes, and may reduce the degree of M1 polarization of macrophages recruited to adipose tissue, thereby decreasing the intensity of pro-inflammatory cross-talk between adipocytes and macrophages in obese adipose tissue.
Collapse
Affiliation(s)
- Anna A. De Boer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Jennifer M. Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Lindsay E. Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
- * E-mail:
| |
Collapse
|
152
|
Liu C, Xu X, Bai Y, Wang TY, Rao X, Wang A, Sun L, Ying Z, Gushchina L, Maiseyeu A, Morishita M, Sun Q, Harkema JR, Rajagopalan S. Air pollution-mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:17-26. [PMID: 24149114 PMCID: PMC3888572 DOI: 10.1289/ehp.1306841] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 09/27/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Epidemiologic and experimental studies support an association between PM2.5 exposure and insulin resistance (IR). Innate immune cell activation has been suggested to play a role in the pathogenesis of these effects. OBJECTIVES We sought to evaluate the role of CC-chemokine receptor 2 (CCR2) in PM2.5-mediated inflammation and IR. METHODS Wild-type C57BL/6 and CCR2-/- male mice were fed a high-fat diet and exposed to either concentrated ambient PM2.5 or filtered air for 17 weeks via a whole-body exposure system. We evaluated glucose tolerance and insulin sensitivity. At euthanasia, blood, spleen, and visceral adipose tissue (VAT) were collected, and inflammatory cells were measured using flow cytometry. We used standard immunoblots, immunohistochemical methods, and quantitative PCR (polymerase chain reaction) to assess pathways of interest involving insulin signaling, inflammation, and lipid and glucose metabolism in various organs. Vascular function was assessed using myography. RESULTS PM2.5 exposure resulted in whole-body IR and increased hepatic lipid accumulation in the liver, which was attenuated in CCR2-/- mice by inhibiting SREBP1c-mediated transcriptional programming, decreasing fatty acid uptake, and suppressing p38 MAPK activity. Abnormal phosphorylation levels of AKT, AMPK in VAT, and adipose tissue macrophage content in wild-type mice were not present in CCR2-/- mice. However, the impaired whole-body glucose tolerance and reduced GLUT-4 in skeletal muscle in response to PM2.5 was not corrected by CCR2 deficiency. CONCLUSIONS PM2.5 mediates IR by regulating VAT inflammation, hepatic lipid metabolism, and glucose utilization in skeletal muscle via both CCR2-dependent and -independent pathways. These findings provide new mechanistic links between air pollution and metabolic abnormalities underlying IR.
Collapse
Affiliation(s)
- Cuiqing Liu
- Department of Physiology, Hangzhou Normal University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Mowers J, Uhm M, Reilly SM, Simon J, Leto D, Chiang SH, Chang L, Saltiel AR. Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKε and TBK1. eLife 2013; 2:e01119. [PMID: 24368730 PMCID: PMC3869376 DOI: 10.7554/elife.01119] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Obesity produces a chronic inflammatory state involving the NFκB pathway, resulting in persistent elevation of the noncanonical IκB kinases IKKε and TBK1. In this study, we report that these kinases attenuate β-adrenergic signaling in white adipose tissue. Treatment of 3T3-L1 adipocytes with specific inhibitors of these kinases restored β-adrenergic signaling and lipolysis attenuated by TNFα and Poly (I:C). Conversely, overexpression of the kinases reduced induction of Ucp1, lipolysis, cAMP levels, and phosphorylation of hormone sensitive lipase in response to isoproterenol or forskolin. Noncanonical IKKs reduce catecholamine sensitivity by phosphorylating and activating the major adipocyte phosphodiesterase PDE3B. In vivo inhibition of these kinases by treatment of obese mice with the drug amlexanox reversed obesity-induced catecholamine resistance, and restored PKA signaling in response to injection of a β-3 adrenergic agonist. These studies suggest that by reducing production of cAMP in adipocytes, IKKε and TBK1 may contribute to the repression of energy expenditure during obesity. DOI:http://dx.doi.org/10.7554/eLife.01119.001 Obesity is a complex metabolic disorder that is caused by increased food intake and decreased expenditure of energy. Obesity also increases the risk of developing type 2 diabetes, heart disease, stroke, arthritis, and certain cancers. There is considerable evidence to suggest that adipose tissue becomes less sensitive to catecholamines such as adrenaline in states of obesity, and that this reduced sensitivity in turn reduces energy expenditure. However, the details of this process are not fully understood. It is well established that obesity generates a state of chronic, low-grade inflammation in liver and adipose tissue, accompanied by the secretion of signaling proteins that prevent fat cells from responding to insulin, which leads to type 2 diabetes. Activation of the NFκB pathway is thought to have a central role in causing this inflammation. Now Mowers et al. have investigated whether inflammation caused by activation of the NFκB pathway also has a role in producing catecholamine resistance in fat cells. Obesity-dependent activation of the NFκB pathway increases the levels of a pair of enzymes, IKKε and TBK1. Mowers et al. found that elevated levels of these two enzymes reduced the ability of certain receptors (called β-adrenergic receptors) in the fat cells of obese mice to respond to catecholamines. High levels of the two enzymes also resulted in lower levels of a second messenger molecule called cAMP, which increases energy expenditure by elevating fat burning. However, treating the fat cells with drugs that interfere with the two enzymes restored sensitivity to catecholamine, allowing the fat cells to burn energy. Mowers et al. also treated obese mice with amlexanox, a drug that inhibits these enzymes, and found that this treatment made the mice sensitive to a synthetic catecholamine that triggered the release of energy from fat. Mowers et al. suggest, therefore, that IKKε and TBK1 respond to inflammation in the body by reducing catecholamine signaling, thus preventing energy expenditure. Drugs targeting these enzymes may be useful for treating conditions like obesity or type 2 diabetes. DOI:http://dx.doi.org/10.7554/eLife.01119.002
Collapse
Affiliation(s)
- Jonathan Mowers
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Zamboni M, Rossi AP, Fantin F, Zamboni G, Chirumbolo S, Zoico E, Mazzali G. Adipose tissue, diet and aging. Mech Ageing Dev 2013; 136-137:129-37. [PMID: 24321378 DOI: 10.1016/j.mad.2013.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 12/25/2022]
Abstract
Age related increase in body fat mass, visceral adipose tissue (AT), and ectopic fat deposition are strongly related to worse health conditions in the elderly. Moreover, with aging higher inflammation in adipose tissue may be observed and may contribute to inflammaging. Aging may significantly affect AT function by modifying the profile of adipokines produced by adipose cells, reducing preadipocytes number and their function and increasing AT macrophages infiltration. The initiating events of the inflammatory cascade promoting a greater AT inflammatory profile are not completely understood. Nutrients may determine changes in the amount of body fat, in its distribution as well as in AT function with some nutrients showing a pro-inflammatory effect on AT. Evidences are sparse and quite controversial with only a few studies performed in older subjects. Different dietary patterns are the result of the complex interaction of foods and nutrients, thus more studies are needed to evaluate the association between dietary patterns and changes in adipose tissue structure, distribution and function in the elderly.
Collapse
Affiliation(s)
- Mauro Zamboni
- Department of Medicine, Geriatric Medicine, University of Verona, Italy.
| | - Andrea P Rossi
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | - Francesco Fantin
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | | | | | - Elena Zoico
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | - Gloria Mazzali
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| |
Collapse
|
155
|
Phieler J, Chung KJ, Chatzigeorgiou A, Ameln AK, Garcia-Martin R, Sprott D, Moisidou M, Tzanavari T, Ludwig B, Baraban E, Ehrhart-Bornstein M, Bornstein SR, Mziaut H, Solimena M, Karalis KP, Economopoulou M, Lambris JD, Chavakis T. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:4367-4374. [PMID: 24043887 PMCID: PMC3817864 DOI: 10.4049/jimmunol.1300038] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR(-/-) mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR(-/-) mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.
