151
|
Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L, Fu W, Zhang Y, Xu Z, Li X, Liang G. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun 2017; 8:13997. [PMID: 28045026 PMCID: PMC5216130 DOI: 10.1038/ncomms13997] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Obesity increases the risk for a number of diseases including cardiovascular diseases and type 2 diabetes. Excess saturated fatty acids (SFAs) in obesity play a significant role in cardiovascular diseases by activating innate immunity responses. However, the mechanisms by which SFAs activate the innate immune system are not fully known. Here we report that palmitic acid (PA), the most abundant circulating SFA, induces myocardial inflammatory injury through the Toll-like receptor 4 (TLR4) accessory protein MD2 in mouse and cell culture experimental models. Md2 knockout mice are protected against PA- and high-fat diet-induced myocardial injury. Studies of cell surface binding, cell-free protein–protein interactions and molecular docking simulations indicate that PA directly binds to MD2, supporting a mechanism by which PA activates TLR4 and downstream inflammatory responses. We conclude that PA is a crucial contributor to obesity-associated myocardial injury, which is likely regulated via its direct binding to MD2. The free fatty acid-mediated inflammatory activities are regulated through TLR4. Here the authors show that palmitic acid binds to MD2, initiating complex formation with TLR4, recruitment of MyD88, and subsequent activation of pro-inflammatory molecules, and that MD2 blockade protects against diet-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weitao Fu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
152
|
Abstract
Chronic inflammatory state in obesity causes dysregulation of the endocrine and paracrine actions of adipocyte-derived factors, which disrupt vascular homeostasis and contribute to endothelial vasodilator dysfunction and subsequent hypertension. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Adipose tissue inflammation, nitric oxide (NO)-bioavailability, insulin resistance and oxidized low-density lipoprotein (oxLDL) are main participating factors in endothelial dysfunction of obesity. In this chapter, disruption of inter-endothelial junctions between endothelial cells, significant increase in the production of reactive oxygen species (ROS), inflammation mediators, which are originated from inflamed endothelial cells, the balance between NO synthesis and ROS , insulin signaling and NO production, and decrease in L-arginine/endogenous asymmetric dimethyl-L-arginine (ADMA) ratio are discussed in connection with endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
153
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
154
|
Brown DL. Immunopathology of the Hepatobiliary System. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2017:329-417. [DOI: 10.1007/978-3-319-47385-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
155
|
Burcelin R, Nicolas S, Blasco-Baque V. Microbiotes et maladies métaboliques. Med Sci (Paris) 2016; 32:952-960. [DOI: 10.1051/medsci/20163211010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
156
|
Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 2016; 23:87. [PMID: 27912756 PMCID: PMC5135788 DOI: 10.1186/s12929-016-0303-y] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/24/2016] [Indexed: 02/06/2023] Open
Abstract
Background Insulin resistance (IR) is one of the major hallmark for pathogenesis and etiology of type 2 diabetes mellitus (T2DM). IR is directly interlinked with various inflammatory responses which play crucial role in the development of IR. Inflammatory responses play a crucial role in the pathogenesis and development of IR which is one of the main causative factor for the etiology of T2DM. Methods A comprehensive online English literature was searched using various electronic search databases. Different search terms for pathogenesis of IR, role of various inflammatory responses were used and an advanced search was conducted by combining all the search fields in abstracts, keywords, and titles. Results We summarized the data from the searched articles and found that inflammatory responses activate the production of various pro-inflammatory mediators notably cytokines, chemokines and adipocytokines through the involvement of various transcriptional mediated molecular pathways, oxidative and metabolic stress. Overnutrition is one of the major causative factor that contributes to induce the state of low-grade inflammation due to which accumulation of elevated levels of glucose and/or lipids in blood stream occur that leads to the activation of various transcriptional mediated molecular and metabolic pathways. This results in the induction of various pro-inflammatory mediators that are decisively involved to provoke the pathogenesis of tissue-specific IR by interfering with insulin signaling pathways. Once IR is developed, it increases oxidative stress in β-cells of pancreatic islets and peripheral tissues which impairs insulin secretion, and insulin sensitivity in β-cells of pancreatic islets and peripheral tissues, respectively. Moreover, we also summarized the data regarding various treatment strategies of inflammatory responses-induced IR. Conclusions In this article, we have briefly described that how pro-inflammatory mediators, oxidative stress, transcriptional mediated molecular and metabolic pathways are involved in the pathogenesis of tissues-specific IR. Moreover, based on recent investigations, we have also described that to counterfeit these inflammatory responses is one of the best treatment strategy to prevent the pathogenesis of IR through ameliorating the incidences of inflammatory responses.
Collapse
Affiliation(s)
- Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
157
|
Cohen K, Waldman M, Abraham NG, Laniado-Schwartzman M, Gurfield D, Aravot D, Arad M, Hochhauser E. Caloric restriction ameliorates cardiomyopathy in animal model of diabetes. Exp Cell Res 2016; 350:147-153. [PMID: 27884680 DOI: 10.1016/j.yexcr.2016.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND The db/db mouse is an animal model of diabetes in which leptin receptor activity is deficient resulting accelerated cardiomyopathy when exposed to angiotensin (AT). Toll-like receptors 4 and 2 (TLR4, TLR2) are pattern recognition receptors, that recognize pathogen-associated molecular patterns and exacerbate and release inflammatory cytokines. Fetuin A (Fet A) is a fatty acid carrier which affects inflammation and insulin resistance in obese humans and animals through TLRs. The aim of this study was to investigate the effect of caloric restriction (CR) on free fatty acids (FFA) level and the inflammatory response in diabetic cardiomyopathy. METHODS AND RESULTS Left ventricular hypertrophy, increased fibrosis and leukocytes infiltration were observed in db/db AT treated hearts. Serum glucose, FFA, and cholesterol levels were elevated in db/db AT treated mice. Cardiac expression of PPARα increased while AKT phosphorylation was decreased. CONCLUSIONS Cumulatively, CR elevated cardiac PPARα improved the utilization of fatty acids, and reduced myocardial inflammation as seen by reduced levels of Fet A. Thus CR negated cardiomyopathy associated with AT in an animal model of diabetes suggesting that CR is an effective therapeutic approach in the treatment of diabetes and associated cardiomyopathy.
Collapse
Affiliation(s)
- Keren Cohen
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel; Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel; Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | - Danny Gurfield
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel
| | - Dan Aravot
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel.
| |
Collapse
|
158
|
Pan Y, Liu B, Deng Z, Fan Y, Li J, Li H. Lipid Rafts Promote trans Fatty Acid-Induced Inflammation in Human Umbilical Vein Endothelial Cells. Lipids 2016; 52:27-35. [DOI: 10.1007/s11745-016-4213-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
|
159
|
Mamounis KJ, Yasrebi A, Roepke TA. Linoleic acid causes greater weight gain than saturated fat without hypothalamic inflammation in the male mouse. J Nutr Biochem 2016; 40:122-131. [PMID: 27886622 DOI: 10.1016/j.jnutbio.2016.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023]
Abstract
A significant change in the Western diet, concurrent with the obesity epidemic, was a substitution of saturated fatty acids with polyunsaturated, specifically linoleic acid (LA). Despite increasing investigation on type as well as amount of fat, it is unclear which fatty acids are most obesogenic. The objective of this study was to determine the obesogenic potency of LA vs. saturated fatty acids and the involvement of hypothalamic inflammation. Forty-eight mice were divided into four groups: low-fat or three high-fat diets (HFDs, 45% kcals from fat) with LA comprising 1%, 15% and 22.5% of kilocalories, the balance being saturated fatty acids. Over 12 weeks, bodyweight, body composition, food intake, calorimetry, and glycemia assays were performed. Arcuate nucleus and blood were collected for mRNA and protein analysis. All HFD-fed mice were heavier and less glucose tolerant than control. The diet with 22.5% LA caused greater bodyweight gain, decreased activity, and insulin resistance compared to control and 1% LA. All HFDs elevated leptin and decreased ghrelin in plasma. Neuropeptides gene expression was higher in 22.5% HFD. The inflammatory gene Ikk was suppressed in 1% and 22.5% LA. No consistent pattern of inflammatory gene expression was observed, with suppression and augmentation of genes by one or all of the HFDs relative to control. These data indicate that, in male mice, LA induces obesity and insulin resistance and reduces activity more than saturated fat, supporting the hypothesis that increased LA intake may be a contributor to the obesity epidemic.
Collapse
Affiliation(s)
- Kyle J Mamounis
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
160
|
Huang NQ, Jin H, Zhou SY, Shi JS, Jin F. TLR4 is a link between diabetes and Alzheimer's disease. Behav Brain Res 2016; 316:234-244. [PMID: 27591966 DOI: 10.1016/j.bbr.2016.08.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/30/2023]
Abstract
Recently, more and more studies have shown that there is an essential link between diabetes mellitus (DM) and Alzheimer's disease (AD). In addition, innate immunity plays an important role in the occurrence and development of DM and AD, which increase the risk of developing type 2 diabetes (T2D) and AD. Although the pathogenesis of those diseases is still a matter of debate, the important role of Toll-like receptor 4 (TLR4) in the two diseases has been receiving much attention at present. TLR4 and insulin resistance do have close ties, and chronic TLR4 activation may contribute to the insulin resistance. Aside from this, TLR4-mediated chronic inflammation also causes many DM complications such as diabetic nephropathy, diabetic retinopathy and diabetic neuropathy and has a profound impact on the internal environment of the body and brain's microenvironment. In parallel, TLR4 is widely distributed in the brain and also has an important role in the central nervous system (CNS) via regulation of neuroinflammation. The cerebrum under the circumstances of insulin resistance may lead to mitochondrial dysfunction in neurons. Interestingly, in the initial stage, the activation of TLR4 has a useful scavenging effect on amyloid beta (Aβ), but chronic long-term activation leads to Aβ deposition in the brain. Therefore we speculate that the TLR4 signaling pathway may be a potential link between DM and AD.
