151
|
Wu M, Zhai Y, Liang X, Chen W, Lin R, Ma L, Huang Y, Zhao D, Liang Y, Zhao W, Fang J, Fang S, Chen Y, Wang Q, Li W. Connecting the Dots Between Hypercholesterolemia and Alzheimer’s Disease: A Potential Mechanism Based on 27-Hydroxycholesterol. Front Neurosci 2022; 16:842814. [PMID: 35464321 PMCID: PMC9021879 DOI: 10.3389/fnins.2022.842814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia, is a complex and multifactorial disease involving genetic and environmental factors, with hypercholesterolemia considered as one of the risk factors. Numerous epidemiological studies have reported a positive association between AD and serum cholesterol levels, and experimental studies also provide evidence that elevated cholesterol levels accelerate AD pathology. However, the underlying mechanism of hypercholesterolemia accelerating AD pathogenesis is not clear. Here, we review the metabolism of cholesterol in the brain and focus on the role of oxysterols, aiming to reveal the link between hypercholesterolemia and AD. 27-hydroxycholesterol (27-OHC) is the major peripheral oxysterol that flows into the brain, and it affects β-amyloid (Aβ) production and elimination as well as influencing other pathogenic mechanisms of AD. Although the potential link between hypercholesterolemia and AD is well established, cholesterol-lowering drugs show mixed results in improving cognitive function. Nevertheless, drugs that target cholesterol exocytosis and conversion show benefits in improving AD pathology. Herbs and natural compounds with cholesterol-lowering properties also have a potential role in ameliorating cognition. Collectively, hypercholesterolemia is a causative risk factor for AD, and 27-OHC is likely a potential mechanism for hypercholesterolemia to promote AD pathology. Drugs that regulate cholesterol metabolism are probably beneficial for AD, but more research is needed to unravel the mechanisms involved in 27-OHC, which may lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Zhai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weichun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiyi Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Qi Wang,
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Weirong Li,
| |
Collapse
|
152
|
Sarkar P, Kumar GA, Shrivastava S, Chattopadhyay A. Chronic cholesterol depletion increases F-actin levels and induces cytoskeletal reorganization via a dual mechanism. J Lipid Res 2022; 63:100206. [PMID: 35390404 PMCID: PMC9096963 DOI: 10.1016/j.jlr.2022.100206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Previous work from us and others has suggested that cholesterol is an important lipid in the context of the organization of the actin cytoskeleton. However, reorganization of the actin cytoskeleton upon modulation of membrane cholesterol is rarely addressed in the literature. In this work, we explored the signaling crosstalk between cholesterol and the actin cytoskeleton by using a high-resolution confocal microscopic approach to quantitatively measure changes in F-actin content upon cholesterol depletion. Our results show that F-actin content significantly increases upon chronic cholesterol depletion, but not during acute cholesterol depletion. In addition, utilizing inhibitors targeting the cholesterol biosynthetic pathway at different steps, we show that reorganization of the actin cytoskeleton could occur due to the synergistic effect of multiple pathways, including prenylated Rho GTPases and availability of membrane phosphatidylinositol 4,5-bisphosphate. These results constitute one of the first comprehensive dissections of the mechanistic basis underlying the interplay between cellular actin levels and cholesterol biosynthesis. We envision these results will be relevant for future understating of the remodeling of the actin cytoskeleton in pathological conditions with altered cholesterol.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
153
|
Zhang Q, Liu Z, Wang Q, Li X. Low cholesterol is not associated with depression: data from the 2005-2018 National Health and Nutrition Examination Survey. Lipids Health Dis 2022; 21:35. [PMID: 35369876 PMCID: PMC8978383 DOI: 10.1186/s12944-022-01645-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Although high serum cholesterol is widely recognized as a major risk factor for heart disease, the health effects of low cholesterol are less clear. Several studies have found a correlation between low cholesterol and depression, but the results are inconsistent.
Methods
Data from the National Health and Nutrition Examination Survey (NHANES) 2005-2018 were utilized in this cross-sectional study. The analysis of the relationship between cholesterol and depression was performed at three levels: low total cholesterol, low high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol. The inclusion criteria were as follows: (1) people with low (<4.14 mmol/L) or normal (4.14-5.16 mmol/L) total cholesterol for Sample 1; people with low (<1 mmol/L) or normal (≥1 mmol/L) HDL cholesterol levels for Sample 2; and people with low (<1.8 mmol/L) or normal (1.8-3.4 mmol/L) LDL cholesterol levels for Sample 3; and (2) people who completed the Patient Health Questionnaire-9 depression scale. Age, sex, educational level, race, marital status, self-rated health, alcohol status, smoking status, body mass index (BMI), poverty income ratio, physical function, comorbidities, and prescription use were considered potential confounders. The missing data were handled by multiple imputations of chained equations. Logistic regression was used to assess the relationship between low cholesterol and depression.
Results
After controlling for potential confounding factors in the multivariate logistic regression, no association was observed between depression and low total cholesterol (OR=1.0, 95% CI: 0.9-1.2), low LDL cholesterol (OR=1.0, 95% CI: 0.8-1.4), or low HDL cholesterol (OR=0.9, 95% CI: 0.8-1.1). The results stratified by sex also showed no association between low total cholesterol, low LDL cholesterol, low HDL cholesterol and depression in either men or women.
Conclusion
This population-based study did not support the assumption that low cholesterol was related to a higher risk of depression. This information may contribute to the debate on how to manage people with low cholesterol in clinical practice.
Collapse
|
154
|
Lee SJ. Alzheimer’s Disease is a Result of Loss of Full Brain Buoyancy. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
155
|
Sancho M, Fletcher J, Welsh DG. Inward Rectifier Potassium Channels: Membrane Lipid-Dependent Mechanosensitive Gates in Brain Vascular Cells. Front Cardiovasc Med 2022; 9:869481. [PMID: 35419431 PMCID: PMC8995785 DOI: 10.3389/fcvm.2022.869481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral arteries contain two primary and interacting cell types, smooth muscle (SMCs) and endothelial cells (ECs), which are each capable of sensing particular hemodynamic forces to set basal tone and brain perfusion. These biomechanical stimuli help confer tone within arterial networks upon which local neurovascular stimuli function. Tone development is intimately tied to arterial membrane potential (VM) and changes in intracellular [Ca2+] driven by voltage-gated Ca2+ channels (VGCCs). Arterial VM is in turn set by the dynamic interplay among ion channel species, the strongly inward rectifying K+ (Kir) channel being of special interest. Kir2 channels possess a unique biophysical signature in that they strongly rectify, display negative slope conductance, respond to elevated extracellular K+ and are blocked by micromolar Ba2+. While functional Kir2 channels are expressed in both smooth muscle and endothelium, they lack classic regulatory control, thus are often viewed as a simple background conductance. Recent literature has provided new insight, with two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, noted to (1) stabilize Kir2 channels in a preferred open or closed state, respectively, and (2) confer, in association with the cytoskeleton, caveolin-1 (Cav1) and syntrophin, hemodynamic sensitivity. It is these aspects of vascular Kir2 channels that will be the primary focus of this review.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Maria Sancho,
| | - Jacob Fletcher
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Donald G. Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Donald G. Welsh,
| |
Collapse
|
156
|
Changes in the Cerebrospinal Fluid and Plasma Lipidome in Patients with Rett Syndrome. Metabolites 2022; 12:metabo12040291. [PMID: 35448478 PMCID: PMC9026385 DOI: 10.3390/metabo12040291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Rett syndrome (RTT) is defined as a rare disease caused by mutations of the methyl-CpG binding protein 2 (MECP2). It is one of the most common causes of genetic mental retardation in girls, characterized by normal early psychomotor development, followed by severe neurologic regression. Hitherto, RTT lacks a specific biomarker, but altered lipid homeostasis has been found in RTT model mice as well as in RTT patients. We performed LC-MS/MS lipidomics analysis to investigate the cerebrospinal fluid (CSF) and plasma composition of patients with RTT for biochemical variations compared to healthy controls. In all seven RTT patients, we found decreased CSF cholesterol levels compared to age-matched controls (n = 13), whereas plasma cholesterol levels were within the normal range in all 13 RTT patients compared to 18 controls. Levels of phospholipid (PL) and sphingomyelin (SM) species were decreased in CSF of RTT patients, whereas the lipidomics profile of plasma samples was unaltered in RTT patients compared to healthy controls. This study shows that the CSF lipidomics profile is altered in RTT, which is the basis for future (functional) studies to validate selected lipid species as CSF biomarkers for RTT.