Collapse
Affiliation(s)
- Julia Phieler
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine III, University Dresden, Dresden Germany
- Institute of Physiology, University Dresden, Dresden Germany
- Paul Langerhans Institute Dresden, University Dresden, Dresden Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine III, University Dresden, Dresden Germany
- Institute of Physiology, University Dresden, Dresden Germany
| | - Antonios Chatzigeorgiou
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine III, University Dresden, Dresden Germany
- Institute of Physiology, University Dresden, Dresden Germany
- Paul Langerhans Institute Dresden, University Dresden, Dresden Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Dresden, Dresden, Germany
| | - Anne Klotzschevon Ameln
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine III, University Dresden, Dresden Germany
- Institute of Physiology, University Dresden, Dresden Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Dresden, Dresden, Germany
| | - Ruben Garcia-Martin
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine III, University Dresden, Dresden Germany
- Institute of Physiology, University Dresden, Dresden Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Dresden, Dresden, Germany
| | - David Sprott
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine III, University Dresden, Dresden Germany
- Institute of Physiology, University Dresden, Dresden Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Dresden, Dresden, Germany
| | - Maria Moisidou
- Developmental Biology Section, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Tzanavari
- Developmental Biology Section, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Barbara Ludwig
- Division of Molecular Endocrinology, Department of Medicine III, University Dresden, Dresden, Germany
| | - Elena Baraban
- Division of Molecular Endocrinology, Department of Medicine III, University Dresden, Dresden, Germany
| | - Monika Ehrhart-Bornstein
- Division of Molecular Endocrinology, Department of Medicine III, University Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Division of Molecular Endocrinology, Department of Medicine III, University Dresden, Dresden, Germany
| | - Hassan Mziaut
- Paul Langerhans Institute Dresden, University Dresden, Dresden Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden, University Dresden, Dresden Germany
| | - Katia P. Karalis
- Developmental Biology Section, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Division of Molecular Endocrinology, Department of Medicine III, University Dresden, Dresden, Germany
| | | | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine III, University Dresden, Dresden Germany
- Institute of Physiology, University Dresden, Dresden Germany
- Paul Langerhans Institute Dresden, University Dresden, Dresden Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Dresden, Dresden, Germany
| |
Collapse
|
156
|
Eguchi J, Kong X, Tenta M, Wang X, Kang S, Rosen ED. Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 2013; 62:3394-403. [PMID: 23835343 PMCID: PMC3781469 DOI: 10.2337/db12-1327] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interferon regulatory factors (IRFs) play functionally diverse roles in the transcriptional regulation of the immune system. We have previously shown that several IRFs are regulators of adipogenesis and that IRF4 is a critical transcriptional regulator of adipocyte lipid handling. However, the functional role of IRF4 in adipose tissue macrophages (ATMs) remains unclear, despite high expression there. Here we show that IRF4 expression is regulated in primary macrophages and in ATMs of high-fat diet-induced obese mice. Irf4(-/-) macrophages produce higher levels of proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α, in response to fatty acids. In coculture experiments, IRF4 deletion in macrophages leads to reduced insulin signaling and glucose uptake in 3T3-L1 adipocytes. To determine the macrophage-specific function of IRF4 in the context of obesity, we generated myeloid cell-specific IRF4 knockout mice, which develop significant insulin resistance on a high-fat diet, despite no difference in adiposity. This phenotype is associated with increased expression of inflammatory genes and decreased insulin signaling in adipose tissue, skeletal muscle, and liver. Furthermore, Irf4(-/-) ATMs express markers suggestive of enhanced M1 polarization. These findings indicate that IRF4 is a negative regulator of inflammation in diet-induced obesity, in part through regulation of macrophage polarization.
Collapse
Affiliation(s)
- Jun Eguchi
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Xingxing Kong
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Masafumi Tenta
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Xun Wang
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sona Kang
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Evan D. Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Corresponding author: Evan D. Rosen,
| |
Collapse
|
157
|
Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med 2013; 2:a007724. [PMID: 22393536 DOI: 10.1101/cshperspect.a007724] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The escalating epidemic of obesity has driven the prevalence of both type 1 and 2 diabetes mellitus to historically high levels. Chronic low-grade inflammation, which is present in both type 1 and type 2 diabetics, contributes to the pathogenesis of insulin resistance. The accumulation of activated innate immune cells in metabolic tissues results in release of inflammatory mediators, in particular, IL-1β and TNFα, which promote systemic insulin resistance and β-cell damage. In this article, we discuss the central role of innate immunity and, in particular, the macrophage in insulin sensitivity and resistance, β-cell damage, and autoimmune insulitis. We conclude with a discussion of the therapeutic implications of this integrated understanding of diabetic pathology.
Collapse
Affiliation(s)
- Justin I Odegaard
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
158
|
Montes VN, Turner MS, Subramanian S, Ding Y, Hayden-Ledbetter M, Slater S, Goodspeed L, Wang S, Omer M, Den Hartigh LJ, Averill MM, O’Brien KD, Ledbetter J, Chait A. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice. PLoS One 2013; 8:e67709. [PMID: 23844072 PMCID: PMC3699637 DOI: 10.1371/journal.pone.0067709] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022] Open
Abstract
Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR) in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody) that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week). The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.
Collapse
Affiliation(s)
- Vince N. Montes
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
| | - Michael S. Turner
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Savitha Subramanian
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
| | - Yilei Ding
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
| | - Martha Hayden-Ledbetter
- Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
| | - Sonya Slater
- Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
| | - Leela Goodspeed
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
| | - Shari Wang
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
| | - Mohamed Omer
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
| | - Laura J. Den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
| | - Michelle M. Averill
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
| | - Kevin D. O’Brien
- Division of Cardiology, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey Ledbetter
- Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
| | - Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
159
|
Li S, Kievit P, Robertson AK, Kolumam G, Li X, von Wachenfeldt K, Valfridsson C, Bullens S, Messaoudi I, Bader L, Cowan KJ, Kamath A, van Bruggen N, Bunting S, Frendéus B, Grove KL. Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques. Mol Metab 2013; 2:256-69. [PMID: 24049738 DOI: 10.1016/j.molmet.2013.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 12/18/2022] Open
Abstract
Oxidation of LDL (oxLDL) is a crucial step in the development of cardiovascular disease. Treatment with antibodies directed against oxLDL can reduce atherosclerosis in rodent models through unknown mechanisms. We demonstrate that through a novel mechanism of immune complex formation and Fc-γ receptor (FcγR) engagement, antibodies targeting oxLDL (MLDL1278a) are anti-inflammatory on innate immune cells via modulation of Syk, p38 MAPK phosphorylation and NFκB activity. Subsequent administration of MLDL1278a in diet-induced obese (DIO) nonhuman primates (NHP) resulted in a significant decrease in pro-inflammatory cytokines and improved overall immune cell function. Importantly, MLDL1278a treatment improved insulin sensitivity independent of body weight change. This study demonstrates a novel mechanism by which an anti-oxLDL antibody improves immune function and insulin sensitivity independent of internalization of oxLDL. This identifies MLDL1278a as a potential therapy for reducing vascular inflammation in diabetic conditions.
Collapse
Affiliation(s)
- Shijie Li
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Periapical Lesions Decrease Insulin Signal and Cause Insulin Resistance. J Endod 2013; 39:648-52. [DOI: 10.1016/j.joen.2012.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/22/2012] [Accepted: 12/30/2012] [Indexed: 12/30/2022]
|
161
|
Czech MP, Tencerova M, Pedersen DJ, Aouadi M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013; 56:949-64. [PMID: 23443243 PMCID: PMC3652374 DOI: 10.1007/s00125-013-2869-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.
Collapse
Affiliation(s)
- M P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
162
|
Wagner M, Dudley AC. A three-party alliance in solid tumors: Adipocytes, macrophages and vascular endothelial cells. Adipocyte 2013; 2:67-73. [PMID: 23805401 PMCID: PMC3661111 DOI: 10.4161/adip.23016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023] Open
Abstract
In tumors, cross talk between malignant and non-malignant cells (stroma) influences tumor growth, angiogenesis and metastasis. Stromal cells in tumors typically include vascular cells, fibroblasts and a heterogeneous population of inflammatory cells. Adipocytes may also be present. Adipose tissue is perhaps the least studied stromal cell “compartment” despite the fact that some tumors, particularly breast tumors, grow in close proximity to or physically interact with adipocytes. Apart from adipocytes and numerous blood vessels, adipose tissue harbors macrophages, which increase in proportion to adipose tissue mass. While circulating or bone marrow-derived macrophages play a well-defined role in tumor growth, it is less understood how resident adipose tissue-associated macrophages contribute to tumor progression. Here, we will review the role of adipose tissue in tumor growth and angiogenesis with emphasis on the specific functions of adipose tissue macrophages in these processes.
Collapse
|
163
|
An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nat Med 2013; 19:313-21. [PMID: 23396211 PMCID: PMC3594079 DOI: 10.1038/nm.3082] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 12/26/2012] [Indexed: 12/13/2022]
Abstract
Emerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases. Treatment of obese mice with amlexanox elevates energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis. Because of its record of safety in patients, amlexanox may be an interesting candidate for clinical evaluation in the treatment of obesity and related disorders.
Collapse
|
164
|
Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 2013; 249:218-38. [PMID: 22889225 DOI: 10.1111/j.1600-065x.2012.01151.x] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As humans evolved, perhaps the two strongest selection determinants of survival were a robust immune response able to clear bacterial, viral, and parasitic infection and an ability to efficiently store nutrients to survive times when food sources were scarce. These traits are not mutually exclusive. It is now apparent that critical proteins necessary for regulating energy metabolism, such as peroxisome proliferator-activated receptors, Toll-like receptors, and fatty acid-binding proteins, also act as links between nutrient metabolism and inflammatory pathway activation in immune cells. Obesity in humans is a symptom of energy imbalance: the scale has been tipped such that energy intake exceeds energy output and may be a result, in part, of evolutionary selection toward a phenotype characterized by efficient energy storage. As discussed in this review, obesity is a state of low-grade, chronic inflammation that promotes the development of insulin resistance and diabetes. Ironically, the formation of systemic and/or local, tissue-specific insulin resistance upon inflammatory cell activation may actually be a protective mechanism that co-evolved to repartition energy sources within the body during times of stress during infection. However, the point has been reached where a once beneficial adaptive trait has become detrimental to the health of the individual and an immense public health and economic burden. This article reviews the complex relationship between obesity, insulin resistance/diabetes, and inflammation, and although the liver, brain, pancreas, muscle, and other tissues are relevant, we focus specifically on how the obese adipose microenvironment can promote immune cell influx and sustain damaging inflammation that can lead to the onset of insulin resistance and diabetes. Finally, we address how substrate metabolism may regulate the immune response and discuss how fuel uptake and metabolism may be a targetable approach to limit or abrogate obesity-induced inflammation.