Collapse
Affiliation(s)
- Nan-Qu Huang
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Zunyi Medical College, Guizhou, China
| | - Shao-Yu Zhou
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China; Department of Environmental Health, Indiana University, Bloomington, Indiana, United States
| | - Jing-Shan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China
| | - Feng Jin
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China.
| |
Collapse
|
161
|
Chen L, Yu J. Modulation of Toll-like receptor signaling in innate immunity by natural products. Int Immunopharmacol 2016; 37:65-70. [PMID: 26899347 PMCID: PMC4916003 DOI: 10.1016/j.intimp.2016.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 12/14/2022]
Abstract
For centuries, natural products and their derivatives have provided a rich source of compounds for the development of new immunotherapies in the treatment of human disease. Many of these compounds are currently undergoing clinical trials, particularly as anti-oxidative, anti-microbial, and anti-cancer agents. However, the function and mechanism of natural products in how they interact with our immune system has yet to be extensively explored. Natural immune modulators may provide the key to control and ultimately defeat disorders affecting the immune system. They can either up- or down-regulate the immune response with few undesired adverse effects. In this review, we summarize the recent advancements made in utilizing natural products for immunomodulation and their important molecular targets, members of the Toll-like receptor (TLR) family, in the innate immune system.
Collapse
Affiliation(s)
- Luxi Chen
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital & Solove Research Center, Columbus, OH, USA.
| |
Collapse
|
162
|
Kumari M, Wang X, Lantier L, Lyubetskaya A, Eguchi J, Kang S, Tenen D, Roh HC, Kong X, Kazak L, Ahmad R, Rosen ED. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest 2016; 126:2839-54. [PMID: 27400129 PMCID: PMC4966307 DOI: 10.1172/jci86080] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis.
Collapse
|
163
|
Ono-Moore KD, Snodgrass RG, Huang S, Singh S, Freytag TL, Burnett DJ, Bonnel EL, Woodhouse LR, Zunino SJ, Peerson JM, Lee JY, Rutledge JC, Hwang DH. Postprandial Inflammatory Responses and Free Fatty Acids in Plasma of Adults Who Consumed a Moderately High-Fat Breakfast with and without Blueberry Powder in a Randomized Placebo-Controlled Trial. J Nutr 2016; 146:1411-9. [PMID: 27306892 PMCID: PMC4926849 DOI: 10.3945/jn.115.223909] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Saturated fatty acids (FAs) released from triglyceride-rich lipoproteins (TGRLs) activate Toll-like receptor 2 (TLR-2) and induce the expression of proinflammatory cytokines in monocytes. Certain plant polyphenols inhibit TLR-mediated signaling pathways. OBJECTIVE We determined whether plasma free FAs (FFAs) after a moderately high-fat (MHF, 40% kcal from fat) breakfast modulate the inflammatory status of postprandial blood, and whether blueberry intake suppresses FFA-induced inflammatory responses in healthy humans. METHODS Twenty-three volunteers with a mean ± SEM age and body mass index (in kg/m(2)) of 30 ± 3 y and 21.9 ± 0.4, respectively, consumed an MHF breakfast with either a placebo powder or 2 or 4 servings of blueberry powder in a randomized crossover design. The placebo powder was provided on the first test day and the blueberry powder doses were randomized with a 2-wk washout period. Plasma concentrations of lipids, glucose, and cytokines were determined. To determine whether FFAs derived from TGRL stimulate monocyte activation, and whether this is inhibited by blueberry intake, whole blood was treated with lipoprotein lipase (LPL). RESULTS The median concentrations of FFAs and cytokines [tumor necrosis factor-α, interleukin (IL)-6 and IL-8] in postprandial plasma (3.5 h) decreased compared with fasting plasma regardless of the blueberry intake (P < 0.001 for FFAs and P < 0.05 for cytokines). However, concentrations of FFAs and cytokines including IL-1β increased in LPL-treated whole blood compared with untreated blood samples from participants who consumed the placebo powder. Blueberry intake suppressed IL-1β and IL-6 production in LPL-treated postprandial blood compared with the placebo control when fasting changes were used as a covariate. CONCLUSIONS The plasma FFA concentration may be an important determinant affecting inflammatory cytokine production in blood. Supplementation with blueberry powder did not affect plasma FFA and cytokine concentrations; however, it attenuated the cytokine production induced by ex vivo treatment of whole blood with LPL. This trial was registered at clinicaltrials.gov as NCT01594008.
Collapse
Affiliation(s)
- Kikumi D Ono-Moore
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA;,Department of Nutrition and
| | - Ryan G Snodgrass
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA;,Department of Nutrition and
| | - Shurong Huang
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | - Shamsher Singh
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | - Tammy L Freytag
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | - Dustin J Burnett
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | | | - Leslie R Woodhouse
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | - Susan J Zunino
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA;,Department of Nutrition and
| | - Janet M Peerson
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA;,Department of Nutrition and
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - John C Rutledge
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA; and
| | - Daniel H Hwang
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA; Department of Nutrition and
| |
Collapse
|
164
|
Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M. Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome. Mol Neurobiol 2016; 54:4271-4291. [PMID: 27339878 DOI: 10.1007/s12035-016-9975-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
Nitric oxide plays an indispensable role in modulating cellular signaling and redox pathways. This role is mainly effected by the readily reversible nitrosylation of selective protein cysteine thiols. The reversibility and sophistication of this signaling system is enabled and regulated by a number of enzymes which form part of the thioredoxin, glutathione, and pyridoxine antioxidant systems. Increases in nitric oxide levels initially lead to a defensive increase in the number of nitrosylated proteins in an effort to preserve their function. However, in an environment of chronic oxidative and nitrosative stress (O&NS), nitrosylation of crucial cysteine groups within key enzymes of the thioredoxin, glutathione, and pyridoxine systems leads to their inactivation thereby disabling denitrosylation and transnitrosylation and subsequently a state described as "hypernitrosylation." This state leads to the development of pathology in multiple domains such as the inhibition of enzymes of the electron transport chain, decreased mitochondrial function, and altered conformation of proteins and amino acids leading to loss of immune tolerance and development of autoimmunity. Hypernitrosylation also leads to altered function or inactivation of proteins involved in the regulation of apoptosis, autophagy, proteomic degradation, transcription factor activity, immune-inflammatory pathways, energy production, and neural function and survival. Hypernitrosylation, as a consequence of chronically elevated O&NS and activated immune-inflammatory pathways, can explain many characteristic abnormalities observed in neuroprogressive disease including major depression and chronic fatigue syndrome/myalgic encephalomyelitis. In those disorders, increased bacterial translocation may drive hypernitrosylation and autoimmune responses against nitrosylated proteins.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Poplar Road 35, Parkville, 3052, Australia
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Level 1 North, Main Block, Parkville, 3052, Australia
| | - Hans Klein
- Department of Psychiatry, University of Groningen, UMCG, Groningen, The Netherlands
| | - Ken Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Łódź, Poland
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil.
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.
- Revitalis, Waalre, The Netherlands.
- IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
165
|
Yuan YL, Lin BQ, Zhang CF, Cui LL, Ruan SX, Yang ZL, Li F, Ji D. Timosaponin B-II Ameliorates Palmitate-Induced Insulin Resistance and Inflammation via IRS-1/PI3K/Akt and IKK/NF-[Formula: see text]B Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:755-69. [PMID: 27222060 DOI: 10.1142/s0192415x16500415] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the effect of timosaponin B-II (TB-II) on palmitate (PA)-induced insulin resistance and inflammation in HepG2 cells, and probe the potential mechanisms. TB-II, a main ingredient of the traditional Chinese medicine Anemarrhena asphodeloides Bunge, notably ameliorated PA-induced insulin resistance and inflammation, and significantly improved cell viability, decreased PA-induced production of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]) and interleukin-6 (IL-6) levels. Further, TB-II treatment notably decreased malondialdehyde (MDA) and lactate dehydrogenase (LDH) levels, and improved superoxide dismutase (SOD) and nitric oxide (NO). TB-II also reduced HepG2 cells apoptosis. Insulin receptor substrate-1 (IRS1)/phosphatidylinositol 3-kinase (PI3K)/Akt and inhibitor of nuclear factor [Formula: see text]-B kinase (IKK)/NF-[Formula: see text]B pathways-related proteins, and IKK[Formula: see text], p65 phosphorylation, serine phosphorylation of insulin receptor substrate-1 (IRS-1) at S307, tyrosine phosphorylation of IRS-1, and Akt activation were determined by Western blot. Compared to model group, TB-II significantly downregulated the expression of p-NF-[Formula: see text]Bp65, p-IKK[Formula: see text], p-IRS-1, p-PI3K and p-Akt. TB-II is a promising potential agent for the management of palmitate-induced insulin resistance and inflammation, which might be via IR/IRS-1/PI3K/Akt and IKK/NF-[Formula: see text]B pathways.