Collapse
|
157
|
Rudge JD. A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model. J Alzheimers Dis Rep 2022; 6:129-161. [PMID: 35530118 PMCID: PMC9028744 DOI: 10.3233/adr-210299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
This paper proposes a new hypothesis for Alzheimer's disease (AD)-the lipid invasion model. It argues that AD results from external influx of free fatty acids (FFAs) and lipid-rich lipoproteins into the brain, following disruption of the blood-brain barrier (BBB). The lipid invasion model explains how the influx of albumin-bound FFAs via a disrupted BBB induces bioenergetic changes and oxidative stress, stimulates microglia-driven neuroinflammation, and causes anterograde amnesia. It also explains how the influx of external lipoproteins, which are much larger and more lipid-rich, especially more cholesterol-rich, than those normally present in the brain, causes endosomal-lysosomal abnormalities and overproduction of the peptide amyloid-β (Aβ). This leads to the formation of amyloid plaques and neurofibrillary tangles, the most well-known hallmarks of AD. The lipid invasion model argues that a key role of the BBB is protecting the brain from external lipid access. It shows how the BBB can be damaged by excess Aβ, as well as by most other known risk factors for AD, including aging, apolipoprotein E4 (APOE4), and lifestyle factors such as hypertension, smoking, obesity, diabetes, chronic sleep deprivation, stress, and head injury. The lipid invasion model gives a new rationale for what we already know about AD, explaining its many associated risk factors and neuropathologies, including some that are less well-accounted for in other explanations of AD. It offers new insights and suggests new ways to prevent, detect, and treat this destructive disease and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D’Arcy Rudge
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
158
|
Harutyunyan A, Jones NC, Kwan P, Anderson A. Network Preservation Analysis Reveals Dysregulated Synaptic Modules and Regulatory Hubs Shared Between Alzheimer’s Disease and Temporal Lobe Epilepsy. Front Genet 2022; 13:821343. [PMID: 35309145 PMCID: PMC8926077 DOI: 10.3389/fgene.2022.821343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Background: There is increased prevalence of epilepsy in patients with Alzheimer’s disease (AD). Although shared pathological and clinical features have been identified, the underlying pathophysiology and cause-effect relationships are poorly understood. We aimed to identify commonly dysregulated groups of genes between these two disorders. Methods: Using publicly available transcriptomic data from hippocampal tissue of patients with temporal lobe epilepsy (TLE), late onset AD and non-AD controls, we constructed gene coexpression networks representing all three states. We then employed network preservation statistics to compare the density and connectivity-based preservation of functional gene modules between TLE, AD and controls and used the difference in significance scores as a surrogate quantifier of module preservation. Results: The majority (>90%) of functional gene modules were highly preserved between all coexpression networks, however several modules identified in the TLE network showed various degrees of preservation in the AD network compared to that of control. Of note, two synaptic signalling-associated modules and two metabolic modules showed substantial gain of preservation, while myelination and immune system-associated modules showed significant loss of preservation. The genes SCN3B and EPHA4 were identified as central regulatory hubs of the highly preserved synaptic signalling-associated module. GABRB3 and SCN2A were identified as central regulatory hubs of a smaller neurogenesis-associated module, which was enriched for multiple epileptic activity and seizure-related human phenotype ontologies. Conclusion: We conclude that these hubs and their downstream signalling pathways are common modulators of synaptic activity in the setting of AD and TLE, and may play a critical role in epileptogenesis in AD.
Collapse
Affiliation(s)
- Anna Harutyunyan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Nigel C. Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Patrick Kwan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Alison Anderson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- *Correspondence: Alison Anderson,
| |
Collapse
|
159
|
Khandker L, Jeffries MA, Chang YJ, Mather ML, Evangelou AV, Bourne JN, Tafreshi AK, Ornelas IM, Bozdagi-Gunal O, Macklin WB, Wood TL. Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord. Cell Rep 2022; 38:110423. [PMID: 35235799 PMCID: PMC8988216 DOI: 10.1016/j.celrep.2022.110423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Brain and spinal cord oligodendroglia have distinct functional characteristics, and cell-autonomous loss of individual genes can result in different regional phenotypes. However, a molecular basis for these distinctions is unknown. Using single-cell analysis of oligodendroglia during developmental myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify the mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglia-specific loss of mTOR decreases cholesterol biosynthesis in both the brain and the spinal cord, but mTOR loss in spinal cord oligodendroglia has a greater impact on cholesterol biosynthesis, consistent with more pronounced deficits in developmental myelination. In the brain, mTOR loss results in a later adult myelin deficit, including oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain. Using single-cell RNA sequencing, Khandker et al. reveal that oligodendroglia in the brain and spinal cord are distinct. These differences arise from mechanisms regulating cholesterol acquisition, necessary for maintenance of the lipid-rich myelin sheath, and involve mTOR in the regulation of cholesterol biosynthesis in oligodendroglia.
Collapse
Affiliation(s)
- Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Marisa A Jeffries
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers University, Piscataway, NJ 08854, USA
| | - Marie L Mather
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Azadeh K Tafreshi
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ozlem Bozdagi-Gunal
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
160
|
Lebeau PF, Platko K, Byun JH, Makda Y, Austin RC. The Emerging Roles of Intracellular PCSK9 and Their Implications in Endoplasmic Reticulum Stress and Metabolic Diseases. Metabolites 2022; 12:metabo12030215. [PMID: 35323658 PMCID: PMC8954296 DOI: 10.3390/metabo12030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of the proprotein convertase subtilisin/kexin type-9 (PCSK9) gene was quickly recognized by the scientific community as the third locus for familial hypercholesterolemia. By promoting the degradation of the low-density lipoprotein receptor (LDLR), secreted PCSK9 protein plays a vital role in the regulation of circulating cholesterol levels and cardiovascular disease risk. For this reason, the majority of published works have focused on the secreted form of PCSK9 since its initial characterization in 2003. In recent years, however, PCSK9 has been shown to play roles in a variety of cellular pathways and disease contexts in LDLR-dependent and -independent manners. This article examines the current body of literature that uncovers the intracellular and LDLR-independent roles of PCSK9 and also explores the many downstream implications in metabolic diseases.
Collapse
|
161
|
Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022; 12:biom12030371. [PMID: 35327563 PMCID: PMC8945730 DOI: 10.3390/biom12030371] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s and Parkinson’s diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer’s disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aβ) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley Payne
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA;
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
- Correspondence: ; Tel.: +1850-322-8788
| |
Collapse
|
162
|
Kajita Y, Ikeda S, Yoshikawa M, Fukuda H, Watanabe E, Yano J, Lane W, Miyamoto M, Ishii T, Nishi T, Koike T. Discovery of Novel 3-Piperidinyl Pyridine Derivatives as Highly Potent and Selective Cholesterol 24-Hydroxylase (CH24H) Inhibitors. J Med Chem 2022; 65:3343-3358. [PMID: 35166541 DOI: 10.1021/acs.jmedchem.1c01898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol 24-hydroxylase (CH24H or CYP46A1) is a brain-specific cytochrome P450 enzyme that metabolizes cholesterol into 24S-hydroxycholesterol (24HC) for regulating brain cholesterol homeostasis. For the development of a novel and potent CH24H inhibitor, we designed and synthesized 3,4-disubstituted pyridine derivatives using a structure-based drug design approach starting from compounds 1 (soticlestat) and 2 (thioperamide). Optimization of this series by focusing on ligand-lipophilicity efficiency value resulted in the discovery of 4-(4-methyl-1-pyrazolyl)pyridine derivative 17 (IC50 = 8.5 nM) as a potent and highly selective CH24H inhibitor. The X-ray crystal structure of CH24H in complex with compound 17 revealed a unique binding mode. Both blood-brain barrier penetration and reduction of 24HC levels (26% reduction) in the mouse brain were confirmed by oral administration of 17 at 30 mg/kg, indicating that 17 is a promising tool for the novel and selective inhibition of CH24H.
Collapse
Affiliation(s)
- Yuichi Kajita
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shuhei Ikeda
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Yoshikawa
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiromi Fukuda
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Etsurou Watanabe
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jason Yano
- Takeda California Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Weston Lane
- Takeda California Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Maki Miyamoto
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Ishii
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshiya Nishi
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tatsuki Koike
- Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
163
|
Nunes VS, da Silva Ferreira G, Quintão ECR. Cholesterol metabolism in aging simultaneously altered in liver and nervous system. Aging (Albany NY) 2022; 14:1549-1561. [PMID: 35130181 PMCID: PMC8876915 DOI: 10.18632/aging.203880] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
In humans, aging, triggers increased plasma concentrations of triglycerides, cholesterol, low-density lipoproteins and lower capacity of high-density lipoproteins to remove cellular cholesterol. Studies in rodents showed that aging led to cholesterol accumulation in the liver and decrease in the brain with reduced cholesterol synthesis and increased levels of cholesterol 24-hydroxylase, an enzyme responsible for removing cholesterol from the brain. Liver diseases are also related to brain aging, inducing changes in cholesterol metabolism in the brain and liver of rats. It has been suggested that late onset Alzheimer's disease is associated with metabolic syndrome. Non-alcoholic fatty liver is associated with lower total brain volume in the Framingham Heart Study offspring cohort study. Furthermore, disorders of cholesterol homeostasis in the adult brain are associated with neurological diseases such as Niemann-Pick, Alzheimer, Parkinson, Huntington and epilepsy. Apolipoprotein E (apoE) is important in transporting cholesterol from astrocytes to neurons in the etiology of sporadic Alzheimer's disease, an aging-related dementia. Desmosterol and 24S-hydroxycholesterol are reduced in ApoE KO hypercholesterolemic mice. ApoE KO mice have synaptic loss, cognitive dysfunction, and elevated plasma lipid levels that can affect brain function. In contrast to cholesterol itself, there is a continuous uptake of 27- hydroxycholesterol in the brain as it crosses the blood-brain barrier and this flow can be an important link between intra- and extracerebral cholesterol homeostasis. Not surprisingly, changes in cholesterol metabolism occur simultaneously in the liver and nervous tissues and may be considered possible biomarkers of the liver and nervous system aging.
