151
|
Wang Y, Yan C, Liu L, Wang W, Du H, Fan W, Lutfy K, Jiang M, Friedman TC, Liu Y. 11β-Hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue. Am J Physiol Endocrinol Metab 2015; 308:E84-95. [PMID: 25389364 PMCID: PMC4281684 DOI: 10.1152/ajpendo.00205.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long-term glucocorticoid exposure increases the risk for developing type 2 diabetes. Prereceptor activation of glucocorticoid availability in target tissue by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6PDH) is an important mediator of the metabolic syndrome. We explored whether the tissue-specific modulation of 11β-HSD1 and H6PDH in adipose tissue mediates glucocorticoid-induced insulin resistance and lipolysis and analyzed the effects of 11β-HSD1 inhibition on the key lipid metabolism genes and insulin-signaling cascade. We observed that corticosterone (CORT) treatment increased expression of 11β-HSD1 and H6PDH and induced lipase HSL and ATGL with suppression of p-Thr(172) AMPK in adipose tissue of C57BL/6J mice. In contrast, CORT induced adipose insulin resistance, as reflected by a marked decrease in IR and IRS-1 gene expression with a reduction in p-Thr(308) Akt/PKB. Furthermore, 11β-HSD1 shRNA attenuated CORT-induced 11β-HSD1 and lipase expression and improved insulin sensitivity with a concomitant stimulation of pThr(308) Akt/PKB and p-Thr(172) AMPK within adipose tissue. Addition of CORT to 3T3-L1 adipocytes enhanced 11β-HSD1 and H6PDH and impaired p-Thr(308) Akt/PKB, leading to lipolysis. Knockdown of 11β-HSD1 by shRNA attenuated CORT-induced lipolysis and reversed CORT-mediated inhibition of pThr(172) AMPK, which was accompanied by a parallel improvement of insulin signaling response in these cells. These findings suggest that elevated adipose 11β-HSD1 expression may contribute to glucocorticoid-induced insulin resistance and adipolysis.
Collapse
Affiliation(s)
- Ying Wang
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, University of California Los Angeles (UCLA) School of Medicine, Los Angeles, California
| | - Chaoying Yan
- Department of Pediatrics, First Hospital, Jilin University, ChangChun, China
| | - Limei Liu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Wei Wang
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, University of California Los Angeles (UCLA) School of Medicine, Los Angeles, California
| | - Hanze Du
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, University of California Los Angeles (UCLA) School of Medicine, Los Angeles, California
| | - Winnie Fan
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, University of California Los Angeles (UCLA) School of Medicine, Los Angeles, California
| | - Kabirullah Lutfy
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, University of California Los Angeles (UCLA) School of Medicine, Los Angeles, California; Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California; and
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, University of California Los Angeles (UCLA) School of Medicine, Los Angeles, California
| | - Yanjun Liu
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, University of California Los Angeles (UCLA) School of Medicine, Los Angeles, California;
| |
Collapse
|
152
|
A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc Natl Acad Sci U S A 2014; 112:285-90. [PMID: 25535367 DOI: 10.1073/pnas.1421420112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids are known to promote the development of metabolic syndrome through the modulation of both feeding pathways and metabolic processes; however, the precise mechanisms of these effects are not well-understood. Recent evidence shows that glucocorticoids possess the ability to increase endocannabinoid signaling, which is known to regulate appetite, energy balance, and metabolic processes through both central and peripheral pathways. The aim of this study was to determine the role of endocannabinoid signaling in glucocorticoid-mediated obesity and metabolic syndrome. Using a mouse model of excess corticosterone exposure, we found that the ability of glucocorticoids to increase adiposity, weight gain, hormonal dysregulation, hepatic steatosis, and dyslipidemia was reduced or reversed in mice lacking the cannabinoid CB1 receptor as well as mice treated with the global CB1 receptor antagonist AM251. Similarly, a neutral, peripherally restricted CB1 receptor antagonist (AM6545) was able to attenuate the metabolic phenotype caused by chronic corticosterone, suggesting a peripheral mechanism for these effects. Biochemical analyses showed that chronic excess glucocorticoid exposure produced a significant increase in hepatic and circulating levels of the endocannabinoid anandamide, whereas no effect was observed in the hypothalamus. To test the role of the liver, specific and exclusive deletion of hepatic CB1 receptor resulted in a rescue of the dyslipidemic effects of glucocorticoid exposure, while not affecting the obesity phenotype or the elevations in insulin and leptin. Together, these data indicate that glucocorticoids recruit peripheral endocannabinoid signaling to promote metabolic dysregulation, with hepatic endocannabinoid signaling being especially important for changes in lipid metabolism.
Collapse
|
153
|
Yu J, Yu B, He J, Zheng P, Mao X, Han G, Chen D. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice. PLoS One 2014; 9:e112628. [PMID: 25389775 PMCID: PMC4229254 DOI: 10.1371/journal.pone.0112628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/20/2014] [Indexed: 01/16/2023] Open
Abstract
Prolonged and excessive glucocorticoids (GC) exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g) were administrated with 100 µg/ml corticosterone (CORT) or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.
Collapse
Affiliation(s)
- Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Guoquan Han
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- * E-mail:
| |
Collapse
|
154
|
Mo C, Renoir T, Hannan AJ. Ethological endophenotypes are altered by elevated stress hormone levels in both Huntington's disease and wildtype mice. Behav Brain Res 2014; 274:118-27. [DOI: 10.1016/j.bbr.2014.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 01/05/2023]
|
155
|
Long-term corticosterone exposure decreases insulin sensitivity and induces depressive-like behaviour in the C57BL/6NCrl mouse. PLoS One 2014; 9:e106960. [PMID: 25310187 PMCID: PMC4195581 DOI: 10.1371/journal.pone.0106960] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/04/2014] [Indexed: 12/21/2022] Open
Abstract
Chronic stress or long-term administration of glucocorticoids disrupts the hypothalamus-pituitary-adrenal system leading to continuous high levels of glucocorticoids and insulin resistance (IR). This pre-diabetic state can eventually develop into type 2 diabetes mellitus and has been associated with a higher risk to develop depressive disorders. The mechanisms underlying the link between chronic stress, IR and depression remains unclear. The present study aimed to establish a stress-depression model in mice to further study the effects of stress-induced changes upon insulin sensitivity and behavioural consequences. A pilot study was conducted to establish the optimal administration route and a pragmatic measurement of IR. Subsequently, 6-month-old C57BL/6NCrl mice were exposed to long-term oral corticosterone treatment via the drinking water. To evaluate insulin sensitivity changes, blood glucose and plasma insulin levels were measured at different time-points throughout treatment and mice were behaviourally assessed in the elevated zero maze (EZM), forced swimming test (FST) and open field test to reveal behavioural changes. Long-term corticosterone treatment increased body weight and decreased insulin sensitivity. The latter was revealed by a higher IR index and increased insulin in the plasma, whereas blood glucose levels remained unchanged. Corticosterone treatment induced longer immobility times in the FST, reflecting depressive-like behaviour. No effects were observed upon anxiety as measured in the EZM. The effect of the higher body weight of the CORT treated animals at time of testing did not influence behaviour in the EZM or FST, as no differences were found in general locomotor activity. Long-term corticosterone treatment via the drinking water reduces insulin sensitivity and induces depressive-like behaviour in the C57BL/6 mouse. This mouse model could thus be used to further explore the underlying mechanisms of chronic stress-induced T2DM and its association with increased prevalence of major depressive disorder on the short-term and other behavioural adaptations on the longer term.
Collapse
|
156
|
Sabbagh JJ, O'Leary JC, Blair LJ, Klengel T, Nordhues BA, Fontaine SN, Binder EB, Dickey CA. Age-associated epigenetic upregulation of the FKBP5 gene selectively impairs stress resiliency. PLoS One 2014; 9:e107241. [PMID: 25191701 PMCID: PMC4156438 DOI: 10.1371/journal.pone.0107241] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the FK506 binding protein 5 (FKBP5) gene combine with traumatic events to increase risk for post-traumatic stress and major depressive disorders (PTSD and MDD). These SNPs increase FKBP51 protein expression through a mechanism involving demethylation of the gene and altered glucocorticoid signaling. Aged animals also display elevated FKBP51 levels, which contribute to impaired resiliency to depressive-like behaviors through impaired glucocorticoid signaling, a phenotype that is abrogated in FKBP5−/− mice. But the age of onset and progressive stability of these phenotypes remain unknown. Moreover, it is unclear how FKBP5 deletion affects other glucocorticoid-dependent processes or if age-associated increases in FKBP51 expression are mediated through a similar epigenetic process caused by SNPs in the FKBP5 gene. Here, we show that FKBP51-mediated impairment in stress resiliency and glucocorticoid signaling occurs by 10 months of age and this increased over their lifespan. Surprisingly, despite these progressive changes in glucocorticoid responsiveness, FKBP5−/− mice displayed normal longevity, glucose tolerance, blood composition and cytokine profiles across lifespan, phenotypes normally associated with glucocorticoid signaling. We also found that methylation of Fkbp5 decreased with age in mice, a process that likely explains the age-associated increases in FKBP51 levels. Thus, epigenetic upregulation of FKBP51 with age can selectively impair psychological stress-resiliency, but does not affect other glucocorticoid-mediated physiological processes. This makes FKBP51 a unique and attractive therapeutic target to treat PTSD and MDD. In addition, aged wild-type mice may be a useful model for investigating the mechanisms of FKBP5 SNPs associated with these disorders.