Collapse
Affiliation(s)
- Yong-Liang Yuan
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Bao-Qin Lin
- † Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Chun-Feng Zhang
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Ling-Ling Cui
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Shi-Xia Ruan
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhong-Lin Yang
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Fei Li
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - De Ji
- ‡ College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
166
|
Pang DKT, Nong Z, Sutherland BG, Sawyez CG, Robson DL, Toma J, Pickering JG, Borradaile NM. Niacin promotes revascularization and recovery of limb function in diet-induced obese mice with peripheral ischemia. Pharmacol Res Perspect 2016; 4:e00233. [PMID: 27433343 PMCID: PMC4876143 DOI: 10.1002/prp2.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
Niacin can reduce vascular disease risk in individuals with metabolic syndrome, but in light of recent large randomized controlled trials outcomes, its biological actions and clinical utility remain controversial. Niacin can improve endothelial function, vascular inflammation, and vascular regeneration, independent of correcting dyslipidemia, in various lean rodent models of vascular injury. Here, we tested whether niacin could directly improve endothelial cell angiogenic function during combined exposure to excess fatty acids and hypoxia, and whether intervention with niacin during continued feeding of western diet could improve revascularization and functional recovery in obese, hyperlipidemic mice with peripheral ischemia. Treatment with niacin (10 μmol/L) increased human microvascular endothelial cell angiogenic function during exposure to high fatty acids and hypoxia (2% oxygen), as determined by tube formation on Matrigel. To assess revascularization in vivo, we used western diet-induced obese mice with unilateral hind limb femoral artery ligation and excision. Treatment for 14 days postinjury with once daily i.p. injections of a low dose of niacin (50 mg/kg) improved recovery of hind limb use, in association with enhanced revascularization and decreased inflammation of the tibialis anterior muscle. These effects were concomitant with decreased plasma triglycerides, but not increased plasma apoAI. Thus, niacin improves endothelial tube formation under lipotoxic and hypoxic conditions, and moreover, promotes revascularization and functional hind limb recovery following ischemic injury in diet-induced obese mice with hyperlipidemia. These data may have implications for niacin therapy in the treatment of peripheral ischemic vascular disease associated with metabolic syndrome.
Collapse
Affiliation(s)
- Dominic K T Pang
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1
| | - Zengxuan Nong
- Robarts Research Institute Western University London Ontario Canada N6A 5C1
| | - Brian G Sutherland
- Robarts Research Institute Western University London Ontario Canada N6A 5C1
| | - Cynthia G Sawyez
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1; Robarts Research Institute Western University London Ontario Canada N6A 5C1; Department of Medicine Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1
| | - Debra L Robson
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1
| | - Jelena Toma
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1
| | - J Geoffrey Pickering
- Robarts Research Institute Western University London Ontario Canada N6A 5C1; Department of Medicine Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1; Department of Biochemistry Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1; Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1; London Health Sciences Centre London Ontario Canada N6A 5C1
| | - Nica M Borradaile
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry Western University London Ontario Canada N6A 5C1
| |
Collapse
|
167
|
Haberzettl P, McCracken JP, Bhatnagar A, Conklin DJ. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis. Am J Physiol Heart Circ Physiol 2016; 310:H1423-38. [PMID: 27016579 DOI: 10.1152/ajpheart.00369.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/23/2016] [Indexed: 12/15/2022]
Abstract
Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution.
Collapse
Affiliation(s)
- Petra Haberzettl
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - James P McCracken
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel J Conklin
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
168
|
Abstract
The adipose tissue (AT) is multifunctional, acting as an endocrine tissue and participating in the regulation of the organism's homeostasis. Metabolic, endocrine and inflammatory mechanisms are tightly intertwined within the AT, regulating its function. Disruption of the equilibrium among these mechanisms leads to pathologies, the most common being obesity-related insulin resistance. Two types of AT exist, the white and the brown AT. Traditionally the white AT (WAT) was thought to store energy in the form of lipids, while the brown AT (BAT) was known to mediate heat generation. Recently, the 'brite' or 'beige' AT was identified, which is localized predominantly in subcutaneous WAT, but shares functional features with the BAT and is capable of heat production. The major stimulus triggering beige and brown adipogenesis is cold exposure and catecholamine signalling. However, several further signals and mechanisms exist, which can orchestrate and fine-tune beige and brown AT function. Immune cells and inflammation have emerged as regulators of beige and brown AT function. The present review will focus on the recently identified crosstalk between innate immunity and the regulation of beige and brown adipogenesis.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
169
|
Zhao N, Wang L, Guo N. α-Linolenic acid increases the G0/G1 switch gene 2 mRNA expression in peripheral blood mononuclear cells from obese patients: a pilot study. Lipids Health Dis 2016; 15:36. [PMID: 26912161 PMCID: PMC4765131 DOI: 10.1186/s12944-016-0207-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Recent evidence has demonstrated that the G0/G1 switch gene 2 (G0S2) is an important negative regulator of the rate-limiting lipolytic enzyme adipose triglyceride lipase-mediated lipolysis. It has been revealed that α-linolenic acid (ALA), a plant-based essential omega-3 polyunsaturated fatty acids, reduces adipose tissue lipolysis. However, it is not known whether G0S2 is implicated in ALA-induced inhibition of lipolysis. The purpose of this pilot study is to investigate the effect of ALA on G0S2 gene expression in peripheral blood mononuclear cells (PBMC) of obese patients and the potential influence of G0S2 gene expression in ALA-induced inhibition of lipolysis. Methods A total of 26 obese patients were randomly assigned to be treated with or without ALA treatment (~4.0 g daily) for 12 weeks: the ALA-treated group (n = 14) or the untreated control group (n = 12). Plasma triglyceride (TG), free fatty acids (FFA), glycerol, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), as well as the mRNA expression levels of proliferator-activated receptor gamma (PPAR-γ), G0S2, and G protein-coupled receptor 120 (GPR120) in PBMC were repeatedly examined from fasting obese patients before and after ALA treatment. Results ALA significantly decreased plasma TG, FFA, glycerol, IL-6, and TNF-α levels and increased the mRNA expression levels of PPAR-γ, G0S2, and GPR120 in PBMC, compared with the untreated control group. In obese patients from the ALA-treated group, decreased plasma FFA (a biomarker for lipolysis) level was significantly correlated with increased PPAR-γ (a functional omega-3 fatty acids receptor) and G0S2 (a direct target gene of PPAR-γ) mRNA expression in PBMC, while decreased plasma FFA level was not correlated with increased GPR120 (another functional omega-3 fatty acids receptor) mRNA expression in PBMC. Conclusion This study shows that ALA increases G0S2 gene expression in PBMC in parallel with the decrease of plasma FFA level in obese patients. Increased G0S2 gene expression might contribute to the beneficial anti-lipolytic effect of ALA in obese patients.
Collapse
Affiliation(s)
- Naiqian Zhao
- Department of Gerontology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China.
| | - Li Wang
- Department of Gerontology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| | - Na Guo
- Department of Gerontology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| |
Collapse
|
170
|
Ikwuobe J, Bellary S, Griffiths HR. Innovative biomarkers for predicting type 2 diabetes mellitus: relevance to dietary management of frailty in older adults. Biogerontology 2016; 17:511-27. [PMID: 26897532 DOI: 10.1007/s10522-016-9634-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) increases in prevalence in the elderly. There is evidence for significant muscle loss and accelerated cognitive impairment in older adults with T2DM; these comorbidities are critical features of frailty. In the early stages of T2DM, insulin sensitivity can be improved by a "healthy" diet. Management of insulin resistance by diet in people over 65 years of age should be carefully re-evaluated because of the risk for falling due to hypoglycaemia. To date, an optimal dietary programme for older adults with insulin resistance and T2DM has not been described. The use of biomarkers to identify those at risk for T2DM will enable clinicians to offer early dietary advice that will delay onset of disease and of frailty. Here we have used an in silico literature search for putative novel biomarkers of T2DM risk and frailty. We suggest that plasma bilirubin, plasma, urinary DPP4-positive microparticles and plasma pigment epithelium-derived factor merit further investigation as predictive biomarkers for T2DM and frailty risk in older adults. Bilirubin is screened routinely in clinical practice. Measurement of specific microparticle frequency in urine is less invasive than a blood sample so is a good choice for biomonitoring. Future studies should investigate whether early dietary changes, such as increased intake of whey protein and micronutrients that improve muscle function and insulin sensitivity, affect biomarkers and can reduce the longer term complication of frailty in people at risk for T2DM.
Collapse
Affiliation(s)
- John Ikwuobe
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, B4 7ET, UK
| | - Srikanth Bellary
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, B4 7ET, UK
| | - Helen R Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
171
|
Systems-Pharmacology Dissection of Traditional Chinese Medicine Compound Saffron Formula Reveals Multi-scale Treatment Strategy for Cardiovascular Diseases. Sci Rep 2016; 6:19809. [PMID: 26813334 PMCID: PMC4728400 DOI: 10.1038/srep19809] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been regarding as “the world’s first killer” of human beings in recent years owing to the striking morbidity and mortality, the involved molecular mechanisms are extremely complex and remain unclear. Traditional Chinese medicine (TCM) adheres to the aim of combating complex diseases from an integrative and holistic point of view, which has shown effectiveness in CVDs therapy. However, system-level understanding of such a mechanism of multi-scale treatment strategy for CVDs is still difficult. Here, we developed a system pharmacology approach with the purpose of revealing the underlying molecular mechanisms exemplified by a famous compound saffron formula (CSF) in treating CVDs. First, by systems ADME analysis combined with drug targeting process, 103 potential active components and their corresponding 219 direct targets were retrieved and some key interactions were further experimentally validated. Based on this, the network relationships among active components, targets and diseases were further built to uncover the pharmacological actions of the drug. Finally, a “CVDs pathway” consisted of several regulatory modules was incorporated to dissect the therapeutic effects of CSF in different pathological features-relevant biological processes. All this demonstrates CSF has multi-scale curative activity in regulating CVD-related biological processes, which provides a new potential way for modern medicine in the treatment of complex diseases.