Collapse
Affiliation(s)
- Valéria Sutti Nunes
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| | - Guilherme da Silva Ferreira
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| | - Eder Carlos Rocha Quintão
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| |
Collapse
|
164
|
Stefanou MI, Palaiodimou L, Katsanos AH, Milionis H, Kosmidou M, Lambadiari V, Halvatsiotis P, Ferentinos P, Andreadou E, Marinos G, Theodorou A, Tzartos JS, Voumvourakis K, Tsivgoulis G, Giannopoulos S. The effects of HMG-CoA reductase inhibitors on disease activity in multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2022; 58:103395. [PMID: 35216778 DOI: 10.1016/j.msard.2021.103395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To assess whether statins (3‑hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) exert disease-modifying effects in multiple sclerosis (MS). APPROACH A systematic review and meta-analysis was performed including randomized-controlled clinical trials (RCTs) on statin use in MS. A random-effects model was applied to calculate pooled estimates and odds ratios (ORs) with corresponding 95% confidence intervals (CIs), when comparing patients treated with statins alone or adjunct to disease modifying treatment (DMT) to non-statin-treated patients. RESULTS We identified 7 RCTs including 789 patients with relapsing-remitting MS (RRMS), all of whom received additional DMT with IFN-β. Single identified RCTs in secondary-progressive MS (SPMS), clinically isolated syndrome (CIS) and optic neuritis (ON) were not meta-analyzed. In RRMS, add-on statin use was not associated with the risk of clinical relapse (OR=1.30, 95%CI: 0.901.87) or EDSS-progression from baseline, neither appeared related to the risk of new contrast-enhancing or T2 lesions (OR=1.28, 95%CI: 0.364.58), and the risk of whole-brain volume reduction on MRI. Add-on statins to IFN-β were safe and well-tolerated. In SPMS, stand-alone simvastatin led to significantly reduced annualized rate of whole-brain volume reduction. In CIS and ON, statins were associated with reduced risk for new T2 lesions and improved visual recovery, respectively. CONCLUSIONS We detected no benefit from statin treatment as add-on to IFN-β in RRMS. However, a potential beneficial effect in SPMS, CIS and ON deserves independent confirmation and further evaluation within adequately powered RCTs.
Collapse
Affiliation(s)
- Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology & Stroke, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Lina Palaiodimou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristeidis H Katsanos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Division of Neurology, McMaster University/ Population Health Research Institute, Hamilton, Canada
| | - Haralampos Milionis
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Maria Kosmidou
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine Research Unit and Diabetes Center, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Chaidari, Athens, Greece
| | - Panagiotis Halvatsiotis
- Second Department of Internal Medicine Research Unit and Diabetes Center, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Chaidari, Athens, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Eating Disorders Unit, National and Kapodistrian University of Athens, Medical School, "Attikon" University General Hospital, Athens, Greece
| | - Elizabeth Andreadou
- First Department of Neurology, National & Kapodistiran University of Athens, School of Medicine, "Eginition" University Hospital, Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - John S Tzartos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| | - Sotirios Giannopoulos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
165
|
Kwon SJ, Hong KW, Choi S, Hong JS, Kim JW, Kim JW, Lee HJ, Jang HB, Yum KS. Association of 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene polymorphism with obesity and lipid metabolism in children and adolescents with autism spectrum disorder. Metab Brain Dis 2022; 37:319-328. [PMID: 34806144 DOI: 10.1007/s11011-021-00877-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/14/2021] [Indexed: 11/25/2022]
Abstract
The prevalence of obesity among children and adolescents with autism spectrum disorder (ASD) is higher than that among typically developing children and adolescents. However, very few studies have explored the genetic factors associated with obesity in children and adolescents with ASD. Thus, the aim of this study was to examine the associations between 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) gene polymorphisms and obesity among children and adolescents with ASD. The study participants consisted of 33 children and adolescents with ASD and 271 age- and sex-matched typically developing controls. We compared the metabolic traits (body mass index, blood pressure, triglyceride, high-density lipoprotein, and fasting glucose levels) between the ASD and control group. Furthermore, we assessed the genotypes of rs12654264 in the HMGCR gene within the participants with ASD, and compared metabolic traits among the different allele subgroups. The mean body mass index (BMI) and triglyceride level of the ASD group were significantly higher than those of the control group. Within the ASD group, the triglyceride level of participants with rs12654264-T alleles was significantly higher than that of participants with A-alleles. A pattern of increasing values in the BMI and fasting glucose was also observed in participants with T allele. This is the first study to show that obesity in children and adolescents with ASD is associated with the cholesterol synthesis pathway. Future studies are needed to further clarify the molecular mechanisms by which the HMGCR gene influences metabolic traits.
Collapse
Affiliation(s)
- Si Jin Kwon
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Silvia Choi
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Su Hong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine/Center for Autism and Related Disorders, Kennedy Kreger Institute, Baltimore, MD, USA
| | - Jung Won Kim
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ju Whi Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye-Ja Lee
- Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Han Byul Jang
- Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Keun-Sang Yum
- Department of Family Medicine, Uijeongbu St. Mary's Hospital, The Catholic University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
166
|
Jo SY, Kwon YJ, Cho AR. Serum Low-Density Lipoprotein Cholesterol Levels and Depressive Mood in Korean Adults: A Nationwide Population-Based Study. Korean J Fam Med 2022; 43:63-68. [PMID: 35130641 PMCID: PMC8820962 DOI: 10.4082/kjfm.21.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Background The association between serum cholesterol levels and depression has been studied extensively; however, results are inconsistent. This study aimed to investigate the association between low-density lipoprotein cholesterol (LDL-C) levels and depressive symptoms among Korean adults. Methods This cross-sectional study used data obtained from the 2007–2015 Korea National Health and Nutrition Examination Survey. In total, 40,904 adults were included in the final analysis. Participants were categorized into five groups according to their LDL-C levels, using the Korean guidelines for dyslipidemia. Symptoms of depression were evaluated using a self-reported questionnaire. Weighted logistic regression was used to examine the relationship between LDL-C levels and self-reported depressive symptoms. Results Compared with the intermediate category, the lowest (<70 mg/dL) and highest (≥160 mg/dL) LDL-C categories were associated with depressive symptoms, after adjusting for potential confounding factors (odds ratio [OR], 1.191; 95% confidence interval [CI], 1.008–1.409; OR, 1.241; 95% CI, 1.073–1.435, respectively). The highest LDL-C category was positively associated with depressive symptoms in those who were middle-aged, female, had a low body mass index, and taking or not taking dyslipidemia medications. Conclusion A U-shaped association was identified between LDL-C categories and self-reported depressive symptoms. Our findings suggest that LDL-C levels that are too low or too high are associated with self-reported depressive symptoms. Further prospective studies are needed to determine the causal relationship of this association.
Collapse
Affiliation(s)
- Seog-Young Jo
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - A-Ra Cho
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
- *Corresponding Author: A-Ra Cho Tel: +82-31-5189-8777, Fax: +82-3462-8209, E-mail:
| |
Collapse
|
167
|
Bharti V, Bhardwaj A, Elias DA, Metcalfe AWS, Kim JS. A Systematic Review and Meta-Analysis of Lipid Signatures in Post-traumatic Stress Disorder. Front Psychiatry 2022; 13:847310. [PMID: 35599759 PMCID: PMC9120430 DOI: 10.3389/fpsyt.2022.847310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Research assessing lipid levels in individuals diagnosed with post-traumatic stress disorder (PTSD) has yielded mixed results. This study aimed to employ meta-analytic techniques to characterize the relationship between the levels of lipid profiles and PTSD. METHODS We performed meta-analyses of studies comparing profiles and levels of lipids between PTSD patients and healthy individuals by searching Embase, Ovid Medline, Scopus, PsycINFO, and Cochrane databases for the studies until March 2021. Meta-analyses were performed using random-effects models with the restricted maximum-likelihood estimator to synthesize the effect size assessed by standardized mean difference (SMD) across studies. FINDINGS A total of 8,657 abstracts were identified, and 17 studies were included. Levels of total cholesterol (TC) (SMD = 0.57 95% CI, 0.27-0.87, p = 0.003), low-density lipoprotein (LDL) (SMD = 0.48, 95% CI, 0.19-0.76, p = 0.004), and triglyceride (TG) (SMD = 0.46, 95% CI, 0.22-0.70, p = 0.001) were found to be higher, while levels of high-density lipoprotein (HDL) (SMD = -0.47, -0.88 to -0.07, p = 0.026) were found to be lower in PTSD patients compared to healthy controls. Subgroup analysis showed that TG levels were higher in PTSD patients who were on or off of psychotropic medications, both < 40 and ≥ 40 years of age, and having body mass index of < 30 and ≥ 30 compared to healthy controls. INTERPRETATION This work suggested dysregulation of lipids in PTSD that may serve as biomarker to predict the risk. The study will be useful for physicians considering lipid profiles in PTSD patients to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Veni Bharti
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Aseem Bhardwaj
- Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David A Elias
- Canadian Health Solutions Inc., Saint John, NB, Canada.,Dalhousie Medicine New Brunswick, Dalhousie University, Halifax, NS, Canada
| | - Arron W S Metcalfe
- Canadian Health Solutions Inc., Saint John, NB, Canada.,Canadian Imaging Research Centre, Saint John, NB, Canada
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
168
|
Dunk MM, Driscoll I. Total Cholesterol and APOE-Related Risk for Alzheimer's Disease in the Alzheimer's Disease Neuroimaging Initiative. J Alzheimers Dis 2022; 85:1519-1528. [PMID: 34958023 PMCID: PMC10442640 DOI: 10.3233/jad-215091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND APOEɛ4 allele confers greatest genetic risk for Alzheimer's disease (AD), yet mechanisms underlying this risk remain elusive. APOE is involved in lipid metabolism, and literature suggest relationships between high total cholesterol, APOE, and AD. Further investigation is needed to elucidate the potential role of total cholesterol in AD risk. OBJECTIVE To investigate the relationship between total cholesterol and APOE-related AD risk in the Alzheimer's Disease Neuroimaging Initiative. METHODS Participants (N = 1,534) were classified as controls (cognitively normal; N = 404), early mild cognitive impairment (MCI; N = 294), late MCI (N = 539), or AD (N = 297). Total cholesterol levels were compared across APOE genotype and diagnosis. Mendelian randomization was performed to examine causality between total cholesterol and AD risk using APOE as a genetic instrument. RESULTS Total cholesterol was higher in APOE4+ compared to APOE3 and APOE2+ (ps < 0.04) carriers. Those with AD and late MCI (ps < 0.001) had higher total cholesterol than the control group. Comparing APOE4+ to APOE3 carriers, the predicted odds ratios per mg/dL greater total cholesterol were 1.11 for MCI (95% confidence interval, 1.04-7.32), 1.05 for early MCI (1.01-3.22), 1.13 for late MCI (1.05-11.70), 1.21 for AD (1.09-54.05), and 1.13 for composite dementia (MCI or AD; 1.06-11.59) (ps < 0.05, F-statistics > 10). CONCLUSION Higher total cholesterol may be a significant contributor to AD risk, particularly in APOE4 carriers who, based on existing literature, tend to have impaired cholesterol metabolism. Our findings highlight a possible mechanism by which APOE confers AD risk and indicate potential for AD risk modification through maintenance of healthy total cholesterol levels.