Collapse
Affiliation(s)
- Jonathan J. Sabbagh
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida, United States of America
| | - John C. O'Leary
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida, United States of America
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida, United States of America
| | - Torsten Klengel
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, Unites States of America
- Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bryce A. Nordhues
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida, United States of America
| | - Sarah N. Fontaine
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida, United States of America
| | - Elisabeth B. Binder
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, Unites States of America
- Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - Chad A. Dickey
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
157
|
Mo C, Pang TY, Ransome MI, Hill RA, Renoir T, Hannan AJ. High stress hormone levels accelerate the onset of memory deficits in male Huntington's disease mice. Neurobiol Dis 2014; 69:248-62. [DOI: 10.1016/j.nbd.2014.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/24/2014] [Accepted: 05/04/2014] [Indexed: 12/18/2022] Open
|
158
|
Corticosterone treatment during adolescence induces down-regulation of reelin and NMDA receptor subunit GLUN2C expression only in male mice: implications for schizophrenia. Int J Neuropsychopharmacol 2014; 17:1221-32. [PMID: 24556017 DOI: 10.1017/s1461145714000121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Stress exposure during adolescence/early adulthood has been shown to increase the risk for psychiatric disorders such as schizophrenia. Reelin plays an essential role in brain development and its levels are decreased in schizophrenia. However, the relationship between stress exposure and reelin expression remains unclear. We therefore treated adolescent reelin heteroyzogous mice (HRM) and wild-type (WT) littermates with the stress hormone, corticosterone (CORT) in their drinking water (25 mg/l) for 3 wk. In adulthood, we measured levels of full-length (FL) reelin and the N-R6 and N-R2 cleavage fragments in the frontal cortex (FC) and dorsal (DH) and ventral (VH) hippocampus. As expected, levels of all reelin forms were approximately 50% lower in HRMs compared to WT. In male mice, CORT treatment significantly decreased FL and N-R2 expression in the FC and N-R2 and N-R6 levels in the DH. This reelin down-regulation was accompanied by significant reductions in downstream N-methyl-D-aspartate (NMDA) GluN2C subunit levels. There were no effects of CORT treatment in the VH of either of the sexes and only subtle changes in female DH. CORT-induced reelin and GluN2C down-regulation in males was not associated with changes in two GABAergic neuron markers, GAD67 and parvalbumin, or glucocorticoids receptors (GR). These results show that CORT treatment causes long-lasting and selective reductions of reelin form levels in male FC and DH accompanied by changes in NMDAR subunit composition. This sex-specific reelin down-regulation in regions implicated in schizophrenia could be involved in the effects of stress in this disease.
Collapse
|
159
|
11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci U S A 2014; 111:E2482-91. [PMID: 24889609 DOI: 10.1073/pnas.1323681111] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adverse metabolic effects of prescribed and endogenous glucocorticoid (GC) excess, Cushing syndrome, create a significant health burden. We found that tissue regeneration of GCs by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), rather than circulating delivery, is critical to developing the phenotype of GC excess; 11β-HSD1 KO mice with circulating GC excess are protected from the glucose intolerance, hyperinsulinemia, hepatic steatosis, adiposity, hypertension, myopathy, and dermal atrophy of Cushing syndrome. Whereas liver-specific 11β-HSD1 KO mice developed a full Cushingoid phenotype, adipose-specific 11β-HSD1 KO mice were protected from hepatic steatosis and circulating fatty acid excess. These data challenge our current view of GC action, demonstrating 11β-HSD1, particularly in adipose tissue, is key to the development of the adverse metabolic profile associated with circulating GC excess, offering 11β-HSD1 inhibition as a previously unidentified approach to treat Cushing syndrome.
Collapse
|
160
|
Abstract
The link between chronic psychosocial and metabolic stress and the pathogenesis of disease has been extensively documented. Nevertheless, the cellular mechanisms by which stressful life experiences and their associated primary neuroendocrine mediators cause biological damage and increase disease risk remain poorly understood. The allostatic load model of chronic stress focuses on glucocorticoid dysregulation. In this Perspectives, we expand upon the metabolic aspects of this model-particularly glucose imbalance-and propose that mitochondrial dysfunction constitutes an early, modifiable target of chronic stress and stress-related health behaviours. Central to this process is mitochondrial regulation of energy metabolism and cellular signalling. Chronically elevated glucose levels damage both mitochondria and mitochondrial DNA, generating toxic products that can promote systemic inflammation, alter gene expression and hasten cell ageing. Consequently, the concept of 'mitochondrial allostatic load' defines the deleterious structural and functional changes that mitochondria undergo in response to elevated glucose levels and stress-related pathophysiology.
Collapse
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and the University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Robert-Paul Juster
- Integrated Program in Neuroscience, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
161
|
Geibel M, Badurek S, Horn JM, Vatanashevanopakorn C, Koudelka J, Wunderlich CM, Brönneke HS, Wunderlich FT, Minichiello L. Ablation of TrkB signalling in CCK neurons results in hypercortisolism and obesity. Nat Commun 2014; 5:3427. [DOI: 10.1038/ncomms4427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/10/2014] [Indexed: 11/09/2022] Open
|
162
|
Dey A, Hao S, Erion JR, Wosiski-Kuhn M, Stranahan AM. Glucocorticoid sensitization of microglia in a genetic mouse model of obesity and diabetes. J Neuroimmunol 2014; 269:20-27. [PMID: 24534266 DOI: 10.1016/j.jneuroim.2014.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/11/2013] [Accepted: 01/28/2014] [Indexed: 01/13/2023]
Abstract
db/db mice are a model of obesity and diabetes due to their lack of functional leptin receptors, which leads to insulin resistance, elevated corticosterone levels, and persistent inflammation. Because stress-induced elevations in glucocorticoids sensitize microglia to immune challenges, we hypothesized that corticosteroids might act similarly in the diabetic brain. To test this hypothesis, db/db and wildtype mice were treated with the glucocorticoid synthesis inhibitor metyrapone every day for 2weeks. This treatment revealed corticosterone-dependent increases in microglial number and accumulation of the pro-inflammatory cytokines interleukin 1beta and tumor necrosis factor alpha in the hippocampus of db/db mice. Analysis of microglial responses to lipopolysaccharide stimulation revealed that glucocorticoids lower the threshold for release of pro-inflammatory cytokines, underscoring the role of corticosteroids as a precipitating factor for neuroinflammation in obesity and diabetes.
Collapse
Affiliation(s)
- Aditi Dey
- Department of Physiology, Georgia Regents University, Augusta, GA, 30912, USA
| | - Shuai Hao
- Department of Physiology, Georgia Regents University, Augusta, GA, 30912, USA
| | - Joanna R Erion
- Department of Physiology, Georgia Regents University, Augusta, GA, 30912, USA
| | | | - Alexis M Stranahan
- Department of Physiology, Georgia Regents University, Augusta, GA, 30912, USA
| |
Collapse
|
163
|
Fan Y, Chen P, Li Y, Cui K, Noel DM, Cummins ED, Brown RW, Zhu MY. Corticosterone administration up-regulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions. J Neurochem 2014; 128:445-58. [PMID: 24111919 PMCID: PMC3924588 DOI: 10.1111/jnc.12459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 12/22/2022]
Abstract
Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. In this study, corticosterone (CORT) was orally administrated to rats for 21 days to mimic stress status. In situ hybridization measurements showed that CORT ingestion significantly increased mRNA levels of norepinephrine transporter (NET) and dopamine β-hydroxylase (DBH) in the LC region. Immunofluorescence staining and western blotting revealed that CORT treatment also increased protein levels of NET and DBH in the LC, as well as NET protein levels in the hippocampus, the frontal cortex and the amygdala. However, CORT-induced increase in DBH protein levels only appeared in the hippocampus and the amygdala. Elevated NET and DBH expression in most of these areas (except for NET protein levels in the LC) was abolished by simultaneous treatment with combination of corticosteroid receptor antagonist mifepristone and spironolactone (s.c. for 21 days). Also, treatment with mifepristone alone prevented CORT-induced increases of NET expression and DBH protein levels in the LC. In addition, behavioral tasks showed that CORT ingestion facilitated escape in avoidance trials using an elevated T-maze, but interestingly, there was no significant effect on the escape trial. Corticosteroid receptor antagonists failed to counteract this response in CORT-treated rats. In the open-field task, CORT treatment resulted in less activity in a defined central zone compared to controls and corticosteroid receptor antagonist treatment alleviated this increase. In conclusion, this study demonstrates that chronic exposure to CORT results in a phenotype that mimics stress-induced alteration of noradrenergic phenotypes, but the effects on behavior are task dependent. As the sucrose consumption test strongly suggests CORT ingestion-induced depression-like behavior, further elucidation of underlying mechanisms may improve our understanding of the correlation between stress and the development of depression.
Collapse
Affiliation(s)
- Yan Fan
- Departments of Biomedical Sciences, Quillen College of Medicine
| | - Ping Chen
- Departments of Biomedical Sciences, Quillen College of Medicine
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ying Li
- Departments of Biomedical Sciences, Quillen College of Medicine
| | - Kui Cui
- Departments of Biomedical Sciences, Quillen College of Medicine
| | - Daniel M. Noel
- Department of Psychology, College of Arts and Sciences; East Tennessee State University, Johnson City, TN, USA
| | - Elizabeth D. Cummins
- Department of Psychology, College of Arts and Sciences; East Tennessee State University, Johnson City, TN, USA
| | - Russell W. Brown
- Department of Psychology, College of Arts and Sciences; East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine
| |
Collapse
|
164
|
Fransson L, dos Santos C, Wolbert P, Sjöholm Å, Rafacho A, Ortsäter H. Liraglutide counteracts obesity and glucose intolerance in a mouse model of glucocorticoid-induced metabolic syndrome. Diabetol Metab Syndr 2014; 6:3. [PMID: 24423471 PMCID: PMC3905931 DOI: 10.1186/1758-5996-6-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/09/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glucocorticoid excess is commonly associated with diabetogenic effects, including insulin resistance and glucose intolerance. The effects of the long-term glucagon-like peptide 1 receptor agonist treatment on the metabolic syndrome-like conditions are not yet fully elucidated. Thus, we aimed to test whether long-term liraglutide treatment could be effective as a therapy to counteract the metabolic dysfunctions induced by chronic glucocorticoid exposure. METHODS Mice were given corticosterone or vehicle via their drinking water for five consecutive weeks. In addition, mice were treated with once-daily injections of either PBS or liraglutide. RESULTS Liraglutide treatment slowed progression towards obesity and ectopic fat deposition in liver that otherwise occurred in corticosterone-treated mice. The drug reduced the increment in serum insulin caused by corticosterone, but did not affect the reduction of insulin sensitivity. Furthermore, liraglutide improved glucose control in mice exposed to corticosterone as evident by a delay in the progression towards post-prandial hyperglycemia and enhanced glucose clearance during a glucose tolerance test. Glucose-stimulated C-peptide levels were higher in those mice that had received liraglutide and corticosterone compared to mice that had been treated with corticosterone alone, indicating a positive role of liraglutide for beta-cell function. Morphometric analysis revealed increased beta- and alpha-cell masses that were associated with more Ki67-positive islet cells in corticosterone-treated mice irrespective of whether they were co-treated with liraglutide or not. Liraglutide had no discernible effect on alpha-cell mass. CONCLUSION Liraglutide can be beneficial for subjects at risk of developing metabolic complications as a result of glucocorticoid excess.