Collapse
|
172
|
Sun X, Lin J, Zhang Y, Kang S, Belkin N, Wara AK, Icli B, Hamburg NM, Li D, Feinberg MW. MicroRNA-181b Improves Glucose Homeostasis and Insulin Sensitivity by Regulating Endothelial Function in White Adipose Tissue. Circ Res 2016; 118:810-21. [PMID: 26830849 DOI: 10.1161/circresaha.115.308166] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
RATIONALE The pathogenesis of insulin resistance involves dysregulated gene expression and function in multiple cell types, including endothelial cells (ECs). Post-transcriptional mechanisms such as microRNA-mediated regulation of gene expression could affect insulin action by modulating EC function. OBJECTIVE To determine whether microRNA-181b (miR-181b) affects the pathogenesis of insulin resistance by regulating EC function in white adipose tissue during obesity. METHODS AND RESULTS MiR-181b expression was reduced in adipose tissue ECs of obese mice, and rescue of miR-181b expression improved glucose homeostasis and insulin sensitivity. Systemic intravenous delivery of miR-181b robustly accumulated in adipose tissue ECs, enhanced insulin-mediated Akt phosphorylation at Ser473, and reduced endothelial dysfunction, an effect that shifted macrophage polarization toward an M2 anti-inflammatory phenotype in epididymal white adipose tissue. These effects were associated with increased endothelial nitric oxide synthase and FoxO1 phosphorylation as well as nitric oxide activity in epididymal white adipose tissue. In contrast, miR-181b did not affect insulin-stimulated Akt phosphorylation in liver and skeletal muscle. Bioinformatics and gene profiling approaches revealed that Pleckstrin homology domain leucine-rich repeat protein phosphatase, a phosphatase that dephosphorylates Akt at Ser473, is a novel target of miR-181b. Knockdown of Pleckstrin homology domain leucine-rich repeat protein phosphatase increased Akt phosphorylation at Ser473 in ECs, and phenocopied miR-181b's effects on glucose homeostasis, insulin sensitivity, and inflammation of epididymal white adipose tissue in vivo. Finally, ECs from diabetic subjects exhibited increased Pleckstrin homology domain leucine-rich repeat protein phosphatase expression. CONCLUSIONS Our data underscore the importance of adipose tissue EC function in controlling the development of insulin resistance. Delivery of miR-181b or Pleckstrin homology domain leucine-rich repeat protein phosphatase inhibitors may represent a new therapeutic approach to ameliorate insulin resistance by improving adipose tissue endothelial Akt-endothelial nitric oxide synthase-nitric oxide signaling.
Collapse
Affiliation(s)
- Xinghui Sun
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Jibin Lin
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Yu Zhang
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Sona Kang
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Nathan Belkin
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Akm K Wara
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Basak Icli
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Naomi M Hamburg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Dazhu Li
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.)
| | - Mark W Feinberg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.S., J.L., N.B., A.K.W., B.I., M.W.F.); Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.L., D.L.); Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China (Y.Z.); Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, MA (S.K.); and Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (N.M.H.).
| |
Collapse
|
173
|
Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 2016; 167:228-56. [PMID: 26408801 DOI: 10.1016/j.trsl.2015.08.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Obesity is a major public health problem worldwide, and it is associated with an increased risk of developing type 2 diabetes. It is now commonly accepted that chronic inflammation associated with obesity induces insulin resistance and β-cell dysfunction in diabetic patients. Obesity-associated inflammation is characterized by increased abundance of macrophages and enhanced production of inflammatory cytokines in adipose tissue. Adipose tissue macrophages are suggested to be the major source of local and systemic inflammatory mediators such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. These cytokines induce insulin resistance in insulin target tissues by activating the suppressors of cytokine signaling proteins, several kinases such as c-Jun N-terminal kinase, IκB kinase β, and protein kinase C, inducible nitric oxide synthase, extracellular signal-regulated kinase, and protein tyrosine phosphatases such as protein tyrosine phosphatase 1B. These activated factors impair the insulin signaling at the insulin receptor and the insulin receptor substrates levels. The same process most likely occurs in the pancreas as it contains a pool of tissue-resident macrophages. High concentrations of glucose or palmitate via the chemokine production promote further immune cell migration and infiltration into the islets. These events ultimately induce inflammatory responses leading to the apoptosis of the pancreatic β cells. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation are discussed, with particular attention being placed on the roles of the molecular players linking inflammation to insulin resistance and β-cell dysfunction.
Collapse
Affiliation(s)
- Hadi Khodabandehloo
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
174
|
Wang Y, Song E, Bai B, Vanhoutte PM. Toll-like receptors mediating vascular malfunction: Lessons from receptor subtypes. Pharmacol Ther 2015; 158:91-100. [PMID: 26702901 DOI: 10.1016/j.pharmthera.2015.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLR) are a subfamily of pattern recognition receptors (PRR) implicated in a variety of vascular abnormalities. However, the pathophysiological role and the interplay between different TLR-mediated innate and adaptive immune responses during the development of vascular diseases remain largely unspecified. TLR are widely distributed in both immune and nonimmune cells in the blood vessel wall. The expressions and locations of TLR are dynamically regulated in response to distinct molecular patterns derived from pathogens or damaged host cells. As a result, the outcome of TLR signaling is agonist- and cell type-dependent. A better understanding of discrete TLR signaling pathways in the vasculature will provide unprecedented opportunities for the discovery of novel therapies in many inflammatory vascular diseases. The present brief review discusses the role of individual TLR in controlling cellular functions of the vascular system, by focusing on the inflammatory responses within the blood vessel wall which contribute to the development of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
175
|
Abstract
The innate immune system includes several classes of pattern recognition receptors (PRRs), including membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). These receptors detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in the extracellular and intracellular space. Intracellular NLRs constitute inflammasomes, which activate and release caspase-1, IL-1β, and IL-18 thereby initiating an inflammatory response. Systemic and local low-grade inflammation and release of proinflammatory cytokines are implicated in the development and progression of diabetes mellitus and diabetic nephropathy. TLR2, TLR4, and the NLRP3 inflammasome can induce the production of various proinflammatory cytokines and are critically involved in inflammatory responses in pancreatic islets, and in adipose, liver and kidney tissues. This Review describes how innate immune system-driven inflammatory processes can lead to apoptosis, tissue fibrosis, and organ dysfunction resulting in insulin resistance, impaired insulin secretion, and renal failure. We propose that careful targeting of TLR2, TLR4, and NLRP3 signalling pathways could be beneficial for the treatment of diabetes mellitus and diabetic nephropathy.