Collapse
Affiliation(s)
- Amy R Johnson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
165
|
Study of lactoferrin gene expression in human and mouse adipose tissue, human preadipocytes and mouse 3T3-L1 fibroblasts. Association with adipogenic and inflammatory markers. J Nutr Biochem 2013; 24:1266-75. [PMID: 23333090 DOI: 10.1016/j.jnutbio.2012.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
Abstract
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.
Collapse
|
166
|
Delhanty PJD, Huisman M, Baldeon-Rojas LY, van den Berge I, Grefhorst A, Abribat T, Leenen PJM, Themmen APN, van der Lely AJ. Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis. FASEB J 2013; 27:1690-700. [PMID: 23299855 DOI: 10.1096/fj.12-221143] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is clinical evidence that des-acyl ghrelin (DAG) favorably modulates glucose and lipid metabolism, although its mode of action is unknown. A murine model of prediabetes was used to assess possible mechanisms of action for DAG and a newly developed bioactive analog, AZP531. C57BL/6J mice were infused with saline, DAG, or AZP531 continuously for 4 wk, and fed either normal diet (ND) or normal diet for 2 wk followed by a high-fat diet (HFD) for 2 wk. Compared with mice in the ND group, HFD increased body and fat mass, caused glucose intolerance and insulin resistance, had proinflammatory effects in white adipose tissue, and caused lipid accumulation in brown adipose tissue. DAG and AZP531 treatment prevented HFD-induced proinflammatory effects, stimulated expression of mitochondrial function markers in brown adipose tissue, and prevented development of a prediabetic metabolic state. AZP531 also prevented a HFD-induced increase in acyl ghrelin levels. Our data indicate DAG analogs as potential treatment for the prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Patric J D Delhanty
- Dept. of Internal Medicine, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Li Q, Hosaka T, Harada N, Nakaya Y, Funaki M. Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes. Mol Cell Endocrinol 2013; 365:25-35. [PMID: 22975078 DOI: 10.1016/j.mce.2012.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/27/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) was found to be elevated in the serum of diabetic patients. In this study, we investigate the mechanism of insulin desensitization caused by 5-HT. In 3T3-L1 adipocytes, 5-HT treatment induced the translocation of insulin receptor substrate-1 (IRS-1) from low density microsome (LDM), the important intracellular compartment for its functions, to cytosol, inducing IRS-1 ubiquitination and degradation. Moreover, inhibition of 5-HT-stimulated Akt activation by either ketanserin (a specific 5-HT2A receptor antagonist) or knocking-down the expression of 5-HT2A receptor promoted 5-HT-stimulated IRS-1 dissociation from 14-3-3β in LDM, leading to drastic ubiquitination. Interestingly, sarpogrelate, another antagonist of 5-HT2A receptor, protected IRS-1 from degradation through activation of Akt. This implicates the importance of Akt activation in extending IRS-1 life span through maintaining their optimal sub-location into adipocytes. Taken together, this study suggest that activation of Akt may be able to compensate the adverse effects of 5-HT by stabilizing IRS-1 in LDM.
Collapse
MESH Headings
- 14-3-3 Proteins/metabolism
- 3T3-L1 Cells
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Animals
- Cytosol/drug effects
- Cytosol/metabolism
- Insulin Receptor Substrate Proteins/metabolism
- Insulin Resistance
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Microsomes/drug effects
- Microsomes/metabolism
- Protein Stability/drug effects
- Protein Transport/drug effects
- Proteolysis/drug effects
- Proto-Oncogene Proteins c-akt/agonists
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- Receptor, Serotonin, 5-HT2A/chemistry
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Serotonin/adverse effects
- Serotonin/chemistry
- Serotonin/metabolism
- Serotonin 5-HT2 Receptor Agonists/chemistry
- Serotonin 5-HT2 Receptor Agonists/metabolism
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Ubiquitination/drug effects
Collapse
Affiliation(s)
- Qinkai Li
- Clinical Research Center for Diabetes, Tokushima University Hospital, Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | | | | | |
Collapse
|
168
|
Grant R, Youm YH, Ravussin A, Dixit VD. Quantification of adipose tissue leukocytosis in obesity. Methods Mol Biol 2013; 1040:195-209. [PMID: 23852606 DOI: 10.1007/978-1-62703-523-1_15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The infiltration of immune cell subsets in adipose tissue termed "adipose tissue leukocytosis" is a critical event in the development of chronic inflammation and obesity-associated comorbidities. Given that a significant proportion of cells in adipose tissue of obese patients are of hematopoietic lineage, the distinct adipose depots represent an uncharacterized immunological organ that can impact metabolic functions. Here, we describe approaches to characterize and isolate leukocytes from the complex adipose tissue microenvironment, to aid mechanistic studies to better understand the role of specific pattern recognition receptors (PRRs) such as inflammasomes in adipose-immune cross talk.
Collapse
Affiliation(s)
- Ryan Grant
- Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | | | | |
Collapse
|
169
|
Poursharifi P, Lapointe M, Pétrin D, Devost D, Gauvreau D, Hébert TE, Cianflone K. C5L2 and C5aR interaction in adipocytes and macrophages: insights into adipoimmunology. Cell Signal 2012; 25:910-8. [PMID: 23268185 DOI: 10.1016/j.cellsig.2012.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/29/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022]
Abstract
Obesity is associated with inflammation characterized by increased infiltration of macrophages into adipose tissue. C5aR-like receptor 2 (C5L2) has been identified as a receptor for acylation-stimulating protein (ASP) and the inflammatory factor C5a, which also binds C5aR. The present study examines the effects of ligands ASP and C5a on interactions between the receptors C5L2 and C5aR in 3T3-L1 adipocytes and J774 macrophages. BRET experiments indicate that C5L2 and C5aR form homo- and heterodimers in transfected HEK 293 cells, which were stable in the presence of ligand. Cell surface receptor levels of C5L2 and C5aR increased during 3T3-L1 adipocyte differentiation; both receptors are also highly expressed in J774 macrophages. Using confocal microscopy to evaluate endogenous receptors in adipocytes following stimulation with ASP or C5a, C5L2 is internalized with increasing perinuclear colocalization with C5aR. There is little C5a-dependent colocalization in macrophages. While adipocyte-conditioned medium (ACM) increased C5L2-C5aR colocalization in macrophages, this was blocked by C5a. ASP stimulation increased Akt (Ser(473)) phosphorylation in both cell types; C5a induced slight Akt phosphorylation in adipocytes with less effect in macrophages. ASP, but not C5a, increased fatty acid uptake/esterification in adipocytes. C5L2-C5aR homodimerization versus heterodimerization may thus contribute to differential responses obtained following ASP vs C5a stimulation of adipocytes and macrophages, providing new insights into the complex interaction between these two cell types within adipose tissue. Studying the mechanisms involved in the differential responses of C5L2-C5aR activation based on cell type will further our understanding of inflammatory processes in obesity.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Centre de Recherche de Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
170
|
4-1BB/4-1BBL interaction promotes obesity-induced adipose inflammation by triggering bidirectional inflammatory signaling in adipocytes/macrophages. Mediators Inflamm 2012; 2012:972629. [PMID: 23316108 PMCID: PMC3534384 DOI: 10.1155/2012/972629] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 01/14/2023] Open
Abstract
Obesity-induced adipose inflammation is characterized by recruitment of macrophages to adipose tissue and release of inflammatory cytokines. 4-1BB, a costimulatory receptor, modulates inflammatory processes through interaction with its ligand 4-1BBL on immune cell surfaces. In this study, we examined whether a 4-1BB/4-1BBL interaction between adipocytes and macrophages participates in obesity-induced adipose inflammation. We found that 4-1BB was expressed on adipocytes and was upregulated by obesity-related factors, which also enhanced 4-1BBL expression on macrophages. 4-1BB and/or 4-1BBL agonists, respectively, activated inflammatory signaling molecules (MAPK/IκBα and MAPK/Akt) in adipocytes and macrophages and enhanced the release of inflammatory cytokines (MCP-1, TNF-α, and IL-6). Moreover, disruption of the 4-1BB/4-1BBL interaction decreased the release of inflammatory cytokines from contact cocultured adipocytes/macrophages. These findings indicate that 4-1BB/4-1BBL-mediated bidirectional signaling in adipocytes/macrophages promotes adipose inflammation. 4-1BB and 4-1BBL may be useful targets for protection against obesity-induced adipose inflammation.