Collapse
Affiliation(s)
- Liselotte Fransson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Research Center Floor 3, 118 83, Stockholm, Sweden
| | - Cristiane dos Santos
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Petra Wolbert
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Research Center Floor 3, 118 83, Stockholm, Sweden
| | - Åke Sjöholm
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Research Center Floor 3, 118 83, Stockholm, Sweden
- Department of Internal Medicine, Södertälje Hospital, SE-152 86, Södertälje, Sweden
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Henrik Ortsäter
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Research Center Floor 3, 118 83, Stockholm, Sweden
- Research Unit, Södertälje Hospital, SE-152 86, Södertälje, Sweden
| |
Collapse
|
165
|
Renoir T, Hasebe K, Gray L. Mind and body: how the health of the body impacts on neuropsychiatry. Front Pharmacol 2013; 4:158. [PMID: 24385966 PMCID: PMC3866391 DOI: 10.3389/fphar.2013.00158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/30/2013] [Indexed: 12/24/2022] Open
Abstract
It has long been established in traditional forms of medicine and in anecdotal knowledge that the health of the body and the mind are inextricably linked. Strong and continually developing evidence now suggests a link between disorders which involve Hypothalamic-Pituitary-Adrenal axis (HPA) dysregulation and the risk of developing psychiatric disease. For instance, adverse or excessive responses to stressful experiences are built into the diagnostic criteria for several psychiatric disorders, including depression and anxiety disorders. Interestingly, peripheral disorders such as metabolic disorders and cardiovascular diseases are also associated with HPA changes. Furthermore, many other systemic disorders associated with a higher incidence of psychiatric disease involve a significant inflammatory component. In fact, inflammatory and endocrine pathways seem to interact in both the periphery and the central nervous system (CNS) to potentiate states of psychiatric dysfunction. This review synthesizes clinical and animal data looking at interactions between peripheral and central factors, developing an understanding at the molecular and cellular level of how processes in the entire body can impact on mental state and psychiatric health.
Collapse
Affiliation(s)
- Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of MelbourneMelbourne, VIC, Australia
| | - Kyoko Hasebe
- School of Medicine, Deakin UniversityGeelong, VIC, Australia
| | - Laura Gray
- School of Medicine, Deakin UniversityGeelong, VIC, Australia
| |
Collapse
|
166
|
Fransson L, Franzén S, Rosengren V, Wolbert P, Sjöholm Å, Ortsäter H. β-Cell adaptation in a mouse model of glucocorticoid-induced metabolic syndrome. J Endocrinol 2013; 219:231-41. [PMID: 24048967 DOI: 10.1530/joe-13-0189] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glucocorticoids (GCs) are stress hormones primarily responsible for mobilizing glucose to the circulation. Due to this effect, insulin resistance and glucose intolerance are concerns in patients with endogenous overproduction of GCs and in patients prescribed GC-based therapy. In addition, hypercortisolemic conditions share many characteristics with the metabolic syndrome. This study reports on a thorough characterization, in terms of glucose control and lipid handling, of a mouse model where corticosterone is given via the drinking water. C57BL/6J mice were treated with corticosterone (100 or 25 μg/ml) or vehicle in their drinking water for 5 weeks after which they were subjected to insulin or glucose tolerance tests. GC-treated mice displayed increased food intake, body weight gain, and central fat deposit accumulations. In addition, the GC treatment led to dyslipidemia as well as accumulation of ectopic fat in the liver and skeletal muscle, having a substantial negative effect on insulin sensitivity. Also glucose intolerance and hypertension, both part of the metabolic syndrome, were evident in the GC-treated mice. However, the observed effects of corticosterone were reversed after drug removal. Furthermore, this study reveals insights into β-cell adaptation to the GC-induced insulin resistance. Increased pancreatic islet volume due to cell proliferation, increased insulin secretion capacity, and increased islet chaperone expression were found in GC-treated animals. This model mimics the human metabolic syndrome. It could be a valuable model for studying the complex mechanisms behind the development of the metabolic syndrome and type 2 diabetes, as well as the multifaceted relations between GC excess and disease.
Collapse
Affiliation(s)
- Liselotte Fransson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, SE-118 83 Stockholm, Sweden Division of Drug Research, Experimental Renal Medicine, Department of Medical and Health Sciences Center of Medical Image Science and Visualization, Linköping University, SE-581 83 Linköping, Sweden Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | | | |
Collapse
|
167
|
Auvinen HE, Coomans CP, Boon MR, Romijn JA, Biermasz NR, Meijer OC, Havekes LM, Smit JWA, Rensen PCN, Pereira AM. Glucocorticoid excess induces long-lasting changes in body composition in male C57Bl/6J mice only with high-fat diet. Physiol Rep 2013; 1:e00103. [PMID: 24303175 PMCID: PMC3841039 DOI: 10.1002/phy2.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023] Open
Abstract
Glucocorticoid (GC) overexposure period as observed in Cushing's syndrome (CS) is associated with the metabolic syndrome and cardiovascular disease, which persist after long-term correction of GC excess. We performed a mouse study to identify factors that modulate metabolic recovery from a GC overexposure period. Male C57Bl/6J mice, fed a low-fat diet (LFD) or a high-fat diet (HFD), received corticosterone (CORT) (50 μg/mL) or vehicle in the drinking water for 4 weeks, followed by an 8-week washout period. Plasma circadian CORT, lipids, insulin, and glucose levels were assessed regularly. Hyperinsulinemic-euglycemic clamp and body composition were analyzed at week 12 under anesthesia. CORT treatment increased plasma CORT levels, food intake, and plasma insulin and lipid levels on both diets. CORT treatment abrogation normalized CORT levels, food intake, and body weight, whereas plasma insulin levels remained significantly higher in CORT-treated mice on both diets. Only on a HFD, CORT-treated mice had decreased lean body mass and higher fat mass. In conclusion, CORT excess period induces long-lasting metabolic changes and some are present only on a HFD. These observations indicate that diet-dependent CORT effects might contribute to the adverse cardiovascular risk profile observed in CS patients, and possibly also in subjects exposed to chronic stress.
Collapse
Affiliation(s)
- Hanna E Auvinen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center PO Box 9600, Leiden, 2300 RC, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Harno E, Cottrell EC, Keevil BG, DeSchoolmeester J, Bohlooly-Y M, Andersén H, Turnbull AV, Leighton B, White A. 11-Dehydrocorticosterone causes metabolic syndrome, which is prevented when 11β-HSD1 is knocked out in livers of male mice. Endocrinology 2013; 154:3599-609. [PMID: 23832962 DOI: 10.1210/en.2013-1362] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic syndrome is growing in importance with the rising levels of obesity, type 2 diabetes, and insulin resistance. Metabolic syndrome shares many characteristics with Cushing's syndrome, which has led to investigation of the link between excess glucocorticoids and metabolic syndrome. Indeed, increased glucocorticoids from intracellular regeneration by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) drives insulin resistance and increases adiposity, but these metabolic changes are assumed to be due to increased circulating glucocorticoids. We hypothesized that increasing the substrate for 11β-HSD1 (11-dehydrocorticosterone, 11-DHC) would adversely affect metabolic parameters. We found that chronic administration of 11-DHC to male C57BL/6J mice resulted in increased circulating glucocorticoids, and down-regulation of the hypothalamic-pituitary-adrenal axis. This elevated 11β-HSD1-derived corticosterone led to increased body weight gain and adiposity and produced marked insulin resistance. Surprisingly liver-specific 11β-HSD1 knockout (LKO) mice given 11-DHC did not show any of the adverse metabolic effects seen in wild-type mice. This occurred despite the 11-DHC administration resulting in elevated circulating corticosterone, presumably from adipose tissue. Mice with global deletion of 11β-HSD1 (global knockout) were unaffected by treatment with 11-DHC, having no increase in circulating corticosterone and exhibiting no signs of metabolic impairment. Taken together, these data show that in the absence of 11β-HSD1 in the liver, mice are protected from the metabolic effects of 11-DHC administration, even though circulating glucocorticoids are increased. This implies that liver-derived intratissue glucocorticoids, rather than circulating glucocorticoids, contribute significantly to the development of metabolic syndrome and suggest that local action within hepatic tissue mediates these effects.
Collapse
Affiliation(s)
- Erika Harno
- Faculty of Life Sciences, AV Hill Building, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Picard M, Gentil BJ, McManus MJ, White K, St Louis K, Gartside SE, Wallace DC, Turnbull DM. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. J Appl Physiol (1985) 2013; 115:1562-71. [PMID: 23970537 PMCID: PMC3841825 DOI: 10.1152/japplphysiol.00819.2013] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A unique property of mitochondria in mammalian cells is their ability to physically interact and undergo dynamic events of fusion/fission that remodel their morphology and possibly their function. In cultured cells, metabolic perturbations similar to those incurred during exercise influence mitochondrial fusion and fission processes, but it is unknown whether exercise acutely alters mitochondrial morphology and/or membrane interactions in vivo. To study this question, we subjected mice to a 3-h voluntarily exercise intervention following their normal physical activity patterns, and quantified mitochondrial morphology and membrane interactions in the soleus using a quantitative electron microscopy approach. A single exercise bout effectively decreased blood glucose (P < 0.05) and intramyocellular lipid content (P < 0.01), indicating increased muscle metabolic demand. The number of mitochondria spanning Z-lines and proportion of electron-dense contact sites (EDCS) between adjacent mitochondrial membranes were increased immediately after exercise among both subsarcolemmal (+116%, P < 0.05) and intermyofibrillar mitochondria (+191%, P < 0.001), indicating increased physical interactions. Mitochondrial morphology, and abundance of the mitochondrial pro-fusion proteins Mfn2 and OPA1 were unchanged. Collectively, these results support the notion that mitochondrial membrane dynamics are actively remodelled in skeletal muscle, which may be regulated by contractile activity and the metabolic state. Future studies are required to understand the implications of mitochondrial dynamics in skeletal muscle physiology during exercise and inactivity.