Collapse
|
176
|
Kim JA, Jang HJ, Hwang DH. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to impairment of vasodilator action of insulin. Am J Physiol Endocrinol Metab 2015; 309:E767-76. [PMID: 26522062 PMCID: PMC4628943 DOI: 10.1152/ajpendo.00369.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/02/2015] [Indexed: 12/28/2022]
Abstract
Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Activation of Toll-like receptor 4 (TLR4) induces proinflammatory response and endoplasmic reticulum (ER) stress. Saturated fatty acids (SFA) activate TLR4, which induces ER stress and endothelial dysfunction. Therefore, we determined whether TLR4-mediated ER stress is an obligatory step mediating SFA-induced endothelial dysfunction. Palmitate stimulated proinflammatory responses and ER stress, and this was suppressed by knockdown of TLR4 in primary human aortic endothelial cells (HAEC). Next, we examined the role of TLR4 in vasodilatory responses in intact vessels isolated from wild-type (WT, C57BL/6) and TLR4-KO mice after feeding high-fat (HFD) or normal chow diet (NCD) for 12 wk. Arterioles isolated from HFD WT mice exhibited impaired insulin-stimulated vasodilation compared with arterioles isolated from NCD WT mice. Deficiency of TLR4 was protective from HFD-induced impairment of insulin-stimulated vasodilation. There were no differences in acetylcholine (Ach)- or sodium nitroprusside (SNP)-stimulated vasodilation between the two groups. Furthermore, we examined whether ER stress is involved in SFA-induced impairment of vasodilator actions of insulin. Infusion of palmitate showed the impairment of vasodilatory response to insulin, which was ameliorated by coinfusion with tauroursodeoxycholic acid (TUDCA), an ER stress suppressor. Taken together, the results suggest that TLR4-induced ER stress may be an obligatory step mediating the SFA-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; University of Alabama at Birmingham Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Hyun-Ju Jang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel H Hwang
- Western Human Nutrition Research Center, United States Department of Agriculture, and Department of Nutrition, University of California, Davis, Davis, California
| |
Collapse
|
177
|
Yang M, Xu J, Yu J, Yang B, Gan H, Li S, Li X. Anti-inflammatory effects of 1,25-dihydroxyvitamin D3 in monocytes cultured in serum from patients with type 2 diabetes mellitus and diabetic nephropathy with uremia via Toll-like receptor 4 and nuclear factor-κB p65. Mol Med Rep 2015; 12:8215-22. [PMID: 26497229 DOI: 10.3892/mmr.2015.4482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) seriously affect the quality of human life. 1,25-dihydroxyvitamin D3 (VD3) is known to exert anti‑inflammatory and immunomodulatory effects. The present study investigated the effects of VD3 on Toll‑like receptor 4 (TLR4) and nuclear factor (NF)‑κB p65 expression in monocytes from patients with T2DM and investigated the underlying mechanisms. Serum from subjects of the control, T2DM and DN with uremia groups was isolated, and THP‑1 monocytes were cultured in these sera with or without VD3. After treatment with lipopolysaccharide (LPS) and interleukin (IL)‑15, monocytes and culture supernatants were collected. The expression of TLR4, TLR9 and IL‑15 mRNA was detected using reverse‑transcription polymerase chain reaction analysis. Furthermore, the protein expression of TLR4, NF‑κB p65 and inhibitor of NF‑κB (IκB) was determined using western blot analysis. The levels of IL‑6 and monocyte chemotactic protein in culture supernatants were detected using ELISAs. The impact of LPS, IL‑15 and VD3 on the TLR/NF‑κB signaling pathway in the T2DM and DN uremia groups was also investigated. In the T2DM and DN uremia groups, LPS and IL‑15 downregulated the expression of IκB and upregulated levels of proteins, including TLR4, NF‑κB p65, IL‑6 and monocyte chemoattractant protein 1, as well as TLR4 and IL‑15 mRNA. There was no significant difference in TLR9 mRNA protein expression among the three groups. VD3 partially blocked the above effects; However, pre‑treatment with VD3 had no significant effect on TLR4 mRNA expression, protein expression of NF-κB p65 and IκB, or the levels of associated inflammatory cytokines. In conclusion, the present study indicated that anti‑inflammatory effects of VD3 in inflammatory immune responses in T2DM and DN uremia are associated with the TLR4/NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Mengxue Yang
- Department of Endocrinology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jie Xu
- School of Public Health, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jie Yu
- School of Public Health, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Bo Yang
- Department of Endocrinology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sicheng Li
- Department of Endocrinology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Xianwen Li
- Department of Endocrinology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
178
|
Kamen DL, Oates J. A Pilot Study to Determine if Vitamin D Repletion Improves Endothelial Function in Lupus Patients. Am J Med Sci 2015; 350:302-7. [PMID: 26351776 PMCID: PMC4589474 DOI: 10.1097/maj.0000000000000556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The endothelium is important not only in regulating vascular tone but also in modulating inflammation. Patients with systemic lupus erythematosus (SLE) have deficits in these endothelial functions. Vitamin D is a nuclear hormone that regulates vascular endothelial nitric oxide synthase activity and expression. Many SLE patients have insufficient levels of vitamin D. The effect of this hormone on vascular endothelial function in SLE patients is not known. This study was designed to determine the effect size of repleting vitamin D levels on endothelial function in patients with SLE and vitamin D deficiency. METHODS SLE patients with 25(OH) vitamin D (25(OH)D) levels <20 ng/mL were randomized to oral vitamin D3 (D3) doses that did or did not raise 25(OH)D levels to ≥32 ng/mL. Endothelial function was measured with flow-mediated dilation (FMD) before and after 16 weeks of vitamin D3 supplementation. RESULTS Half of those who achieved 25(OH)D levels of ≥32 ng/mL experienced increases in FMD, whereas none of those with continued low 25(OH)D levels did. Those with increases in FMD had significantly higher final 25(OH)D levels. Using the effect size from this study, future studies designed to test the effect of repleting 25(OH)D on FMD in vitamin D-deficient SLE patients will require 35 patients in each group. CONCLUSIONS These results suggest a potential role for vitamin D in SLE-related endothelial dysfunction and that an adaptive, multi-arm, treat-to-target, serum-level trial design may increase the efficiency and likelihood of success of such a study.
Collapse
Affiliation(s)
- Diane L Kamen
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Jim Oates
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC
- Rheumatology Section, Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
179
|
Okla M, Wang W, Kang I, Pashaj A, Carr T, Chung S. Activation of Toll-like receptor 4 (TLR4) attenuates adaptive thermogenesis via endoplasmic reticulum stress. J Biol Chem 2015; 290:26476-90. [PMID: 26370079 DOI: 10.1074/jbc.m115.677724] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 12/26/2022] Open
Abstract
Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation.
Collapse
Affiliation(s)
- Meshail Okla
- From the Department of Nutrition and Health Sciences, the University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Wei Wang
- From the Department of Nutrition and Health Sciences, the University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Inhae Kang
- From the Department of Nutrition and Health Sciences, the University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Anjeza Pashaj
- From the Department of Nutrition and Health Sciences, the University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Timothy Carr
- From the Department of Nutrition and Health Sciences, the University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Soonkyu Chung
- From the Department of Nutrition and Health Sciences, the University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| |
Collapse
|
180
|
|
181
|
Moreira MCDS, Pinto ISDJ, Mourão AA, Fajemiroye JO, Colombari E, Reis ÂADS, Freiria-Oliveira AH, Ferreira-Neto ML, Pedrino GR. Does the sympathetic nervous system contribute to the pathophysiology of metabolic syndrome? Front Physiol 2015; 6:234. [PMID: 26379553 PMCID: PMC4548210 DOI: 10.3389/fphys.2015.00234] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome (MS), formally known as syndrome X, is a clustering of several risk factors such as obesity, hypertension, insulin resistance, and dislypidemia which could lead to the development of diabetes and cardiovascular diseases (CVD). The frequent changes in the definition and diagnostic criteria of MS are indications of the controversy and the challenges surrounding the understanding of this syndrome among researchers. Obesity and insulin resistance are leading risk factors of MS. Moreover, obesity and hypertension are closely associated to the increase and aggravation of oxidative stress. The recommended treatment of MS frequently involves change of lifestyles to prevent weight gain. MS is not only an important screening tool for the identification of individuals at high risk of CVD and diabetes but also an indicator of suitable treatment. As sympathetic disturbances and oxidative stress are often associated with obesity and hypertension, the present review summarizes the role of sympathetic nervous system and oxidative stress in the MS.
Collapse
Affiliation(s)
- Marina C Dos Santos Moreira
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Izabella S de Jesus Pinto
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Aline A Mourão
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - James O Fajemiroye
- Laboratory of Pharmacology of Natural Products, Federal University of Goiás Goiânia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista Araraquara, Brazil
| | - Ângela A da Silva Reis
- Department of Biochemistry and Molecular Biology, Federal University of Goiás Goiânia, Brazil
| | - André H Freiria-Oliveira
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Marcos L Ferreira-Neto
- Laboratory of Experimental Physiology, Faculty of Physical Education, Federal University of Uberlândia Uberlândia, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| |
Collapse
|
182
|
Ojeda P, Bobe A, Dolan K, Leone V, Martinez K. Nutritional modulation of gut microbiota - the impact on metabolic disease pathophysiology. J Nutr Biochem 2015; 28:191-200. [PMID: 26372091 DOI: 10.1016/j.jnutbio.2015.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
Abstract
The obesity epidemic afflicts over one third of the United States population. With few therapies available to combat obesity, a greater understanding of the systemic causes of this and other metabolic disorders is needed to develop new, effective treatments. The mammalian intestinal microbiota contributes to metabolic processes in the host. This review summarizes the research demonstrating the interplay of diet, intestinal microbiota and host metabolism. We detail the effects of diet-induced modifications in microbial activity and resultant impact on (1) sensory perception of macronutrients and total energy intake; (2) nutrient absorption, transport and storage; (3) liver and biliary function; (4) immune-mediated signaling related to adipose inflammation; and (5) circadian rhythm. We also discuss therapeutic strategies aimed to modify host-microbe interactions, including prebiotics, probiotics and postbiotics, as well as fecal microbiota transplantation. Elucidating the role of gut microbes in shaping metabolic homeostasis or dysregulation provides greater insight into disease development and a promising avenue for improved treatment of metabolic dysfunction.
