151
|
Peripheral Beta-2 Adrenergic Receptors Mediate the Sympathetic Efferent Activation from Central Nervous System to Splenocytes in a Mouse Model of Fibromyalgia. Int J Mol Sci 2023; 24:ijms24043465. [PMID: 36834875 PMCID: PMC9967679 DOI: 10.3390/ijms24043465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Abnormalities in the peripheral immune system are involved in the pathophysiology of fibromyalgia, although their contribution to the painful symptoms remains unknown. Our previous study reported the ability of splenocytes to develop pain-like behavior and an association between the central nervous system (CNS) and splenocytes. Since the spleen is directly innervated by sympathetic nerves, this study aimed to examine whether adrenergic receptors are necessary for pain development or maintenance using an acid saline-induced generalized pain (AcGP) model (an experimental model of fibromyalgia) and whether the activation of these receptors is also essential for pain reproduction by the adoptive transfer of AcGP splenocytes. The administration of selective β2-blockers, including one with only peripheral action, prevented the development but did not reverse the maintenance of pain-like behavior in acid saline-treated C57BL/6J mice. Neither a selective α1-blocker nor an anticholinergic drug affects the development of pain-like behavior. Furthermore, β2-blockade in donor AcGP mice eliminated pain reproduction in recipient mice injected with AcGP splenocytes. These results suggest that peripheral β2-adrenergic receptors play an important role in the efferent pathway from the CNS to splenocytes in pain development.
Collapse
|
152
|
Smith AJ. Norecopa: A global knowledge base of resources for improving animal research and testing. Front Vet Sci 2023; 10:1119923. [PMID: 36816191 PMCID: PMC9932590 DOI: 10.3389/fvets.2023.1119923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
There are good ethical, legal and scientific reasons for ensuring that our use of animals in research and testing is limited to the lowest number of animals, and that those which are used are treated as humanely as possible, while at the same time providing reliable, reproducible and translatable data which is adequately reported. Unfortunately, there is widespread evidence that there is room for improvement in all these areas. This paper describes the Norecopa website, which offers links to global resources which can be used to resolve these issues. Much of the website content is linked to the PREPARE guidelines for planning any research or testing which appears to need animals. Attention to detail on all steps of the pathway from early planning to manuscript submission should lead to better science, improved animal welfare, and fewer health and safety accidents. This will also minimize the chances of manuscript rejection due to inadequate planning, avoiding a waste of human resources and animal lives.
Collapse
|
153
|
Kadir RRA, Alwjwaj M, Rakkar K, Othman OA, Sprigg N, Bath PM, Bayraktutan U. Outgrowth Endothelial Cell Conditioned Medium Negates TNF-α-Evoked Cerebral Barrier Damage: A Reverse Translational Research to Explore Mechanisms. Stem Cell Rev Rep 2023; 19:503-515. [PMID: 36056287 PMCID: PMC9902316 DOI: 10.1007/s12015-022-10439-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
Improved understanding of the key mechanisms underlying cerebral ischemic injury is essential for the discovery of efficacious novel therapeutics for stroke. Through detailed analysis of plasma samples obtained from a large number of healthy volunteers (n = 90) and ischemic stroke patients (n = 81), the current study found significant elevations in the levels of TNF-α at baseline (within the first 48 h of stroke) and on days 7, 30, 90 after ischaemic stroke. It then assessed the impact of this inflammatory cytokine on an in vitro model of human blood-brain barrier (BBB) and revealed dramatic impairments in both barrier integrity and function, the main cause of early death after an ischemic stroke. Co-treatment of BBB models in similar experiments with outgrowth endothelial cell-derived conditioned media (OEC-CM) negated the deleterious effects of TNF-α on BBB. Effective suppression of anti-angiogenic factor endostatin, stress fiber formation, oxidative stress, and apoptosis along with concomitant improvements in extracellular matrix adhesive and tubulogenic properties of brain microvascular endothelial cells and OECs played an important role in OEC-CM-mediated benefits. Significant increases in pro-angiogenic endothelin-1 and monocyte chemoattractant protein-1 in OEC-CM compared to the secretomes of OEC and HBMEC, detected by proteome profiling assay, accentuate the beneficial effects of OEC-CM. In conclusion, this reverse translational study identifies TNF-α as an important mediator of post-ischemic cerebral barrier damage and proposes OEC-CM as a potential vasculoprotective therapeutic strategy by demonstrating its ability to regulate a wide range of mechanisms associated with BBB function. Clinical trial registration NCT02980354.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Nikola Sprigg
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Philip M Bath
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
154
|
Guo LY, Kaustov L, Brenna CTA, Patel V, Zhang C, Choi S, Halpern S, Wang DS, Orser BA. Cognitive deficits after general anaesthesia in animal models: a scoping review. Br J Anaesth 2023; 130:e351-e360. [PMID: 36402576 DOI: 10.1016/j.bja.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It remains controversial whether general anaesthetic drugs contribute to perioperative neurocognitive disorders in adult patients. Preclinical studies have generated conflicting results, likely because of differing animal models, study protocols, and measured outcomes. This scoping review of preclinical studies addressed the question: 'Do general anaesthetic drugs cause cognitive deficits in adult animals that persist after the drugs have been eliminated from the brain?' METHODS Reports of preclinical studies in the MEDLINE database published from 1953 to 2021 were examined. A structured review process was used to assess original studies of cognitive behaviours, which were measured after treatment (≥24 h) with commonly used general anaesthetic drugs in adult animals. RESULTS The initial search yielded 380 articles, of which 106 were fully analysed. The most frequently studied animal model was male (81%; n=86/106) rodents (n=106/106) between 2-3 months or 18-20 months of age. Volatile anaesthetic drugs were more frequently studied than injected drugs, and common outcomes were memory behaviours assessed using the Morris water maze and fear conditioning assays. Cognitive deficits were detected in 77% of studies (n=82/106) and were more frequent in studies of older animals (89%), after inhaled anaesthetics, and longer drug treatments. Limitations of the studies included a lack of physiological monitoring, mortality data, and risk of bias attributable to the absence of randomisation and blinding. CONCLUSIONS Most studies reported cognitive deficits after general anaesthesia, with age, use of volatile anaesthetic drugs, and duration of anaesthesia as risk factors. Recommendations to improve study design and guide future research are presented.
Collapse
Affiliation(s)
- Ling Yi Guo
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Lilia Kaustov
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Connor T A Brenna
- Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vikas Patel
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cheng Zhang
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Stephen Choi
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Stephen Halpern
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
155
|
Nault R, Saha S, Bhattacharya S, Sinha S, Maiti T, Zacharewski T. Single-cell transcriptomics shows dose-dependent disruption of hepatic zonation by TCDD in mice. Toxicol Sci 2023; 191:135-148. [PMID: 36222588 PMCID: PMC9887712 DOI: 10.1093/toxsci/kfac109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dose-dependently induces the development of hepatic fat accumulation and inflammation with fibrosis in mice initially in the portal region. Conversely, differential gene and protein expression is first detected in the central region. To further investigate cell-specific and spatially resolved dose-dependent changes in gene expression elicited by TCDD, single-nuclei RNA sequencing and spatial transcriptomics were used for livers of male mice gavaged with TCDD every 4 days for 28 days. The proportion of 11 cell (sub)types across 131 613 nuclei dose-dependently changed with 68% of all portal and central hepatocyte nuclei in control mice being overtaken by macrophages following TCDD treatment. We identified 368 (portal fibroblasts) to 1339 (macrophages) differentially expressed genes. Spatial analyses revealed initial loss of portal identity that eventually spanned the entire liver lobule with increasing dose. Induction of R-spondin 3 (Rspo3) and pericentral Apc, suggested dysregulation of the Wnt/β-catenin signaling cascade in zonally resolved steatosis. Collectively, the integrated results suggest disruption of zonation contributes to the pattern of TCDD-elicited NAFLD pathologies.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Satabdi Saha
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sudin Bhattacharya
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Biomedical Engineering Department, Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, Texas 77840, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tim Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
156
|
ÇELİK ZB, TİRYAKİ ES, TÜRKDÖNMEZ E, ÇİÇEKLİ MN, ALTUN A, GÜNAYDIN C. Parallel changes in the promoter methylation of voltage-gated T-type calcium channel alpha 1 subunit G and histone deacetylase activity in the WAG/Rij model of absence epilepsy. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1207399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective: In the last two decades, research on epigenetic mechanisms has expanded dramatically. Recent studies demonstrated that epigenetic mechanisms regulate epilepsy and epileptogenic pathologies. In this study, we aimed to investigate changes in the promoter methylation status of the voltage-gated T-type calcium channel alpha 1 subunit G (CACNA1G) gene and total histone deacetylase activity in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats which is one of the commonly used genetic absence rat models of epilepsy in the three different age groups (3, 6, and 9 months old) on both sexes.
Material and Method: Evaluation of changes in the spike-wave discharges (SWDs) was performed with electrocorticography (ECoG). The promoter methylation status of the CACNA1G gene was determined by methylation-specific PCR (MSP), and histone deacetylase (HDAC) activity was determined spectrophotometrically.
Results: Our results demonstrated that the number of SWDs increased time-dependent in WAG/Rij. Additionally, it was observed that CACNA1G promoter methylation decreased, and total HDAC activity increased with age in both sexes.
Conclusion: Our results provide further support for epigenetic regulation in the absence epilepsy phenotype and suggest that the underlying mechanism behind the increase in the number of SWDs with age in the WAG/Rij animals might be regulated by CACNA1G promoter methylation or HDAC activity.
Collapse
|
157
|
Hu J, Gao J, Wang C, Liu W, Hu A, Xiao X, Kuang Y, Yu K, Gajendran B, Zacksenhaus E, Pan W, Ben-David Y. FLI1 Regulates Histamine Decarboxylase Expression to Control Inflammation Signaling and Leukemia Progression. J Inflamm Res 2023; 16:2007-2020. [PMID: 37193069 PMCID: PMC10183177 DOI: 10.2147/jir.s401566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Aim Histamine decarboxylase (HDC) catalyzes decarboxylation of histidine to generate histamine. This enzyme affects several biological processes including inflammation, allergy, asthma, and cancer, although the underlying mechanism is not fully understood. The present study provides a novel insight into the relationship between the transcription factor FLI1 and its downstream target HDC, and their effects on inflammation and leukemia progression. Methods Promoter analysis combined with chromatin immunoprecipitation (ChIp) was used to demonstrate binding of FLI1 to the promoter of HDC in leukemic cells. Western blotting and RT-qPCR were used to determine expression of HDC and allergy response genes, and lentivirus shRNA was used to knock-down target genes. Proliferation, cell cycle, apoptosis assays and molecular docking were used to determine the effect of HDC inhibitors in culture. An animal model of leukemia was employed to test the effect of HDC inhibitory compounds in vivo. Results Results presented herein demonstrate that FLI1 transcriptionally regulates HDC by direct binding to its promoter. Using genetic and pharmacological inhibition of HDC, or the addition of histamine, the enzymatic product of HDC, we show neither have a discernable effect on leukemic cell proliferation in culture. However, HDC controls several inflammatory genes including IL1B and CXCR2 that may influence leukemia progression in vivo through the tumor microenvironment. Indeed, diacerein, an IL1B inhibitor, strongly blocked Fli-1-induced leukemia in mice. In addition to allergy, FLI1 is shown to regulate genes associated with asthma such as IL1B, CPA3 and CXCR2. Toward treatment of these inflammatory conditions, epigallocatechin (EGC), a tea polyphenolic compound, is found strongly inhibit HDC independently of FLI1 and its downstream effector GATA2. Moreover, the HDC inhibitor, tetrandrine, suppressed HDC transcription by directly binding to and inhibiting the FLI1 DNA binding domain, and like other FLI1 inhibitors, tetrandrine strongly suppressed cell proliferation in culture and leukemia progression in vivo. Conclusion These results suggest a role for the transcription factor FLI1 in inflammation signaling and leukemia progression through HDC and point to the HDC pathway as potential therapeutics for FLI1-driven leukemia.