Collapse
|
171
|
Samokhvalov V, Ussher JR, Fillmore N, Armstrong IKG, Keung W, Moroz D, Lopaschuk DG, Seubert J, Lopaschuk GD. Inhibition of malonyl-CoA decarboxylase reduces the inflammatory response associated with insulin resistance. Am J Physiol Endocrinol Metab 2012; 303:E1459-68. [PMID: 23074239 DOI: 10.1152/ajpendo.00018.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We previously showed that genetic inactivation of malonyl-CoA decarboxylase (MCD), which regulates fatty acid oxidation, protects mice against high-fat diet-induced insulin resistance. Development of insulin resistance has been associated with activation of the inflammatory response. Therefore, we hypothesized that the protective effect of MCD inhibition might be caused by a favorable effect on the inflammatory response. We examined if pharmacological inhibition of MCD protects neonatal cardiomyocytes and peritoneal macrophages against inflammatory-induced metabolic perturbations. Cardiomyocytes and macrophages were treated with LPS to induce an inflammatory response, in the presence or absence of an MCD inhibitor (CBM-301106, 10 μM). Inhibition of MCD attenuated the LPS-induced inflammatory response in cardiomyocytes and macrophages. MCD inhibition also prevented LPS impairment of insulin-stimulated glucose uptake in cardiomyocytes and increased phosphorylation of Akt. Additionally, inhibition of MCD strongly diminished LPS-induced activation of palmitate oxidation. We also found that treatment with an MCD inhibitor prevented LPS-induced collapse of total cellular antioxidant capacity. Interestingly, treatment with LPS or an MCD inhibitor did not alter intracellular triacylglycerol content. Furthermore, inhibition of MCD prevented LPS-induced increases in the level of ceramide in cardiomyocytes and macrophages while also ameliorating LPS-initiated decreases in PPAR binding. This suggests that the anti-inflammatory effect of MCD inhibition is mediated via accumulation of long-chain acyl-CoA, which in turn stimulates PPAR binding. Our results also demonstrate that pharmacological inhibition of MCD is a novel and promising approach to treat insulin resistance and its associated metabolic complications.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Biological Transport/drug effects
- Carboxy-Lyases/antagonists & inhibitors
- Carboxy-Lyases/metabolism
- Cardiotonic Agents/pharmacology
- Cells, Cultured
- Ceramides/metabolism
- Enzyme Inhibitors/pharmacology
- Glucose/metabolism
- Insulin Resistance
- Lipid Metabolism/drug effects
- Macrophage Activation/drug effects
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/metabolism
- Phenylurea Compounds/pharmacology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
Collapse
Affiliation(s)
- Victor Samokhvalov
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Tom FQ, Gauvreau D, Lapointe M, Lu H, Poursharifi P, Luo XP, Cianflone K. Differential chemoattractant response in adipocytes and macrophages to the action of acylation stimulating protein. Eur J Cell Biol 2012; 92:61-9. [PMID: 23245988 DOI: 10.1016/j.ejcb.2012.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/12/2012] [Accepted: 10/28/2012] [Indexed: 01/02/2023] Open
Abstract
Obesity is characterized by chronic low-grade inflammation with increased adipose tissue pro-inflammatory cytokine production. Acylation stimulating protein (ASP) stimulates triglyceride synthesis and glucose transport via its receptor C5L2. Circulating ASP is increased in obesity, insulin resistance and metabolic syndrome. The present study examines the effects of normal (50 nM), high physiological (200 nM) and pathological (600 nM) levels of ASP on inflammatory changes in 3T3-L1 adipocytes and J774 macrophages and the underlying mechanisms involved. Treatment with ASP for 24h increased monocyte chemoattractant protein-1 (MCP1, 800%, P<0.001) and keratinocyte-derived chemokine (KC, >150%, P<0.01) secretion in adipocytes in a dose-dependent manner, with no effect on IL-6 or adiponectin. In macrophages, ASP had no effect on these cytokines. C5a, a ligand for C5L2 and C5aR receptors, differed from ASP. Macrophage-adipocyte coculture increased MCP-1 and adiponectin secretion, and ASP further enhanced secretion (P<0.001 and P<0.05, respectively) at doses of 50 nM and 200 nM. ASP increased Ser(468) and Ser(536) phosphorylation of p65 NFκB in a time- and concentration-dependent manner (P<0.05) as well as phosphorylation of Akt Ser(473) (p=0.02). ASP and insulin stimulations of Ser(536) p65 NFκB phosphorylation were comparable (both p<0.05) but not additive. Both inhibition of PI3kinase (with wortmannin) and NFκB (with BAY11-7085) prevented ASP stimulation of MCP-1 and KC secretion in adipocytes. These findings suggest that ASP, especially at high physiologic doses, may stimulate specific inflammatory cytokines in adipocytes through PI3kinase- and NFκB-dependant pathways, thus further promoting macrophage infiltration and local inflammation in obese adipose tissue.
Collapse
Affiliation(s)
- Fun-Qun Tom
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
173
|
Pillon NJ, Arane K, Bilan PJ, Chiu TT, Klip A. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages. Cell Commun Signal 2012; 10:30. [PMID: 23078640 PMCID: PMC3507850 DOI: 10.1186/1478-811x-10-30] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation. Within adipose tissue of mice fed a high fat diet, resident and infiltrating macrophages assume a pro-inflammatory phenotype characterized by the production of cytokines which in turn impact on the surrounding tissue. However, inflammation is not restricted to adipose tissue and high fat-feeding is responsible for a significant increase in pro-inflammatory cytokine expression in muscle. Although skeletal muscle is the major disposer of dietary glucose and a major determinant of glycemia, the origin and consequence of muscle inflammation in the development of insulin resistance are poorly understood. We used a cell culture approach to investigate the vectorial crosstalk between muscle cells and macrophages upon exposure to physiological, low levels of saturated and unsaturated fatty acids. Inflammatory pathway activation and cytokine expression were analyzed in L6 muscle cells expressing myc-tagged GLUT4 (L6GLUT4myc) exposed to 0.2 mM palmitate or palmitoleate. Conditioned media thereof, free of fatty acids, were then tested for their ability to activate RAW264.7 macrophages. Palmitate -but not palmitoleate- induced IL-6, TNFα and CCL2 expression in muscle cells, through activation of the NF-κB pathway. Palmitate (0.2 mM) alone did not induce insulin resistance in muscle cells, yet conditioned media from palmitate-challenged muscle cells selectively activated macrophages towards a pro-inflammatory phenotype. These results demonstrate that low concentrations of palmitate activate autonomous inflammation in muscle cells to release factors that turn macrophages pro-inflammatory. We hypothesize that saturated fat-induced, low-grade muscle cell inflammation may trigger resident skeletal muscle macrophage polarization, possibly contributing to insulin resistance in vivo.
Collapse
Affiliation(s)
- Nicolas J Pillon
- Program in Cell Biology, The Hospital for Sick Children,Toronto, Ontario, M5G 1X8, Canada.
| | | | | | | | | |
Collapse
|
174
|
Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol 2012; 32:5103-15. [PMID: 23071093 DOI: 10.1128/mcb.00820-12] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Serum retinol-binding protein 4 (RBP4) is the sole specific vitamin A (retinol) transporter in blood. Elevation of serum RBP4 in patients has been linked to cardiovascular disease and diabetic retinopathy. However, the significance of RBP4 elevation in the pathogenesis of these vascular diseases is unknown. Here we show that RBP4 induces inflammation in primary human retinal capillary endothelial cells (HRCEC) and human umbilical vein endothelial cells (HUVEC) by stimulating expression of proinflammatory molecules involved in leukocyte recruitment and adherence to endothelium, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). We demonstrate that these novel effects of RBP4 are independent of retinol and the RBP4 membrane receptor STRA6 and occur in part via activation of NADPH oxidase and NF-κB. Importantly, retinol-free RBP4 (apo-RBP4) was as potent as retinol-bound RBP4 (holo-RBP4) in inducing proinflammatory molecules in both HRCEC and HUVEC. These studies reveal that RBP4 elevation can directly contribute to endothelial inflammation and therefore may play a causative role in the development or progression of vascular inflammation during cardiovascular disease and microvascular complications of diabetes.
Collapse
|
175
|
Torriani M, Zanni MV, Fitch K, Stavrou E, Bredella MA, Lim R, Cypess AM, Grinspoon S. Increased FDG uptake in association with reduced extremity fat in HIV patients. Antivir Ther 2012; 18:243-8. [PMID: 23041595 DOI: 10.3851/imp2420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND HIV lipodystrophy - characterized by peripheral lipoatrophy, with or without central fat accumulation - confers increased metabolic risk. However, the functional activity of HIV lipodystrophic tissue in relation to metabolic risk has yet to be fully explored in vivo through the use of non-invasive imaging techniques. This study assesses the relationship between FDG uptake in various fat depots and metabolic/immune parameters among subjects with HIV lipodystrophy. METHODS Lipodystrophic men on antiretroviral therapy underwent whole-body (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography scans and detailed metabolic/immune phenotyping. RESULTS FDG uptake in the subcutaneous adipose tissue (SAT) of the extremities (mean standardized uptake value [SUV] of the arm and leg SAT) was found to correlate with the degree of peripheral lipoatrophy (r=0.7; P=0.01). Extremity SAT FDG uptake was positively associated with homeostasis model assessment of insulin resistance (HOMA-IR; r=0.6; P=0.02) and fasting hyperinsulinaemia (r=0.7; P=0.01), while fat percentage of extremities was not. Furthermore, extremity SAT FDG uptake was significantly associated with CD4(+) T-cell count (r=0.6; P=0.05). In multivariate modelling for HOMA-IR, extremity SAT FDG uptake remained significant after controlling for body mass index and tumour necrosis factor-α (R(2) for model =0.71, P=0.02; SUV in the extremity SAT β-estimate 12.3, P=0.009). CONCLUSIONS In HIV lipodystrophic patients, extremity SAT FDG uptake is increased in association with reduced extremity fat and may contribute to insulin resistance. Non-invasive assessments of in situ inflammation using FDG-PET may usefully complement histological and gene expression analyses of metabolic dysregulation in peripheral fat among HIV-positive patients.