Collapse
Affiliation(s)
- Martin Picard
- Mitochondrial Research Group, Institute for Ageing and Health, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Murphy ZC, Pezuk P, Menaker M, Sellix MT. Effects of ovarian hormones on internal circadian organization in rats. Biol Reprod 2013; 89:35. [PMID: 23843233 DOI: 10.1095/biolreprod.113.109322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is the central pacemaker driving rhythms in endocrine physiology. Gonadal steroid hormones affect behavioral rhythms and clock gene expression. However, the impact of fluctuating ovarian steroid levels during the estrous cycle on internal circadian organization remains to be determined. Further, it is not known if steroid hormone depletion, as in menopause, affects the timing system. To determine the influence of estrous cycle stage and steroid depletion on circadian organization, we measured clock gene expression in the SCN and peripheral tissues from cycling and ovariectomized (OVX) period1-luciferase (per1-luc) transgenic rats. The estrous cycle had modest effects on mean phase and phase distribution of per1-luc expression in the SCN. Surprisingly, peak per1-luc expression in the SCN was widely distributed mainly at night, regardless of cycle stage, an effect eliminated by OVX. Treatment of SCN tissue explants with ovarian steroids did not significantly affect per1-luc expression, suggesting that brain regions outside the SCN mediate the phasic effects of steroids. Our data demonstrate that estrous cycle stage has tissue-dependent effects on the phase of per1-luc expression, phase synchrony among oscillators, and the phase relationship between some peripheral clocks and the light-dark cycle. They also reveal that steroid hormone depletion following OVX alters the timing system, suggesting that the decline in hormone levels, common during the transition to menopause, may be associated with irregular internal circadian organization. This effect on the timing system could contribute to the behavioral and physiological changes associated with this transition.
Collapse
Affiliation(s)
- Zachary C Murphy
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | |
Collapse
|
171
|
Carter BS, Hamilton DE, Thompson RC. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo. Front Neurosci 2013; 7:139. [PMID: 23966905 PMCID: PMC3736049 DOI: 10.3389/fnins.2013.00139] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/19/2013] [Indexed: 12/03/2022] Open
Abstract
Previous studies have primarily interpreted gene expression regulation by glucocorticoids in the brain in terms of impact on neurons; however, less is known about the corresponding impact of glucocorticoids on glia and specifically astrocytes in vivo. Recent microarray experiments have identified glucocorticoid-sensitive mRNAs in primary astrocyte cell culture, including a number of mRNAs that have reported astrocyte-enriched expression patterns relative to other brain cell types. Here, we have tested whether elevations of glucocorticoids regulate a subset of these mRNAs in vivo following acute and chronic corticosterone exposure in adult mice. Acute corticosterone exposure was achieved by a single injection of 10 mg/kg corticosterone, and tissue samples were harvested 2 h post-injection. Chronic corticosterone exposure was achieved by administering 10 mg/mL corticosterone via drinking water for 2 weeks. Gene expression was then assessed in two brain regions associated with glucocorticoid action (prefrontal cortex and hippocampus) by qPCR and by in situ hybridization. The majority of measured mRNAs regulated by glucocorticoids in astrocytes in vitro were similarly regulated by acute and/or chronic glucocorticoid exposure in vivo. In addition, the expression levels for mRNAs regulated in at least one corticosterone exposure condition (acute/chronic) demonstrated moderate positive correlation between the two conditions by brain region. In situ hybridization analyses suggest that select mRNAs are regulated by chronic corticosterone exposure specifically in astroctyes based on (1) similar general expression patterns between corticosterone-treated and vehicle-treated animals and (2) similar expression patterns to the pan-astrocyte marker Aldh1l1. Our findings demonstrate that glucocorticoids regulate astrocyte-enriched mRNAs in vivo and suggest that glucocorticoids regulate gene expression in the brain in a cell type-dependent fashion.
Collapse
Affiliation(s)
- Bradley S Carter
- Neuroscience Graduate Program, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | | | | |
Collapse
|
172
|
Czech B, Neumann ID, Müller M, Reber SO, Hellerbrand C. Effect of chronic psychosocial stress on nonalcoholic steatohepatitis in mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1585-1593. [PMID: 23923077 PMCID: PMC3726974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which may progress towards inflammation (nonalcoholic steatohepatitis (NASH)). NAFLD is regarded as a consequence of a sedentary, food-abundant lifestyle which, in the modern world, often coincides with chronically high levels of perceived psychosocial stress. Here, we aimed to characterize the effect of chronic psychosocial stress on the development of NAFLD/NASH in male mice either fed with standard chow or NASH-inducing high fat diet. Chronic psychosocial stress was induced by chronic subordinate colony housing (CSC), a pre-clinically validated paradigm relevant for human affective and somatic disorders. Single housed (SHC) mice served as controls. Under standard chow conditions CSC mice revealed lower hepatic triglyceride levels but higher hepatic TNFα, MCP-1 and HMOX mRNA expression, while serum transaminase levels did not significantly differ from SHC mice. Under the NASH-inducing high-fat diet CSC and SHC mice showed similar body weight-gain and serum levels of glucose and adiponectin. Moreover, liver histology as well as TNFα, MCP-1 and HMOX expression were similar in CSC and SHC mice fed with HFD. Surprisingly, CSC showed even significantly lower transaminase levels than SHC mice fed with the same NASH-inducing diet. Together, these data indicate that under normal dietary conditions the CSC model induces noticeable hepatic oxidative stress and inflammation without causing manifest hepatocellular injury. In contrast, CSC exhibited a protective effect on hepatocellular injury in a dietary NASH-model. Identification of the underlying mechanisms of this phenomenon may lead to novel therapeutic strategies to prevent progression of NAFLD.
Collapse
Affiliation(s)
- Barbara Czech
- Department of Internal Medicine I, University Hospital RegensburgGermany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Institute of Zoology, University of RegensburgGermany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital RegensburgGermany
| | - Stefan O Reber
- Department of Behavioral and Molecular Neurobiology, Institute of Zoology, University of RegensburgGermany
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of UlmGermany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital RegensburgGermany
| |
Collapse
|
173
|
Propranolol reduces cognitive deficits, amyloid β levels, tau phosphorylation and insulin resistance in response to chronic corticosterone administration. Int J Neuropsychopharmacol 2013. [PMID: 23194475 DOI: 10.1017/s1461145712001393] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic exposure to glucocorticoids might result not only in insulin resistance or cognitive deficits, but it is also considered as a risk factor for pathologies such as Alzheimer's disease. Propranolol is a β-adrenergic antagonist commonly used in the treatment of hypertension or acute anxiety. The effects of propranolol (5 mg/kg) have been tested in a model of chronic corticosterone administration (100 μg/ml, 4 wk) in drinking water. Corticosterone administration led to cognitive impairment in the novel object recognition test that was reversed by propranolol. Increased levels of Aβ in the hippocampus of corticosterone-treated mice were counteracted by propranolol treatment, purportedly through an increased IDE expression. Chronic corticosterone treatment induced responses characteristic of insulin resistance, as increased peripheral insulin levels, decreased activation of the insulin receptor (pIR) and decreased associated intracellular pathways (pAkt). These effects might be related to a decreased c-Jun N terminal kinase 1 expression. Again, propranolol was able to counteract all corticosterone-induced effects. One of the main kinases involved in tau phosphorylation, glycogen synthase kinase 3β (GSK3β), which is inactivated by phosphorylation by pAkt, was found to be decreased after corticosterone and increased after propranolol treatment. Concomitant changes in pTau expression were found. Overall, these data further strengthen the potential of propranolol as a therapeutic agent for pathologies associated with the interaction glucocorticoids-insulin resistance and the development of relevant cellular processes for Alzheimer's disease.
Collapse
|
174
|
Den ML, Richardson R. Enhanced sensitivity to learning fearful associations during adolescence. Neurobiol Learn Mem 2013; 104:92-102. [PMID: 23756209 DOI: 10.1016/j.nlm.2013.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
The majority of anxiety disorders emerge during adolescence, yet there is a paucity of research examining factors that contribute to the "storm and stress" of this period. Understanding how juvenile (P23), adolescent (P35), and adult (P90) rats differ on basic fear conditioning tasks may shed light on this issue. In Experiment 1, P23, P35, and P90 rats were given 6 CS-US presentations. There were four training conditions: Delay (i.e., CS co-terminating with the US), Trace 20 and Trace 40 (i.e., an interval of 20s and 40s between the CS and US, respectively), and Unpaired (i.e., explicitly Unpaired presentations of the CS and US). Twenty-four hours after conditioning, freezing was measured to assess fear of the CS in a novel context. At test, there were no age differences in CS-elicited freezing in group Delay, and this condition exhibited significantly higher levels of freezing compared to group Unpaired. However, the adolescent rats were the only age group to exhibit higher levels of freezing following training with the 20s and 40s trace intervals, compared to Unpaired controls. Experiment 2 replicated the finding that adolescent but not adult rats exhibit fear following conditioning with a 20s trace interval, while also demonstrating that both age groups display learning with a shorter trace interval of 5s. Experiment 3 showed that exposure to corticosterone (200 μg/ml) in the drinking water for 1 week prior to conditioning selectively disrupts Trace 20 but not Delay conditioning during adolescence. Lastly, in Experiment 4 the test procedures were changed such that freezing was measured both during the CS and during a stimulus free trace interval. Once again, P35 but not P90 rats exhibited fear following training with a 20s trace interval. Taken together, these findings demonstrate that adolescent rats show a heightened propensity to learn fearful associations, and that this is disrupted following exposure to corticosterone.
Collapse
Affiliation(s)
- Miriam Liora Den
- School of Psychology, The University of New South Wales, Sydney 2052, Australia.
| | | |
Collapse
|
175
|
Stalder T, Kirschbaum C, Alexander N, Bornstein SR, Gao W, Miller R, Stark S, Bosch JA, Fischer JE. Cortisol in hair and the metabolic syndrome. J Clin Endocrinol Metab 2013; 98:2573-80. [PMID: 23585660 DOI: 10.1210/jc.2013-1056] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Although exposure to supraphysiological levels of glucocorticoids is known to contribute to the development of the metabolic syndrome (MetS), the importance of physiological variation in basal cortisol secretion is less clear. This issue can be addressed by using hair cortisol analysis, which for the first time allows the assessment of long-term integrated hormone levels. OBJECTIVE AND DESIGN We used the analysis of cortisol in hair (hairF) to examine associations of long-term cortisol levels with prevalence of MetS and individual cardiometabolic parameters in a large occupational cohort. In additional exploratory analyses, we also studied cardiometabolic associations with hair cortisone levels. PARTICIPANTS Participants included 1258 employees of a large aerospace company (aged 16-64 years; 84.8% males) who partook in a voluntary health assessment. MAIN OUTCOME MEASURES The first 3 cm of scalp-near hair were analyzed for glucocorticoid concentrations using liquid chromatography tandem mass spectrometry. Relevant cardiometabolic risk factors were assessed and MetS was diagnosed (according to 2009 international task force criteria). RESULTS A higher prevalence of MetS was seen in individuals falling into the third (odds ratio 1.71, 95% confidence interval 1.08-2.69) or fourth hairF quartile (odds ratio 2.42, 95% confidence interval 1.55-3.75) compared with the first quartile, in fully adjusted analyses. HairF also showed positive associations with weight-related anthropometric measures (body mass index, waist to hip ratio, waist circumference) and glycated hemoglobin. The exploratory analysis of hair cortisone also indicated relevant associations with cardiometabolic parameters. CONCLUSION Normal physiological differences in long-term cortisol secretion, as assessed in hair, show relevant relationships with MetS and individual cardiometabolic parameters.