Collapse
Affiliation(s)
- Jifen Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Jian Gao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, People’s Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada, and Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Weidong Pan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
- Correspondence: Yaacov Ben-David, State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, People’s Republic of China, Email
| |
Collapse
|
158
|
Dalby S, Skallerup S, Baun C, Christensen LG, Rathe M, Palner M, Husby S, Moeller JB. PET/CT imaging detects intestinal inflammation in a mouse model of doxorubicin-induced mucositis. Front Oncol 2022; 12:1061804. [PMID: 36591502 PMCID: PMC9798215 DOI: 10.3389/fonc.2022.1061804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction A severe side effect of cancer chemotherapy is the development of gastrointestinal mucositis, characterised by mucosal inflammation. We investigated if 2-deoxy-2-[18F] fluoro-D-glucose positron emission tomography combined with computed tomography (2-[18F]FDG-PET/CT) could visualise gastrointestinal mucositis in mice treated with the chemotherapeutic agent doxorubicin. Methods In this study, gastrointestinal inflammation was longitudinally evaluated by 2-[18F]FDG-PET/CT scans before and 1, 3, 6, and 10 days after treatment with doxorubicin. Doxorubicin-treated mice were compared to saline-treated littermates using the abdominal standard uptake value of 2-[18F]FDG corrected for body weight (SUVBW). Results Abdominal SUVBW was significantly increased on day 1 (p < 0.0001), day 3 (p < 0.0001), and day 6 (p < 0.05) in the doxorubicin-treated group compared to controls. Abdominal SUVBW returned to baseline levels on day 10. In the doxorubicin group, the largest weight loss was observed on day 3 (control vs doxorubicin, mean percent of baseline weight: (98.5 ± 3.2% vs 87.9 ± 4.6%, p < 0.0001). Moreover, in the doxorubicin-treated group, villus lengths were decreased by 23-28% on days 1 and 3 in the small intestine (p < 0.05), and jejunal levels of tumour necrosis factor and interleukin-1β were significantly increased on day 3 (p < 0.05). Discussion Together, these findings indicate that sequential 2-[18F]FDG-PET/CT scans can objectively quantify and evaluate the development and resolution of intestinal inflammation over time in a mouse model of doxorubicin-induced mucositis.
Collapse
Affiliation(s)
- Sina Dalby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sofie Skallerup
- Department of Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Mathias Rathe
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mikael Palner
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper Bonnet Moeller
- Department of Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
159
|
Williams GA, Scott-Baird E, Núñez A, Salguero FJ, Wood E, Houghton S, Vordermeier HM. The safety of BCG vaccination in cattle: results from good laboratory practice safety studies in calves and lactating cows. Heliyon 2022; 8:e12356. [PMID: 36590473 PMCID: PMC9800532 DOI: 10.1016/j.heliyon.2022.e12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Bovine tuberculosis (bTB) is a global disease of livestock that has damaging economic, animal health and public health consequences. Conventional bTB disease control strategies, based around the testing and slaughter of cattle infected with bTB, are typically used to help limit or reduce the transmission of this disease but in many low- and middle-income countries such strategies may often be economically unviable, culturally unacceptable or logistically impracticable. The use of vaccination to protect cattle against bTB could provide a potentially more affordable, ethically acceptable and practical additional disease control measure. The protective efficacy of the commercially produced and readily available human vaccine against tuberculosis (Mycobacterium bovis Bacille Calmette-Guérin; BCG) in cattle has been demonstrated in many experimental laboratory and field studies. However, Good Laboratory Practice (GLP) studies assessing the safety of BCG vaccination in cattle have not previously been reported. We describe here the results of two GLP safety studies in which calves and lactating cows were vaccinated with BCG (Danish 1331 strain). From an animal health and welfare perspective, the results of these studies indicate that BCG vaccine is well tolerated in these categories of cattle with only transient and minor local or systemic reactions. Furthermore, there was no evidence that BCG was shed in raw milk, saliva or faeces collected from vaccinates and vaccination did not have a detrimental effect on milk yields in lactating cattle. These data, underpinned by GLP principles, further support the existing data on the safety of BCG vaccine in cattle and complement the abundant available cattle efficacy data for this potential cattle bTB vaccine.
Collapse
Affiliation(s)
- Gareth A. Williams
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK,Corresponding author.
| | | | - Alejandro Núñez
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| | | | - Emma Wood
- Queens Hall, Narberth, Pembs, SA67 7AS, UK
| | - Steve Houghton
- Veterinary Vaccines Consultancy Ltd, Paulerspury, Northants, NN12 7NN, UK
| | | |
Collapse
|
160
|
Kim J, Jung HD, Moon YJ, Han H, Cheon B, Han J, Cho SY, Lee JY, Kwon DS. In Vivo Feasibility Test of a New Flexible Ureteroscopic Robotic System, easyUretero, for Renal Stone Retrieval in a Porcine Model. Yonsei Med J 2022; 63:1106-1112. [PMID: 36444546 PMCID: PMC9760888 DOI: 10.3349/ymj.2022.0367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Using a new robotic endoscopic platform system developed for retrograde intrarenal surgery (RIRS) called easyUretero (ROEN Surgical Inc.), we evaluated the feasibility and safety of renal stone retrieval in a porcine model. MATERIALS AND METHODS Six female pigs were used for our in vivo study. First, 0.3-cm-sized phantom stones were inserted into the kidneys of each pig via the ureteral access sheath. Next, renal stone retrieval was attempted using manual RIRS in three pigs and robotic RIRS in three pigs. Three surgeons performed extraction of 10 stones in each session. RESULTS The mean stone retrieval time by manual RIRS was significantly shorter than that by robotic RIRS (399.9±185.4 sec vs. 1127.6±374.5 sec, p=0.001). In contrast, the questionnaire regarding usability showed high satisfaction in the surgeons' fatigue category for surgeons using robotic RIRS. The radiation exposure dose was also lower in robotic RIRS than in manual RIRS (0.14 µSv vs. 45.5 µSv). Postoperative ureteral injury assessment revealed Grade 0 in manual RIRS cases and Grades 0, 1, and 2 in robotic RIRS cases. CONCLUSION The easyUretero system is a new robotic RIRS system that was developed in Korea. The results of the present study suggest that using easyUretero for stone retrieval during RIRS is safe and ergonomic.
Collapse
Affiliation(s)
| | - Hae Do Jung
- Department of Urology, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Young Joon Moon
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunho Han
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byungsik Cheon
- ROEN Surgical Inc., Daejeon, Korea
- Robotics Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jungmin Han
- ROEN Surgical Inc., Daejeon, Korea
- Robotics Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sung Yong Cho
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Yong Lee
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Center of Evidence Based Medicine, Institute of Convergence Science, Yonsei University, Seoul, Korea.
| | - Dong-Soo Kwon
- ROEN Surgical Inc., Daejeon, Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
161
|
Reporting quality in preclinical animal experimental research in 2009 and 2018: A nationwide systematic investigation. PLoS One 2022; 17:e0275962. [PMID: 36327216 PMCID: PMC9632797 DOI: 10.1371/journal.pone.0275962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Lack of translation and irreproducibility challenge preclinical animal research. Insufficient reporting methodologies to safeguard study quality is part of the reason. This nationwide study investigates the reporting prevalence of these methodologies and scrutinizes the reported information’s level of detail. Publications were from two time periods to convey any reporting progress and had at least one author affiliated to a Danish University. We retrieved all relevant animal experimental studies using a predefined research protocol and a systematic search. A random sampling of 250 studies from 2009 and 2018 led to 500 publications in total. Reporting of measures known to impact study results estimates were assessed. Part I discloses a simplified two-level scoring “yes/no” to identify the presence of reporting. Part II demonstrates an additional three-level scoring to analyze the reported information’s level of detail. Overall reporting prevalence is low, although minor improvements are noted. Reporting of randomization increased from 24.0% in 2009 to 40.8% in 2018, blinded experiment conduct from 2.4% to 4.4%, blinded outcome assessment from 23.6% to 38.0%, and sample size calculation from 3.2% to 14.0%. Poor reporting of details is striking with reporting of the random allocation method to groups being only 1.2% in 2009 and 6.0% in 2018. Reporting of sample size calculation method was 2.4% in 2009 and 7.6% in 2018. Only conflict-of-interest statements reporting increased from 37.6% in 2009 to 90.4%. Measures safeguarding study quality are poorly reported in publications affiliated with Danish research institutions. Only a modest improvement was noted during the period 2009–2018, and the lack of details urgently prompts institutional strategies to accelerate this. We suggest thorough teaching in designing, conducting and reporting animal studies. Education in systematic review methodology should be implemented in this training and will increase motivation and behavior working towards quality improvements in science.
Collapse
|
162
|
Zhang L, Hou Y, Li C, Liu H, Wang Y. Comparative study on the antitumor effects of gemcitabine polybutylcyanoacrylate nanoparticles coupled with anti-human MUC1 and CA199 monoclonal antibodies on pancreatic cancer in vitro and in vivo. Arab J Gastroenterol 2022; 23:263-269. [PMID: 35922259 DOI: 10.1016/j.ajg.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND STUDY AIMS This study was designed to compare the antitumor effects of anti-human MUC1 monoclonal antibody with those of anti-human CA199 monoclonal antibody coupled with drug-loaded polybutylcyanoacrylate nanoparticles on human pancreatic cancer cell lines and pancreatic cancer-bearing model animals and to screen more efficient targeting molecules. PATIENTS AND METHODS Gemcitabine-loaded nanospheres were prepared by emulsion polymerization (GEM-PBCA-NP), and then, anti-MUC1 monoclonal antibody was coupled with GEM-PBCA-NP (MUC1-GEM-PBCA-NP), and anti-human CA199 monoclonal antibody was coupled with GEM-PBCA-NP (CA199-GEM-PBCA-NP), using the chemical crosslinking method. The cell-killing rates were detected using MTT assay. The changes in the tumor cell cycle and apoptosis after treatment were detected using flow cytometry. Then, the subcutaneous planting method was adopted to establish an animal model of pancreatic cancer: two nanometer microspheres were injected into the body of nude mice via the tail vein; the tumor suppression effect was detected after treatment; then, the groups were compared. RESULTS In vitro, the cell-killing rate of each experimental group was significantly different from that of the control group (P < 05). The MUC1-GEM-PBCA-NP group had a significantly higher cell-killing rate than the other groups (P < 05). The apoptosis rate of the MUC1-GEM-PBCA-NP treatment group was significantly higher than that of other groups (P < 05). In vivo, the tumor inhibition rate of the MUC1-GEM-PBCA-NP treatment group was 72.69% ± 4.29%, which was significantly higher than those of other groups (P < 0.05). The tumor inhibition rate of the CA199-GEM-PBCA-NP treatment group was 56.58% ± 5.11%, which was significantly higher than those of other control groups (P < 0.05). At the end of treatment, the average tumor mass of the MUC1-GEM-PBCA-NP treatment group was 433.55 ± 12.49 mg, which was significantly lower than those of other groups (P < 0.05). CONCLUSION Compared with CA199-GEM-PBCA-NP, MUC1-GEM-PBCA-NP is more effective in vitro and in vivo. MUC1 could be a target molecule in treating pancreatic cancer.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China.
| | - Yanhong Hou
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China.