Collapse
Affiliation(s)
- Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Hagman DK, Kuzma JN, Larson I, Foster-Schubert KE, Kuan LY, Cignarella A, Geamanu E, Makar KW, Gottlieb JR, Kratz M. Characterizing and quantifying leukocyte populations in human adipose tissue: impact of enzymatic tissue processing. J Immunol Methods 2012; 386:50-9. [PMID: 22974837 DOI: 10.1016/j.jim.2012.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023]
Abstract
Adipose tissue inflammation is a major mechanistic link between obesity and chronic disease. To isolate and characterize specific leukocyte populations, e.g. by flow cytometry, tissue needs to be processed to digest the extracellular matrix. We have systematically compared the impact of different commonly used collagenase preparations, digestion times, and normalization strategies on the reproducibility of flow cytometric phenotyping of adipose tissue leukocyte populations. Subcutaneous adipose tissue was obtained from 11 anonymous donors undergoing elective procedures at a plastic surgery clinic in Seattle, WA. We found that collagenase alone consistently produced better cell yields (p=0.007) than when combined with additional proteases such as the commercially available liberases. Moreover, liberase significantly degraded the cell surface expression of CD4 (p<0.001) on T cells and to a lesser extent CD16 (p=0.058) on neutrophils. Extension of the digestion interval from 30 to 120 min did not significantly impact cell viability (p=0.319) or yield (p=0.247). Normalization by either 'live-gate' or percentage of CD45(pos) leukocytes exhibited the lowest coefficient of variation for tissue digests between 60 and 75 min, compared to normalization per gram of tissue, which consistently exhibited the greatest variability. Our data suggest that digestion of adipose tissue using pure collagenase for 60-75 min provides the best cell yield and viability, with minimal degradation of cell surface markers used to identify immune cell subpopulations, and best reproducibility independent of the normalization strategy.
Collapse
Affiliation(s)
- Derek K Hagman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109–1024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y, Jun HS. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 2012; 55:2456-68. [PMID: 22722451 DOI: 10.1007/s00125-012-2592-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/24/2012] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Obesity and insulin resistance are associated with low-grade chronic inflammation. Glucagon-like peptide-1 (GLP-1) is known to reduce insulin resistance. We investigated whether GLP-1 has anti-inflammatory effects on adipose tissue, including adipocytes and adipose tissue macrophages (ATM). METHODS We administered a recombinant adenovirus (rAd) producing GLP-1 (rAd-GLP-1) to an ob/ob mouse model of diabetes. We examined insulin sensitivity, body fat mass, the infiltration of ATM and metabolic profiles. We analysed the mRNA expression of inflammatory cytokines, lipogenic genes, and M1 and M2 macrophage-specific genes in adipose tissue by real-time quantitative PCR. We also examined the activation of nuclear factor κB (NF-κB), extracellular signal-regulated kinase 1/2 and Jun N-terminal kinase (JNK) in vivo and in vitro. RESULTS Fat mass, adipocyte size and mRNA expression of lipogenic genes were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Macrophage populations (F4/80(+) and F4/80(+)CD11b(+)CD11c(+) cells), as well as the expression and production of IL-6, TNF-α and monocyte chemoattractant protein-1, were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Expression of M1-specific mRNAs was significantly reduced, but that of M2-specific mRNAs was unchanged in rAd-GLP-1-treated ob/ob mice. NF-κB and JNK activation was significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Lipopolysaccharide-induced inflammation was reduced by the GLP-1 receptor agonist, exendin-4, in 3T3-L1 adipocytes and ATM. CONCLUSIONS/INTERPRETATION We suggest that GLP-1 reduces macrophage infiltration and directly inhibits inflammatory pathways in adipocytes and ATM, possibly contributing to the improvement of insulin sensitivity.
Collapse
Affiliation(s)
- Y-S Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Oliver E, McGillicuddy FC, Harford KA, Reynolds CM, Phillips CM, Ferguson JF, Roche HM. Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J Nutr Biochem 2012; 23:1192-200. [DOI: 10.1016/j.jnutbio.2011.06.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/02/2011] [Accepted: 06/27/2011] [Indexed: 12/21/2022]
|
179
|
Insights into the role of macrophage migration inhibitory factor in obesity and insulin resistance. Proc Nutr Soc 2012; 71:622-33. [PMID: 22914223 DOI: 10.1017/s0029665112000730] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High-fat diet (HFD)-induced obesity has emerged as a state of chronic low-grade inflammation characterised by a progressive infiltration of immune cells, particularly macrophages, into obese adipose tissue. Adipose tissue macrophages (ATM) present immense plasticity. In early obesity, M2 anti-inflammatory macrophages acquire an M1 pro-inflammatory phenotype. Pro-inflammatory cytokines including TNF-α, IL-6 and IL-1β produced by M1 ATM exacerbate local inflammation promoting insulin resistance (IR), which consequently, can lead to type-2 diabetes mellitus (T2DM). However, the triggers responsible for ATM recruitment and activation are not fully understood. Adipose tissue-derived chemokines are significant players in driving ATM recruitment during obesity. Macrophage migration inhibitory factor (MIF), a chemokine-like inflammatory regulator, is enhanced during obesity and is directly associated with the degree of peripheral IR. This review focuses on the functional role of macrophages in obesity-induced IR and highlights the importance of the unique inflammatory cytokine MIF in propagating obesity-induced inflammation and IR. Given MIF chemotactic properties, MIF may be a primary candidate promoting ATM recruitment during obesity. Manipulating MIF inflammatory activities in obesity, using pharmacological agents or functional foods, may be therapeutically beneficial for the treatment and prevention of obesity-related metabolic diseases.
Collapse
|
180
|
Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res 2012; 111:1176-89. [PMID: 22896587 DOI: 10.1161/circresaha.112.266395] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Endothelial dysfunction is a characteristic feature of diabetes and obesity in animal models and humans. Deficits in nitric oxide production by endothelial nitric oxide synthase (eNOS) are associated with insulin resistance, which is exacerbated by high-fat diet. Nevertheless, the metabolic effects of increasing eNOS levels have not been studied. OBJECTIVE The current study was designed to test whether overexpression of eNOS would prevent diet-induced obesity and insulin resistance. METHODS AND RESULTS In db/db mice and in high-fat diet-fed wild-type C57BL/6J mice, the abundance of eNOS protein in adipose tissue was decreased without significant changes in eNOS levels in skeletal muscle or aorta. Mice overexpressing eNOS (eNOS transgenic mice) were resistant to diet-induced obesity and hyperinsulinemia, although systemic glucose intolerance remained largely unaffected. In comparison with wild-type mice, high-fat diet-fed eNOS transgenic mice displayed a higher metabolic rate and attenuated hypertrophy of white adipocytes. Overexpression of eNOS did not affect food consumption or diet-induced changes in plasma cholesterol or leptin levels, yet plasma triglycerides and fatty acids were decreased. Metabolomic analysis of adipose tissue indicated that eNOS overexpression primarily affected amino acid and lipid metabolism; subpathway analysis suggested changes in fatty acid oxidation. In agreement with these findings, adipose tissue from eNOS transgenic mice showed higher levels of PPAR-α and PPAR-γ gene expression, elevated abundance of mitochondrial proteins, and a higher rate of oxygen consumption. CONCLUSIONS These findings demonstrate that increased eNOS activity prevents the obesogenic effects of high-fat diet without affecting systemic insulin resistance, in part, by stimulating metabolic activity in adipose tissue.
Collapse
Affiliation(s)
- Brian E Sansbury
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab 2012; 23:407-15. [PMID: 22795937 DOI: 10.1016/j.tem.2012.05.011] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 12/20/2022]
Abstract
Adipose tissue (AT) plays a pivotal role in whole-body lipid and glucose homeostasis. AT exerts metabolic control through various immunological mechanisms that instigated a new research field termed immunometabolism. Here, we review AT-resident immune cells and their role as key players in immunometabolism. In lean subjects, AT-resident immune cells have housekeeping functions ranging from apoptotic cell clearance to extracellular matrix remodeling and angiogenesis. However, obesity provides bacterial and metabolic danger signals that mimic bacterial infection, and drives a shift in immune-cell phenotypes and numbers, classified as a prototypic T helper 1 (Th1) inflammatory response. The resulting AT inflammation and insulin resistance link obesity to its metabolic sequel, and suggests that targeted immunomodulatory interventions may be beneficial for obese patients.