Collapse
Affiliation(s)
- Michelle M Dunk
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
169
|
Korade Z, Heffer M, Mirnics K. Medication effects on developmental sterol biosynthesis. Mol Psychiatry 2022; 27:490-501. [PMID: 33820938 PMCID: PMC8490477 DOI: 10.1038/s41380-021-01074-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/01/2023]
Abstract
Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during pregnancy, these compounds might have detrimental effects on the developing brain of the offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this is particularly pronounced in a mouse model when both the mother and the offspring carry the Dhcr7+/- genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/- single allele mutations suggest that the same gene*medication interaction also occurs in humans. The public health relevance of these findings is high, as DHCR7-inhibitors can be considered teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting medications should be used with caution in individuals with mutations in sterol biosynthesis genes. In an age of precision medicine, further research in this area could open opportunities to improve patient and fetal/infant safety by tailoring medication prescriptions according to patient genotype and life stage.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198.,Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Marija Heffer
- J. J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Department of Medical Biology and Genetics, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Károly Mirnics
- Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| |
Collapse
|
170
|
Sierri G, Dal Magro R, Vergani B, Leone BE, Formicola B, Taiarol L, Fagioli S, Kravicz M, Tremolizzo L, Calabresi L, Re F. Reduced Levels of ABCA1 Transporter Are Responsible for the Cholesterol Efflux Impairment in β-Amyloid-Induced Reactive Astrocytes: Potential Rescue from Biomimetic HDLs. Int J Mol Sci 2021; 23:ijms23010102. [PMID: 35008528 PMCID: PMC8745016 DOI: 10.3390/ijms23010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
The cerebral synthesis of cholesterol is mainly handled by astrocytes, which are also responsible for apoproteins’ synthesis and lipoproteins’ assembly required for the cholesterol transport in the brain parenchyma. In Alzheimer disease (AD), these processes are impaired, likely because of the astrogliosis, a process characterized by morphological and functional changes in astrocytes. Several ATP-binding cassette transporters expressed by brain cells are involved in the formation of nascent discoidal lipoproteins, but the effect of beta-amyloid (Aβ) assemblies on this process is not fully understood. In this study, we investigated how of Aβ1-42-induced astrogliosis affects the metabolism of cholesterol in vitro. We detected an impairment in the cholesterol efflux of reactive astrocytes attributable to reduced levels of ABCA1 transporters that could explain the decreased lipoproteins’ levels detected in AD patients. To approach this issue, we designed biomimetic HDLs and evaluated their performance as cholesterol acceptors. The results demonstrated the ability of apoA-I nanodiscs to cross the blood–brain barrier in vitro and to promote the cholesterol efflux from astrocytes, making them suitable as a potential supportive treatment for AD to compensate the depletion of cerebral HDLs.
Collapse
Affiliation(s)
- Giulia Sierri
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Roberta Dal Magro
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Lorenzo Taiarol
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Stefano Fagioli
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Marcelo Kravicz
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Laura Calabresi
- Department of Pharmacological and Biomolecular Science, Centro Grossi Paoletti, University of Milan, 20133 Milan, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
- Correspondence:
| |
Collapse
|
171
|
Reinicke M, Leyh J, Zimmermann S, Chey S, Brkovic IB, Wassermann C, Landmann J, Lütjohann D, Isermann B, Bechmann I, Ceglarek U. Plant Sterol-Poor Diet Is Associated with Pro-Inflammatory Lipid Mediators in the Murine Brain. Int J Mol Sci 2021; 22:ijms222413207. [PMID: 34948003 PMCID: PMC8707069 DOI: 10.3390/ijms222413207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Plant sterols (PSs) cannot be synthesized in mammals and are exclusively diet-derived. PSs cross the blood-brain barrier and may have anti-neuroinflammatory effects. Obesity is linked to lower intestinal uptake and blood levels of PSs, but its effects in terms of neuroinflammation—if any—remain unknown. We investigated the effect of high-fat diet-induced obesity on PSs in the brain and the effects of the PSs campesterol and β-sitosterol on in vitro microglia activation. Sterols (cholesterol, precursors, PSs) and polyunsaturated fatty acid-derived lipid mediators were measured in the food, blood, liver and brain of C57BL/6J mice. Under a PSs-poor high-fat diet, PSs levels decreased in the blood, liver and brain (>50%). This effect was reversible after 2 weeks upon changing back to a chow diet. Inflammatory thromboxane B2 and prostaglandin D2 were inversely correlated to campesterol and β-sitosterol levels in all brain regions. PSs content was determined post mortem in human cortex samples as well. In vitro, PSs accumulate in lipid rafts isolated from SIM-A9 microglia cell membranes. In summary, PSs levels in the blood, liver and brain were associated directly with PSs food content and inversely with BMI. PSs dampen pro-inflammatory lipid mediators in the brain. The identification of PSs in the human cortex in comparable concentration ranges implies the relevance of our findings for humans.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Soroth Chey
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Ilijana Begcevic Brkovic
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Christin Wassermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Julia Landmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
- Correspondence: ; Tel.: +0049-341-97-2-2200
| |
Collapse
|
172
|
Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, Abubakar AR, Rowaiye AB, Dhingra S, Ravichandiran V, Kumar S, Sharma P, Haque M, Charan J. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia. Expert Rev Neurother 2021; 21:1455-1472. [PMID: 34756134 DOI: 10.1080/14737175.2021.2003705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Tarun Kumar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Gitashree Dutta
- Department of Community Medicine, Neigrihms, Shillong, India
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| |
Collapse
|
173
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
174
|
Axmann M, Plochberger B, Mikula M, Weber F, Strobl WM, Stangl H. Plasma Membrane Lipids: An Important Binding Site for All Lipoprotein Classes. MEMBRANES 2021; 11:membranes11110882. [PMID: 34832111 PMCID: PMC8622984 DOI: 10.3390/membranes11110882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol is one of the main constituents of plasma membranes; thus, its supply is of utmost importance. This review covers the known mechanisms of cholesterol transfer from circulating lipoprotein particles to the plasma membrane, and vice versa. To achieve homeostasis, the human body utilizes cellular de novo synthesis and extracellular transport particles for supply of cholesterol and other lipids via the blood stream. These lipoprotein particles can be classified according to their density: chylomicrons, very low, low, and high-density lipoprotein (VLDL, LDL, and HDL, respectively). They deliver and receive their lipid loads, most importantly cholesterol, to and from cells by several redundant routes. Defects in one of these pathways (e.g., due to mutations in receptors) usually are not immediately fatal. Several redundant pathways, at least temporarily, compensate for the loss of one or more of them, but the defects trigger systemic diseases, such as atherosclerosis later on. Recently, intracellular membrane–membrane contact sites were shown to be involved in intracellular cholesterol transfer and the plasma membrane itself has been proposed to act as a binding site for lipoprotein-mediated cargo unloading.
Collapse
Affiliation(s)
- Markus Axmann
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstrasse 21, 4020 Linz, Austria; (M.A.); (B.P.); (F.W.)
| | - Birgit Plochberger
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstrasse 21, 4020 Linz, Austria; (M.A.); (B.P.); (F.W.)