Collapse
Affiliation(s)
- Patricia Ojeda
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, USA
| | - Alexandria Bobe
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, USA
| | - Kyle Dolan
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, USA
| | - Vanessa Leone
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, USA
| | - Kristina Martinez
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
183
|
Lee WJ, Tateya S, Cheng AM, Rizzo-DeLeon N, Wang NF, Handa P, Wilson CL, Clowes AW, Sweet IR, Bomsztyk K, Schwartz MW, Kim F. M2 Macrophage Polarization Mediates Anti-inflammatory Effects of Endothelial Nitric Oxide Signaling. Diabetes 2015; 64:2836-46. [PMID: 25845662 PMCID: PMC4512216 DOI: 10.2337/db14-1668] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/21/2015] [Indexed: 12/18/2022]
Abstract
Endothelial nitric oxide (NO) signaling plays a physiological role in limiting obesity-associated insulin resistance and inflammation. This study was undertaken to investigate whether this NO effect involves polarization of macrophages toward an anti-inflammatory M2 phenotype. Mice with transgenic endothelial NO synthase overexpression were protected against high-fat diet (HFD)-induced hepatic inflammation and insulin resistance, and this effect was associated with reduced proinflammatory M1 and increased anti-inflammatory M2 activation of Kupffer cells. In cell culture studies, exposure of macrophages to endothelial NO similarly reduced inflammatory (M1) and increased anti-inflammatory (M2) gene expression. Similar effects were induced by macrophage overexpression of vasodilator-stimulated phosphoprotein (VASP), a key downstream mediator of intracellular NO signaling. Conversely, VASP deficiency induced proinflammatory M1 macrophage activation, and the transplantation of bone marrow from VASP-deficient donor mice into normal recipients caused hepatic inflammation and insulin resistance resembling that induced in normal mice by consumption of an HFD. These data suggest that proinflammatory macrophage M1 activation and macrophage-mediated inflammation are tonically inhibited by NO → VASP signal transduction, and that reduced NO → VASP signaling is involved in the effect of HFD feeding to induce M1 activation of Kupffer cells and associated hepatic inflammation. Our data implicate endothelial NO → VASP signaling as a physiological determinant of macrophage polarization and show that signaling via this pathway is required to prevent hepatic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Woo Je Lee
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Sanshiro Tateya
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Andrew M Cheng
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Norma Rizzo-DeLeon
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Nicholas F Wang
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Priya Handa
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Carole L Wilson
- Department of Pathology, University of Washington, Seattle, WA
| | | | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, WA
| | - Michael W Schwartz
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Francis Kim
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| |
Collapse
|
184
|
Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats. J Mol Med (Berl) 2015; 93:1341-54. [DOI: 10.1007/s00109-015-1318-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
185
|
Habib A, Polavarapu R, Karmali V, Guo L, Van Dam R, Cheng Q, Akahori H, Saeed O, Nakano M, Pachura K, Hong CC, Shin E, Kolodgie F, Virmani R, Finn AV. Hepcidin-ferroportin axis controls toll-like receptor 4 dependent macrophage inflammatory responses in human atherosclerotic plaques. Atherosclerosis 2015; 241:692-700. [PMID: 26125411 DOI: 10.1016/j.atherosclerosis.2015.06.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Toll-like Receptor 4 (TLR4) is implicated in modulating inflammatory cytokines though its role in atherosclerosis remains uncertain. We have recently described a non-foam cell macrophage phenotype driven by ingestion of hemoglobin:haptoglobin complexes (HH), via the scavenger receptor CD163, characterized by reduced inflammatory cytokine production. In this study, we examined the role of iron metabolism in modulating TLR4 signaling in these cells. METHODS AND RESULTS Areas in human atherosclerotic plaque with non-foam cell, CD163 positive macrophages demonstrated reduced expression of tumor necrosis factor alpha (TNF-α) and interferon-beta (INF-β) compared to foam cells. Human macrophages differentiated in hemoglobin:haptoglobin (HH) complexes expressed the CD163 positive non-foam cell phenotype and demonstrated significantly less TNF-α and INF-β compared to control macrophages when exposed to oxidized LDL (oxLDL) or lipopolysaccharide (LPS). LPS stimulated expression of TNF-α and INF-β could be restored in HH macrophages by pretreatment with hepcidin, an endogenous suppressor of ferroportin1 (FPN), or by genetic suppression of FPN in macrophages derived from myeloid specific FPN knockout mice. LPS stimulated control macrophages demonstrated increase in TLR4 trafficking to lipid rafts; this response was suppressed in HH macrophages but was restored upon pretreatment with hepcidin. Using a pharmacologic hepcidin suppressor, we observed a decrease in cytokine expression and TLR4-lipid raft trafficking in LPS-stimulated in a murine macrophage model. CONCLUSION TLR4 dependent macrophage signaling is controlled via hepcidin-ferroportin1 axis by influencing TLR4-lipid raft interactions. Pharmacologic manipulation of iron metabolism may represent a promising approach to limiting TLR4-mediated inflammatory responses.
Collapse
Affiliation(s)
- Anwer Habib
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Rohini Polavarapu
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Vinit Karmali
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, MD, USA
| | - Richard Van Dam
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Qi Cheng
- CVPath Institute, Gaithersburg, MD, USA
| | - Hirokuni Akahori
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Omar Saeed
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | | | - Kimberly Pachura
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Charles C Hong
- Vanderbilt University, Dept. of Internal Medicine, Division of Cardiology, and Research Medicine, Veterans Affairs TVHS, Nashville, TN, USA
| | - Eric Shin
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | | | | | - Aloke V Finn
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA.
| |
Collapse
|
186
|
McMillan RP, Wu Y, Voelker K, Fundaro G, Kavanaugh J, Stevens JR, Shabrokh E, Ali M, Harvey M, Anderson AS, Boutagy NE, Mynatt RL, Frisard MI, Hulver MW. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding. Am J Physiol Regul Integr Comp Physiol 2015; 309:R304-13. [PMID: 26084695 DOI: 10.1152/ajpregu.00139.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6-8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding.
Collapse
Affiliation(s)
- Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia
| | - Yaru Wu
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Kevin Voelker
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Gabrielle Fundaro
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - John Kavanaugh
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Joseph R Stevens
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia
| | - Elika Shabrokh
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Mostafa Ali
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Mordecai Harvey
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Angela S Anderson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Nabil E Boutagy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia
| | - Randall L Mynatt
- Gene Nutrient Interactions, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Madlyn I Frisard
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, Virginia;
| |
Collapse
|
187
|
Velloso LA, Folli F, Saad MJ. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev 2015; 36:245-71. [PMID: 25811237 DOI: 10.1210/er.2014-1100] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is accompanied by the activation of low-grade inflammatory activity in metabolically relevant tissues. Studies have shown that obesity-associated insulin resistance results from the inflammatory targeting and inhibition of key proteins of the insulin-signaling pathway. At least three apparently distinct mechanisms-endoplasmic reticulum stress, toll-like receptor (TLR) 4 activation, and changes in gut microbiota-have been identified as triggers of obesity-associated metabolic inflammation; thus, they are expected to represent potential targets for the treatment of obesity and its comorbidities. Here, we review the data that place TLR4 in the center of the events that connect the consumption of dietary fats with metabolic inflammation and insulin resistance. Changes in the gut microbiota can lead to reduced integrity of the intestinal barrier, leading to increased leakage of lipopolysaccharides and fatty acids, which can act upon TLR4 to activate systemic inflammation. Fatty acids can also trigger endoplasmic reticulum stress, which can be further stimulated by cross talk with active TLR4. Thus, the current data support a connection among the three main triggers of metabolic inflammation, and TLR4 emerges as a link among all of these mechanisms.
Collapse
Affiliation(s)
- Licio A Velloso
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Franco Folli
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mario J Saad
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
188
|
Krause M, Bock PM, Takahashi HK, Homem De Bittencourt PI, Newsholme P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond) 2015; 128:789-803. [PMID: 25881670 DOI: 10.1042/cs20140695] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The 70 kDa heat-shock protein (HSP70) family is important for a dynamic range of cellular processes that include protection against cell stress, modulation of cell signalling, gene expression, protein synthesis, protein folding and inflammation. Within this family, the inducible 72 kDa and the cognate 73 kDa forms are found at the highest level. HSP70 has dual functions depending on location. For example, intracellular HSP70 (iHSP70) is anti-inflammatory whereas extracellular HSP70 (eHSP70) has a pro-inflammatory function, resulting in local and systemic inflammation. We have recently identified a divergence in the levels of eHSP70 and iHSP70 in subjects with diabetes compared with healthy subjects and also reported that eHSP70 was correlated with insulin resistance and pancreatic β-cell dysfunction/death. In the present review, we describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signalling in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mauricio Krause
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Martins Bock
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hilton Kenji Takahashi
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem De Bittencourt
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Philip Newsholme
- ‡School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia
| |
Collapse
|
189
|
Gervais A, Battista MC, Carranza-Mamane B, Lavoie HB, Baillargeon JP. Follicular fluid concentrations of lipids and their metabolites are associated with intraovarian gonadotropin-stimulated androgen production in women undergoing in vitro fertilization. J Clin Endocrinol Metab 2015; 100:1845-54. [PMID: 25695883 DOI: 10.1210/jc.2014-3649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Although growing evidence points toward a role of lipotoxicity in the development of hyperandrogenesis, the main feature of polycystic ovary syndrome, few studies directly assessed this association in vivo in humans, and none targeted the ovarian milieu. OBJECTIVE The main objective of this study was to correlate follicular fluid (FF) T levels with lipids, lipid metabolites, and inflammation markers. DESIGN This was a cross-sectional study. SETTING Recruitment was performed in two fertility clinics at one private and one academic center. PARTICIPANTS Eighty women requiring in vitro fertilization were recruited during one of their scheduled visit at the fertility clinic. All women aged between 18 and 40 years with a body mass index between 18 and 40 kg/m(2) were invited to participate. INTERVENTION(S) There were no interventions. MAIN OUTCOME MEASURE(S) At the time of oocyte aspiration, FF was collected and analyzed for total T, lipids [nonesterified fatty acids (NEFAs) plus triglycerides], NEFA metabolites (acylcarnitines; markers of ineffective NEFAs β-oxidation), and inflammatory marker composition. The hypothesis being tested was formulated before the data collection. RESULTS FF T levels were significantly correlated with FF levels of lipids (r = 0.381, P = .001; independently of IL-6), acylcarnitines (r ≥ 0.255, all P = .008; not independently of lipids), and IL-6 (r = 0.300, P = .009, independently of lipids). Additionally, FF lipid levels were significantly and strongly correlated with acylcarnitines (r ≥ 0.594; all P < .001). CONCLUSIONS These results suggest that ovarian androgen production is related to intraovarian exposure to lipids, independently of inflammation and mainly through ineffective NEFA β-oxidation (as shown by higher acylcarnitine levels). Inflammation is also associated with intraovarian androgenesis, independently of lipids.