Collapse
Affiliation(s)
- Henk S Schipper
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Center for Molecular and Cellular Intervention, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
182
|
Fukui M, Tanaka M, Toda H, Asano M, Yamazaki M, Hasegawa G, Imai S, Fujinami A, Ohta M, Nakamura N. The serum concentration of allograft inflammatory factor-1 is correlated with metabolic parameters in healthy subjects. Metabolism 2012; 61:1021-5. [PMID: 22225958 DOI: 10.1016/j.metabol.2011.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
Obesity is associated with low-grade chronic inflammation characterized by inflamed adipose tissue with increased infiltration of macrophages. The aim of this study was to investigate the correlations between the serum concentration of allograft inflammatory factor-1 (AIF-1), which is a marker of activated macrophages, and metabolic parameters. The serum AIF-1 concentrations were measured in 303 healthy subjects (163 men and 140 women). We then evaluated the relationships between the serum AIF-1 concentrations and metabolic parameters, including fasting plasma glucose levels, serum lipid concentration, uric acid concentration, and waist circumference. The serum AIF-1 concentrations positively correlated with levels of fasting plasma glucose (r = 0.159, P =.0056), hemoglobin A(1c) (r = 0.169, P = .0032), triglycerides (r = 0.137, P = .0172), and uric acid (r = 0.146, P = .0108) and with waist circumference (r = 0.221, P = .0001) and body mass index (r = 0.185, P = .0012), whereas the serum AIF-1 concentrations inversely correlated with high-density lipoprotein cholesterol level (r = -0.178, P = .0019). Stepwise multiple regression analysis demonstrated that hemoglobin A(1c) level (β = .133, F = 5.490, P < .05) and waist circumference (β = .197, F = 11.954, P < .05) were independent predictors of the serum AIF-1 concentrations. The serum AIF-1 concentrations correlated with clinical and biochemical metabolic parameters. Allograft inflammatory factor-1 may be a significant predictor of activated macrophages as well as cardiovascular disease in humans.
Collapse
Affiliation(s)
- Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Reynolds CM, McGillicuddy FC, Harford KA, Finucane OM, Mills KHG, Roche HM. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol Nutr Food Res 2012; 56:1212-22. [PMID: 22700321 DOI: 10.1002/mnfr.201200058] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/25/2022]
Abstract
SCOPE Inflammasome-mediated inflammation is a critical regulator of obesity-induced insulin resistance (IR). We hypothesized that saturated fatty acids (SFA) directly prime the NLRP3 inflammasome via TLR4 concurrent with IR. We focused on dendritic cells (DCs) (CD11c(+) CD11b(+) F4/80(-) ), which are recruited into obese adipose tissue following high-fat diet (HFD) challenge and are a key cell in inflammasome biology. METHODS AND RESULTS C57BL/6 mice were fed HFD for 16 weeks (45% kcal palm oil), glucose homeostasis was monitored by glucose and insulin tolerance tests. Stromal vascular fraction (SVF) cells were isolated from adipose and analyzed for CD11c(+) CD11b(+) F480(-) DC. Following coculture with bone marrow derived DC (BMDC) insulin-stimulated (3) H-glucose transport into adipocytes, IL-1β secretion and caspase-1 activation was monitored. BMDCs primed with LPS (100 ng/mL), linoleic acid (LA; 200 μM), or palmitic acid (PA; 200 μM) were used to monitor inflammasome activation. We demonstrated significant infiltration of DCs into adipose after HFD. HFD-derived DCs reduce adipocyte insulin sensitivity upon coculture co-incident with enhanced adipocyte caspase-1 activation/IL-1β secretion. HFD-derived DCs are skewed toward a pro-inflammatory phenotype with increased IL-1β secretion, IL-1R1, TLR4, and caspase-1 expression. Complementary in vitro experiments demonstrate that TLR4 is critical in propagating SFA-mediated inflammasome activation. CONCLUSION SFA represent metabolic triggers priming the inflammasome, promoting adipocyte inflammation/IR, suggesting direct effects of SFA on inflammasome activation via TLR4.
Collapse
Affiliation(s)
- Clare M Reynolds
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
184
|
Lin L, Pang W, Chen K, Wang F, Gengler J, Sun Y, Tong Q. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am J Physiol Endocrinol Metab 2012; 302:E1550-9. [PMID: 22454293 PMCID: PMC3378156 DOI: 10.1152/ajpendo.00462.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutaneous adipose tissues of obese mice, and the adipocytes are responsible for this increase in PU.1 expression. To further address PU.1's physiological function in mature adipocytes, PU.1 was knocked down in 3T3-L1 cells using retroviral-mediated expression of PU.1-targeting shRNA. Consistent with previous findings that PU.1 regulates its target genes, such as NADPH oxidase subunits and proinflammatory cytokines in myeloid cells, the mRNA levels of proinflammatory cytokines (TNFα, IL-1β, and IL-6) and cytosolic components of NADPH oxidase (p47phox and p40phox) were downregulated significantly in PU.1-silenced adipocytes. NADPH oxidase is a main source for reactive oxygen species (ROS) generation. Indeed, silencing PU.1 suppressed NADPH oxidase activity and attenuated ROS in basal or hydrogen peroxide-treated adipocytes. Silencing PU.1 in adipocytes suppressed JNK1 activation and IRS-1 phosphorylation at Ser(307). Consequently, PU.1 knockdown improved insulin signaling and increased glucose uptake in basal and insulin-stimulated conditions. Furthermore, knocking down PU.1 suppressed basal lipolysis but activated stimulated lipolysis. Collectively, these findings indicate that obesity induces PU.1 expression in adipocytes to upregulate the production of ROS and proinflammatory cytokines, both of which lead to JNK1 activation, insulin resistance, and dysregulation of lipolysis. Therefore, PU.1 might be a mediator for obesity-induced adipose inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ligen Lin
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Börgeson E, McGillicuddy FC, Harford KA, Corrigan N, Higgins DF, Maderna P, Roche HM, Godson C. Lipoxin A4 attenuates adipose inflammation. FASEB J 2012; 26:4287-94. [PMID: 22700871 DOI: 10.1096/fj.12-208249] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aging and adiposity are associated with chronic low-grade inflammation, which underlies the development of obesity-associated complications, including type 2 diabetes mellitus (T2DM). The mechanisms underlying adipose inflammation may include macrophage infiltration and activation, which, in turn, affect insulin sensitivity of adipocytes. There is a growing appreciation that specific lipid mediators (including lipoxins, resolvins, and protectins) can promote the resolution of inflammation. Here, we investigated the effect of lipoxin A4 (LXA4), the predominant endogenously generated lipoxin, on adipose tissue inflammation. Using adipose tissue explants from perigonadal depots of aging female C57BL/6J mice (Animalia, Chordata, Mus musculus) as a model of age-associated adipose inflammation, we report that LXA4 (1 nM) attenuates adipose inflammation, decreasing IL-6 and increasing IL-10 expression (P<0.05). The altered cytokine milieu correlated with increased GLUT-4 and IRS-1 expression, suggesting improved insulin sensitivity. Further investigations revealed the ability of LXA4 to rescue macrophage-induced desensitization to insulin-stimulated signaling and glucose uptake in cultured adipocytes, using vehicle-stimulated cells as controls. This was associated with preservation of Akt activation and reduced secretion of proinflammatory cytokines, including TNF-α. We therefore propose that LXA4 may represent a potentially useful and novel therapeutic strategy to subvert adipose inflammation and insulin resistance, key components of T2DM.
Collapse
Affiliation(s)
- Emma Börgeson
- UCD Diabetes Research Centre, UCD Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Insulin resistance in the defense against obesity. Cell Metab 2012; 15:798-804. [PMID: 22682220 DOI: 10.1016/j.cmet.2012.03.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/14/2012] [Accepted: 03/01/2012] [Indexed: 12/18/2022]
Abstract
In the face of the current obesity epidemic, the nature of the relationship between overnutrition and type 2 diabetes is of great importance. Obesity can be considered a state of excessive insulin action that elicits a series of cellular homeostatic responses, producing systemic insulin resistance. These responses occur in four steps: homologous desensitization to insulin action, leptin secretion, inflammation, and, finally, a counter-inflammatory phase that serves to conserve energy storage. The molecular mechanisms underlying these steps are discussed in the context of potential new therapeutic approaches.