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Institute for Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090 Vienna, Austria;
| | - Florian Weber
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstrasse 21, 4020 Linz, Austria; (M.A.); (B.P.); (F.W.)
| | - Witta Monika Strobl
- Center for Pathobiochemistry and Genetics, Institute for Medical Chemistry, Medical University of Vienna, Währingerstrasse 10, 1090 Vienna, Austria;
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute for Medical Chemistry, Medical University of Vienna, Währingerstrasse 10, 1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
175
|
den Hoedt S, Crivelli SM, Leijten FPJ, Losen M, Stevens JAA, Mané-Damas M, de Vries HE, Walter J, Mirzaian M, Sijbrands EJG, Aerts JMFG, Verhoeven AJM, Martinez-Martinez P, Mulder MT. Effects of Sex, Age, and Apolipoprotein E Genotype on Brain Ceramides and Sphingosine-1-Phosphate in Alzheimer's Disease and Control Mice. Front Aging Neurosci 2021; 13:765252. [PMID: 34776936 PMCID: PMC8579780 DOI: 10.3389/fnagi.2021.765252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022] Open
Abstract
Apolipoprotein ε4 (APOE)4 is a strong risk factor for the development of Alzheimer’s disease (AD) and aberrant sphingolipid levels have been implicated in AD. We tested the hypothesis that the APOE4 genotype affects brain sphingolipid levels in AD. Seven ceramides and sphingosine-1-phosphate (S1P) were quantified by LC-MSMS in hippocampus, cortex, cerebellum, and plasma of <3 months and >5 months old human APOE3 and APOE4-targeted replacement mice with or without the familial AD (FAD) background of both sexes (145 animals). APOE4 mice had higher Cer(d18:1/24:0) levels in the cortex (1.7-fold, p = 0.002) than APOE3 mice. Mice with AD background showed higher levels of Cer(d18:1/24:1) in the cortex than mice without (1.4-fold, p = 0.003). S1P levels were higher in all three brain regions of older mice than of young mice (1.7-1.8-fold, all p ≤ 0.001). In female mice, S1P levels in hippocampus (r = −0.54 [−0.70, −0.35], p < 0.001) and in cortex correlated with those in plasma (r = −0.53 [−0.71, −0.32], p < 0.001). Ceramide levels were lower in the hippocampus (3.7–10.7-fold, all p < 0.001), but higher in the cortex (2.3–12.8-fold, p < 0.001) of female than male mice. In cerebellum and plasma, sex effects on individual ceramides depended on acyl chain length (9.5-fold lower to 11.5-fold higher, p ≤ 0.001). In conclusion, sex is a stronger determinant of brain ceramide levels in mice than APOE genotype, AD background, or age. Whether these differences impact AD neuropathology in men and women remains to be investigated.
Collapse
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Simone M Crivelli
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Frank P J Leijten
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jo A A Stevens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marina Mané-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, VU Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Venusberg Campus, Bonn, Germany
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Adrie J M Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
176
|
Xu Y, Wang L, Zhu J, Jiang P, Zhang Z, Li L, Wu Q. Chromium induced neurotoxicity by altering metabolism in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112983. [PMID: 34781135 DOI: 10.1016/j.ecoenv.2021.112983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recently, both trivalent chromium Cr (III) and hexavalent chromium Cr (VI) have been reported to produce neurotoxicity. However, the underlying mechanisms of the neurotoxicity caused by different chemical valence of chromium remain unclear. OBJECTIVE The purpose of this study was to investigate the mechanism of neurotoxicity induced by exposure to chromium with different valence states based on metabolic disturbance in zebrafish larvae. METHODS Zebrafish embryos were exposed to 1 mg/L Cr (III) and 1 mg/L Cr (VI) for 120 hpf respectively. The related indexes of neural development were observed by stereoscope and behavior analysis system. 8OH-dG were detected using enzyme-linked immunosorbent assay. The generation of reactive oxygen species was detected using an oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate. AChE activity was determined by a colorimetric assay based on hydrolysis of acetylcholine. The expression levels of neurodevelopmental genes and methyltransferase genes in juvenile zebrafish was analyzed by real-time PCR. The methylation status of neurogenin1 and neurod1 genes was detected by bisulfite sequencing PCR. The binding of H3K27me3 was detected by chromatin immunoprecipitation-qPCR. Metabolic profiles and one carbon metabolic analysis were performed by UPLC-MS. RESULTS There were no significant differences in survival rate, hatching rate and spontaneous movement of zebrafish in both Cr-exposed groups compared to the control. The malformation rate in Cr (VI) -exposed group was obviously increased compared to the control and Cr (III) -exposed group. At 48hpf and 72hpf of exposure, the embryonic heart rate in Cr (III)-exposed group was significantly higher than that of Cr (VI)-exposed group and the control. At 120hpf, zebrafish in both Cr-exposed groups exhibited decreasing changes in swimming distance and disturbance of sensitivity to light and dark. 8OH-dG in Cr (VI)-exposed group were significantly higher than that in the control. The generation of ROS in both Cr -exposed groups was significantly higher than that in the control. The activity of AchE was significantly decreased in both Cr-exposed groups compared to the control. Most of early neurogenesis related genes, such as α-tubulin, elavl3, gap43, sox19b, neurogenin1 and neurod1 in Cr-exposed groups were significantly up-regulated compared to those in the control. The expression of dnmt1 and dnmt3 genes was significantly down-regulated in both Cr-exposed groups. BSP-PCR results showed that genic sequences in the neurogenin1 and neurod1 genes have lower levels of DNA methylation in both Cr-exposed groups, especial in Cr (VI)-exposed group. ChIP analysis showed that there was a decrease in H3K27me3 binding within the corresponding region of neurogenin1 in both Cr-exposed groups and that of neurod1 in Cr (III)-exposed group. Untargeted metabolomic analysis showed that significant changes in metabolites induced by Cr exposure were associated with differences in primary bile acid biosynthesis, phospholipid biosynthesis (phosphatidylcholine biosynthesis and phosphatidylethanolamine biosynthesis), linoleic acid metabolism, arachidonic acid metabolism, amino acid metabolism, purine metabolism, betaine metabolism, spermidine and spermine biosynthesis, and folate metabolism, the last four of which are related to one carbon metabolism. Targeted analysis of one carbon metabolites (5-MT, Gly, Met, SAH and Hcy) related with folate cycle and methionine metabolism were significantly decreased upon Cr exposure. The elevated SAM to SAH ratio in both Cr- exposed group indicated the decreasing capacity for methylation reaction. CONCLUSION Cr (III) and Cr (VI) can induce neurotoxicity by interfering with one carbon metabolism and affecting DNA methylation and histone methylation to regulate the expression of neuro-related genes. Cr exposure also influenced primary bile acid biosynthesis and phospholipid biosynthesis, which are associated with neuroprotective effects and need to be further validated.
Collapse
Affiliation(s)
- Yawen Xu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Li Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Zhu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ping Jiang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhan Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lei Li
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qian Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
177
|
Nazeri Z, Azizidoost S, Cheraghzadeh M, Mohammadi A, Kheirollah A. Increased protein expression of ABCA1, HMG-CoA reductase, and CYP46A1 induced by garlic and allicin in the brain mouse and astrocytes-isolated from C57BL/6J. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:473-483. [PMID: 34745919 PMCID: PMC8554280 DOI: 10.22038/ajp.2021.17834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/25/2020] [Accepted: 01/16/2021] [Indexed: 01/02/2023]
Abstract
Objective: Regulation of cholesterol level is essential for the brain optimal function. The beneficial effect of garlic consumption on cholesterol homeostasis is well known; however, the molecular mechanism to support its properties is unclear. Here, we investigated the beneficial effect of aqueous extract of garlic and allicin on lipid profile and the main players involved in brain cholesterol homeostasis including ABCA1, HMG-CoA reductase, and CYP46A1 in both C57BL/6J mice brain and astrocytes. Materials and Methods: Thirty mice were divided into control and garlic groups. Garlic group was fed with the aqueous extract of garlic. Serum lipids were measured and brain protein levels of ABCA1, HMGCR, and CYP46A1 were determined by western blotting. Changes in these proteins expression were also studied in the presence of allicin in cultured astrocytes. Results: A moderate decrease in serum total cholesterol and a significant increase in plasma HDL-C levels (p<0.05) were detected. A significant increase in ABCA1, HMGCR, and CYP46A1 protein levels was observed in the garlic group and in the cultured astrocytes treated with allicin by western blotting (p<0.05). Conclusion: Our findings indicated that the main players involved in cholesterol turnover including HMGCR that is involved in cholesterol synthesis, ABCA1 that is important in cholesterol efflux, and CYP46A1 that is necessary in cholesterol degradation, were up regulated by garlic/allicin in both animal and cell culture model. We concluded that increasing cholesterol turnover is a possible mechanism for the beneficial effects of garlic in cholesterol homeostasis.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asma Mohammadi
- Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Medical School, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
178
|
Saberinasab A, Raissi H, Hashemzadeh H. Molecular insight into the role of polyethylene glycol and cholesterol on the performance of graphene-based nanomaterials in Blood-brain barrier delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
179
|
Bai Y, Dong X, Li M, Hei N, Ge C, Li M, Yin P, Zhang L. Pathological Characteristics of Malformations of Cortical Development in Golden Syrian Hamsters with LDLR Deficiency. J Neuropathol Exp Neurol 2021; 80:1143-1146. [PMID: 34718658 DOI: 10.1093/jnen/nlab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yun Bai
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingzhao Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Naiheng Hei
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China.,The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chen Ge
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Mei Li
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pengfei Yin
- Hebei INVIVO Biotechnology Co., Ltd., Shijiazhuang, Hebei, China
| | - Lianshan Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| |
Collapse
|
180
|
Fernandes HJR, Patikas N, Foskolou S, Field SF, Park JE, Byrne ML, Bassett AR, Metzakopian E. Single-Cell Transcriptomics of Parkinson's Disease Human In Vitro Models Reveals Dopamine Neuron-Specific Stress Responses. Cell Rep 2021; 33:108263. [PMID: 33053338 DOI: 10.1016/j.celrep.2020.108263] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The advent of induced pluripotent stem cell (iPSC)-derived neurons has revolutionized Parkinson's disease (PD) research, but single-cell transcriptomic analysis suggests unresolved cellular heterogeneity within these models. Here, we perform the largest single-cell transcriptomic study of human iPSC-derived dopaminergic neurons to elucidate gene expression dynamics in response to cytotoxic and genetic stressors. We identify multiple neuronal subtypes with transcriptionally distinct profiles and differential sensitivity to stress, highlighting cellular heterogeneity in dopamine in vitro models. We validate this disease model by showing robust expression of PD GWAS genes and overlap with postmortem adult substantia nigra neurons. Importantly, stress signatures are ameliorated using felodipine, an FDA-approved drug. Using isogenic SNCA-A53T mutants, we find perturbations in glycolysis, cholesterol metabolism, synaptic signaling, and ubiquitin-proteasomal degradation. Overall, our study reveals cell type-specific perturbations in human dopamine neurons, which will further our understanding of PD and have implications for cell replacement therapies.