| | - Chunmei Li
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China
| | - Haorun Liu
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China
| | - Yujing Wang
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China
| |
Collapse
|
163
|
Vammen L, Johannsen CM, Magnussen A, Povlsen A, Petersen SR, Azizi A, Pedersen M, Korshøj AR, Ringgaard S, Løfgren B, Andersen LW, Granfeldt A. Cerebral monitoring in a pig model of cardiac arrest with 48 h of intensive care. Intensive Care Med Exp 2022; 10:45. [PMID: 36284020 PMCID: PMC9596181 DOI: 10.1186/s40635-022-00475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neurological injury is the primary cause of death after out-of-hospital cardiac arrest. There is a lack of studies investigating cerebral injury beyond the immediate post-resuscitation phase in a controlled cardiac arrest experimental setting. METHODS The aim of this study was to investigate temporal changes in measures of cerebral injury and metabolism in a cardiac arrest pig model with clinically relevant post-cardiac arrest intensive care. A cardiac arrest group (n = 11) underwent 7 min of no-flow and was compared with a sham group (n = 6). Pigs underwent intensive care with 24 h of hypothermia at 33 °C. Blood markers of cerebral injury, cerebral microdialysis, and intracranial pressure (ICP) were measured. After 48 h, pigs underwent a cerebral MRI scan. Data are presented as median [25th; 75th percentiles]. RESULTS Return of spontaneous circulation was achieved in 7/11 pigs. Time to ROSC was 4.4 min [4.2; 10.9]. Both NSE and NfL increased over time (p < 0.001), and were higher in the cardiac arrest group at 48 h (NSE 4.2 µg/L [2.4; 6.1] vs 0.9 [0.7; 0.9], p < 0.001; NfL 63 ng/L [35; 232] vs 29 [21; 34], p = 0.02). There was no difference in ICP at 48 h (17 mmHg [14; 24] vs 18 [13; 20], p = 0.44). The cerebral lactate/pyruvate ratio had secondary surges in 3/7 cardiac arrest pigs after successful resuscitation. Apparent diffusion coefficient was lower in the cardiac arrest group in white matter cortex (689 × 10-6 mm2/s [524; 765] vs 800 [799; 815], p = 0.04) and hippocampus (854 [834; 910] vs 1049 [964; 1180], p = 0.03). N-Acetylaspartate was lower on MR spectroscopy in the cardiac arrest group (- 17.2 log [- 17.4; - 17.0] vs - 16.9 [- 16.9; - 16.9], p = 0.03). CONCLUSIONS We have developed a clinically relevant cardiac arrest pig model that displays cerebral injury as marked by NSE and NfL elevations, signs of cerebral oedema, and reduced neuron viability. Overall, the burden of elevated ICP was low in the cardiac arrest group. A subset of pigs undergoing cardiac arrest had persisting metabolic disturbances after successful resuscitation.
Collapse
Affiliation(s)
- Lauge Vammen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul Jensens Blvd. 99 G304, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Cecilie Munch Johannsen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul Jensens Blvd. 99 G304, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Andreas Magnussen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Amalie Povlsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Cardiothoracic Anesthesia, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Arezo Azizi
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Michael Pedersen
- Comparative Medicine Laboratory, Aarhus University, Aarhus N, Denmark
| | - Anders Rosendal Korshøj
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Bo Løfgren
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Medicine, Randers Regional Hospital, Randers, Denmark
| | - Lars W Andersen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul Jensens Blvd. 99 G304, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Prehospital Emergency Medical Services, Central Denmark Region, Aarhus N, Denmark
| | - Asger Granfeldt
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul Jensens Blvd. 99 G304, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| |
Collapse
|
164
|
Zhang T, Day NJ, Gaffrey M, Weitz KK, Attah K, Mimche PN, Paine R, Qian WJ, Helms MN. Regulation of hyperoxia-induced neonatal lung injury via post-translational cysteine redox modifications. Redox Biol 2022; 55:102405. [PMID: 35872399 PMCID: PMC9307955 DOI: 10.1016/j.redox.2022.102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
Preterm infants and patients with lung disease often have excess fluid in the lungs and are frequently treated with oxygen, however long-term exposure to hyperoxia results in irreversible lung injury. Although the adverse effects of hyperoxia are mediated by reactive oxygen species, the full extent of the impact of hyperoxia on redox-dependent regulation in the lung is unclear. In this study, neonatal mice overexpressing the beta-subunit of the epithelial sodium channel (β-ENaC) encoded by Scnn1b and their wild type (WT; C57Bl6) littermates were utilized to study the pathogenesis of high fraction inspired oxygen (FiO2)-induced lung injury. Results showed that O2-induced lung injury in transgenic Scnn1b mice is attenuated following chronic O2 exposure. To test the hypothesis that reversible cysteine-redox-modifications of proteins play an important role in O2-induced lung injury, we performed proteome-wide profiling of protein S-glutathionylation (SSG) in both WT and Scnn1b overexpressing mice maintained at 21% O2 (normoxia) or FiO2 85% (hyperoxia) from birth to 11-15 days postnatal. Over 7700 unique Cys sites with SSG modifications were identified and quantified, covering more than 3000 proteins in the lung. In both mouse models, hyperoxia resulted in a significant alteration of the SSG levels of Cys sites belonging to a diverse range of proteins. In addition, substantial SSG changes were observed in the Scnn1b overexpressing mice exposed to hyperoxia, suggesting that ENaC plays a critically important role in cellular regulation. Hyperoxia-induced SSG changes were further supported by the results observed for thiol total oxidation, the overall level of reversible oxidation on protein cysteine residues. Differential analyses reveal that Scnn1b overexpression may protect against hyperoxia-induced lung injury via modulation of specific processes such as cell adhesion, blood coagulation, and proteolysis. This study provides a landscape view of protein oxidation in the lung and highlights the importance of redox regulation in O2-induced lung injury.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nicholas J Day
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew Gaffrey
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kwame Attah
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Molecular Medicine Program, Salt Lake City, UT, USA
| | - Robert Paine
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
165
|
Han XX, Tian YG, Liu XF, Zhao D, Du XH, Dong HR, Feng SX, Li JS. Network pharmacology combined with pharmacodynamics revealed the anti-inflammatory mechanism of Tanreqing capsule against acute-exacerbation chronic obstructive pulmonary disease. Sci Rep 2022; 12:13967. [PMID: 35978041 PMCID: PMC9385617 DOI: 10.1038/s41598-022-18326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Acute-exacerbation chronic obstructive pulmonary disease (AECOPD) is mainly associated with acute respiratory tract infection. In recent years, a growing number of studies have found that Tanreqing capsule (TRQ) has a favorable anti-inflammatory effect. In this study, we used network pharmacology and pharmacodynamics to explore the molecular mechanism and effects of TRQ in AECOPD treatment. To further understand the molecular mechanism of TRQ in AECOPD treatment, we used the network pharmacology to predict components of TRQ, TRQ-related targets, AECOPD-related targets, and pathways. In addition, we used the cigarette-smoke/lipopolysaccharide -induced AECOPD experimental model in Sprague-Dawley rats (72 rats randomly divided into six groups [n = 12 each]: control, model, high-TRQ [TRQ-H], medium-TRQ [TRQ-M], low-TRQ, and dexamethasone [Dex]) to evaluate the therapeutic effects of TRQ and to verify the network pharmacology. We found that 59 overlapping targets based on component-and AECOPD-related targets were frequently involved in the advanced glycation end product-receptor for advanced glycation end product signaling pathway in diabetic complications, the phosphatidylinositol-3-kinase-protein kinase B signaling pathway, and the hypoxia-inducible factor 1 signaling pathway, which might play important roles in the anti-inflammatory mechanism of TRQ in AECOPD treatment. Moreover, TRQ groups exerted protective effects against AECOPD by reducing the infiltration of inflammatory cells. Meanwhile, TRQ-M and TRQ-H groups significantly downregulated or upregulated the expression of tumor necrosis factor, interleukin (IL) 6, C-reactive protein, IL10, and serum amyloid A, as key targets in network pharmacology, in the serum and bronchoalveolar lavage fluid to achieve anti-inflammatory efficacy. Our study showed that TRQ had better anti-inflammatory efficacy against AECOPD, and initially elucidated its molecular mechanism. Moreover, our study also provides a new strategy to explore effective mechanism of TRQ against AECOPD; and further studies are needed to validate the biological processes and pathways of TRQ against AECOPD.
Collapse
Affiliation(s)
- Xiao-Xiao Han
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China
| | - Yan-Ge Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China
| | - Xue-Fang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China
| | - Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China
| | - Xue-Hang Du
- Shanghai Kaibao Pharmaceutical Co. Ltd, Shanghai, China
| | - Hao-Ran Dong
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China.
| | - Jian-Sheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China.
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
166
|
Lam S, Hérard AS, Boluda S, Petit F, Eddarkaoui S, Cambon K, Picq JL, Buée L, Duyckaerts C, Haïk S, Dhenain M. Pathological changes induced by Alzheimer's brain inoculation in amyloid-beta plaque-bearing mice. Acta Neuropathol Commun 2022; 10:112. [PMID: 35974399 PMCID: PMC9380345 DOI: 10.1186/s40478-022-01410-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by intracerebral accumulations of extracellular amyloid-β (Aβ) plaques and intracellular tau pathology that spread in the brain. Three types of tau lesions occur in the form of neuropil threads, neurofibrillary tangles, and neuritic plaques i.e. tau aggregates within neurites surrounding Aβ deposits. The cascade of events linking these lesions and synaptic or memory impairments are still debated. Intracerebral infusion of human AD brain extracts in Aβ plaque-bearing mice that do not overexpress pathological tau proteins induces tau pathologies following heterotopic seeding of mouse tau protein. There is however little information regarding the downstream events including synaptic or cognitive repercussions of tau pathology induction in these models. In the present study, human AD brain extracts (ADbe) and control-brain extracts (Ctrlbe) were infused into the hippocampus of Aβ plaque-bearing APPswe/PS1dE9 mice. Memory, synaptic density, as well as Aβ plaque and tau aggregate loads, microgliosis, astrogliosis at the inoculation site and in connected regions (perirhinal/entorhinal cortex) were evaluated 4 and 8 months post-inoculation. ADbe inoculation produced the following effects: (i) memory deficit; (ii) increased Aβ plaque deposition in proximity to the inoculation site; (iii) tau pathology induction; (iv) appearance of neuropil threads and neurofibrillary tangles next to the inoculation site with a spreading to connected regions. Neuritic plaque pathology was detected in both ADbe- and Ctrlbe-inoculated animals but ADbe inoculation increased the severity close to and at distance of the inoculation site. (v) Finally, ADbe inoculation reduced synaptic density in the vicinity to the inoculation site and in connected regions as the perirhinal/entorhinal cortex. Synaptic impairments were correlated with increased severity of neuritic plaques but not to other tau lesions or Aβ lesions, suggesting that neuritic plaques are a culprit for synaptic loss. Synaptic density was also associated with microglial load.
Collapse
Affiliation(s)
- Suzanne Lam
- CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.,Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.,Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Susana Boluda
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.,Brainbank NeuroCEB Neuropathology Network: Plate-Forme de Ressources Biologiques, Bâtiment Roger Baillet, Hôpital de la Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Fanny Petit
- CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.,Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Sabiha Eddarkaoui
- Inserm, CHU-Lille, Lille Neuroscience & Cognition, Alzheimer & Tauopathies, LabEx DISTALZ, Université de Lille, Rue Polonovski, 59045, Lille, France
| | - Karine Cambon
- CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.,Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | | | - Jean-Luc Picq
- CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.,Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.,Laboratory of Cognitive Functioning and Dysfunctioning (DysCo), University Paris 8, 93526, Saint-Denis Cedex, France
| | - Luc Buée
- Inserm, CHU-Lille, Lille Neuroscience & Cognition, Alzheimer & Tauopathies, LabEx DISTALZ, Université de Lille, Rue Polonovski, 59045, Lille, France
| | - Charles Duyckaerts
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.,Brainbank NeuroCEB Neuropathology Network: Plate-Forme de Ressources Biologiques, Bâtiment Roger Baillet, Hôpital de la Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Stéphane Haïk
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.,Brainbank NeuroCEB Neuropathology Network: Plate-Forme de Ressources Biologiques, Bâtiment Roger Baillet, Hôpital de la Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Marc Dhenain
- CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France. .,Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
167
|
Han Y, Xiong C, Zhang LZ, Wang YD, Yang G, Guo Z. Antagonism of N/OFQ attenuates externalization of β1-adrenergic receptor and ventricular arrhythmias in acute myocardial ischemia rat model. Eur J Pharmacol 2022; 929:175139. [PMID: 35809655 DOI: 10.1016/j.ejphar.2022.175139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and adrenergic activations play roles in promoting cardiac arrhythmia in acute myocardial ischemia but whether N/OFQ and β1-adrenergic activities interact and how they interact in the arrhythmogenesis are still unknown. We designed this study to investigate the potential interaction of N/OFQ and β1-adrenergic activities and the underlying mechanism in arrhythmogenesis in acute myocardial ischemia. Ventricular arrhythmia was evaluated in anaesthetized rats following permanent coronary artery occlusion (CAO), in presence and absence of UFP-101 (a selective antagonist of N/OFQ receptor). The changes of β1-adrenergic receptor (β1-AR) in plasma membrane of cardiomyocytes were quantitatively evaluated and the relations with the alterations of phosphorylated Raf kinase inhibitor protein (p-RKIP) and phosphorylated connexin 43 (p-Cx43) were investigated. The ventricular arrhythmia was 59% less in the animals pre-treated with UFP-101 than the placebo-treated control (difference of means = -2.41; 95% confidence interval (CI) -2.84 to -1.99; P < 0.001). Meanwhile, p-RKIP and membrane β1-AR in the myocardium were downregulated by 59% and 24%, respectively (p-RKIP: difference of means = -6.91; 95% CI -8.38 to -5.45; P < 0.001; membrane β1-AR difference of means = -27.06; 95% CI -29.89 to -24.23; P < 0.001). Artificial upregulation of RKIP by didymin significant increased β1-AR in plasma membrane of the cardiomyocytes in the animals prone to ventricular arrhythmia. The findings may suggest that activation of N/OFQ receptor in acute myocardial ischemia induces upregulation of p-RKIP, externalization of β1-adrenergic receptor and downregulation of p-Cx43 in the cardiomyocytes, which promotes ventricular arrhythmia.