Collapse
Affiliation(s)
- Tobias Stalder
- Technische Universität Dresden, Department of Psychology, Andreas-Schubert-Bau, Zellescher Weg 19, 01069 Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Auvinen HE, Wang Y, Princen H, Romijn JA, Havekes LM, Smit JWA, Meijer OC, Biermasz NR, Rensen PCN, Pereira AM. Both transient and continuous corticosterone excess inhibit atherosclerotic plaque formation in APOE*3-leiden.CETP mice. PLoS One 2013; 8:e63882. [PMID: 23717502 PMCID: PMC3661690 DOI: 10.1371/journal.pone.0063882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/09/2013] [Indexed: 01/28/2023] Open
Abstract
Introduction The role of glucocorticoids in atherosclerosis development is not clearly established. Human studies show a clear association between glucocorticoid excess and cardiovascular disease, whereas most animal models indicate an inhibitory effect of glucocorticoids on atherosclerosis development. These animal models, however, neither reflect long-term glucocorticoid overexposure nor display human-like lipoprotein metabolism. Aim To investigate the effects of transient and continuous glucocorticoid excess on atherosclerosis development in a mouse model with human-like lipoprotein metabolism upon feeding a Western-type diet. Methods Pair-housed female APOE*3-Leiden.CETP (E3L.CETP) mice fed a Western-type containing 0.1% cholesterol for 20 weeks were given corticosterone (50 µg/ml) for either 5 (transient group) or 17 weeks (continuous group), or vehicle (control group) in the drinking water. At the end of the study, atherosclerosis severity, lesion area in the aortic root, the number of monocytes adhering to the endothelial wall and macrophage content of the plaque were measured. Results Corticosterone treatment increased body weight and food intake for the duration of the treatment and increased gonadal and subcutaneous white adipose tissue weight in transient group by +35% and +31%, and in the continuous group by +140% and 110%. Strikingly, both transient and continuous corticosterone treatment decreased total atherosclerotic lesion area by −39% without lowering plasma cholesterol levels. In addition, there was a decrease of −56% in macrophage content of the plaque with continuous corticosterone treatment, and a similar trend was present with the transient treatment. Conclusion Increased corticosterone exposure in mice with human-like lipoprotein metabolism has beneficial, long-lasting effects on atherosclerosis, but negatively affects body fat distribution by promoting fat accumulation in the long-term. This indicates that the increased atherosclerosis observed in humans in states of glucocorticoid excess may not be related to cortisol per se, but might be the result of complex indirect effects of cortisol.
Collapse
Affiliation(s)
- Hanna E Auvinen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Besheer J, Fisher KR, Lindsay TG, Cannady R. Transient increase in alcohol self-administration following a period of chronic exposure to corticosterone. Neuropharmacology 2013; 72:139-47. [PMID: 23643750 DOI: 10.1016/j.neuropharm.2013.04.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
Abstract
Stressful life events and chronic stressors have been associated with escalations in alcohol drinking. Stress exposure leads to the secretion of glucocorticoids (cortisol in the human; corticosterone (CORT) in the rodent). To model a period of heightened elevations in CORT, the present work assessed the effects of chronic exposure to the stress hormone CORT on alcohol self-administration. Male Long Evans rats were trained to self-administer a sweetened alcohol solution (2% sucrose/15% alcohol) resulting in moderate levels of daily alcohol intake (0.5-0.7 g/kg). Following stable baseline operant self-administration, rats received CORT in the drinking water for 7 days. A transient increase in alcohol self-administration was observed on the first self-administration session following CORT exposure, and behavior returned to control levels by the second session. Control experiments determined that this increase in alcohol self-administration was specific to alcohol, unrelated to general motor activation, and functionally dissociated from decreased CORT levels at the time of testing. These results indicate that repeated exposure to heightened levels of stress hormone (e.g., as may be experienced during stressful episodes) has the potential to lead to exacerbated alcohol intake in low to moderate drinkers. Given that maladaptive drinking patterns, such as escalated alcohol drinking following stressful episodes, have the potential to put an individual at risk for future drinking disorders, utilization of this model will be important for examination of neuroadaptations that occur as a consequence of CORT exposure in order to better understand escalated drinking following stressful episodes in nondependent individuals.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 2759, USA.
| | | | | | | |
Collapse
|
178
|
Solas M, Gerenu G, Gil-Bea FJ, Ramírez MJ. Mineralocorticoid receptor activation induces insulin resistance through c-Jun N-terminal kinases in response to chronic corticosterone: cognitive implications. J Neuroendocrinol 2013. [PMID: 23181759 DOI: 10.1111/jne.12006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is becoming evident that chronic exposure to glucocorticoids might not only result in insulin resistance or cognitive deficits, but also is considered as a risk factor for pathologies such as depression or Alzheimer's disease. In the present study, in vivo experiments using a non-invasive method of chronic administration of corticosterone in drinking water demonstrated that chronic corticosterone administration led to cognitive impairment in the novel object recognition test and insulin resistance, as shown by significant increases in plasma insulin levels and the homeostatic model assessment index, and decreased insulin receptor phosphorylation. Corticosterone treatment induced an increased expression of stress-activated c-Jun N-terminal kinase (JNK) in the hippocampus, accompanied by decreases in glycogen synthase kinase 3β, increases in pTau levels and increased neuronal cell death (caspase-3 activity). All these effects were reversed by the administration of a JNK1 inhibitor or by the mineralocorticoid receptor antagonist spironolactone. It is suggested that the mineralocorticoid receptors and JNK-mediated pathways are involved in the interaction of glucocorticoid-insulin resistance and the development of relevant cellular processes for Alzheimer's disease.
Collapse
Affiliation(s)
- M Solas
- Department of Pharmacology, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
179
|
Winkel E, Sabin A, Mejía-Alvarez R. Cushingoid lipodystrophy can be prevented by thiazolidinediones. Endocrine 2012; 42:746-8. [PMID: 22801989 DOI: 10.1007/s12020-012-9742-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/02/2012] [Indexed: 01/01/2023]
|
180
|
Johnson EO, Calogero AE, Konstandi M, Kamilaris TC, La Vignera S, Chrousos GP. Effects of short- and long-duration hypothyroidism on hypothalamic-pituitary-adrenal axis function in rats: in vitro and in situ studies. Endocrine 2012; 42:684-93. [PMID: 22695985 DOI: 10.1007/s12020-012-9714-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
The purpose of this study is to assess the effects of hypothyroidism on the hypothalamic-pituitary-adrenal (HPA) axis; the functional integrity of each component of the HPA axis was examined in short-term and long-term hypothyroidism. Neuropeptide synthesis, release, and content were evaluated in vitro both in the hypothalamus and anterior pituitary, and corticosterone release was assessed in primary adrenal cell cultures at 7 (short-term) and 60 days (long-term hypothyroidism) after thyroidectomy in male rats. Hypothyroid rats showed adrenal insufficiency in several parameters, which were associated with the duration of hypothyroidism. Cerebrospinal (CSF) ACTH was decreased in all hypothyroid animals, while CSF corticosterone levels were significantly decreased only in long-term hypothyroidism. Long-term hypothyroid animals showed decreased corticotropin-releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus under both basal and stress conditions, decreased CRH release from hypothalamic organ cultures after KCL and arginine vasopressin stimulation, as well as an increased number of anterior pituitary CRH receptors. In contrast, short-term hypothyroid rats showed changes in anterior pituitary function with an increased responsiveness to CRH that was associated with an increase in CRH receptors. Although both short- and long-term hypothyroidism was associated with significant decreases in adrenal weights, only long-term hypothyroid rats showed changes in adrenal function with a significant decrease of ACTH-induced corticosterone release from cultured adrenal cells. The data suggest that long-term hypothyroidism is associated with adrenal insufficiency with abnormalities in all three components of the HPA axis. Short-term hypothyroidism, on the other hand, is associated with increased pituitary corticotroph responsiveness to CRH.
Collapse
Affiliation(s)
- Elizabeth O Johnson
- Department of Anatomy, School of Medicine, University of Athens, 75 Mikras Asias Str., 11527, Goudi, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
181
|
Zhang J, Fan Y, Li Y, Zhu H, Wang L, Zhu MY. Chronic social defeat up-regulates expression of the serotonin transporter in rat dorsal raphe nucleus and projection regions in a glucocorticoid-dependent manner. J Neurochem 2012; 123:1054-68. [PMID: 23061525 DOI: 10.1111/jnc.12055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 01/10/2023]
Abstract
Chronic stress and dysfunction of the serotonergic system in the brain have been considered two of the major risks for development of depression. In this study, adult Fischer 344 rats were subjected to a regimen of chronic social defeat (CSD). To mimic stressful conditions, some rats were not exposed to CSD, but instead treated with corticosterone (CORT) in oral solution while maintained in their home cage. Protein levels of the serotonin transporter (SERT) in the dorsal raphe nucleus (DRN), hippocampus, frontal cortex, and amygdala were examined by Western blotting or immunofluorescence staining. The results showed that CSD up-regulated SERT protein levels in the DRN, hippocampus, frontal cortex, and amygdala regions. This up-regulation was abolished or prevented by adrenalectomy, or treatment with antagonists of corticosteroid receptors mifepristone and spironolactone, alone or in combination. Similarly, up-regulated SERT protein levels in these brain regions were also observed in rats treated with oral CORT ingestion, which was analogously prevented by treatment with mifepristone and spironolactone. Furthermore, both CSD- and CORT-induced up-regulation of SERT protein levels in the DRN and three brain regions were attenuated by simultaneous treatment with fluoxetine, an antidepressant that specifically inhibits serotonin reuptake. The results indicate that up-regulation in SERT protein levels in the DRN and forebrain limbic structures caused by CSD regimen was mainly motivated by CORT through corticosteroid receptors. The present findings demonstrate that chronic stress is closely correlated with the serotonergic system by acting on the regulation of the SERT expression in the DRN and its projection regions, which may contribute to the development of depression.