Collapse
Affiliation(s)
- Hugo J R Fernandes
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Stefanie Foskolou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sarah F Field
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Meg L Byrne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
181
|
Zhang H, Zhu W, Niu T, Wang Z, An K, Cao W, Shi J, Wang S. Inverted U-shaped correlation between serum low-density lipoprotein cholesterol levels and cognitive functions of patients with type 2 diabetes mellitus. Lipids Health Dis 2021; 20:103. [PMID: 34511118 PMCID: PMC8436464 DOI: 10.1186/s12944-021-01534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL-C) metabolic disorder is common in individuals with diabetes. The role of LDL-C in mild cognitive impairment (MCI) remains to be explored. We aim to investigate the associations between LDL-C at different levels and details of cognition decline in patients with type 2 diabetes mellitus (T2DM). METHODS Patients with T2DM (n = 497) were recruited. Clinical parameters and neuropsychological tests were compared between patients with MCI and controls. Goodness of fit was assessed to determine the linear or U-shaped relationship between LDL-C and cognitive function. The cut-off point of LDL-C was calculated. Correlation and regression were carried out to explore the relationship between cognitive dysfunction and LDL-C levels above and below the cut-off point. RESULTS Although no significant difference in LDL-C levels was detected in 235 patients with MCI, compared with 262 patients without MCI, inverted-U-shaped association was determined between LDL-C and Montreal Cognitive Assessment (MoCA). The cut-off point of LDL-C is 2.686 mmol/l. LDL-C (>2.686 mmol/l) is positively related to Trail Making Test B (TMTB) indicating executive function. LDL-C (<2.686 mmol/l) is positively associated with Clock Drawing Test (CDT) reflecting visual space function in patients with T2DM. CONCLUSION Inverted U-shaped correlation was found between serum LDL-C and cognitive function in patients with T2DM. Despite that the mechanisms of different LDL-C levels involved in special cognitive dysfunctions remain incompletely clarified, excessive LDL-C damages executive function, while the deficient LDL-C impairs visual space function. TRIAL REGISTRATION ChiCTR-OCC-15006060 .
Collapse
Affiliation(s)
- Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Tong Niu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Zheng Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Wuyou Cao
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Jijing Shi
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China. .,School of Medicine, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
182
|
Canepa E, Bochicchio D, Gasbarri M, Odino D, Canale C, Ferrando R, Canepa F, Stellacci F, Rossi G, Dante S, Relini A. Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. J Phys Chem Lett 2021; 12:8583-8590. [PMID: 34468146 PMCID: PMC8436204 DOI: 10.1021/acs.jpclett.1c02077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plasma membranes represent pharmacokinetic barriers for the passive transport of site-specific drugs within cells. When engineered nanoparticles (NPs) are considered as transmembrane drug carriers, the plasma membrane composition can affect passive NP internalization in many ways. Among these, cholesterol-regulated membrane fluidity is probably one of the most biologically relevant. Herein, we consider small (2-5 nm in core diameter) amphiphilic gold NPs capable of spontaneously and nondisruptively entering the lipid bilayer of plasma membranes. We study their incorporation into model 1,2-dioleoyl-sn-glycero-3-phosphocholine membranes with increasing cholesterol content. We combine dissipative quartz crystal microbalance experiments, atomic force microscopy, and molecular dynamics simulations to show that membrane cholesterol, at biologically relevant concentrations, hinders the molecular mechanism for passive NP penetration within fluid bilayers, resulting in a dramatic reduction in the amount of NP incorporated.
Collapse
Affiliation(s)
- Ester Canepa
- Department
of Chemistry and Industrial Chemistry, University
of Genoa, via Dodecaneso 31, 16146 Genoa, Italy
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Davide Bochicchio
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Matteo Gasbarri
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Davide Odino
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Claudio Canale
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Riccardo Ferrando
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Fabio Canepa
- Department
of Chemistry and Industrial Chemistry, University
of Genoa, via Dodecaneso 31, 16146 Genoa, Italy
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Giulia Rossi
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Silvia Dante
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Annalisa Relini
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| |
Collapse
|
183
|
Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021; 81:459-485. [PMID: 33843671 DOI: 10.3233/jad-201418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aβ-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.
Collapse
|
184
|
Fernández-Beltrán LC, Godoy-Corchuelo JM, Losa-Fontangordo M, Williams D, Matias-Guiu J, Corrochano S. A Transcriptomic Meta-Analysis Shows Lipid Metabolism Dysregulation as an Early Pathological Mechanism in the Spinal Cord of SOD1 Mice. Int J Mol Sci 2021; 22:ijms22179553. [PMID: 34502460 PMCID: PMC8431303 DOI: 10.3390/ijms22179553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial and complex fatal degenerative disorder. A number of pathological mechanisms that lead to motor neuron death have been identified, although there are many unknowns in the disease aetiology of ALS. Alterations in lipid metabolism are well documented in the progression of ALS, both at the systemic level and in the spinal cord of mouse models and ALS patients. The origin of these lipid alterations remains unclear. This study aims to identify early lipid metabolic pathways altered before systemic metabolic symptoms in the spinal cord of mouse models of ALS. To do this, we performed a transcriptomic analysis of the spinal cord of SOD1G93A mice at an early disease stage, followed by a robust transcriptomic meta-analysis using publicly available RNA-seq data from the spinal cord of SOD1 mice at early and late symptomatic disease stages. The meta-analyses identified few lipid metabolic pathways dysregulated early that were exacerbated at symptomatic stages; mainly cholesterol biosynthesis, ceramide catabolism, and eicosanoid synthesis pathways. We present an insight into the pathological mechanisms in ALS, confirming that lipid metabolic alterations are transcriptionally dysregulated and are central to ALS aetiology, opening new options for the treatment of these devastating conditions.
Collapse
Affiliation(s)
- Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
| | - Juan Miguel Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
| | - Maria Losa-Fontangordo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
| | - Debbie Williams
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK;
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
- Correspondence: ; Tel.: +34-913303000
| |
Collapse
|
185
|
Ghzaiel I, Sassi K, Zarrouk A, Nury T, Ksila M, Leoni V, Bouhaouala-Zahar B, Hammami S, Hammami M, Mackrill JJ, Samadi M, Ghrairi T, Vejux A, Lizard G. 7-Ketocholesterol: Effects on viral infections and hypothetical contribution in COVID-19. J Steroid Biochem Mol Biol 2021; 212:105939. [PMID: 34118414 PMCID: PMC8188774 DOI: 10.1016/j.jsbmb.2021.105939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
7-Ketocholesterol, which is one of the earliest cholesterol oxidization products identified, is essentially formed by the auto-oxidation of cholesterol. In the body, 7-ketocholesterol is both provided by food and produced endogenously. This pro-oxidant and pro-inflammatory molecule, which can activate apoptosis and autophagy at high concentrations, is an abundant component of oxidized Low Density Lipoproteins. 7-Ketocholesterol appears to significantly contribute to the development of age-related diseases (cardiovascular diseases, age-related macular degeneration, and Alzheimer's disease), chronic inflammatory bowel diseases and to certain cancers. Recent studies have also shown that 7-ketocholesterol has anti-viral activities, including on SARS-CoV-2, which are, however, lower than those of oxysterols resulting from the oxidation of cholesterol on the side chain. Furthermore, 7-ketocholesterol is increased in the serum of moderately and severely affected COVID-19 patients. In the case of COVID-19, it can be assumed that the antiviral activity of 7-ketocholesterol could be counterbalanced by its toxic effects, including pro-oxidant, pro-inflammatory and pro-coagulant activities that might promote the induction of cell death in alveolar cells. It is therefore suggested that this oxysterol might be involved in the pathophysiology of COVID-19 by contributing to the acute respiratory distress syndrome and promoting a deleterious, even fatal outcome. Thus, 7-ketocholesterol could possibly constitute a lipid biomarker of COVID-19 outcome and counteracting its toxic effects with adjuvant therapies might have beneficial effects in COVID-19 patients.
Collapse
Affiliation(s)
- Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khouloud Sassi
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, 1007 Tunis, Tunisia.