Collapse
Affiliation(s)
- Yi Han
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Chang Xiong
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Lin-Zhong Zhang
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Yi-Di Wang
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Guang Yang
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Zheng Guo
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), National Education Commission, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
168
|
Song J, Cho J, Park J, Hwang JH. Identification and validation of stable reference genes for quantitative real time PCR in different minipig tissues at developmental stages. BMC Genomics 2022; 23:585. [PMID: 35962323 PMCID: PMC9374586 DOI: 10.1186/s12864-022-08830-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Quantitative real time PCR (qPCR) is a powerful tool to evaluate mRNA expression level. However, reliable qPCR results require normalization with validated reference gene(s). In this study, we investigated stable reference genes in seven tissues according to four developmental stages in minipigs. Six candidate reference genes and one target gene (ACE2) were selected and qPCR was performed. BestKeeper, geNorm, NormFinder, and delta Ct method through the RefFinder web-based tool were used to evaluate the stability of candidate reference genes. To verify the selected stable genes, relative expression of ACE2 was calculated and compared with each other. Results As a result, HPRT1 and 18S genes had lower SD value, while HMBS and GAPDH genes had higher SD value in all samples. Using statistical algorithms, HPRT1 was the most stable gene, followed by 18S, β-actin, B2M, GAPDH, and HMBS. In intestine, all candidate reference genes exhibited similar patterns of ACE2 gene expression over time, whereas in liver, lung, and kidney, gene expression pattern normalized with stable reference genes differed from those normalized with less stable genes. When normalized with the most stable genes, the expression levels of ACE2 in minipigs highly increased in intestine and kidney at PND28, which is consistent with the ACE2 expression pattern in humans. Conclusions We suggest that HPRT1 and 18S are good choices for analyzing all these samples across the seven tissues and four developmental stages. However, this study can be a reference literature for gene expression experiments using minipig because reference gene should be validated and chosen according to experimental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08830-z.
Collapse
Affiliation(s)
- Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| | - Jeonghee Cho
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.,Department of Bio-Non-Clinical Science, Graduate School of Konyang University of Bioconvergence, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Jeongsik Park
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
169
|
Marcon M, Benvenutti R, Gallas-Lopes M, Herrmann AP, Piato A. What do male and female zebrafish prefer? Directional and color preference in maze tasks. Eur J Neurosci 2022; 56:4546-4557. [PMID: 35831240 DOI: 10.1111/ejn.15771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
Studies regarding the animals' innate preferences help elucidate and avoid probable sources of bias and serve as a reference to improve and develop new behavioral tasks. In zebrafish research, data obtained in behavioral assessments are often not replicated between research groups or even inside the same laboratory raising huge concerns about replicability and reproducibility. Among the potential causes that are not well considered, sexual differences can be a probable source of bias. Thus, this study aimed to investigate the male and female zebrafish directional and color preferences in the plus-maze and T-maze behavioral tasks. Experiment 1 evaluated directional preference and experiment 2 evaluated color preference in a plus-maze task; experiment 3 evaluated preference between black or white in a T-maze task. Individual preferences were expressed as the percentage of time spent in each zone. Our results showed that male and female zebrafish demonstrated no difference in directional preference in the plus-maze task. Surprisingly, male and female zebrafish showed color preference differences in the plus-maze task; males did not show any color preference, while female zebrafish demonstrated a red preference compared to white, blue, and yellow colors. Moreover, both male and female zebrafish demonstrated a strong black color preference compared to the white color in the T-maze task. Our findings characterized the spontaneous preference of male and female zebrafish for direction and color, identifying possible biases, and providing insights that contribute to the standardization of future protocols.
Collapse
Affiliation(s)
- Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Radharani Benvenutti
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
170
|
Fan ZG, Xu Y, Chen X, Ji MY, Ma GS. Appropriate Dose of Dapagliflozin Improves Cardiac Outcomes by Normalizing Mitochondrial Fission and Reducing Cardiomyocyte Apoptosis After Acute Myocardial Infarction. Drug Des Devel Ther 2022; 16:2017-2030. [PMID: 35789742 PMCID: PMC9250321 DOI: 10.2147/dddt.s371506] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 01/01/2023] Open
Abstract
Objective Dapagliflozin (DAPA) has been reported to have significant cardiac protective effects on heart failure (HF). However, the dose and time, as well as the underlying mechanisms, for DAPA treatment in acute myocardial infarction (AMI) remain controversial. The aim of this study aimed to assess the efficacy and safety of DAPA treatment along with an increased concentration gradient for AMI and explore the potential mechanisms. Methods Non-diabetic Sprague-Dawley rats were used for establishing AMI models and then were treated with three different concentrations of DAPA [0.5 mg/kg, 1 mg/kg and 1.5 mg/kg, described as AMI+DAPA Low, AMI+DAPA Medium (Med) and AMI+DAPA High, respectively] for six weeks from the onsetting of AMI. Echocardiography, histological staining and Western blot were performed to assess the relevant cardiac protective effects. Mitochondrial biogenesis and myocardial apoptosis were evaluated via the electron microscopy and TUNEL assay, respectively, as well as the Immunoblotting. In vitro, H9c2 cells were subjected to hypoxic treatment to assess the efficacy of DAPA on mitochondrial biogenesis and apoptosis. Results The medium dose of DAPA treatment could significantly reduce the infarct size (P < 0.01) and the echocardiography results showed that the MI-induced damage in cardiac function got partly repaired, showing no significant difference in left ventricle ejection fraction (LVEF) versus the Sham group (Sham vs AMI+DAPA Med group: 70.47% vs 61.73%). The Western blotting results confirmed the relevant benefits and the underlying mechanisms might be through the activation of PGAM5/Drp1 signaling pathway to normalize the mitochondrial fission and reduce cardiomyocyte apoptosis. Moreover, a medium dose of DAPA treatment could avoid increased damage to the bladder endothelium following higher treatment doses. Conclusion Appropriate dose of DAPA treatment could improve the cardiac remodeling and reduce the cardiomyocyte apoptosis after AMI, without increased damage to bladder endothelium, which might be more preferred for MI patients without diabetes.
Collapse
Affiliation(s)
- Zhong-guo Fan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yang Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Ming-yue Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Department of Cardiology, Lianshui People’s Hospital, Huaian, People’s Republic of China
| | - Gen-shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
171
|
Pei J, Zhao S, Yin M, Wu F, Li J, Zhang G, Wu X, Bao P, Xiong L, Song W, Ba Y, Yan P, Song R, Guo X. Differential proteomics of placentas reveals metabolic disturbance and oxidative damage participate yak spontaneous miscarriage during late pregnancy. BMC Vet Res 2022; 18:248. [PMID: 35761325 PMCID: PMC9235108 DOI: 10.1186/s12917-022-03354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. Results Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with “spinocerebellar ataxia”, “sphingolipid signalling”, “relaxin signalling”, “protein export”, “protein digestion and absorption” and “aldosterone synthesis and secretion” pathway. While the down-regulated DEPs in the aborted placentas mainly participated in “valine, leucine and isoleucine degradation”, “PPAR signalling”, “peroxisome”, “oxidative phosphorylation”, “galactose metabolism”, “fatty acid degradation”, “cysteine and methionine metabolism” and “citrate cycle” pathway. Conclusions The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03354-w.
Collapse
|
172
|
Liu F, Kambakam S, Almeida MP, Ming Z, Welker JM, Wierson WA, Schultz-Rogers LE, Ekker SC, Clark KJ, Essner JJ, McGrail M. Cre/ lox regulated conditional rescue and inactivation with zebrafish UFlip alleles generated by CRISPR-Cas9 targeted integration. eLife 2022; 11:71478. [PMID: 35713402 PMCID: PMC9270027 DOI: 10.7554/elife.71478] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to regulate gene activity spatially and temporally is essential to investigate cell type-specific gene function during development and in postembryonic processes and disease models. The Cre/lox system has been widely used for performing cell and tissue-specific conditional analysis of gene function in zebrafish. However, simple and efficient methods for isolation of stable, Cre/lox regulated zebrafish alleles are lacking. Here we applied our GeneWeld CRISPR-Cas9 targeted integration strategy to generate floxed alleles that provide robust conditional inactivation and rescue. A universal targeting vector, UFlip, with sites for cloning short homology arms flanking a floxed 2A-mRFP gene trap, was integrated into an intron in rbbp4 and rb1. rbbp4off and rb1off integration alleles resulted in strong mRFP expression, >99% reduction of endogenous gene expression, and recapitulated known indel loss of function phenotypes. Introduction of Cre led to stable inversion of the floxed cassette, loss of mRFP expression, and phenotypic rescue. rbbp4on and rb1on integration alleles did not cause phenotypes in combination with a loss of function mutation. Addition of Cre led to conditional inactivation by stable inversion of the cassette, gene trapping and mRFP expression, and the expected mutant phenotype. Neural progenitor Cre drivers were used for conditional inactivation and phenotypic rescue to showcase how this approach can be used in specific cell populations. Together these results validate a simplified approach for efficient isolation of Cre/lox responsive conditional alleles in zebrafish. Our strategy provides a new toolkit for generating genetic mosaics and represents a significant advance in zebrafish genetics.
Collapse
Affiliation(s)
- Fang Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Zhitao Ming
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Wesley A Wierson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Laura E Schultz-Rogers
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| |
Collapse
|
173
|
The importance of routine quality control for reproducible pulmonary measurements by in vivo micro-CT. Sci Rep 2022; 12:9695. [PMID: 35690601 PMCID: PMC9188608 DOI: 10.1038/s41598-022-13477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
Micro-computed tomography (CT) imaging provides densitometric and functional assessment of lung diseases in animal models, playing a key role either in understanding disease progression or in drug discovery studies. The generation of reliable and reproducible experimental data is strictly dependent on a system's stability. Quality controls (QC) are essential to monitor micro-CT performance but, although QC procedures are standardized and routinely employed in clinical practice, detailed guidelines for preclinical imaging are lacking. In this work, we propose a routine QC protocol for in vivo micro-CT, based on three commercial phantoms. To investigate the impact of a detected scanner drift on image post-processing, a retrospective analysis using twenty-two healthy mice was performed and lung density histograms used to compare the area under curve (AUC), the skewness and the kurtosis before and after the drift. As expected, statistically significant differences were found for all the selected parameters [AUC 532 ± 31 vs. 420 ± 38 (p < 0.001); skewness 2.3 ± 0.1 vs. 2.5 ± 0.1 (p < 0.001) and kurtosis 4.2 ± 0.3 vs. 5.1 ± 0.5 (p < 0.001)], confirming the importance of the designed QC procedure to obtain a reliable longitudinal quantification of disease progression and drug efficacy evaluation.