Collapse
Affiliation(s)
- A Gervais
- Division of Endocrinology (A.G., M.-C.B., J.-P.B.), Department of Medicine, and Department of Obstetrics and Gynecology (B.C.-M.), Université de Sherbrooke, and Centre de Recherche Clinique Étienne-LeBel (B.C.-M., J.-P.B.), Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4; and PROCREA Cliniques (B.C.-M.), Mt Royal, Québec, Canada H3P 2W3
| | | | | | | | | |
Collapse
|
190
|
Aoyagi T, Higa JK, Aoyagi H, Yorichika N, Shimada BK, Matsui T. Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2015; 308:H1530-9. [PMID: 25888508 DOI: 10.1152/ajpheart.00008.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/10/2015] [Indexed: 01/22/2023]
Abstract
Diet-induced obesity deteriorates the recovery of cardiac function after ischemia-reperfusion (I/R) injury. While mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, the effects of cardiac mTOR in ischemic injury under metabolic syndrome remains undefined. Using cardiac-specific transgenic mice overexpressing mTOR (mTOR-Tg mice), we studied the effect of mTOR on cardiac function in both ex vivo and in vivo models of I/R injury in high-fat diet (HFD)-induced obese mice. mTOR-Tg and wild-type (WT) mice were fed a HFD (60% fat by calories) for 12 wk. Glucose intolerance and insulin resistance induced by the HFD were comparable between WT HFD-fed and mTOR-Tg HFD-fed mice. Functional recovery after I/R in the ex vivo Langendorff perfusion model was significantly lower in HFD-fed mice than normal chow diet-fed mice. mTOR-Tg mice demonstrated better cardiac function recovery and had less of the necrotic markers creatine kinase and lactate dehydrogenase in both feeding conditions. Additionally, mTOR overexpression suppressed expression of proinflammatory cytokines, including IL-6 and TNF-α, in both feeding conditions after I/R injury. In vivo I/R models showed that at 1 wk after I/R, HFD-fed mice exhibited worse cardiac function and larger myocardial scarring along myofibers compared with normal chow diet-fed mice. In both feeding conditions, mTOR overexpression preserved cardiac function and prevented myocardial scarring. These findings suggest that cardiac mTOR overexpression is sufficient to prevent the detrimental effects of diet-induced obesity on the heart after I/R, by reducing cardiac dysfunction and myocardial scarring.
Collapse
Affiliation(s)
- Toshinori Aoyagi
- Department of Anatomy, Biochemistry and Physiology, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Jason K Higa
- Department of Anatomy, Biochemistry and Physiology, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Hiroko Aoyagi
- Department of Anatomy, Biochemistry and Physiology, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Naaiko Yorichika
- Department of Anatomy, Biochemistry and Physiology, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Briana K Shimada
- Department of Anatomy, Biochemistry and Physiology, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Takashi Matsui
- Department of Anatomy, Biochemistry and Physiology, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
191
|
Pei R, Martin DA, DiMarco DM, Bolling BW. Evidence for the effects of yogurt on gut health and obesity. Crit Rev Food Sci Nutr 2015; 57:1569-1583. [DOI: 10.1080/10408398.2014.883356] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
192
|
Toll-like receptor-4 mediated inflammation is involved in the cardiometabolic alterations induced by intermittent hypoxia. Mediators Inflamm 2015; 2015:620258. [PMID: 25873766 PMCID: PMC4383499 DOI: 10.1155/2015/620258] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/16/2022] Open
Abstract
Objective. Intermittent hypoxia (IH) is a major component of sleep apnea syndrome as its cardiometabolic complications have been mainly attributed to IH. The pathophysiology is still poorly understood but there are some similarities with the obesity-associated cardiometabolic complications. As the latter results from inflammation involving toll-like receptor-4 (TLR4) signaling, we assessed this pathway in the cardiometabolic consequences of IH. Methods. Lean adult male TLR4-deficient (TLR4−/−) mice and their controls (C57BL/6 mice) were exposed to either IH (FiO2 21-5%, 1 min cycle, 8 h/day) or air (normoxic mice) for 4 weeks. Animals were assessed at 1-week exposure for insulin tolerance test and after 4-week exposure for morphological and inflammatory changes of the epididymal fat and thoracic aorta. Results. IH induced insulin resistance, morphological and inflammatory changes of the epididymal fat (smaller pads and adipocytes, higher release of TNF-α and IL-6) and aorta (larger intima-media thickness and higher NFκB-p50 activity). All these alterations were prevented by TLR4 deletion. Conclusion. IH induces metabolic and vascular alterations that involve TLR4 mediated inflammation. These results confirm the important role of inflammation in the cardiometabolic consequences of IH and suggest that targeting TLR4/NFκB pathway could represent a further therapeutic option for sleep apnea patients.
Collapse
|
193
|
Yin YW, Wang Q, Sun QQ, Hu AM, Liu HL. Toll-like receptor 4 gene Asp299Gly and Thr399Ile polymorphisms in type 2 diabetes mellitus: a meta-analysis of 15,059 subjects. Diabetes Res Clin Pract 2015; 107:338-47. [PMID: 25648392 DOI: 10.1016/j.diabres.2015.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/03/2014] [Accepted: 01/14/2015] [Indexed: 12/18/2022]
Abstract
AIMS Toll-like receptor 4 (TLR4) gene Asp299Gly and Thr399Ile polymorphisms have been reported to be associated with susceptibility to type 2 diabetes mellitus (T2DM) with inconsistent results. In an effort to clarify earlier inconclusive results, a meta-analysis evaluating the precise associations between TLR4 gene Asp299Gly and Thr399Ile polymorphisms and T2DM risk was performed. METHODS We searched the PubMed, Embase, Web of Science, CBMdisc, CNKI, and Google Scholar until July 17, 2014. Additionally, hand searching of the references of identified articles were performed. Original observational studies dealing with the associations between TLR4 gene Asp299Gly and Thr399Ile polymorphisms and T2DM risk were selected. Heterogeneity and publication bias were determined and the meta-analysis was performed by Review Manager 5.1.4 and Stata 11.0. RESULTS Seventeen articles involving 25 studies were included in the final meta-analysis, covering a total of 5963 T2DM cases and 9096 controls. For TLR4 gene Asp299Gly polymorphism, 17 studies were combined showing no evidence for association between TLR4 gene Asp299Gly polymorphism and T2DM risk. For TLR4 gene Thr399Ile polymorphism, eight studies were combined. There was also lack of evidence for significant association between TLR4 gene Thr399Ile polymorphism and T2DM risk. In addition, the similar results were obtained in the sensitivity analyses. CONCLUSIONS The present meta-analysis indicates that TLR4 gene Asp299Gly and Thr399Ile polymorphisms are not associated with increased T2DM risk.
Collapse
Affiliation(s)
- Yan-Wei Yin
- Department of Emergency, Chinese PLA Air Force General Hospital, 30 Fucheng Road, Haidian District, Beijing 100142, China.
| | - Qi Wang
- Department of Emergency, Chinese PLA Air Force General Hospital, 30 Fucheng Road, Haidian District, Beijing 100142, China
| | - Qian-Qian Sun
- Jinsong Sanatorium of Beijing Air Force, Beijing 100021, China
| | - Ai-Min Hu
- Department of Emergency, Chinese PLA Air Force General Hospital, 30 Fucheng Road, Haidian District, Beijing 100142, China
| | - Hong-Li Liu
- Department of Emergency, Chinese PLA Air Force General Hospital, 30 Fucheng Road, Haidian District, Beijing 100142, China
| |
Collapse
|
194
|
Lv J, Chen Q, Shao Y, Chen Y, Shi J. Cross-talk between angiotensin-II and toll-like receptor 4 triggers a synergetic inflammatory response in rat mesangial cells under high glucose conditions. Biochem Biophys Res Commun 2015; 459:264-269. [PMID: 25732086 DOI: 10.1016/j.bbrc.2015.02.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 01/20/2023]
Abstract
Toll-like Receptor 4 (TLR4) may play an important role in the pathogenesis of diabetic nephropathy (DN). In this study, We observed the TLR4 signal and the release of inflammation factors after angiotensin II (Ang II) stimulation in rat mesangial cells (MCs) under high glucose conditions, this revealed the innate immune mechanism of injury by Ang II in DN. Our data showed that TLR4 and MyD88 were up-regulated significantly in high glucose and AngII-induced MCs; meanwhile, NF-κB as well as MCP-1, IL-6 were also highly expressed. In cells that were transfected with TLR4 SiRNA,the parameters were greatly inhibited; similar effects were detected in cells that were treated with Irbesartan. We concluded that Ang II synergized with high glucose in the release of pro-inflammatory factors mainly through the upregulation of TLR4 signaling in MCs, Cross-talk between Ang II and TLR4 contributed to the MC inflammatory injury under high glucose conditions.