Collapse
Affiliation(s)
- Jia Zhang
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37604, USA
| | | | | | | | | | | |
Collapse
|
182
|
Cassano AE, White JR, Penraat KA, Wilson CD, Rasmussen S, Karatsoreos IN. Anatomic, hematologic, and biochemical features of C57BL/6NCrl mice maintained on chronic oral corticosterone. Comp Med 2012; 62:348-360. [PMID: 23114038 PMCID: PMC3472599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/05/2012] [Accepted: 04/03/2012] [Indexed: 06/01/2023]
Abstract
Metabolic syndrome is a condition that typically includes central obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension. Disruption of the hypothalamic-pituitary-adrenal axis, a regulator of corticosterone secretion, occurs in some cases of metabolic syndrome and obesity, and Cushing hypercortisolemia is associated with obesity and metabolic disorders. We therefore assessed anatomic and clinical pathology in C57BL/6NCrl mice to evaluate the effects of chronic corticosterone in the drinking water at doses of 25, 50, and 100 μg/mL for 25 d. Treated mice developed obesity, glucose intolerance, electrolyte aberrations, and dyslipidemia that were dose-dependent and most severe in the 100-mu;g/mL treatment group. To evaluate return to normal function, additional C57BL/6NCrl mice received corticosterone-free water for 2 wk after the 25-d treatment period. According to results of gross examination, mice appeared to recover within days of exogenous corticosterone withdrawal; however, adrenal gland vacuolation and protein, lipid, and electrolyte abnormalities persisted. Together, these findings support chronic corticosterone exposure through the drinking water as a potentially useful, noninvasive method to induce some features of metabolic syndrome.
Collapse
Affiliation(s)
- Amy E Cassano
- Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Togo Y, Otsuka T, Goto M, Furuse M, Yasuo S. Photoperiod regulates dietary preferences and energy metabolism in young developing Fischer 344 rats but not in same-age Wistar rats. Am J Physiol Endocrinol Metab 2012; 303:E777-86. [PMID: 22811472 DOI: 10.1152/ajpendo.00209.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of photoperiod on dietary preference were examined using young growing Fischer 344 and Wistar rats, which are seasonal and nonseasonal breeders, respectively. Rats were provided a low-fat, high-carbohydrate diet (LFD: 66/10/24% energy as carbohydrate/fat/protein) and high-fat, low-carbohydrate diet (HFD: 21/55/24% energy as carbohydrate/fat/protein) simultaneously under long- (LD: 16 h light/day) and short-day (SD: 8 h light/day) conditions for 3 wk. Fischer 344 rats preferred the LFD to the HFD under the LD condition, whereas preference for both diets was equivalent under the SD condition. Consequently, their body weight and total energy intake exhibited 11-15 and 10-13% increases, respectively, under the LD condition. Calculation of energy intake from macronutrients revealed that rats under the LD condition consumed 20-24 and 9-13% higher energy of carbohydrates and proteins, respectively, than those under the SD condition. In contrast, Wistar rats preferred the LFD to the HFD irrespective of photoperiod and exhibited no photoperiodic changes in any parameters examined. Next, Fischer 344 rats were provided either the LFD or HFD for 3 wk under LD or SD conditions. Calorie intake was 10% higher in the rats fed the LFD than those fed the HFD under SD condition. However, rats under LD condition exhibited 5-10, 14, and 64% increases in body weight, epididymal fat mass, and plasma leptin levels, respectively, compared with those under the SD condition irrespective of dietary composition. In conclusion, photoperiod regulates feeding and energy metabolism in young growing Fischer 344 rats via the interactions with dietary macronutrient composition.
Collapse
Affiliation(s)
- Yuki Togo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
184
|
Auvinen HE, Romijn JA, Biermasz NR, Pijl H, Havekes LM, Smit JWA, Rensen PCN, Pereira AM. The effects of high fat diet on the basal activity of the hypothalamus-pituitary-adrenal axis in mice. J Endocrinol 2012; 214:191-7. [PMID: 22619233 DOI: 10.1530/joe-12-0056] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations in hypothalamus-pituitary-adrenal (HPA) axis activity have been linked to the development of the metabolic syndrome (MetS). Common features of the MetS, like insulin resistance and obesity, are reproducibly induced by high fat diet (HFD) in animal models of diet-induced obesity. These models, hampered by methodological differences, reveal conflicting results with respect to HPA axis activation. This study was aimed to evaluate in detail nonstressed diurnal HPA axis activity in mice during obesity development. Male C57Bl/6J mice were fed high or low fat diet for 12 weeks. HPA axis activity was evaluated by plasma corticosterone concentrations (at 0700, 1200, and 1800 h), corticotropin-releasing hormone (CRH), and glucocorticoid receptor (GR) mRNA expression in the hippocampus, amygdala, and hypothalamus, and 11β-hydroxysteroid dehydrogenase type-1 and -2 (11β-HSD-1 and -2) expression in adipose tissue and liver. Within 1 week, the HFD induced obesity and decreased corticosterone levels at 1200 and 1800 h, which persisted throughout the experiment. Twelve weeks of HFD decreased CRH mRNA in the paraventricular nucleus (PVN) and amygdala and GR mRNA in the PVN at 0900 h. At 1800 h, CRH mRNA expression increased in the PVN and amygdala, and GR mRNA increased in the CA1 region. 11β-HSD-1 expressions decreased in gonadal, visceral, and subcutaneous adipose tissues at 0900 and 1800 h, whereas hepatic 11β-HSD-1 expression increased at 1800 h, whereas 11β-HSD-2 expression was unaffected. The HFD induces complex changes in the diurnal regulation of the different components of the HPA axis. These changes are not unequivocally characterized by increased, but rather by decreased HPA axis activity.
Collapse
Affiliation(s)
- Hanna E Auvinen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Baud MO, Magistretti PJ, Petit JM. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice. J Sleep Res 2012; 22:3-12. [PMID: 22734931 DOI: 10.1111/j.1365-2869.2012.01029.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sleep fragmentation is present in numerous sleep pathologies and constitutes a major feature of patients with obstructive sleep apnea. A prevalence of metabolic syndrome, diabetes and obesity has been shown to be associated to obstructive sleep apnea. While sleep fragmentation has been shown to impact sleep homeostasis, its specific effects on metabolic variables are only beginning to emerge. In this context, it is important to develop realistic animal models that would account for chronic metabolic effects of sleep fragmentation. We developed a 14-day model of instrumental sleep fragmentation in mice, and show an impact on both brain-specific and general metabolism. We first report that sleep fragmentation increases food intake without affecting body weight. This imbalance was accompanied by the inability to adequately decrease brain temperature during fragmented sleep. In addition, we report that sleep-fragmented mice develop glucose intolerance. We also observe that sleep fragmentation slightly increases the circadian peak level of glucocorticoids, a factor that may be involved in the observed metabolic effects. Our results confirm that poor-quality sleep with sustained sleep fragmentation has similar effects on general metabolism as actual sleep loss. Altogether, these results strongly suggest that sleep fragmentation is an aggravating factor for the development of metabolic dysfunctions that may be relevant for sleep disorders such as obstructive sleep apnea.
Collapse
Affiliation(s)
- Maxime O Baud
- LNDC, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | |
Collapse
|
186
|
Fuente-Martín E, García-Cáceres C, Granado M, Sánchez-Garrido MA, Tena-Sempere M, Frago LM, Argente J, Chowen JA. Early postnatal overnutrition increases adipose tissue accrual in response to a sucrose-enriched diet. Am J Physiol Endocrinol Metab 2012; 302:E1586-98. [PMID: 22510708 DOI: 10.1152/ajpendo.00618.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both overnutrition and an incorrect nutrient balance have contributed to the rise in obesity. Moreover, it is now clear that poor nutrition during early life augments the possibility of excess weight gain in later years. Our aim was to determine how neonatal overnutrition affects later responses to a sucrose-enriched diet and whether this varies depending upon when the diet is introduced in postnatal life. Male Wistar rats raised in litters of four or 12 pups were given a 33% sucrose solution instead of water from weaning (day 21) or postnatal day (PND) 65. All rats received normal chow ad libitum until they were euthanized on PND 80. Body weight (BW) and food and liquid intake were monitored throughout the study. Fat mass, adipocyte morphology, serum biochemical and hormonal parameters, and hypothalamic neuropeptide mRNA levels were measured at study termination. Neonatal overnutrition increased food intake, BW, and leptin levels, induced adipocyte hypertrophy, and decreased total ghrelin levels. The sucrose-enriched diet increased total energy intake, adipose accrual, and leptin, adiponectin, and acylated ghrelin levels but decreased BW. Most of these responses were accentuated in neonatally overnourished rats, which also had increased insulin and triglyceride levels. However, long-term sucrose intake induced adipocyte hypertrophy in rats from normal-sized litters but not in neonatally overfed rats. The results reported here indicate that neonatal overnutrition increases the detrimental response to a diet rich in sucrose later in life. Moreover, the timing and duration of the exposure to a sucrose-enriched diet alter the adverse metabolic outcomes.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Donner NC, Montoya CD, Lukkes JL, Lowry CA. Chronic non-invasive corticosterone administration abolishes the diurnal pattern of tph2 expression. Psychoneuroendocrinology 2012; 37:645-61. [PMID: 21924839 PMCID: PMC3249349 DOI: 10.1016/j.psyneuen.2011.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/20/2011] [Accepted: 08/22/2011] [Indexed: 12/25/2022]
Abstract
Both hypothalamic-pituitary-adrenal (HPA) axis activity and serotonergic systems are commonly dysregulated in stress-related psychiatric disorders. We describe here a non-invasive rat model for hypercortisolism, as observed in major depression, and its effects on physiology, behavior, and the expression of tph2, the gene encoding tryptophan hydroxylase 2, the rate-limiting enzyme for brain serotonin (5-hydroxytryptamine; 5-HT) synthesis. We delivered corticosterone (40 μg/ml, 100 μg/ml or 400 μg/ml) or vehicle to adrenal-intact adult, male rats via the drinking water for 3 weeks. On days 15, 16, 17 and 18, respectively, the rats' emotionality was assessed in the open-field (OF), social interaction (SI), elevated plus-maze (EPM), and forced swim tests (FST). On day 21, half of the rats in each group were killed 2h into the dark phase of a 12/12 h reversed light/dark cycle; the other half were killed 2h into the light phase. We then measured indices of HPA axis activity, plasma glucose and interleukin-6 (IL-6) availability, and neuronal tph2 expression at each time point. Chronic corticosterone intake was sufficient to cause increased anxiety- and depressive-like behavior in a dose-dependent manner. It also disrupted the diurnal pattern of plasma adrenocorticotropin (ACTH), corticosterone, and glucose concentrations, caused adrenal atrophy, and prevented regular weight gain. No diurnal or treatment-dependent changes were found for plasma concentrations of IL-6. Remarkably, all doses of corticosterone treatment abolished the diurnal variation of tph2 mRNA expression in the brainstem dorsal raphe nucleus (DR) by elevating the gene's expression during the animals' inactive (light) phase. Our data demonstrate that chronic elevation of corticosterone creates a vulnerability to a depression-like syndrome that is associated with increased tph2 expression, similar to that observed in depressed patients.