Collapse
|
174
|
Ma X, Dong Z, Liu J, Ma L, Sun X, Gao R, Pan L, Zhang J, A D, An J, Hu K, Sun A, Ge J. β-Hydroxybutyrate Exacerbates Hypoxic Injury by Inhibiting HIF-1α-Dependent Glycolysis in Cardiomyocytes-Adding Fuel to the Fire? Cardiovasc Drugs Ther 2022; 36:383-397. [PMID: 34652582 PMCID: PMC9090701 DOI: 10.1007/s10557-021-07267-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Ketone body oxidation yields more ATP per mole of consumed oxygen than glucose. However, whether an increased ketone body supply in hypoxic cardiomyocytes and ischemic hearts is protective or not remains elusive. The goal of this study is to determine the effect of β-hydroxybutyrate (β-OHB), the main constituent of ketone bodies, on cardiomyocytes under hypoxic conditions and the effects of ketogenic diet (KD) on cardiac function in a myocardial infarction (MI) mouse model. METHODS Human peripheral blood collected from patients with acute myocardial infarction and healthy volunteers was used to detect the level of β-OHB. N-terminal proB-type natriuretic peptide (NT-proBNP) levels and left ventricular ejection fractions (LVEFs) were measured to study the relationship between plasma β-OHB and cardiac function. Adult mouse cardiomyocytes and MI mouse models fed a KD were used to research the effect of β-OHB on cardiac damage. qPCR, western blot analysis, and immunofluorescence were used to detect the interaction between β-OHB and glycolysis. Live/dead cell staining and imaging, lactate dehydrogenase, Cell Counting Kit-8 assays, echocardiography, and 2,3,5-triphenyltetrazolium chloride staining were performed to evaluate the cardiomyocyte death, cardiac function, and infarct sizes. RESULTS β-OHB level was significantly higher in acute MI patients and MI mice. Treatment with β-OHB exacerbated cardiomyocyte death and decreased glucose absorption and glycolysis under hypoxic conditions. These effects were partially ameliorated by inhibiting hypoxia-inducible factor 1α (HIF-1α) degradation via roxadustat administration in hypoxia-stimulated cardiomyocytes. Furthermore, β-OHB metabolisms were obscured in cardiomyocytes under hypoxic conditions. Additionally, MI mice fed a KD exhibited exacerbated cardiac dysfunction compared with control chow diet (CD)-fed MI mice. CONCLUSION Elevated β-OHB levels may be maladaptive to the heart under hypoxic/ischemic conditions. Administration of roxadustat can partially reverse these harmful effects by stabilizing HIF-1α and inducing a metabolic shift toward glycolysis for energy production.
Collapse
Affiliation(s)
- Xiurui Ma
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingyi Liu
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Leilei Ma
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
| | - Rifeng Gao
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200032, China
| | - Lihong Pan
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jinyan Zhang
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Dilan A
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jian An
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China.
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
175
|
Mandriani B, Pellè E, Mannavola F, Palazzo A, Marsano RM, Ingravallo G, Cazzato G, Ramello MC, Porta C, Strosberg J, Abate-Daga D, Cives M. Development of anti-somatostatin receptors CAR T cells for treatment of neuroendocrine tumors. J Immunother Cancer 2022; 10:e004854. [PMID: 35764366 PMCID: PMC9240886 DOI: 10.1136/jitc-2022-004854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroendocrine tumors (NETs) overexpress somatostatin receptors (SSTRs). METHODS We developed a second-generation, ligand-based, anti-SSTR chimeric antigen receptor (CAR) incorporating the somatostatin analog octreotide in its extracellular moiety. RESULTS Anti-SSTR CAR T cells exerted antitumor activity against SSTR+NET cell linesin vitro. The killing activity was highly specific, as demonstrated by the lack of CAR T cell reactivity against NET cells engineered to express mutated variants of SSTR2/5 by CRISPR/Cas9. When adoptively transferred in NSG mice, anti-SSTR CAR T cells induced significant antitumor activity against human NET xenografts. Although anti-SSTR CAR T cells could recognize the murine SSTRs as shown by their killing ability against murine NET cells, no obvious deleterious effects on SSTR-expressing organs such as the brain or the pancreas were observed in mice. CONCLUSIONS Taken together, our results establish anti-SSTR CAR T cells as a potential candidate for early phase clinical investigations in patients with NETs. More broadly, the demonstration that a known peptide drug can direct CAR T cell targeting may streamline the potential utility of multiple peptide motifs and provide a blueprint for therapeutic applications in a variety of cancers.
Collapse
Affiliation(s)
- Barbara Mandriani
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Pellè
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Mannavola
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Antonio Palazzo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | | | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Cecilia Ramello
- Departments of Immunology and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Daniel Abate-Daga
- Departments of Immunology and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of GI Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mauro Cives
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
176
|
Systemic, Intrathecal, and Intracerebroventricular Antihyperalgesic Effects of the Calcium Channel Blocker CTK 01512–2 Toxin in Persistent Pain Models. Mol Neurobiol 2022; 59:4436-4452. [DOI: 10.1007/s12035-022-02864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
177
|
Nault R, Saha S, Bhattacharya S, Dodson J, Sinha S, Maiti T, Zacharewski T. Benchmarking of a Bayesian single cell RNAseq differential gene expression test for dose-response study designs. Nucleic Acids Res 2022; 50:e48. [PMID: 35061903 PMCID: PMC9071439 DOI: 10.1093/nar/gkac019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
The application of single-cell RNA sequencing (scRNAseq) for the evaluation of chemicals, drugs, and food contaminants presents the opportunity to consider cellular heterogeneity in pharmacological and toxicological responses. Current differential gene expression analysis (DGEA) methods focus primarily on two group comparisons, not multi-group dose-response study designs used in safety assessments. To benchmark DGEA methods for dose-response scRNAseq experiments, we proposed a multiplicity corrected Bayesian testing approach and compare it against 8 other methods including two frequentist fit-for-purpose tests using simulated and experimental data. Our Bayesian test method outperformed all other tests for a broad range of accuracy metrics including control of false positive error rates. Most notable, the fit-for-purpose and standard multiple group DGEA methods were superior to the two group scRNAseq methods for dose-response study designs. Collectively, our benchmarking of DGEA methods demonstrates the importance in considering study design when determining the most appropriate test methods.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Satabdi Saha
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Biomedical Engineering Department, Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Dodson
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Tim Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
178
|
Kindler D, Maschio C, Ni R, Zerbi V, Razansky D, Klohs J. Arterial spin labeling demonstrates preserved regional cerebral blood flow in the P301L mouse model of tauopathy. J Cereb Blood Flow Metab 2022; 42:686-693. [PMID: 34822744 PMCID: PMC8943618 DOI: 10.1177/0271678x211062274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing evidence for the vascular contribution to cognitive impairment and dementia in Alzheimer's disease (AD) and other neurodegenerative diseases. While perfusion deficits have been observed in patients with Alzheimer's disease and tauopaties, little is known about the role of tau in vascular dysfunction. In the present study, regional cerebral blood (rCBF) was characterized in P301L mice with arterial spin labeling. No differences in rCBF in P301L mice compared to their age-matched non-transgenic littermates at mid (10-12 months of age) and advanced (19-21 months of age) disease stages. This was concomitant with preservation of cortical brain structure as assessed with structural T2-weighted magnetic resonance imaging. These results show that hypoperfusion and neurodegeneration are not a phenotype of P301L mice. More studies are thus needed to understand the relationship of tau, neurodegeneration and vascular dysfunction and its modulators in AD and primary tauopathies.
Collapse
Affiliation(s)
- Diana Kindler
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland
| | - Cinzia Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Valerio Zerbi
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, 27219ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
179
|
Blomqvist KJ, Skogster MOB, Kurkela MJ, Rosenholm MP, Ahlström FHG, Airavaara MT, Backman JT, Rauhala PV, Kalso EA, Lilius TO. Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine. J Control Release 2022; 344:214-224. [PMID: 35301056 DOI: 10.1016/j.jconrel.2022.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier significantly limits effective drug delivery to central nervous system (CNS) targets. The recently characterized glymphatic system offers a perivascular highway for intrathecally (i.t.) administered drugs to reach deep brain structures. Although periarterial cerebrospinal fluid (CSF) influx and concomitant brain drug delivery can be enhanced by pharmacological or hyperosmotic interventions, their effects on drug delivery to the spinal cord, an important target for many drugs, have not been addressed. Hence, we studied in rats whether enhancement of periarterial flow by systemic hypertonic solution might be utilized to enhance spinal delivery and efficacy of i.t. morphine. We also studied whether the hyperosmolar intervention affects brain or cerebrospinal fluid drug concentrations after systemic administration. Periarterial CSF influx was enhanced by intraperitoneal injection of hypertonic saline (HTS, 5.8%, 20 ml/kg, 40 mOsm/kg). The antinociceptive effects of morphine were characterized, using tail flick, hot plate and paw pressure tests. Drug concentrations in serum, tissue and microdialysis samples were determined by liquid chromatography-tandem mass spectrometry. Compared with isotonic solution, HTS increased concentrations of spinal i.t. administered morphine by 240% at the administration level (T13-L1) at 60 min and increased the antinociceptive effect of morphine in tail flick, hot plate, and paw pressure tests. HTS also independently increased hot plate and paw pressure latencies but had no effect in the tail flick test. HTS transiently increased the penetration of intravenous morphine into the lateral ventricle, but not into the hippocampus. In conclusion, acute systemic hyperosmolality is a promising intervention for enhanced spinal delivery of i.t. administered morphine. The relevance of this intervention should be expanded to other i.t. drugs and brought to clinical trials.
Collapse
Affiliation(s)
- Kim J Blomqvist
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Moritz O B Skogster
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mika J Kurkela
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marko P Rosenholm
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik H G Ahlström
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko T Airavaara
- Faculty of Pharmacy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pekka V Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija A Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Finland; SleepWell Research Programme, Faculty of Medicine, University of Helsinki, Finland
| | - Tuomas O Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
180
|
Comparative assessment of motion averaged free-breathing or breath-held cardiac magnetic resonance imaging protocols in a porcine myocardial infarction model. Sci Rep 2022; 12:3727. [PMID: 35260600 PMCID: PMC8904807 DOI: 10.1038/s41598-022-07566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Breath-held (BH) cardiac magnetic resonance imaging (CMR) is the gold standard for volumetric quantification. However, large animals for pre-clinical research are unable to voluntarily breath-hold, necessitating general anaesthesia and mechanical ventilation, increasing research costs and affecting cardiovascular physiology. Conducting CMR in lightly sedated, free-breathing (FB) animal subjects is an alternative strategy which can overcome these constraints, however, may result in poorer image quality due to breathing motion artefact. We sought to assess the reproducibility of CMR metrics between FB and BH CMR in a porcine model of ischaemic cardiomyopathy. FB or BH CMR was performed in 38 porcine subjects following percutaneous induction of myocardial infarction. Analysis was performed by two independent, blinded observers according to standard reporting guidelines. Subjective and objective image quality was significantly improved in the BH cohort (image quality score: 3.9/5 vs. 2.4/5; p < 0.0001 and myocardium:blood pool intensity ratio: 2.6-3.3 vs. 1.9-2.3; p < 0.001), along with scan acquisition time (4 min 06 s ± 1 min 55 s vs. 8 min 53 s ± 2 min 39 s; p < 0.000). Intra- and inter-observer reproducibility of volumetric analysis was substantially improved in BH scans (correlation coefficients: 0.94-0.99 vs. 0.76-0.91; coefficients of variation: < 5% in BH and > 5% in FB; Bland-Altman limits of agreement: < 10 in BH and > 10 in FB). Interstudy variation between approaches was used to calculate sample sizes, with BH CMR resulting in greater than 85% reduction in animal numbers required to show clinically significant treatment effects. In summary, BH porcine CMR produces superior image quality, shorter scan acquisition, greater reproducibility, and requires smaller sample sizes for pre-clinical trials as compared to FB acquisition.