Collapse
Affiliation(s)
- Jinlei Lv
- Division of Nephrology, The First Affiliated Hospital of NanChang University, China.
| | - Qinkai Chen
- Division of Nephrology and Organ Transplatation, The First Affiliated Hospital of NanChang University, China
| | - Yi Shao
- Division of Ophthalmology, The First Affiliated Hospital of NanChang University, China
| | - Yuhua Chen
- Division of Nephrology, The First Affiliated Hospital of NanChang University, China
| | - Jun Shi
- Division of Nephrology and Organ Transplatation, The First Affiliated Hospital of NanChang University, China.
| |
Collapse
|
195
|
Shikama Y, Aki N, Hata A, Nishimura M, Oyadomari S, Funaki M. Palmitate-stimulated monocytes induce adhesion molecule expression in endothelial cells via IL-1 signaling pathway. J Cell Physiol 2015; 230:732-42. [PMID: 25201247 DOI: 10.1002/jcp.24797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Increased intake of saturated fatty acids (SFAs), such as palmitate (Pal), is linked to a higher risk of type 2 diabetes and cardiovascular disease. Although recent studies have investigated the direct effects of SFAs on inflammatory responses in vascular endothelial cells, it remains unknown whether SFAs also induce these responses mediated by circulating cells. In this study, especially focused on adhesion molecules and monocytes, we investigated the indirect effects of Pal on expression and release of ICAM-1 and E-selectin in vascular endothelial cells. Phorbol 12-myristate 13-acetate (PMA)-treated THP-1 (pTHP-1) cells and human monocytes were stimulated with various free fatty acids (FFAs). SFAs, but not unsaturated fatty acids (UFAs), increased interleukin (IL)-1β secretion and decreased IL-1 receptor antagonist (IL-1Ra) secretion, resulting in an increase in the IL-1β/IL-1Ra secretion ratio. UFAs dose-dependently inhibited the increase in IL-1β secretion and decrease in IL-1Ra secretion induced by Pal. Moreover, in human aortic and vein endothelial cells, expression and release of ICAM-1 and E-selectin were induced by treatment with conditioned medium collected from Pal-stimulated pTHP-1 cells and human monocytes, but not by Pal itself. The up-regulated expression and release of adhesion molecules by the conditioned medium were mostly abolished by recombinant human IL-1Ra supplementation. These results suggest that the Pal-induced increase in the ratio of IL-1β/IL-1Ra secretion in monocytes up-regulates endothelial adhesion molecules, which could enhance leukocyte adhesion to endothelium. This study provides further evidence that IL-1β neutralization through receptor antagonism may be useful for preventing the onset and development of cardiovascular disease.
Collapse
Affiliation(s)
- Yosuke Shikama
- Clinical Research Center for Diabetes, Tokushima University Hospital, Kuramoto-cho, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
196
|
Carnagarin R, Dharmarajan AM, Dass CR. PEDF-induced alteration of metabolism leading to insulin resistance. Mol Cell Endocrinol 2015; 401:98-104. [PMID: 25462587 DOI: 10.1016/j.mce.2014.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia
| | - Arunasalam M Dharmarajan
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Biomedical Science, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
197
|
Kondo K, Ishida T, Yasuda T, Nakajima H, Mori K, Tanaka N, Mori T, Monguchi T, Shinohara M, Irino Y, Toh R, Rikitake Y, Kiyomizu K, Tomiyama Y, Yamamoto J, Hirata KI. Trans-fatty acid promotes thrombus formation in mice by aggravating antithrombogenic endothelial functions via Toll-like receptors. Mol Nutr Food Res 2015; 59:729-40. [PMID: 25546502 DOI: 10.1002/mnfr.201400537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/14/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022]
Abstract
SCOPE Since excessive intake of trans-fatty acid (TFA) increases the risk of myocardial infarction, we investigated the effects of TFA on thrombus formation using animal and cell culture experiments. METHODS AND RESULTS C57BL/6 mice were fed a diet containing TFA or cis-fatty acid (5% each of total calories) or a chow diet for 4 weeks, and thrombus formation was induced in the carotid artery by He-Ne laser irradiation. The high-TFA diet significantly promoted thrombus formation in the carotid artery compared to the chow or cis-fatty acid diet. TFA activated the inflammatory signaling pathway in cultured endothelial cells and in mice; aortic gene expression levels of antithrombogenic molecules, including thrombomodulin and tissue factor pathway inhibitor, were decreased, and the expression levels of prothrombogenic molecules were increased in TFA-treated mice. TFA markedly upregulated the prothrombogenic molecules and downregulated the antithrombogenic molecules in endothelial cells. In addition, TFA induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and nuclear factor-κB. The TFA-activated signal pathways and prothrombogenic phenotypic changes of endothelial cells were inhibited by genetic or pharmacological inactivation of Toll-like receptors 2 and 4. CONCLUSION TFA aggravates the antithrombogenic phenotypes of vascular endothelial cells via Toll-like receptors and promotes thrombus formation in mice.
Collapse
Affiliation(s)
- Kensuke Kondo
- Division of Cardiovascular Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Conditional knockout of prolyl hydroxylase domain protein 2 attenuates high fat-diet-induced cardiac dysfunction in mice. PLoS One 2014; 9:e115974. [PMID: 25546437 PMCID: PMC4278833 DOI: 10.1371/journal.pone.0115974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/28/2014] [Indexed: 01/22/2023] Open
Abstract
Oxygen sensor prolyl hydroxylases (PHDs) play important roles in the regulation of HIF-α and cell metabolisms. This study was designed to investigate the direct role of PHD2 in high fat-diet (HFD)-induced cardiac dysfunction. In HFD fed mice, PHD2 expression was increased without significant changes in PHD1 and PHD3 levels in the heart. This was accompanied by a significant upregulation of myeloid differentiation factor 88 (MYD88) and NF-κB. To explore the role of PHD2 in HFD-induced cardiac dysfunction, PHD2 conditional knockout mice were fed a HFD for 16 weeks. Intriguingly, knockout of PHD2 significantly reduced MYD88 and NF-κb expression in HFD mouse hearts. Moreover, knockout of PHD2 inhibited TNFα and ICAM-1 expression, and reduced cell apoptosis and macrophage infiltration in HFD mice. This was accompanied by a significant improvement of cardiac function. Most importantly, conditional knockout of PHD2 at late stage in HFD mice significantly improved glucose tolerance and reversed cardiac dysfunction. Our studies demonstrate that PHD2 activity is a critical contributor to the HFD-induced cardiac dysfunction. Inhibition of PHD2 attenuates HFD-induced cardiac dysfunction by a mechanism involving suppression of MYD88/NF-κb pathway and inflammation.
Collapse
|
199
|
Cao Y, Bao S, Yang W, Zhang J, Li L, Shan Z, Teng W. Epigallocatechin gallate prevents inflammation by reducing macrophage infiltration and inhibiting tumor necrosis factor-α signaling in the pancreas of rats on a high-fat diet. Nutr Res 2014; 34:1066-74. [PMID: 25453543 DOI: 10.1016/j.nutres.2014.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 01/26/2023]
|
200
|
Over-expression of TLR4-CD14, pro-inflammatory cytokines, metabolic markers and NEFAs in obese non-diabetic Mexicans. JOURNAL OF INFLAMMATION-LONDON 2014; 11:39. [PMID: 25493077 PMCID: PMC4260202 DOI: 10.1186/s12950-014-0039-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/16/2014] [Indexed: 01/07/2023]
Abstract
Introduction Obesity is the world’s most important public health problem. Adipose tissue contributes significantly to increase pro-inflammatory mediators whose cascade begins with the union of TLR4 to its microbial ligands (TLR: Toll Like Receptors). It has been reported recently that NEFAs (Non-Esterified Fatty Acids) bind to this receptor as agonists. The purpose of our study was to determine the levels of expression of TLR4-CD14, the pro-inflammatory cytokines, the metabolic markers and the NEFAs in a group of adult, non-diabetic obese Mexicans. Method A group of 210 adult middle-class Mexican non-diabetic obese patients was evaluated: 105 normal weight individuals, and 105 non-diabetic obese. On both groups, the following was tested in each patient: TLR4-CD14 receptors on monocytes in peripheral blood, inflammatory profile, HOMA-IR (Homeostasis Model Assessment-Insulin Resistance), NEFAs and each individual’s anthropometric profile. Results Obesity is strongly associated with the expression of TLR4 (77%, MFI (Mean Fluorescence Index) 7.70) and CD14 (86% MFI 1.61) with 66% double positives (p = 0.000). These figures contrast with those for the normal weight individuals that constituted the control group: TLR4 (70% MFI 6.41) and CD14 (84% MFI 1.25) with 59% double positives. As for cytokine concentration, non- diabetic obese individuals vs the normal weight/thin, the numbers were: IL-1β = 2.0 vs 2.5 pg/ml (p = NS), IL-6 = 36 vs 28 pg/ml (p = 0.030), IL-8 = 27 vs 27 pg/ml (p = NS), IL-10 = 8.4 vs 6.8 pg/ml (p = NS), TNF-α =31 vs 15 pg/ml (p = 0.000) respectively. Insulin levels were 12.1 vs 19.7 mcU/ml (p = 0.000) and the NEFAs were much higher in the obese vs normal weight/thin individuals (p = 0.000). Conclusion Adipose tissue used to be thought of as mere storage of fats and energy, but it has been revealed to be an important neuro-immune-endocrine organ. Immune cells, stimulated by NEFAs, produce pro-inflammatory cytokines, which have a direct effect on oxidating radicals that directly target the release of noradrenalin. This in turn, reactivates the vicious cycle of low-grade chronic inflammation, as is now described in obesity.
Collapse
|