Collapse
Affiliation(s)
- Nina C Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | | | | | | |
Collapse
|
188
|
Yang L, Isoda F, Yen K, Kleopoulos SP, Janssen W, Fan X, Mastaitis J, Dunn-Meynell A, Levin B, McCrimmon R, Sherwin R, Musatov S, Mobbs CV. Hypothalamic Fkbp51 is induced by fasting, and elevated hypothalamic expression promotes obese phenotypes. Am J Physiol Endocrinol Metab 2012; 302:E987-91. [PMID: 22318949 PMCID: PMC3330722 DOI: 10.1152/ajpendo.00474.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To discover hypothalamic genes that might play a role in regulating energy balance, we carried out a microarray screen for genes induced by a 48-h fast in male C57Bl/6J mouse hypothalamus. One such gene was Fkbp51 (FK506 binding protein 5; Locus NP_034350). The product of this gene is of interest because it blocks glucocorticoid action, suggesting that fasting-induced elevation of this gene in the hypothalamus may reduce glucocorticoid negative feedback, leading to elevated glucocorticoid levels, thus promoting obese phenotypes. Subsequent analysis demonstrated that a 48-h fast induces Fkbp51 in ventromedial, paraventricular, and arcuate hypothalamic nuclei of mice and rats. To assess if hypothalamic Fkbp51 promotes obesity, the gene was transferred to the hypothalamus via an adeno-associated virus vector. Within 2 wk following Fkbp51 overexpression, mice on a high-fat diet exhibited elevated body weight, without hyperphagia, relative to mice receiving the control mCherry vector. Body weight remained elevated for more than 8 wk and was associated with elevated corticosterone and impaired glucose tolerance. These studies suggest that elevated hypothalamic Fkbp51 promotes obese phenotypes.
Collapse
Affiliation(s)
- Linda Yang
- Fishberg Dept. of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
D'souza AM, Beaudry JL, Szigiato AA, Trumble SJ, Snook LA, Bonen A, Giacca A, Riddell MC. Consumption of a high-fat diet rapidly exacerbates the development of fatty liver disease that occurs with chronically elevated glucocorticoids. Am J Physiol Gastrointest Liver Physiol 2012; 302:G850-63. [PMID: 22268100 DOI: 10.1152/ajpgi.00378.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronically elevated glucocorticoids (GCs) and a high-fat diet (HFD) independently induce insulin resistance, abdominal obesity, and nonalcoholic fatty liver disease (NAFLD). GCs have been linked to increased food intake, particularly energy-dense "comfort" foods. Thus we examined the synergistic actions of GCs and HFD on hepatic disease development in a new rodent model of chronically elevated GCs. Six-week-old male Sprague-Dawley rats received exogenous GCs, via subcutaneous implantation of four 100-mg corticosterone (Cort) pellets, to elevate basal GC levels for 16 days (n = 8-10 per group). Another subset of animals received wax pellets (placebo) to serve as controls. Animals from each group were randomly assigned to receive a 60% HFD or a standard high-carbohydrate (13% fat and 60% carbohydrate) diet. Cort + HFD resulted in central obesity, despite a relative weight loss, a 4-fold increase in hepatic lipid content, hepatic fibrosis, and a 2.8-fold increase in plasma alanine aminotransferase levels compared with placebo + chow controls. Hepatic injury developed independent of inflammation, as plasma haptoglobin levels were reduced with Cort treatment. Insulin resistance and hepatic steatosis occurred with Cort alone; these outcomes were further exacerbated by the HFD in the presence of elevated Cort. In addition to fatty liver, the Cort + HFD group also developed severe insulin resistance, hyperinsulinemia, hyperglycemia, and hypertriglyceridemia, which were not evident with HFD or Cort alone. Thus a HFD dramatically exacerbates the development of NAFLD and characteristics of the metabolic syndrome in conditions of chronically elevated Cort.
Collapse
Affiliation(s)
- Anna M D'souza
- Muscle Health Research Center and Physical Activity and Chronic Disease Unit, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Besheer J, Fisher KR, Grondin JJM, Cannady R, Hodge CW. The effects of repeated corticosterone exposure on the interoceptive effects of alcohol in rats. Psychopharmacology (Berl) 2012; 220:809-22. [PMID: 22016195 PMCID: PMC3422726 DOI: 10.1007/s00213-011-2533-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 10/03/2011] [Indexed: 01/05/2023]
Abstract
RATIONALE AND OBJECTIVE Repeated and/or heightened elevations in glucocorticoids (e.g., repeated stress) can promote escalated drug-taking behaviors and induce compromised HPA axis function. Given that interoceptive/subjective drug cues are a fundamental factor in drug-taking behavior, we sought to determine the effects of exposure to repeated elevations in the glucocorticoid corticosterone (CORT) on the interoceptive effects of alcohol in rats using drug discrimination techniques. METHODS Male Long Evans rats trained to discriminate alcohol (1 g/kg, IG) vs. water were exposed to CORT (300 μg/ml) in the home cage drinking water for 7 days. The interoceptive effects of experimenter- and self-administered alcohol were assessed and HPA axis function was determined. RESULTS The interoceptive effects of experimenter- and self-administered alcohol were blunted following CORT. Control experiments determined that this decreased sensitivity was unrelated to discrimination performance impairments or decreased CORT levels at the time of testing and was dependent on repeated CORT exposure. Susceptibility to compromised HPA axis function following CORT exposure was suggested by an altered pattern of CORT secretion and blunted CORT response following injection of the synthetic glucocorticoid dexamethasone. CONCLUSIONS These findings present a possible behavioral mechanism for escalated alcohol drinking during episodes of heightened elevations in glucocorticoids (e.g., stress). That is, during these episodes, individuals may consume more alcohol to achieve the desired interoceptive effects. Understanding these behavioral mechanisms may lead to a better understanding of factors that promote alcoholism and alcohol abuse in at risk populations.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
191
|
Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol Dis 2012; 46:722-31. [PMID: 22426399 DOI: 10.1016/j.nbd.2012.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/07/2012] [Accepted: 03/01/2012] [Indexed: 12/27/2022] Open
Abstract
Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive effects of reduced levels of BDNF expression and corticosterone treatment on spatial memory and startle in male and female mice, accompanied by significant, but region-specific changes in NMDA receptor subunit levels in the dorsal and ventral hippocampus. These results could be important for our understanding of the interaction of neurodevelopmental stress and BDNF deficiency in cognitive and anxiety-related symptoms of psychiatric illnesses, such as schizophrenia.
Collapse
|
192
|
Scott NJA, Cameron VA, Raudsepp S, Lewis LK, Simpson ER, Richards AM, Ellmers LJ. Generation and characterization of a mouse model of the metabolic syndrome: apolipoprotein E and aromatase double knockout mice. Am J Physiol Endocrinol Metab 2012; 302:E576-84. [PMID: 22185842 DOI: 10.1152/ajpendo.00222.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to create a comprehensive mouse model of the metabolic syndrome by crossing aromatase-deficient (ArKO) mice with apolipoprotein E-deficient (ApoE(-/-)) mice. Successive crossbreeding of ArKO with ApoE(-/-)-deficient mice generated double knockout, MetS-Tg mice. The phenotypic characteristics of the MetS-Tg mice were assessed at 3, 6, and 12 mo of age and compared with age- and sex-matched wild-type (WT) controls. Blood pressure and heart rate were recorded by a noninvasive, computerized tail-cuff system. Oral glucose and intraperitoneal insulin tolerance tests were performed. Serum cholesterol levels were measured by a combined quantitative colorimetric assay. Plasma adiponectin, C-reactive protein (CRP), insulin, interleukin-6 (IL-6), leptin, resistin, and tumor necrosis factor-α (TNF-α) were measured by multiplexed ELISA. MetS-Tg mice displayed significantly increased body weight, central obesity, and elevated blood pressure at all three ages compared with WT mice. Elevated serum cholesterol was associated with higher triglycerides and LDL/VLDL cholesterol particles and was accompanied by a decrease in HDL and histological evidence of fatty liver. MetS-Tg mice of all ages showed impaired glucose tolerance. At 12 mo, MetS-Tg mice had elevated plasma levels of CRP, IL-6, leptin, and TNF-α, but resistin levels were largely unchanged. We now report that this combination of gene knockouts produces a novel strain of mice that display the diverse clinical features of the metabolic syndrome, including central obesity, progressive hypertension, an adverse serum lipid profile, fatty liver, glucose intolerance, insulin resistance, and evidence of an inflammatory state.
Collapse
Affiliation(s)
- Nicola J A Scott
- Dept. of Medicine, Univ. of Otago-Christchurch, Christchurch, NZ.
| | | | | | | | | | | | | |
Collapse
|
193
|
Abstract
The prevalence of overweight and obesity has markedly increased during the past few decades. Stress has been suggested as one environmental factor that may contribute to the development of obesity. In this review, we discuss the role that exposure to chronic stress may play in the development of obesity, with particular attention to the effects of chronic psychosocial stress. Of particular importance is the effect that social stress has on dietary preference, food consumption, and regional distribution of adipose tissue. We present evidence from human and animal studies that links sympathetic nervous system and hypothalamic-pituitary-adrenal axis hyperactivity with visceral obesity, and that stress tends to alter the pattern of food consumption, and promotes craving of nutrient-dense "comfort foods." Lastly, we discuss the visible burrow system, a model of chronic social stress used in our laboratory to assess the effects of social subordination on behavioral and metabolic profile.