Collapse
|
181
|
Kukula O, Kırmızıkan S, Tiryaki ES, Çiçekli MN, Günaydın C. Asiatic acid exerts an anti-psoriatic effect in the imiquimod-induced psoriasis model in mice. Immunopharmacol Immunotoxicol 2022; 44:367-372. [PMID: 35253588 DOI: 10.1080/08923973.2022.2048849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: Psoriasis is a common skin disorder related to inflammation and immune response. However, many treatment modalities are present in the clinics, and drug conformity halts chronic treatment. Therefore, novel treatment options are still needed. In this study, the possible protective effect of asiatic acid is one of the active compounds present in Centella Asiatica, was investigated in the imiquimod-induced psoriasis murine model.Methods:Imiquimod (62.5 mg) was administered dorsal skin of the mice for 6 days. Animals were co-treated with low-dose (25 mg/kg, p.o.) and high-dose (100 mg/kg, p.o.) asiatic acid. The dorsal skin of the animals was daily scored for erythema, thickness, and scaling. At the end of the treatments, serum levels of IL-17A and IL-23 were determined by ELISA. Additionally, the dorsal skins of animals were histopathologically evaluated.Results: Asiatic acid (high-dose) prevented imiquimod-induced skin lesions and protected dermal integrity in addition decreasing mast cell infiltration due to the imiquimod. Furthermore, asiatic acid (high-dose) suppressed the imiquimod-induced increase in serum levels of IL-17A and IL-23.Conclusion: These results indicate that asiatic acid showed an anti-psoriatic effect in the imiquimod-induced psoriasis model via mediating IL-17A and IL-23 pathways. Because wound healing properties of asiatic acid are described, further investigations should be carried out to understand deeper mechanisms and possible use in dermatological pathologies such as psoriasis.
Collapse
Affiliation(s)
- Osman Kukula
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Seda Kırmızıkan
- Department of Histology and Embryology, Hamidiye School of Medicine, University of Health Sciences, İstanbul, Turkey
| | - Emre Soner Tiryaki
- Department of Physiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
182
|
World association for the advancement of veterinary parasitology (WAAVP) guideline for the evaluation of the efficacy of anthelmintics in food-producing and companion animals: general guidelines. Vet Parasitol 2022; 304:109698. [DOI: 10.1016/j.vetpar.2022.109698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/09/2022] [Indexed: 01/11/2023]
|
183
|
Burden N, Embry MR, Hutchinson TH, Lynn SG, Maynard SK, Mitchell CA, Pellizzato F, Sewell F, Thorpe KL, Weltje L, Wheeler JR. Investigating endocrine-disrupting properties of chemicals in fish and amphibians: Opportunities to apply the 3Rs. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:442-458. [PMID: 34292658 PMCID: PMC9292818 DOI: 10.1002/ieam.4497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 05/04/2023]
Abstract
Many regulations are beginning to explicitly require investigation of a chemical's endocrine-disrupting properties as a part of the safety assessment process for substances already on or about to be placed on the market. Different jurisdictions are applying distinct approaches. However, all share a common theme requiring testing for endocrine activity and adverse effects, typically involving in vitro and in vivo assays on selected endocrine pathways. For ecotoxicological evaluation, in vivo assays can be performed across various animal species, including mammals, amphibians, and fish. Results indicating activity (i.e., that a test substance may interact with the endocrine system) from in vivo screens usually trigger further higher-tier in vivo assays. Higher-tier assays provide data on adverse effects on relevant endpoints over more extensive parts of the organism's life cycle. Both in vivo screening and higher-tier assays are animal- and resource-intensive and can be technically challenging to conduct. Testing large numbers of chemicals will inevitably result in the use of large numbers of animals, contradicting stipulations set out within many regulatory frameworks that animal studies be conducted as a last resort. Improved strategies are urgently required. In February 2020, the UK's National Centre for the 3Rs and the Health and Environmental Sciences Institute hosted a workshop ("Investigating Endocrine Disrupting Properties in Fish and Amphibians: Opportunities to Apply the 3Rs"). Over 50 delegates attended from North America and Europe, across academia, laboratories, and consultancies, regulatory agencies, and industry. Challenges and opportunities in applying refinement and reduction approaches within the current animal test guidelines were discussed, and utilization of replacement and/or new approach methodologies, including in silico, in vitro, and embryo models, was explored. Efforts and activities needed to enable application of 3Rs approaches in practice were also identified. This article provides an overview of the workshop discussions and sets priority areas for follow-up. Integr Environ Assess Manag 2022;18:442-458. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Thomas H. Hutchinson
- School of Geography, Earth & Environmental SciencesUniversity of PlymouthPlymouthUK
| | - Scott G. Lynn
- US Environmental Protection Agency (EPA)Office of Science Coordination and PolicyWashingtonDCUSA
- Present address:
US Environmental Protection Agency (EPA)Office of Pesticide ProgramsWashingtonDCUSA
| | | | | | | | | | - Karen L. Thorpe
- Centre for Chemical Safety and StewardshipFera Science Ltd.YorkUK
| | - Lennart Weltje
- BASF SE, Agricultural Solutions−EcotoxicologyLimburgerhofGermany
| | | |
Collapse
|
184
|
Ratajeski MA, Miller RS. Adapting to Changes in Publishing When Searching for Alternatives and Reporting on Animal Research: A Librarian's Perspective. Altern Lab Anim 2022; 50:57-61. [PMID: 35212234 DOI: 10.1177/02611929211072862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the inaugural issue of ATLA, many changes within publishing have occurred, impacting when, where, and how researchers conduct literature searches for non-animal alternatives. Such changes include increased rate of growth in scientific publications, greater number of databases and online resources available to search, opportunities for open and almost immediate dissemination of research outputs such as preprints and method protocols, and the development of reporting guidelines for animal research. Here we offer a librarian's perspective on these changes and advice on how to manage them to enable robust and diverse alternatives to be implemented in future research.
Collapse
Affiliation(s)
- Melissa A Ratajeski
- Health Sciences Library System, 6614University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebekah S Miller
- Health Sciences Library System, 6614University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
185
|
Utility of the combination of hederagenin glucoside saponins and chromane hydrazone in the topical treatment of canine cutaneous leishmaniasis. An observational study. Parasitol Res 2022; 121:1419-1428. [PMID: 35179617 DOI: 10.1007/s00436-022-07467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
Canine cutaneous leishmaniasis (CCL) is an emerging zoonotic infection endemic in several countries of the world. Due to variable response to therapy and frequency of relapses, a more effective, safer, and inexpensive treatment is needed. Recently, it was reported that the hederagenin glucoside saponins (SS) and chromane-derived hydrazone (TC2) combined in a 1:1 ratio has high potential in antileishmanial therapy since both compounds alter the survival of Leishmania and the ability to infect adjacent macrophage. Not only the skin permeation and the absorption of an ointment containing 2% TC2 and 2% SS (w/w) was determined in this work, but also the acute dermal toxicity in both in vitro and in vivo assays. Last, the effectiveness and safety of the topical therapy with 2% TC2-2% SS ointment was evaluated in an observational study in dogs with diagnosis of cutaneous leishmaniasis (CL). Both TC2 and SS diffused through pig ear skin and traces of TC2 (but not SS) were detected in the stratum corneum of mice at 6-24 h. Neither TC2 nor SS was detected in plasma. The acute dermal toxicity was negative. Treatment with 2% TC2-2% SS ointment produced a complete long-term clinical cure in 56 dogs (24 females and 32 males) from the Orinoco and Amazonas regions in southeastern Colombia without adverse effects. All dogs have remained disease-free for the last 24 months. In conclusion, these results support the use of this topical therapy as a safer and new first-line local treatment of CCL that could help limit the spread of CL from dogs to humans.
Collapse
|
186
|
Cholico GN, Nault R, Zacharewski TR. Genome-Wide ChIPseq Analysis of AhR, COUP-TF, and HNF4 Enrichment in TCDD-Treated Mouse Liver. Int J Mol Sci 2022; 23:1558. [PMID: 35163483 PMCID: PMC8836158 DOI: 10.3390/ijms23031558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known for mediating the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although the canonical mechanism of AhR activation involves heterodimerization with the aryl hydrocarbon receptor nuclear translocator, other transcriptional regulators that interact with AhR have been identified. Enrichment analysis of motifs in AhR-bound genomic regions implicated co-operation with COUP transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF4). The present study investigated AhR, HNF4α and COUP-TFII genomic binding and effects on gene expression associated with liver-specific function and cell differentiation in response to TCDD. Hepatic ChIPseq data from male C57BL/6 mice at 2 h after oral gavage with 30 µg/kg TCDD were integrated with bulk RNA-sequencing (RNAseq) time-course (2-72 h) and dose-response (0.01-30 µg/kg) datasets to assess putative AhR, HNF4α and COUP-TFII interactions associated with differential gene expression. Functional enrichment analysis of differentially expressed genes (DEGs) identified differential binding enrichment for AhR, COUP-TFII, and HNF4α to regions within liver-specific genes, suggesting intersections associated with the loss of liver-specific functions and hepatocyte differentiation. Analysis found that the repression of liver-specific, HNF4α target and hepatocyte differentiation genes, involved increased AhR and HNF4α binding with decreased COUP-TFII binding. Collectively, these results suggested TCDD-elicited loss of liver-specific functions and markers of hepatocyte differentiation involved interactions between AhR, COUP-TFII and HNF4α.
Collapse
Affiliation(s)
| | | | - Tim R. Zacharewski
- Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; (G.N.C.); (R.N.)
| |
Collapse
|
187
|
Dzhoyashvili NA, Iyer SR, Chen HH, Burnett JC. MANP (M-Atrial Natriuretic Peptide) Reduces Blood Pressure and Furosemide-Induced Increase in Aldosterone in Hypertension. Hypertension 2022; 79:750-760. [PMID: 35045724 PMCID: PMC8916975 DOI: 10.1161/hypertensionaha.121.18837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND MANP (M-atrial natriuretic peptide) is a best-in-class activator of the pGC-A (particulate guanylyl cyclase A) receptor. Furosemide increases the effectiveness of antihypertensive agents, but activates renin-angiotensin-aldosterone system. We aimed to investigate for the first time cardiorenal and neurohumoral actions of MANP in a genetic model of hypertension in spontaneously hypertensive rats. We also assessed how MANP would potentiate the blood pressure (BP)-lowering actions of furosemide while reducing the production of aldosterone. METHODS Spontaneously hypertensive rats (n=60) were randomized in vehicle, MANP, furosemide, or MANP+furosemide groups. Furosemide (1, 5, 10 mg/kg) was given as a single bolus which in MANP+furosemide groups was followed by a 60-minute infusion of MANP. RESULTS BP was reduced in MANP300 (300 pmol/[kg·min]) and MANP600 (600 pmol/[kg·min]) groups (P<0.05) and was accompanied by significant increase in plasma cGMP. Furosemide alone reduced BP but less compared with MANP with no change in plasma cGMP. MANP+furosemide resulted in the greatest BP reduction and significant increase in plasma cGMP in Fs5+MANP300, Fs10+MANP300, and Fs10+MANP600. Plasma aldosterone increased in furosemide groups, which was significantly attenuated in MANP+furosemide groups. Natriuresis and diuresis increased in all treated groups (P<0.05) with no significant differences between furosemide and furosemide+MANP. In vitro, MANP increased cGMP level in human vascular cells. CONCLUSIONS We provide novel evidence that MANP potentiates the BP-lowering actions of furosemide, suppresses the activation of renin-angiotensin-aldosterone system, and preserves renal function. These data are highly relevant to clinical needs in the treatment of hypertension and heart failure.