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse, Faculty of Medicine, Sousse, Tunisia.
| | - Thomas Nury
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis & University of Tunis El Manar, 1002 Tunis, Tunisia.
| | - Sonia Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - Mohamed Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| |
Collapse
|
186
|
Valproic acid suppresses cuprizone-induced hippocampal demyelination and anxiety-like behavior by promoting cholesterol biosynthesis. Neurobiol Dis 2021; 158:105489. [PMID: 34461265 DOI: 10.1016/j.nbd.2021.105489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
Myelin consists of several layers of tightly compacted membranes that form an insulating sheath around axons. These membranes are highly enriched in cholesterol, which is essential for the myelination process. Proper myelination is crucial for various neurophysiological functions while demyelination may cause CNS disease, such as multiple sclerosis (MS). Recent studies demonstrated that demyelination occurs not only in the white matter but also in the grey matter, such as the hippocampus, which may cause cognitive deficits and mental disorders. Valproic acid (VPA) is an anticonvulsant agent prescribed for the treatment of epilepsy and seizure. Recently, VPA was reported to alter cholesterol metabolism in neural cells, suggesting that it may play an important role in myelin biogenesis. Here in this study, we found significant demyelination in the hippocampus of the mouse cuprizone model, which is accompanied by reduced cholesterol biosynthesis and increased anxiety-like behavior. VPA treatment, however, suppressed cuprizone-induced hippocampal demyelination and anxiety-like behavior by promoting cholesterol biosynthesis. These data identify an important role of VPA in the hippocampal demyelination process and the hippocampal demyelination-related behavior deficit via regulation of cholesterol biosynthesis, which provides new insights into the mechanisms of VPA as a protective agent against CNS demyelination.
Collapse
|
187
|
Lin F, Yao X, Kong C, Liu X, Zhao Z, Rao S, Wang L, Li S, Wang J, Dai Q. 25-Hydroxycholesterol protecting from cerebral ischemia-reperfusion injury through the inhibition of STING activity. Aging (Albany NY) 2021; 13:20149-20163. [PMID: 34406977 PMCID: PMC8436919 DOI: 10.18632/aging.203337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
Middle cerebral artery occlusion (MCAO) injury refers to impaired blood supply to the brain that is caused by a cerebrovascular disease, resulting in local brain tissue ischemia, hypoxic necrosis, and rapid neurological impairment. Nevertheless, the mechanisms involved are unclear, and pharmacological interventions are lacking. 25-Hydroxycholesterol (25-HC) was reported to be involved in cholesterol and lipid metabolism as an oxysterol molecule. This study aimed to determine whether 25-HC exerts a cerebral protective effect on MCAO injury and investigate its potential mechanism. 25-HC was administered prior to reperfusion in a mouse model of MCAO injury. 25-HC evidently decreased infarct size induced by MCAO and enhanced brain function. It reduced stimulator of interferon gene (STING) activity and regulated mTOR to inhibit autophagy and induce cerebral ischemia tolerance. Thus, 25-HC improved MCAO injury through the STING channel. As indicated in this preliminary study, 25-HC improved MCAO injury by inhibiting STING activity and autophagy as well as by reducing brain nerve cell apoptosis. Thus, it is a potential treatment drug for brain injury.
Collapse
Affiliation(s)
- Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang Kong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xia Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhangfan Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Suhuan Rao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shan Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
188
|
Eskandari M, Mellati AA. Liver X Receptor as a Possible Drug Target for Blood-Brain Barrier Integrity. Adv Pharm Bull 2021; 12:466-475. [PMID: 35935038 PMCID: PMC9348539 DOI: 10.34172/apb.2022.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: blood-brain barrier (BBB) is made of specialized cells that are responsible for the selective passage of substances directed to the brain. The integrated BBB is essential for precise controlling of the different substances passage as well as protecting the brain from various damages. In this article, we attempted to explain the role of liver X receptor (LXR) in maintaining BBB integrity as a possible drug target.
Methods: In this study, various databases, including PubMed, Google Scholar, and Scopus were searched using the following keywords: blood-brain barrier, BBB, liver X receptor, and LXR until July, 2020. Additionally, contents close to the subject of our study were surveyed.
Results: LXR is a receptor the roles of which in various diseases have been investigated. LXR can affect maintaining BBB by affecting various ways such as ATP-binding cassette transporter A1 (ABCA1), matrix metalloproteinase-9 (MMP9), insulin-like growth factor 1 (IGF1), nuclear factor-kappa B (NF-κB) signaling, mitogen-activated protein kinase (MAPK), tight junction molecules, both signal transducer and activator of transcription 1 (STAT1), Wnt/β-catenin Signaling, transforming growth factor beta (TGF-β) signaling, and expressions of Smad 2/3 and Snail.
Conclusion: LXR could possibly be used either as a target for drug delivery to brain tissue or as a target for maintaining the BBB integrity in different diseases; thereby the drug will be conducted to tissues, other than the brain. If it is verified that only LXRα is necessary for protecting BBB, some specific LXRα ligands must be found and then used in medication.
Collapse
Affiliation(s)
- Mahsa Eskandari
- Medical school, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Disease Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
189
|
Wang K, Luo Z, Li C, Huang X, Shiroma EJ, Simonsick EM, Chen H. Blood Cholesterol Decreases as Parkinson's Disease Develops and Progresses. JOURNAL OF PARKINSONS DISEASE 2021; 11:1177-1186. [PMID: 34024785 DOI: 10.3233/jpd-212670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Literature shows an inverse association of circulating cholesterol level with the risk of Parkinson's disease (PD); this finding has important ramifications, but its interpretation has been debated. OBJECTIVE To longitudinally examine how blood total cholesterol changes during the development of PD. METHODS In the Health, Aging and Body Composition study (n = 3,053, 73.6±2.9 years), blood total cholesterol was measured at clinic visit years 1, 2, 4, 6, 8, 10, and 11. We first examined baseline cholesterol in relation to PD risk, adjusting for potential confounders and competing risk of death. Then, by contrasting the observed with expected cholesterol levels, we examined the trajectory of changes in total cholesterol before and after disease diagnosis. RESULTS Compared to the lowest tertile of baseline total cholesterol, the cumulative incidence ratio of PD and 95% confidence interval was 0.41 (0.20, 0.86) for the second tertile, and 0.69 (0.35, 1.35) for the third tertile. In the analysis that examined change of total cholesterol level before and after PD diagnosis, we found that its level began to decrease in the prodromal stage of PD and became statistically lower than the expected values ∼4 years before disease diagnosis (observed-expected difference, -6.68 mg/dL (95% confidence interval: -13.14, -0.22)). The decreasing trend persisted thereafter; by year-6 post-diagnosis, the difference increased to -13.59 mg/dL (95% confidence interval: -22.12, -5.06), although the linear trend did not reach statistical significance (p = 0.10). CONCLUSION Circulating total cholesterol began to decrease in the prodromal stage of PD, which may in part explain its reported inverse association with PD.
Collapse
Affiliation(s)
- Keran Wang
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Chenxi Li
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Xuemei Huang
- Department of Neurology, Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Science, Intramural Research Program of the National Institutes of Health, National Institute on Aging, Bethesda, MD, USA
| | - Eleanor M Simonsick
- Laboratory of Epidemiology and Population Science, Intramural Research Program of the National Institutes of Health, National Institute on Aging, Bethesda, MD, USA
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
190
|
Cai W, Zhang X, Batista TM, García-Martín R, Softic S, Wang G, Ramirez AK, Konishi M, O'Neill BT, Kim JH, Kim JK, Kahn CR. Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes 2021; 70:1857-1873. [PMID: 34031123 PMCID: PMC8385615 DOI: 10.2337/db20-1119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/09/2021] [Indexed: 11/13/2022]
Abstract
The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na+ and K+ channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.
Collapse
Affiliation(s)
- Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY
| | - Xuemei Zhang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Rubén García-Martín
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Pediatrics, University of Kentucky, College of Medicine, Lexington, KY
| | - Guoxiao Wang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Alfred K Ramirez
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Masahiro Konishi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jong Hun Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Department of Food Science and Biotechnology, Sungshin University, Seoul, South Korea
| | - Jason K Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
191
|
Ooi KLM, Vacy K, Boon WC. Fatty acids and beyond: Age and Alzheimer's disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem Int 2021; 149:105143. [PMID: 34311029 DOI: 10.1016/j.neuint.2021.105143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Lipids are essential in maintaining brain function, and lipid profiles have been reported to be altered in aged and Alzheimer's disease (AD) brains as compared to healthy mature brains. Both age and AD share common metabolic hallmarks such as increased oxidative stress and perturbed metabolic function, and age remains the most strongly correlated risk factor for AD, a neurodegenerative disease. A major accompanying pathological symptom of these conditions is cognitive impairment, which is linked with changes in lipid metabolism. Thus, nutraceuticals that affect brain lipid metabolism or lipid levels as a whole have the potential to ameliorate cognitive decline. Lipid analyses and lipidomic studies reveal changes in specific lipid types with aging and AD, which can identify potential lipid-based nutraceuticals to restore the brain to a healthy lipid phenotype. The brain lipid profile can be influenced directly with dietary administration of lipids themselves, although because of synergistic effects of nutrients it may be more useful to consider a multi-component diet rather than single nutrient supplementation. Gut microbiota also serve as a source of beneficial lipids, and the value of treatments that manipulate the composition of gut microbiome should not be ignored. Lastly, instead of direct supplementation, compounds that affect pathways involved with lipid metabolism should also be considered as a way of manipulating lipid levels to improve cognition. In this review, we briefly discuss the role of lipids in the brain, the changing lipid profile in AD, current research on lipid-based nutraceuticals and their therapeutic potential to combat cognitive impairment.