Collapse
Affiliation(s)
- Karen A. Scott
- Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, 2170 East Galbraith Road, E 212, Cincinnati, OH 45237, USA
| | - Susan J. Melhorn
- University of Washington, Harborview Medical Center, 925 Ninth Avenue, Box 359780, Seattle, WA 98104, USA
| | - Randall R. Sakai
- Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, 2170 East Galbraith Road, E 212, Cincinnati, OH 45237, USA
| |
Collapse
|
194
|
Bates HE, Campbell JE, Ussher JR, Baggio LL, Maida A, Seino Y, Drucker DJ. Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(-/-) mice. Diabetes 2012; 61:40-8. [PMID: 22043004 PMCID: PMC3237652 DOI: 10.2337/db11-1060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) promotes glucose-dependent insulin secretion. However, GIP also enhances glucocorticoid secretion and promotes adiposity. Because obesity and diabetes are glucocorticoid dependent, we examined whether the effects of GIP on energy balance and glycemia are regulated by glucocorticoids using pharmacological activation of GIP receptor (GIPR) signaling with [d-Ala(2)]GIP in mice and in Y1 adrenocortical cells. Genetic elimination of GIPR activity was also studied in normal- and high-fat (HF)-fed Gipr-deficient (Gipr(-/-)) mice. [d-Ala(2)]GIP increased murine corticosterone levels in a GIPR-dependent manner. Conversely, basal corticosterone levels were reduced, whereas food deprivation resulted in significantly enhanced plasma corticosterone levels in Gipr(-/-) mice. [d-Ala(2)]GIP increased cAMP levels, activated extracellular signal\x{2013}related kinase (ERK)1/2, increased expression of steroidogenic genes, and increased neutral lipid storage in Y1GIPR cells. Gipr(-/-) adrenal glands demonstrated a twofold upregulation of the ACTH receptor mRNA and increased sensitivity to ACTH ex vivo. Although HF-fed Gipr(-/-) mice exhibited significantly lower plasma corticosterone, glucocorticoid-treated HF-fed Gipr(-/-) mice had similar energy balance and glycemia compared with Gipr(+)(/+) controls. Hence, although the Gipr is essential for adrenal steroidogenesis and links HF feeding to increased levels of corticosterone, reduced glucocorticoid levels do not significantly contribute to the enhanced metabolic phenotypes in HF-fed Gipr(-/-) mice.
Collapse
Affiliation(s)
- Holly E. Bates
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan E. Campbell
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John R. Ussher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Laurie L. Baggio
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adriano Maida
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel J. Drucker
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Daniel J. Drucker,
| |
Collapse
|
195
|
Shpilberg Y, Beaudry JL, D'Souza A, Campbell JE, Peckett A, Riddell MC. A rodent model of rapid-onset diabetes induced by glucocorticoids and high-fat feeding. Dis Model Mech 2011; 5:671-80. [PMID: 22184636 PMCID: PMC3424464 DOI: 10.1242/dmm.008912] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) are potent pharmacological agents used to treat a number of immune conditions. GCs are also naturally occurring steroid hormones (e.g. cortisol, corticosterone) produced in response to stressful conditions that are thought to increase the preference for calorie dense 'comfort' foods. If chronically elevated, GCs can contribute to the development of type 2 diabetes mellitus (T2DM), although the mechanisms for the diabetogenic effects are not entirely clear. The present study proposes a new rodent model to investigate the combined metabolic effects of elevated GCs and high-fat feeding on ectopic fat deposition and diabetes development. Male Sprague-Dawley rats (aged 7-8 weeks) received exogenous corticosterone or wax (placebo) pellets, implanted subcutaneously, and were fed either a standard chow diet (SD) or a 60% high-fat diet (HFD) for 16 days. Animals given corticosterone and a HFD (cort-HFD) had lower body weight and smaller relative glycolytic muscle mass, but increased relative epididymal mass, compared with controls (placebo-SD). Cort-HFD rats exhibited severe hepatic steatosis and increased muscle lipid deposition compared with placebo-SD animals. Moreover, cort-HFD animals were found to exhibit severe fasting hyperglycemia (60% increase), hyperinsulinemia (80% increase), insulin resistance (60% increase) and impaired β-cell response to oral glucose load (20% decrease) compared with placebo-SD animals. Thus, a metabolic syndrome or T2DM phenotype can be rapidly induced in young Sprague-Dawley rats by using exogenous GCs if a HFD is consumed. This finding might be valuable in examining the physiological and molecular mechanisms of GC-induced metabolic disease.
Collapse
Affiliation(s)
- Yaniv Shpilberg
- York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | | | | | | | | | | |
Collapse
|
196
|
Abstract
Socioeconomic stress associated with financial and psychosocial stress is widespread in society. A comprehensive body of research indicates that low socioeconomic status and social stress is associated with a broad spectrum of health risks. This paper reviews epidemiological evidence demonstrating the association between chronic social stress and development of obesity and symptoms leading to metabolic syndrome. The cumulative effects of socioeconomic stress on health and well being are evident throughout the lifespan, affecting children, adolescents, and adults. While the links between stress and metabolic disease are documented, the mechanisms remain less well understood. Animal models are well established and have provided opportunities to systematically investigate contributing mechanisms that may be targeted to develop treatment and prevention strategies against metabolic disorders arising from exposure to chronic social stress.
Collapse
Affiliation(s)
- Kellie L K Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
197
|
A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice. Psychopharmacology (Berl) 2011; 218:303-12. [PMID: 21509501 PMCID: PMC3918452 DOI: 10.1007/s00213-011-2307-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Given the contribution of cortisol dysregulation to neuropsychiatric and metabolic disorders, it is important to be able to accurately compute glucocorticoid burden, a measure of allostatic load. One major problem in calculating cortisol burden is that existing measures reflect cortisol exposure over a short duration and have not been proven to reliably quantify cortisol burden over weeks or months. METHOD We treated two cohorts of mice with corticosterone in the drinking water and determined the relationship between serial plasma corticosterone levels drawn over 4 weeks and the whole-blood DNA methylation (DNAm) changes in a specific glucocorticoid-sensitive gene, Fkbp5, determined at the end of the treatment period. RESULTS We observed that the percent reduction in DNAm in the intron 1 region of Fkbp5 determined from a single blood draw strongly reflected average glucocorticoid burden generated weekly during the prior month of glucocorticoid exposure. There were also strong correlations in DNAm with glucocorticoid-induced end organ changes in spleen weight and visceral fat. We tested a subset of these animals for anxiety-like behavior in the elevated plus maze and found that DNAm in the blood also has predictive value in determining the behavioral consequences of glucocorticoid exposure. CONCLUSION A whole-blood assessment of Fkbp5 gene methylation is a biomarker that integrates 4 weeks of glucocorticoid exposure and may be a useful measure in states of excess exposure. It will be important to determine if Fkbp5 DNAm changes can also be a biomarker of glucocorticoid burden during chronic social stress.
Collapse
|
198
|
Pey P, Daminet S, Smets PMY, Duchateau L, Travetti O, Saunders JH. EFFECT OF GLUCOCORTICOID ADMINISTRATION ON ADRENAL GLAND SIZE AND SONOGRAPHIC APPEARANCE IN BEAGLE DOGS. Vet Radiol Ultrasound 2011; 53:204-9. [DOI: 10.1111/j.1740-8261.2011.01884.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Pascaline Pey
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals; Salisburylaan 133; 9820; Merelbeke; Belgium
| | - Sylvie Daminet
- Department of Small Animal Internal Medicine; Salisburylaan 133; 9820; Merelbeke; Belgium
| | - Pascale MY Smets
- Department of Small Animal Internal Medicine; Salisburylaan 133; 9820; Merelbeke; Belgium
| | - Luc Duchateau
- Department of Physiology and Biometry; Ghent University; Salisburylaan 133; 9820; Merelbeke; Belgium
| | - Olga Travetti
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals; Salisburylaan 133; 9820; Merelbeke; Belgium
| | - Jimmy H. Saunders
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals; Salisburylaan 133; 9820; Merelbeke; Belgium
| |
Collapse
|
199
|
Bowles NP, Hill MN, Bhagat SM, Karatsoreos IN, Hillard CJ, McEwen BS. Chronic, noninvasive glucocorticoid administration suppresses limbic endocannabinoid signaling in mice. Neuroscience 2011; 204:83-9. [PMID: 21939741 DOI: 10.1016/j.neuroscience.2011.08.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 12/17/2022]
Abstract
Limbic endocannabinoid signaling is known to be sensitive to chronic stress; however, studies investigating the impact of prolonged exposure to glucocorticoid hormones have been limited by the concurrent exposure to the stress of daily injections. The present study was designed to examine the effects of a noninvasive approach to alter plasma corticosterone (CORT) on the endocannabinoid system. More precisely, we explored the effects of a 4-week exposure to CORT dissolved in the drinking water of mice (100 μg/ml) and measured cannabinoid CB(1) receptor binding, endocannabinoid content, activity of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH), and mRNA expression of both the CB(1) receptor and FAAH in both the hippocampus and amygdala. Our data demonstrate that CORT decreases CB(1) receptor binding site density in both the hippocampus and amygdala and also reduced anandamide (AEA) content and increased FAAH activity within both structures. These changes in both CB(1) receptor binding and FAAH activity were not accompanied by changes in mRNA expression of either the CB(1) receptor or FAAH in either brain region. Interestingly, our CORT delivery regimen significantly increased 2-AG concentrations within the hippocampus, but not the amygdala. Collectively, these data demonstrate that the confounder of injection stress is sufficient to conceal the ability of protracted exposure to glucocorticoids to reduce CB(1) receptor density and augment AEA metabolism within limbic structures.
Collapse
Affiliation(s)
- N P Bowles
- Laboratory of Neuroendocrinology, The Rockefeller University, NY, USA.
| | | | | | | | | | | |
Collapse
|
200
|
Abstract
The prevalence of obesity has rapidly escalated and now represents a major public health concern. Although genetic associations with obesity and related metabolic disorders such as diabetes and cardiovascular disease have been identified, together they account for a small proportion of the incidence of disease. Environmental influences such as chronic stress, behavioral and metabolic disturbances, dietary deficiency, and infection have now emerged as contributors to the development of metabolic disease. Although epidemiological data suggest strong associations between chronic stress exposure and metabolic disease, the etiological mechanisms responsible remain unclear. Mechanistic studies of the influence of chronic social stress are now being conducted in both rodent and nonhuman primate models, and phenotypic results are consistent with those in humans. The advantage of these models is that potential neural mechanisms may be examined and interventions to treat or prevent disease may be developed and tested. Further, circadian disruption and metabolic conditions such as diabetes mellitus could increase susceptibility to other stressors or serve as a stressor itself. Here, we review data from leading investigators discussing the interrelationship between chronic stress and development of metabolic disorders.
Collapse
Affiliation(s)
- K L Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|