Collapse
Affiliation(s)
- Nina A Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.).,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN. (J.C.B.)
| |
Collapse
|
188
|
Differential proteomic analysis demonstrates follicle fluid participate immune reaction and protein translation in yak. BMC Vet Res 2022; 18:34. [PMID: 35031034 PMCID: PMC8758897 DOI: 10.1186/s12917-021-03097-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Ovarian follicle fluid (FF) as a microenvironment surrounding oocyte plays critical roles in physio-biochemical processes of follicle development and oocyte maturation. It is hypothesized that proteins in yak FF participate in the physio-biochemical pathways. The primary aims of this study were to find differentially expressed proteins (DEPs) between mature and immature FF, and to elucidating functions of the mature and immature FF in yak. Results The mature and immature FF samples were obtained from three healthy yaks that were nonpregnant, aged from four to five years, and free from any anatomical reproductive disorders. The FF samples were subjected to mass spectrometry with the isobaric tags for relative and absolute quantification (iTRAQ). The FF samples went through correlation analysis, principle component analysis, and expression pattern analysis based on quantification of the identified proteins. Four hundred sixty-three DEPs between mature and immature FF were identified. The DEPs between the mature and immature FF samples underwent gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) analysis. The DEPs highly expressed in the mature FF mainly took parts in the complement and coagulation cascades, defense response, acute-phase response, response to other organism pathways to avoid invasion of exogenous microorganisms. The complement activation pathway contains eight DEPs, namely C2, C5, C6, C7, C9, C4BPA, CFH, and MBL2. The three DEPs, CATHL4, CHGA, and PGLYRP1, take parts in defense response pathway to prevent invasion of exogenetic microorganism. The coagulation cascades pathway involves many coagulation factors, such as F7, F13A1, FGA, FGB, FGG, KLKB1, KNG1, MASP1, SERPINA1, and SERPIND1. While the DEPs highly expressed in the immature FF participated in protein translation, peptide biosynthetic process, DNA conformation change, and DNA geometric change pathways to facilitate follicle development. The translation pathway contains many ribosomal proteins, such as RPL3, RPL5, RPS3, RPS6, and other translation factors, such as EIF3J, EIF4G2, ETF1, MOV10, and NARS. The DNA conformation change and DNA geometric change involve nine DEPs, DDX1, G3BP1, HMGB1, HMGB2, HMGB3, MCM3, MCM5, MCM6, and RUVBL2. Furthermore, the expressed levels of the main DEPs, C2 and SERPIND1, were confirmed by western blot. Conclusions The differential proteomics revealed the up-regulated DEPs in mature FF take parts in immunoreaction to prevent invasion of microorganisms and the up-regulated DEPs in immature FF participate in protein synthesis, which may improve our knowledge of the follicular microenvironment and its biological roles for reproductive processes in yak. The DEPs, C2 and SERPIND1, can be considered as protein markers for mature yak follicle. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03097-0.
Collapse
|
189
|
Georgiadou A, Dunican C, Soro-Barrio P, Lee HJ, Kaforou M, Cunnington AJ. Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria. eLife 2022; 11:e70763. [PMID: 35006075 PMCID: PMC8747512 DOI: 10.7554/elife.70763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Recent initiatives to improve translation of findings from animal models to human disease have focussed on reproducibility but quantifying the relevance of animal models remains a challenge. Here, we use comparative transcriptomics of blood to evaluate the systemic host response and its concordance between humans with different clinical manifestations of malaria and five commonly used mouse models. Plasmodium yoelii 17XL infection of mice most closely reproduces the profile of gene expression changes seen in the major human severe malaria syndromes, accompanied by high parasite biomass, severe anemia, hyperlactatemia, and cerebral microvascular pathology. However, there is also considerable discordance of changes in gene expression between the different host species and across all models, indicating that the relevance of biological mechanisms of interest in each model should be assessed before conducting experiments. These data will aid the selection of appropriate models for translational malaria research, and the approach is generalizable to other disease models.
Collapse
Affiliation(s)
- Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Pablo Soro-Barrio
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - Hyun Jae Lee
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
190
|
Oliveira Neto J, Boechat SK, Romão JS, Kuhnert LB, Pazos-Moura C, Oliveira KJ. Cinnamaldehyde treatment during adolescence improves white and brown adipose tissue metabolism in a male rat model of early obesity. Food Funct 2022; 13:3405-3418. [DOI: 10.1039/d1fo03871k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Early obesity is a serious health problem and nutritional therapeutic strategies during young age may improve health outcomes throughout life. Cinnamaldehyde, major component of cinnamon, exhibits several beneficial metabolic effects....
Collapse
|
191
|
Menegasso JF, Moraes NAC, Vásquez TP, Felipetti FA, Antonio RV, Dutra RC. Modified montmorillonite-bacterial cellulose composites as a novel dressing system for pressure injury. Int J Biol Macromol 2022; 194:402-411. [PMID: 34818530 DOI: 10.1016/j.ijbiomac.2021.11.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
The main objective of this study was to investigate the effects of bacterial cellulose hydrogel (BCH) incorporated into montmorillonite (MMT) and its underlying mechanisms of action on a skin wound healing mouse model following pressure injury model. Komagataeibacter hansenii was used to obtain 5 cm in diameter and 0.8 mm of thickness circular bacterial cellulose (BC) sheets, which were incorporated with MMT by deposition ex-site using a 0.1% MMT suspension (100 rpm for 24 h at 28 °C). Afterward, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) were used to characterize the bacterial cellulose hydrogel incorporated into montmorillonite (BCH-MMT). The pressure injury model was assessed by macroscopic and histological analysis in male Swiss mice. Both, BC and BCH-MMT, showed a typical FTIR spectrum of cellulosic substrates with pronounces bands around 3344, 2920, 1637, and 1041 cm-1 while microparticles of MMT dispersed uniformly throughout BC were revealed by SEM photographs. Animals treated with BCH-MMT showed significant healing of pressure ulcers as demonstrated by reduced area of redness and spontaneous hyperalgesia, lower amounts of in-site inflammatory cells (to the same level as the positive control Dersani®) and ultimately, complete epidermis re-epithelialization and tissue regeneration. Altogether, these findings suggest that a modified BCH-MMT film could serve as scaffolding for skin tissue engineering and potentially as a novel dressing material for pressure injury.
Collapse
Affiliation(s)
- Jaíne Ferrareis Menegasso
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Nayara Alves Celinca Moraes
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Tatiana Pineda Vásquez
- Laboratory of Biochemistry and Microbiology Applied to Biotechnological Processes, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Francielly Andressa Felipetti
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Regina Vasconcellos Antonio
- Laboratory of Biochemistry and Microbiology Applied to Biotechnological Processes, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
192
|
Martins CP, Paes RS, Baldasso GM, Ferrarini EG, Scussel R, Zaccaron RP, Machado-de-Ávila RA, Lock Silveira PC, Dutra RC. Pramipexole, a dopamine D3/D2 receptor-preferring agonist, attenuates reserpine-induced fibromyalgia-like model in mice. Neural Regen Res 2022; 17:450-458. [PMID: 34269222 PMCID: PMC8463993 DOI: 10.4103/1673-5374.317984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibromyalgia (FM) is a complex pathology described as persistent hyperalgesia including somatic and mood dysfunctions, depression and anxiety. Although the etiology of FM is still unknown, a significant decrease in biogenic amines is a common characteristic in its pathogenesis. Here, our main objective was to investigate the role of dopamine D3/D2 receptor during the reserpine-induced pain in mice. Our results showed that pramipexole (PPX) - a dopaminergic D3/D2 receptor agonist - inhibited mechanical allodynia and thermal sensitivity induced by reserpine. Relevantly, PPX treatment decreased immobility time and increased the number of grooming in the forced swimming test and splash test, respectively. Animals that received PPX remained longer in the open arms than the reserpine group using elevated plus-maze apparatus. The repeated PPX administration, given daily for 4 days, significantly blocked the mechanical and thermal allodynia during FM model, similarly to pregabalin, although it failed to affect the reserpine-induced thermal nociception. Reserpine administration induced significant downregulation of dopamine concentration in the central nervous system, and repeated treatment with PPX restored dopamine levels in the frontal cortex and spinal cord tissues. Moreover, PPX treatment inhibited oxidants production such as DCFH (2',7'-dichlorodihydrofluorescein) and nitrite, also decreased oxidative damage (carbonyl), and upregulated the activity of superoxide dismutase in the spinal cord. Together, our findings demonstrated the ability of dopamine D3/D2 receptor-preferring agonist in reducing pain and mood dysfunction allied to FM in mice. All experimental protocols were approved by the Universidade Federal de Santa Catarina (UFSC) Ethics Committee (approval No. 2572210218) on May 10, 2018.
Collapse
Affiliation(s)
- Carlos Pereira Martins
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rodrigo Sebben Paes
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Gabriela Mantovani Baldasso
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Eduarda Gomes Ferrarini
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
193
|
Beamer E, Morgan J, Alves M, Méndez AM, Morris G, Zimmer B, Conte G, de Diego-Garcia L, Alarcón-Vila C, Ng NKY, Madden S, Calzaferri F, de Los Rios C, Garcia AG, Hamacher M, Dinkel K, Pelegrin P, Henshall DC, Nicke A, Engel T. Increased expression of the ATP-gated P2X7 receptor reduces responsiveness to anti-convulsants during status epilepticus in mice. Br J Pharmacol 2021; 179:2986-3006. [PMID: 34962289 DOI: 10.1111/bph.15785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Refractory status epilepticus is a clinical emergency associated with high mortality and morbidity. Increasing evidence suggests neuroinflammation contributes to the development of drug-refractoriness during status epilepticus. The aim of the present study was to determine the contribution of the ATP-gated P2X7 receptor (P2X7R), previously linked to both inflammation and increased hyperexcitability, to drug-refractory status epilepticus and its therapeutic potential. EXPERIMENTAL APPROACH Status epilepticus was induced via a unilateral microinjection of kainic acid into the amygdala in adult mice. Severity of status epilepticus was compared in animals with overexpressing or knock-out of the P2X7R, after inflammatory priming by the pre-injection of bacterial lipopolysaccharide (LPS) and in mice treated with P2X7R-targeting and anti-inflammatory drugs. KEY RESULTS P2X7R overexpressing mice were unresponsive to several anticonvulsants (lorazepam, midazolam, phenytoin and carbamazepine) during status epilepticus. P2X7R expression was increased in microglia during status epilepticus, at a time-point when responses to anticonvulsant are reduced. P2X7R overexpression led to a pro-inflammatory phenotype in microglia during status epilepticus and the anti-inflammatory drug minocycline restored normal responsiveness to anticonvulsants in P2X7R overexpressing mice. Pre-treatment of wildtype mice with LPS increased P2X7R levels in the brain and reduced responsiveness to anticonvulsants during status epilepticus, which was overcome by either a genetic deletion of the P2X7R or the administration of the P2X7R antagonists AFC-5128 or ITH15004. CONCLUSION AND IMPLICATIONS Our results demonstrate that P2X7R-induced pro-inflammatory effects contribute to resistance to pharmacotherapy during status epilepticus and suggest therapies targeting the P2X7R as novel adjunctive treatments for drug-refractory status epilepticus.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - James Morgan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Aida Menéndez Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Gareth Morris
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giorgia Conte
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Cristina Alarcón-Vila
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista s/n. 30120 El Palmar, Murcia, Spain
| | - Nico Ka Yiu Ng
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Francesco Calzaferri
- Instituto-Fundación Teofilo Hernando and Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 4, Madrid, Spain
| | - Cristobal de Los Rios
- Instituto-Fundación Teofilo Hernando and Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 4, Madrid, Spain.,Instituto de Investigacion Sanitaria, Hospital Universitario de La Princesa, C/Diego de Leon, 62, 1a Planta, Madrid, Spain
| | - Antonio G Garcia
- Instituto-Fundación Teofilo Hernando and Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 4, Madrid, Spain.,Instituto de Investigacion Sanitaria, Hospital Universitario de La Princesa, C/Diego de Leon, 62, 1a Planta, Madrid, Spain
| | - Michael Hamacher
- Affectis Pharmaceuticals AG, Otto-Hahn-Straße 15, Dortmund, Germany
| | - Klaus Dinkel
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, Dortmund, Germany
| | - Pablo Pelegrin
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista s/n. 30120 El Palmar, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
194
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. In vitro Oscillation Patterns Throughout the Hippocampal Formation in a Rodent Model of Epilepsy. Neuroscience 2021; 479:1-21. [PMID: 34710537 DOI: 10.1016/j.neuroscience.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Specific oscillatory patterns are considered biomarkers of pathological neuronal network in brain diseases, such as epilepsy. However, the dynamics of underlying oscillations during the epileptogenesis throughout the hippocampal formation in the temporal lobe epilepsy is not clear. Here, we characterized in vitro oscillatory patterns within the hippocampal formation of epileptic rats, under 4-aminopyridine (4-AP)-induced hyperexcitability and during the spontaneous network activity, at two periods of epileptogenesis. First, at the beginning of epileptic chronic phase, 30 days post-pilocarpine-induced Status Epilepticus (SE). Second, at the established epilepsy, 60 days post-SE. The 4-AP-bathed slices from epileptic rats had increased susceptibility to ictogenesis in CA1 at 30 days post-SE, and in entorhinal cortex and dentate gyrus at 60 days post-SE. Higher power and phase coherence were detected mainly for gamma and/or high frequency oscillations (HFOs), in a region- and stage-specific manner. Interestingly, under spontaneous network activity, even without 4-AP-induced hyperexcitability, slices from epileptic animals already exhibited higher power of gamma and HFOs in different areas of hippocampal formation at both periods of epileptogenesis, and higher phase coherence in fast ripples at 60 days post-SE. These findings reinforce the critical role of gamma and HFOs in each one of the hippocampal formation areas during ongoing neuropathological processes, tuning the neuronal network to epilepsy.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
| |
Collapse
|
195
|
Jung HH, Koh CS, Park M, Kim JH, Woo HN, Lee H, Chang JW. Microglial deactivation by adeno-associated virus expressing small-hairpin GCH1 has protective effects against neuropathic pain development in a spinothalamic tract-lesion model. CNS Neurosci Ther 2021; 28:36-45. [PMID: 34845843 PMCID: PMC8673712 DOI: 10.1111/cns.13751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS Neuropathic pain after spinal cord injury is one of the most difficult clinical problems after the loss of mobility, and pharmacological or neuromodulation therapy showed limited efficacy. In this study, we examine the possibility of pain modulation by a recombinant adeno-associated virus (rAAV) encoding small-hairpin RNA against GCH1 (rAAV-shGCH1) in a spinal cord injury model in which neuropathic pain was induced by a spinothalamic tract (STT) lesion. METHODS Micro-electric lesioning was used to damage the left STT in rats (n = 32), and either rAAV-shGCH1 (n = 19) or rAAV control (n = 6) was injected into the dorsal horn of the rats at the same time. On postoperative days 3, 7, and 14, we evaluated neuropathic pain using a behavioral test and microglial activation by immunohistochemical staining. RESULTS A pain modulation effect of shGCH1 was observed from postoperative days 3 to 14. The mechanical withdrawal threshold was 13.0 ± 0.95 in the shGCH1 group, 4.3 ± 1.37 in the control group, and 3.49 ± 0.85 in sham on postoperative day 3 (p < 0.0001) and continued to postoperative day 14 (shGCH1 vs. control: 11.4 ± 1.1 vs. 2.05 ± 0.60, p < 0.001 and shGCH1 vs. sham: 11.4 ± 1.1 vs. 1.43 ± 0.54, p < 0.001). Immunohistochemical staining of the spinal cord dorsal horn showed deactivation of microglia in the shGCH1 group without any change of delayed pattern of astrocyte activation as in STT model. CONCLUSIONS Neuropathic pain after spinal cord injury can be modulated bilaterally by deactivating microglial activation after a unilateral injection of rAAV-shGCH1 into the dorsal horn of a STT lesion spinal cord pain model. This new attempt would be another therapeutic approach for NP after SCI, which once happens; there is no clear curative options still now.