Collapse
|
187
|
Akter S, Häussler S, Germeroth D, von Soosten D, Dänicke S, Südekum KH, Sauerwein H. Immunohistochemical characterization of phagocytic immune cell infiltration into different adipose tissue depots of dairy cows during early lactation. J Dairy Sci 2012; 95:3032-44. [DOI: 10.3168/jds.2011-4856] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/27/2012] [Indexed: 11/19/2022]
|
188
|
Suagee JK, Corl BA, Geor RJ. A Potential Role for Pro-Inflammatory Cytokines in the Development of Insulin Resistance in Horses. Animals (Basel) 2012; 2:243-60. [PMID: 26486919 PMCID: PMC4494330 DOI: 10.3390/ani2020243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is a metabolic condition involving reduced sensitivity of insulin-sensitive tissues to insulin-induced glucose disposal, including adipose tissue, skeletal muscle, and liver. Insulin resistance occurs in overweight and obese horses, and may increase risk for the development of laminitis. The development of insulin resistance is thought to occur in response to increased production of pro-inflammatory cytokines by adipose tissue in obesity, that then have an inhibitory effect on insulin signaling pathways in multiple tissues. This article reviews current knowledge of the involvement of pro-inflammatory cytokines in the development of insulin resistance in horses and uses data from other species to provide context. Understanding the mechanisms involved in the development of insulin resistance in horses should enable development of effective treatment and prevention strategies. Current knowledge of these mechanisms is based upon research in obese humans and rodents, in which there is evidence that the increased production of pro-inflammatory cytokines by adipose tissue negatively influences insulin signaling in insulin-responsive tissues. In horses, plasma concentrations of the cytokine, tumor necrosis factor-α, have been positively correlated with body fatness and insulin resistance, leading to the hypothesis that inflammation may reduce insulin sensitivity in horses. However, little evidence has documented a tissue site of production and a direct link between inflammation and induction of insulin resistance has not been established. Several mechanisms are reviewed in this article, including the potential for macrophage infiltration, hyperinsulinemia, hypoxia, and lipopolysaccharide to increase pro-inflammatory cytokine production by adipose tissue of obese horses. Clearly defining the role of cytokines in reduced insulin sensitivity of horses will be a very important step in determining how obesity and insulin resistance are related.
Collapse
Affiliation(s)
- Jessica K Suagee
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24071, USA.
| | - Benjamin A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24071, USA.
| | - Raymond J Geor
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
189
|
|
190
|
Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 2012; 142:711-725.e6. [PMID: 22326434 DOI: 10.1053/j.gastro.2012.02.003] [Citation(s) in RCA: 655] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/04/2012] [Accepted: 02/02/2012] [Indexed: 02/07/2023]
Abstract
As obesity reaches epidemic proportions, nonalcoholic fatty liver disease (NAFLD) is becoming a frequent cause of patient referral to gastroenterologists. There is a close link between dysfunctional adipose tissue in NAFLD and common conditions such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. This review focuses on the pathophysiology of interactions between adipose tissue and target organs in obesity and the resulting clinical implications for the management of nonalcoholic steatohepatitis. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, caused by the accumulation of triglyceride-derived toxic metabolites in ectopic tissues (liver, muscle, pancreatic beta cells) and subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. The cross talk between dysfunctional adipocytes and the liver involves multiple cell populations, including macrophages and other immune cells, that in concert promote the development of lipotoxic liver disease, a term that more accurately describes the pathophysiology of nonalcoholic steatohepatitis. At the clinical level, adipose tissue insulin resistance contributes to type 2 diabetes mellitus and cardiovascular disease. Treatments that rescue the liver from lipotoxicity by restoring adipose tissue insulin sensitivity (eg, significant weight loss, exercise, thiazolidinediones) or preventing activation of inflammatory pathways and oxidative stress (ie, vitamin E, thiazolidinediones) hold promise in the treatment of NAFLD, although their long-term safety and efficacy remain to be established. Better understanding of pathways that link dysregulated adipose tissue, metabolic dysfunction, and liver lipotoxicity will result in improvements in the clinical management of these challenging patients.
Collapse
Affiliation(s)
- Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610-0226, USA.
| |
Collapse
|
191
|
Couturier J, Patel SG, Iyer D, Balasubramanyam A, Lewis DE. Human monocytes accelerate proliferation and blunt differentiation of preadipocytes in association with suppression of C/EBPΑ mRNA. Obesity (Silver Spring) 2012; 20:253-62. [PMID: 21869759 PMCID: PMC4364279 DOI: 10.1038/oby.2011.275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Obesity, type 2 diabetes, and HIV-associated lipodystrophy are associated with abnormalities in adipocyte growth and differentiation. In persons with these conditions, adipose depots contain increased numbers of macrophages, but the origins of these cells and their specific effects are uncertain. Peripheral blood mononuclear cells (PBMC)-derived monocytes, but not T cells, cocultured via transwells with primary subcutaneous preadipocytes, increased proliferation (approximately twofold) and reduced differentiation (~50%) of preadipocytes. Gene expression analyses in proliferating preadipocytes (i.e., prior to hormonal induction of terminal differentiation) revealed that monocytes down-regulated mRNA levels of CCAAT/enhancer binding protein, alpha (C/EBPα) and up-regulated mRNA levels of G0/G1 switch 2 (G0S2) message, genes important for the regulation of adipogenesis and the cell cycle. These data indicate that circulating peripheral blood monocytes can disrupt adipogenesis by interfering with a critical step in C/EBPα and G0S2 transcription required for preadipocytes to make the transition from proliferation to differentiation. Interactions between preadipocytes and monocytes also increased the inflammatory cytokines IL-6 and IL-8, as well as a novel chemotactic cytokine, CXCL1. Additionally, the levels of both IL-6 and CXCL1 were highest when preadipocytes and monocytes were cultured together, compared to each cell in culture alone. Such cross-talk amplifies the production of mediators of tissue inflammation.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, Texas, USA
| | - Sanjeet G. Patel
- Translational Metabolism Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Dinakar Iyer
- Translational Metabolism Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ashok Balasubramanyam
- Translational Metabolism Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Dorothy E. Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
192
|
Iwashita M, Sakoda H, Kushiyama A, Fujishiro M, Ohno H, Nakatsu Y, Fukushima T, Kumamoto S, Tsuchiya Y, Kikuchi T, Kurihara H, Akazawa H, Komuro I, Kamata H, Nishimura F, Asano T. Valsartan, independently of AT1 receptor or PPARγ, suppresses LPS-induced macrophage activation and improves insulin resistance in cocultured adipocytes. Am J Physiol Endocrinol Metab 2012; 302:E286-96. [PMID: 22045314 DOI: 10.1152/ajpendo.00324.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Macrophages are integrated into adipose tissues and interact with adipocytes in obese subjects, thereby exacerbating adipose insulin resistance. This study aimed to elucidate the molecular mechanism underlying the insulin-sensitizing effect of the angiotensin II receptor blocker (ARB) valsartan, as demonstrated in clinical studies. Insulin signaling, i.e., insulin receptor substrate-1 and Akt phosphorylations, in 3T3-L1 adipocytes was impaired markedly by treatment with tumor necrosis factor-α (TNFα) or in the culture medium of lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages, and valsartan had no effects on these impairments. However, in contrast, when cocultured with RAW 264.7 cells using a transwell system, the LPS-induced insulin signaling impairment in 3T3-L1 adipocytes showed almost complete normalization with coaddition of valsartan. Furthermore, valsartan strongly suppressed LPS-induced productions of cytokines such as interleukin (IL)-1β, IL-6, and TNFα with nuclear factor-κB activation and c-Jun NH(2)-terminal kinase phosphorylation in RAW 264.7 and primary murine macrophages. Very interestingly, this effect of valsartan was also observed in THP-1 cells treated with angiotensin II type 1 (AT1) siRNA or a peroxisome proliferator-activated receptor-γ (PPARγ) antagonist as well as macrophages from AT1a receptor-knockout mice. We conclude that valsartan suppresses the inflammatory response of macrophages, albeit not via PPARγ or the AT1a receptor. This suppression appears to secondarily improve adipose insulin resistance.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes, White/drug effects
- Adipocytes, White/immunology
- Adipocytes, White/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Cell Line
- Cells, Cultured
- Coculture Techniques
- Humans
- Insulin Resistance
- Macrophage Activation/drug effects
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- PPAR gamma/antagonists & inhibitors
- PPAR gamma/metabolism
- RNA Interference
- RNA, Small Interfering
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Tetrazoles/pharmacology
- Valine/analogs & derivatives
- Valine/pharmacology
- Valsartan
Collapse
Affiliation(s)
- Misaki Iwashita
- Department of Biomedical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Sun C, Sun L, Ma H, Peng J, Zhen Y, Duan K, Liu G, Ding W, Zhao Y. The phenotype and functional alterations of macrophages in mice with hyperglycemia for long term. J Cell Physiol 2012; 227:1670-9. [DOI: 10.1002/jcp.22891] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
194
|
Kewalramani G, Fink LN, Asadi F, Klip A. Palmitate-activated macrophages confer insulin resistance to muscle cells by a mechanism involving protein kinase C θ and ε. PLoS One 2011; 6:e26947. [PMID: 22046423 PMCID: PMC3202600 DOI: 10.1371/journal.pone.0026947] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/06/2011] [Indexed: 12/16/2022] Open
Abstract
Background Macrophage-derived factors contribute to whole-body insulin resistance, partly by impinging on metabolically active tissues. As proof of principle for this interaction, conditioned medium from macrophages treated with palmitate (CM-PA) reduces insulin action and glucose uptake in muscle cells. However, the mechanism whereby CM-PA confers this negative response onto muscle cells remains unknown. Methodology/Principal Findings L6-GLUT4myc myoblasts were exposed for 24 h to palmitate-free conditioned medium from RAW 264.7 macrophages pre-treated with 0.5 mM palmitate for 6 h. This palmitate-free CM-PA, containing selective cytokines and chemokines, inhibited myoblast insulin-stimulated insulin receptor substrate 1 (IRS1) tyrosine phosphorylation, AS160 phosphorylation, GLUT4 translocation and glucose uptake. These effects were accompanied by a rise in c-Jun N-terminal kinase (JNK) activation, degradation of Inhibitor of κBα (IκBα), and elevated expression of proinflammatory cytokines in myoblasts. Notably, CM-PA caused IRS1 phosphorylation on Ser1101, and phosphorylation of novel PKCθ and ε. Co-incubation of myoblasts with CM-PA and the novel and conventional PKC inhibitor Gö6983 (but not with the conventional PKC inhibitor Gö6976) prevented PKCθ and ε activation, JNK phosphorylation, restored IκBα mass and reduced proinflammatory cytokine production. Gö6983 also restored insulin signalling and glucose uptake in myoblasts. Moreover, co-silencing both novel PKC θ and ε isoforms in myoblasts by RNA interference, but not their individual silencing, prevented the inflammatory response and restored insulin sensitivity to CM-PA-treated myoblasts. Conclusions/Clinical Significance The results suggest that the block in muscle insulin action caused by CM-PA is mediated by novel PKCθ and PKCε. This study re-establishes the participation of macrophages as a relay in the action of fatty acids on muscle cells, and further identifies PKCθ and PKCε as key elements in the inflammatory and insulin resistance responses of muscle cells to macrophage products. Furthermore, it portrays these PKC isoforms as potential targets for the treatment of fatty acid-induced, inflammation-linked insulin resistance.