Collapse
Affiliation(s)
- Kei-Lin Murata Ooi
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia; School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
192
|
Abstract
Introduction: Prion diseases are a class of rare and fatal neurodegenerative diseases for which no cure is currently available. They are characterized by conformational conversion of cellular prion protein (PrPC) into the disease-associated 'scrapie' isoform (PrPSc). Under an etiological point of view, prion diseases can be divided into acquired, genetic, and idiopathic form, the latter of which are the most frequent.Areas covered: Therapeutic approaches targeting prion diseases are based on the use of chemical and nature-based compounds, targeting either PrPC or PrPSc or other putative player in pathogenic mechanism. Other proposed anti-prion treatments include passive and active immunization strategies, peptides, aptamers, and PrPC-directed RNA interference techniques. The treatment efficacy has been mainly assessed in cell lines or animal models of the disease testing their ability to reduce prion accumulation.Expert opinion: The assessed strategies focussing on the identification of an efficient anti-prion therapy faced various issues, which go from permeation of the blood brain barrier to immunological tolerance of the host. Indeed, the use of combinatory approaches, which could boost a synergistic anti-prion effect and lower the potential side effects of single treatments and may represent an extreme powerful and feasible way to tackle prion disease.
Collapse
Affiliation(s)
- Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
193
|
Vogt NM, Hunt JFV, Ma Y, Van Hulle CA, Adluru N, Chappell RJ, Lazar KK, Jacobson LE, Austin BP, Asthana S, Johnson SC, Bendlin BB, Carlsson CM. Effects of simvastatin on white matter integrity in healthy middle-aged adults. Ann Clin Transl Neurol 2021; 8:1656-1667. [PMID: 34275209 PMCID: PMC8351379 DOI: 10.1002/acn3.51421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background The brain is the most cholesterol‐rich organ and myelin contains 70% of total brain cholesterol. Statins are potent cholesterol‐lowing medications used by millions of adults for prevention of vascular disease, yet the effect of statins on cholesterol‐rich brain white matter (WM) is largely unknown. Methods We used longitudinal neuroimaging data acquired from 73 healthy, cognitively unimpaired, statin‐naïve, middle‐aged adults during an 18‐month randomized controlled trial of simvastatin 40 mg daily (n = 35) or matching placebo (n = 38). ANCOVA models (covariates: age, sex, APOE‐ɛ4) tested the effect of treatment group on percent change in WM, gray matter (GM), and WM hyperintensity (WMH) neuroimaging measures at each study visit. Mediation analysis tested the indirect effects of simvastatin on WM microstructure through change in serum total cholesterol levels. Results At 18 months, the simvastatin group showed a significant preservation in global WM fractional anisotropy (β = 0.88%, 95% CI 0.27 to 1.50, P = 0.005), radial diffusivity (β = −1.10%, 95% CI −2.13 to −0.06, P = 0.039), and WM volume (β = 0.72%, 95% CI 0.13 to 1.32, P = 0.018) relative to the placebo group. There was no significant effect of simvastatin on GM or WMH volume. Change in serum total cholesterol mediated approximately 30% of the effect of simvastatin on WM microstructure. Conclusions Simvastatin treatment in healthy, middle‐aged adults resulted in preserved WM microstructure and volume at 18 months. The partial mediation by serum cholesterol reduction suggests both peripheral and central mechanisms. Future studies are needed to determine whether these effects persist and translate to cognitive outcomes. Trial Registration NCT00939822 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Nicholas M Vogt
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jack F V Hunt
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Carol A Van Hulle
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard J Chappell
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Karen K Lazar
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura E Jacobson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Benjamin P Austin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Geriatrics Division, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Geriatrics Division, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Geriatrics Division, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Geriatrics Division, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
194
|
Statins: Neurobiological underpinnings and mechanisms in mood disorders. Neurosci Biobehav Rev 2021; 128:693-708. [PMID: 34265321 DOI: 10.1016/j.neubiorev.2021.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022]
Abstract
Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) treat dyslipidaemia and cardiovascular disease by inhibiting cholesterol biosynthesis. They also have immunomodulatory and anti-inflammatory properties. Beyond cardiovascular disease, cholesterol and inflammation appear to be components of the pathogenesis and pathophysiology of neuropsychiatric disorders. Statins may therefore afford some therapeutic benefit in mood disorders. In this paper, we review the pathophysiology of mood disorders with a focus on pharmacologically relevant pathways, using major depressive disorder and bipolar disorder as exemplars. Statins are discussed in the context of these disorders, with particular focus on the putative mechanisms involved in their anti-inflammatory and immunomodulatory effects. Recent clinical data suggest that statins may have antidepressant properties, however given their interactions with many known biological pathways, it has not been fully elucidated which of these are the major determinants of clinical outcomes in mood disorders. Moreover, it remains unclear what the appropriate dose, or appropriate patient phenotype for adjunctive treatment may be. High quality randomised control trials in concert with complementary biological investigations are needed if the potential clinical effects of statins on mood disorders, as well as their biological correlates, are to be better understood.
Collapse
|
195
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
196
|
Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021; 240:113528. [PMID: 34260890 DOI: 10.1016/j.physbeh.2021.113528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
It has been well recognized that intake of diets rich in saturated fats could result in development of metabolic disorders such as type 2 diabetes mellitus, obesity and cardiovascular diseases. Recent studies have suggested that intake of high fat diet (HFD) is also associated with cognitive dysfunction. Various preclinical studies have demonstrated the impact of short and long term HFD feeding on the biochemical and behavioural alterations. This review summarizes studies and the protocols used to assess the impacts of HFD feeding on cognitive performance in rodents. Further, it discuss the key mechanisms that are altered by HFD feeding, such as, insulin resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation and loss of synaptic plasticity. Along with these, HFD feeding also alters the vascular components of brain such as loss of BBB integrity and reduced cerebral blood flow. It is highly possible that these factors are responsible for the development of cognitive deficits as a result of HFD feeding.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W2Y2, Canada.
| |
Collapse
|
197
|
Klejbor I, Shimshek DR, Klimaszewska-Łata J, Velasco-Estevez M, Moryś J, Karaszewski B, Szutowicz A, Rutkowska A. EBI2 is expressed in glial cells in multiple sclerosis lesions, and its knock-out modulates remyelination in the cuprizone model. Eur J Neurosci 2021; 54:5173-5188. [PMID: 34145920 DOI: 10.1111/ejn.15359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
EBI2 receptor regulates the immune system, and in multiple, sclerosis is upregulated in the central nervous system infiltrating lymphocytes. In newborn EBI2-deficient mice, myelin development is delayed, and its persistent antagonism inhibits remyelination in chemically demyelinated organotypic cerebellar slices. We used the cuprizone model of multiple sclerosis to elucidate the role of central nervous system-expressed EBI2 in de- and remyelination. The wild-type and EBI2 knock-out mice were fed 0.2% cuprizone in chow for 5 weeks and allowed to recover on a normal diet for 2 weeks. The data showed less efficient recovery of myelin, attenuated oligodendrocyte loss, fewer astrocytes and increased total cholesterol levels in the EBI2 knock-out mice after recovery. Moreover, the wild-type mice upregulated EBI2 expression after recovery confirming the involvement of EBI2 signalling during recovery from demyelination in the cuprizone model. The pro-inflammatory cytokine levels were at comparable levels in the wild-type and EBI2 knock-out mice, with only minor differences in TNFα and IL1β levels either at peak or during recovery. The neuroinflammatory signalling molecules, Abl1 kinase and NFКB1 (p105/p50) subunit, were significantly downregulated in the EBI2 knock-out mice at peak of disease. Immunohistochemical investigations of EBI2 receptor distribution in the central nervous system (CNS) cells in multiple sclerosis (MS) brain revealed strong expression of EBI2 in astrocytes and microglia inside the plaques implicating glia-expressed EBI2 in multiple sclerosis pathophysiology. Taken together, these findings demonstrate the involvement of EBI2 signalling in the recovery from demyelination rather than in demyelination and as such warrant further research into the role of EBI2 in remyelination.
Collapse
Affiliation(s)
- Ilona Klejbor
- Department of Anatomy and Physiology, Pomeranian University in Słupsk, Słupsk, Poland
| | - Derya R Shimshek
- Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Bartosz Karaszewski
- Division of Neurology, Department of Adult Neurology, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Rutkowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland.,Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
198
|
Shan L, Zhang T, Fan K, Cai W, Liu H. Astrocyte-Neuron Signaling in Synaptogenesis. Front Cell Dev Biol 2021; 9:680301. [PMID: 34277621 PMCID: PMC8284252 DOI: 10.3389/fcell.2021.680301] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Astrocytes are the key component of the central nervous system (CNS), serving as pivotal regulators of neuronal synapse formation and maturation through their ability to dynamically and bidirectionally communicate with synapses throughout life. In the past 20 years, numerous astrocyte-derived molecules promoting synaptogenesis have been discovered. However, our understanding of the cell biological basis underlying intra-neuron processes and astrocyte-mediated synaptogenesis is still in its infancy. Here, we provide a comprehensive overview of the various ways astrocytes talk to neurons, and highlight astrocytes’ heterogeneity that allow them to displays regional-specific capabilities in boosting synaptogenesis. Finally, we conclude with promises and future directions on how organoids generated from human induced pluripotent stem cells (hiPSCs) effectively address the signaling pathways astrocytes employ in synaptic development.
Collapse
Affiliation(s)
- Lili Shan
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Tongran Zhang
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Kevin Fan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
199
|
How much should LDL cholesterol be lowered in secondary prevention? Clinical efficacy and safety in the era of PCSK9 inhibitors. Prog Cardiovasc Dis 2021; 67:65-74. [DOI: 10.1016/j.pcad.2020.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
|
200
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|