Collapse
Affiliation(s)
- Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ha-Na Woo
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biochemistry & Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Heuiran Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
196
|
Andruzzi MN, Simon BT, Boudreau E. Subclinical Hypoventilation in Dogs Undergoing Ventral Slot Decompressive Surgery for Cervical Myelopathy Due to Intervertebral Disc Herniation. Front Vet Sci 2021; 8:777052. [PMID: 34805345 PMCID: PMC8599362 DOI: 10.3389/fvets.2021.777052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022] Open
Abstract
The objective of this prospective cohort study was to document the occurrence of post-operative hypoventilation in dogs undergoing decompressive ventral slot or hemilaminectomy for the treatment of intervertebral disc herniation (IVDH). Twenty dogs undergoing ventral slot surgery and 20 dogs undergoing hemilaminectomy surgery for the treatment of IVDH that presented to XX between 2017 and 2020 were enrolled. Dogs were anesthetized using a standard protocol. Blood gas samples were taken at up to 11 time points beginning during anesthetic recovery and continuing for a maximum of 72 h post-operatively. Dogs with cervical lesions that were non-ambulatory before surgery had more evidence of subclinical hypoventilation in the immediate peri-extubation period than dogs with less severe injuries or those undergoing hemilaminectomy surgery. We found no difference in the ventilation status in dogs undergoing cervical or thoracolumbar decompressive surgery for IVDH from 8 to 72 h post-operatively. Other markers of acid-base status indicated that subclinical hypoventilation within the peri-extubation period was transient and self-limiting. There was a moderate positive correlation between sedation scores and estimated PaCO2. These data suggest that dogs with severe cervical spinal cord injuries may be at risk for subclinical hypoventilation in the immediate peri-extubation period. Increased sedation may be correlated with decreased ventilatory status in dogs recovering from decompressive vertebral column surgery.
Collapse
Affiliation(s)
- Melissa N Andruzzi
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Bradley T Simon
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Elizabeth Boudreau
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
197
|
Piotrowska A, Ciapała K, Pawlik K, Kwiatkowski K, Rojewska E, Mika J. Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model- In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms222011074. [PMID: 34681732 PMCID: PMC8538855 DOI: 10.3390/ijms222011074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.
Collapse
MESH Headings
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Behavior, Animal/drug effects
- Cells, Cultured
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Down-Regulation/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/pathology
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats
- Rats, Wistar
- Receptors, CXCR3/antagonists & inhibitors
- Receptors, CXCR3/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Stress, Mechanical
Collapse
|
198
|
Günaydın C, Önger ME, Avcı B, Bozkurt A, Terzi M, Bilge SS. Tofacitinib enhances remyelination and improves myelin integrity in cuprizone-induced mice. Immunopharmacol Immunotoxicol 2021; 43:790-798. [PMID: 34618622 DOI: 10.1080/08923973.2021.1986063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM Demyelination and subsequent remyelination are well-known mechanisms in multiple sclerosis (MS) pathology. Current research mainly focused on preventing demyelination or regulating the peripheral immune system to protect further damage to the central nervous system. However, information about another essential mechanism, remyelination, and its balance of the immune response within the central nervous system's boundaries is still limited. MATERIALS AND METHODS In this study, we tried to demonstrate the effect of the recently introduced Janus kinase (JAK)-signal transducer and activator of transcription (STAT) inhibitor, tofacitinib, on remyelination.Demyelination was induced by 6-week cuprizone administration, followed by 2-week tofacitinib (10, 30, and 100 mg/kg) treatment. RESULTS At the functional level, tofacitinib improved cuprizone-induced decline in motor coordination and muscle strength, which were assessed by rotarod and hanging wire tests. Tofacitinib also showed anti-inflammatory effect by alleviating the cuprizone-induced increase in the central levels of interferon-γ (IFN-γ), interleukin (IL)-6, IL-1β, and tumor necrosis alpha (TNF-α). Furthermore, tofacitinib also suppressed the cuprizone-induced increase in matrix metalloproteinases (MMP)-9 and MMP-2 levels. Additionally, cuprizone-induced loss of myelin integrity and myelin basic protein expression was inhibited by tofacitinib. At the molecular level, we also assessed phosphorylation of STAT-3 and STAT-5, and our data indicates tofacitinib suppressed cuprizone-induced phosphorylation in those proteins. CONCLUSION Our study highlights JAK/STAT inhibition provides beneficial effects on remyelination via inhibition of inflammatory cascade.
Collapse
Affiliation(s)
- Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - M Emin Önger
- Department of Histology and Embryology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Department of Biochemistry, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ayhan Bozkurt
- Department of Physiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Terzi
- Department of Neurology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - S Sırrı Bilge
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
199
|
Bertens CJF, van Mechelen RJS, Berendschot TTJM, Gijs M, Wolters JEJ, Gorgels TGMF, Nuijts RMMA, Beckers HJM. Repeatability, reproducibility, and agreement of three tonometers for measuring intraocular pressure in rabbits. Sci Rep 2021; 11:19217. [PMID: 34584185 PMCID: PMC8478901 DOI: 10.1038/s41598-021-98762-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to evaluate repeatability, reproducibility, and agreement of three commonly used tonometers in animal research (TonoLab, TonoVet, and TonoPEN AVIA) in a cohort of 24 rabbits. Additionally, the impact of sedation on IOP was investigated in 21 New Zealand White rabbits with the TonoVet tonometer. Repeatability was determined using the coefficient of variation (CoV) for two observers. For the TonoLab (6.55%) and TonoVet (6.38%) the CoV was lower than for the TonoPEN AVIA (10.88%). The reproducibility was highest for the TonoVet (0.2 ± 3.3 mmHg), followed by the TonoLab (0 ± 12.89 mmHg) and lowest for the TonoPEN AVIA (− 1.48 ± 10.3 mmHg). The TonoLab and TonoVet showed the highest agreement (r = 0.85, R2 = 0.73). After sedation, a significant IOP reduction (often > 25%) was observed. Our results show that among the three tonometers tested, the TonoVet tonometer is best for use in rabbits while the TonoLab should be avoided. The impact of sedation on IOP was substantial and should be taken into account during experimentation.
Collapse
Affiliation(s)
- Christian J F Bertens
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands. .,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands.
| | - Ralph J S van Mechelen
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands
| | - Marlies Gijs
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Jarno E J Wolters
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Theo G M F Gorgels
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Rudy M M A Nuijts
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Henny J M Beckers
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| |
Collapse
|
200
|
Abbas TO, Elawad A, Pullattayil S. AK, Pennisi CP. Quality of Reporting in Preclinical Urethral Tissue Engineering Studies: A Systematic Review to Assess Adherence to the ARRIVE Guidelines. Animals (Basel) 2021; 11:2456. [PMID: 34438913 PMCID: PMC8388767 DOI: 10.3390/ani11082456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Preclinical research within the area of urethral tissue engineering has not yet been successfully translated into an efficient therapeutic option for patients. This gap could be attributed, in part, to inadequate design and reporting of the studies employing laboratory animals. In this study, a systematic review was conducted to investigate the quality of reporting in preclinical studies utilizing tissue engineering approaches for urethral repair. The scope was on studies performed in rabbits, published between January 2014 and March 2020. Quality assessment of the data was conducted according to the Animal Research: Reporting of in Vivo Experiments (ARRIVE) guidelines by the scoring of a 38-item checklist in different categories. A total of 28 articles that fulfilled the eligibility criteria were included in the study. The range of ARRIVE score was from 0 to 100, taking into consideration having reported the item in question or not. The mean checklist score was 53%. The items that attained the highest scores included the number of animals utilized, the size of control and experimental groups, and the definition of experimental outcomes. The least frequently reported items included the data regarding the experimental procedure, housing and husbandry, determination and justification of the number of animals, and reporting of adverse events. Surprisingly, full disclosure about ethical guidelines and animal protocol approval was missing in 54% of the studies. No paper stated the sample size estimation. Overall, our study found that a large number of studies display inadequate reporting of fundamental information and that the quality of reporting improved marginally over the study period. We encourage a comprehensive implementation of the ARRIVE guidelines in animal studies exploring tissue engineering for urethral repair, not only to facilitate effective translation of preclinical research findings into clinical therapies, but also to ensure compliance with ethical principles and to minimize unnecessary animal studies.
Collapse
Affiliation(s)
- Tariq O. Abbas
- Regenerative Medicine Research Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar;
- College of Medicine, Qatar University, Doha 2713, Qatar
- Weill Cornell Medicine Qatar, Doha 24144, Qatar
| | - Abubakr Elawad
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar;
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Research Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| |
Collapse
|