Collapse
Affiliation(s)
| | - Lisbeth Nielsen Fink
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Farzad Asadi
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- * E-mail:
| |
Collapse
|
195
|
Chawla A, Nguyen KD, Goh YPS. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 2011; 11:738-49. [PMID: 21984069 DOI: 10.1038/nri3071] [Citation(s) in RCA: 1028] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolism and immunity are two fundamental systems of metazoans. The presence of immune cells, such as macrophages, in metabolic tissues suggests dynamic, ongoing crosstalk between these two regulatory systems. Here, we discuss how changes in the recruitment and activation of macrophages contribute to metabolic homeostasis. In particular, we focus our discussion on the pathogenic and protective functions of classically and alternatively activated macrophages, respectively, in experimental models of obesity and metabolic disease.
Collapse
Affiliation(s)
- Ajay Chawla
- Cardiovascular Research Institute, University of California San Francisco, California 94158-9001, USA.
| | | | | |
Collapse
|
196
|
|
197
|
Spite M, Hellmann J, Tang Y, Mathis SP, Kosuri M, Bhatnagar A, Jala VR, Haribabu B. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1942-9. [PMID: 21742977 PMCID: PMC3150353 DOI: 10.4049/jimmunol.1100196] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chronic inflammation is an underlying factor linking obesity with insulin resistance. Diet-induced obesity promotes an increase in circulating levels of inflammatory monocytes and their infiltration into expanding adipose tissue. Nevertheless, the endogenous pathways that trigger and sustain chronic low-grade inflammation in obesity are incompletely understood. In this study, we report that a high-fat diet selectively increases the circulating levels of CD11b(+) monocytes in wild-type mice that express leukotriene B(4) receptor, BLT-1, and that this increase is abolished in BLT-1-null mice. The accumulation of classically activated (M1) adipose tissue macrophages (ATMs) and the expression of proinflammatory cytokines and chemokines (i.e., IL-6 and Ccl2) was largely blunted in adipose tissue of obese BLT-1(-/-) mice, whereas the ratio of alternatively activated (M2) ATMs to M1 ATMs was increased. Obese BLT-1(-/-) mice were protected from systemic glucose and insulin intolerance and this was associated with a decrease in inflammation in adipose tissue and liver and a decrease in hepatic triglyceride accumulation. Deletion of BLT-1 prevented high fat-induced loss of insulin signaling in liver and skeletal muscle. These observations elucidate a novel role of chemoattractant receptor, BLT-1, in promoting monocyte trafficking to adipose tissue and promoting chronic inflammation in obesity and could lead to the identification of new therapeutic targets for treating insulin resistance in obesity.
Collapse
Affiliation(s)
- Matthew Spite
- Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Guo L, Shi M, Zhang L, Li G, Zhang L, Shao H, Fang P, Ma Y, Li J, Shi Q, Sui Y. Galanin antagonist increases insulin resistance by reducing glucose transporter 4 effect in adipocytes of rats. Gen Comp Endocrinol 2011; 173:159-163. [PMID: 21664358 DOI: 10.1016/j.ygcen.2011.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 11/17/2022]
Abstract
Seeing that galanin increases animal body weight on the conditions of inhibiting insulin secretion and animals with metabolic disorder of galanin easily suffer from diabetes, we postulate that endogenous galanin is necessary to reduce insulin resistance in adipocytes. To test this hypothesis, we compared four groups of rats to examine whether an increase in galanin secretion stimulated by swimming may reduce insulin resistance. The rats from sedentary and trained drug groups were injected by M35, a galanin antagonist. The rats from trained control and trained drug groups swam after each injection for four weeks. We found that exercise significantly elevated plasma galanin contents and glucose transporter 4 (GLUT4) mRNA levels in adipocytes. Meanwhile, M35 treatment reduced GLUT4 and GLUT4 mRNA levels, and glucose infusing rates in euglycemic-hyperinsulinemic clamp tests. The ratios of GLUT4 concentrations at plasma membranes to total cell membranes in both drug groups were lower compared with each control group, respectively. These observations suggest that endogenous galanin reduces insulin resistance by increasing GLUT4 contents and promoting GLUT4 transportation from intracellular membranes to plasma membranes in adipocytes. Galanin is an important hormone to reduce insulin resistance in rats.
Collapse
Affiliation(s)
- Lili Guo
- Department of Physical Education, Chuzhou College, Chuzhou, Anhui Province 239012, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Curti MLR, Jacob P, Borges MC, Rogero MM, Ferreira SRG. Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. J Obes 2011; 2011:497401. [PMID: 21773006 PMCID: PMC3136190 DOI: 10.1155/2011/497401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/15/2011] [Accepted: 03/14/2011] [Indexed: 01/05/2023] Open
Abstract
Obesity is currently considered a serious public health issue due to its strong impact on health, economy, and quality of life. It is considered a chronic low-grade inflammation state and is directly involved in the genesis of metabolic disturbances, such as insulin resistance and dyslipidemia, which are well-known risk factors for cardiovascular disease. Furthermore, there is evidence that genetic variation that predisposes to inflammation and metabolic disturbances could interact with environmental factors, such as diet, modulating individual susceptibility to developing these conditions. This paper aims to review the possible interactions between diet and single-nucleotide polymorphisms (SNPs) in genes implicated on the inflammatory response, lipoprotein metabolism, and oxidative status. Therefore, the impact of genetic variants of the peroxisome proliferator-activated receptor-(PPAR-)gamma, tumor necrosis factor-(TNF-)alpha, interleukin (IL)-1, IL-6, apolipoprotein (Apo) A1, Apo A2, Apo A5, Apo E, glutathione peroxidases 1, 2, and 4, and selenoprotein P exposed to variations on diet composition is described.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Roberta G. Ferreira
- Department of Nutrition, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo, 715, 01246-904, São Paulo, SP, Brazil
| |
Collapse
|
200
|
Hagita S, Osaka M, Shimokado K, Yoshida M. Adipose inflammation initiates recruitment of leukocytes to mouse femoral artery: role of adipo-vascular axis in chronic inflammation. PLoS One 2011; 6:e19871. [PMID: 21625491 PMCID: PMC3098847 DOI: 10.1371/journal.pone.0019871] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/13/2011] [Indexed: 02/07/2023] Open
Abstract
Background Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral artery after adipose tissue transplantation. Methods and Results We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C57BL/6 mice fed normal chow (NC) or a high fat diet (HF), then transplanted the tissues into the perivascular area of the femoral artery of recipient C57/BL6 mice. Quantitative intravital microscopic analysis revealed an increase in adherent leukocytes after adipose tissue transplantation, with VIS found to induce significantly more leukocyte accumulation as compared to SQ. Moreover, adipose tissues from HF fed mice showed significantly more adhesion to the femoral artery. Simultaneous flow cytometry demonstrated upregulation of CD11b on peripheral granulocyte and monocytes after adipose tissue transplantation. We also observed dominant expressions of the inflammatory cytokine IL-6, and chemokines MCP-1 and MIP-1β in the stromal vascular fraction (SVF) of these adipose tissues as well as sera of recipient mice after transplantation. Finally, massive accumulations of pro-inflammatory and dendritic cells were detected in mice with VIS transplantation as compared to SQ, as well as in HF mice as compared to those fed NC. Conclusion Our in vivo findings indicate that adipose tissue stimulates leukocyte accumulation in the femoral artery. The underlying mechanisms involve upregulation of CD11b in leukocytes, induction of cytokines and chemokines, and accumulation of pro-inflammatory cells in the SVF.
Collapse
Affiliation(s)
- Sumihiko Hagita
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|