201
|
Kidokoro K, Kadoya H, Cherney DZI, Kondo M, Wada Y, Umeno R, Kishi S, Nagasu H, Nagai K, Suzuki T, Sasaki T, Yamamoto M, Kanwar YS, Kashihara N. Insights into the Regulation of GFR by the Keap1-Nrf2 Pathway. KIDNEY360 2023; 4:1454-1466. [PMID: 37265366 PMCID: PMC10615375 DOI: 10.34067/kid.0000000000000171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Key Points Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1-NF (erythroid-derived 2)–like 2 pathway increases GFR without an appreciable increase in intraglomerular pressure. Kelch-like ECH-associated protein 1-NF (erythroid-derived 2)–like 2 pathway regulates GFR through changes in filtration area by modulating calcium dynamics and contractility in glomerular cells. Background Literature data suggest that the activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF (erythroid-derived 2)–like 2 (Nrf2) pathway increases GFR in patients with type 2 diabetes and CKD. However, the mechanisms whereby the Keap1-Nrf2 pathway regulates GFR are unknown. Methods Various renal physiological parameters were assessed in C57BL/6 mice (wild-type), Nrf2 -deficient mice, and Nrf2 -activated Keap1- knockdown mice. In addition, these parameters were assessed after the administration of receptor targeting agent (RTA) dh404 (CDDO‐dhTFEA), an Nrf2 activator. Results Pharmacologic and genetic Keap1 -Nrf2 activation increased renal blood flow (P < 0.05), glomerular volume (P < 0.05), and GFR (P < 0.05) but did not alter the afferent-to-efferent arteriolar diameter ratio or glomerular permeability. Calcium influx into the podocytes through transient receptor potential canonical (TRPC) channels in response to H2O2 was suppressed by Keap1-Nrf2 activation and TRPCs inhibition. Treatment with a TRPC6 and TRPC5 inhibitors increased single-nephron GFR in wild-type mice. Conclusions In conclusion, the Keap1-Nrf2 pathway regulates GFR through changes in ultrafiltration by modulating redox-sensitive intracellular calcium signaling and cellular contractility, mediated through TRPC activity, in glomerular cells, particularly the podocytes.
Collapse
Affiliation(s)
- Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroyuki Kadoya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - David Z. I. Cherney
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Megumi Kondo
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihisa Wada
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Reina Umeno
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Kojiro Nagai
- Department of Nephrology, Shizuoka Geniral Hospital, Shizuoka, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
202
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
203
|
Korczowska-Łącka I, Słowikowski B, Piekut T, Hurła M, Banaszek N, Szymanowicz O, Jagodziński PP, Kozubski W, Permoda-Pachuta A, Dorszewska J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants (Basel) 2023; 12:1811. [PMID: 37891890 PMCID: PMC10604347 DOI: 10.3390/antiox12101811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In diseases of the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and even epilepsy and migraine, oxidative stress load commonly surpasses endogenous antioxidative capacity. While oxidative processes have been robustly implicated in the pathogenesis of these diseases, the significance of particular antioxidants, both endogenous and especially exogenous, in maintaining redox homeostasis requires further research. Among endogenous antioxidants, enzymes such as catalase, superoxide dismutase, and glutathione peroxidase are central to disabling free radicals, thereby preventing oxidative damage to cellular lipids, proteins, and nucleic acids. Whether supplementation with endogenously occurring antioxidant compounds such as melatonin and glutathione carries any benefit, however, remains equivocal. Similarly, while the health benefits of certain exogenous antioxidants, including ascorbic acid (vitamin C), carotenoids, polyphenols, sulforaphanes, and anthocyanins are commonly touted, their clinical efficacy and effectiveness in particular neurological disease contexts need to be more robustly defined. Here, we review the current literature on the cellular mechanisms mitigating oxidative stress and comment on the possible benefit of the most common exogenous antioxidants in diseases such as AD, PD, ALS, HD, stroke, epilepsy, and migraine. We selected common neurological diseases of a basically neurodegenerative nature.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Permoda-Pachuta
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| |
Collapse
|
204
|
Chen WT, Dodson M. The untapped potential of targeting NRF2 in neurodegenerative disease. FRONTIERS IN AGING 2023; 4:1270838. [PMID: 37840813 PMCID: PMC10569223 DOI: 10.3389/fragi.2023.1270838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Since its initial discovery almost three decades ago, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has been shown to regulate a host of downstream transcriptional responses and play a critical role in preventing or promoting disease progression depending on the context. Critically, while the importance of proper nuclear factor erythroid 2-related factor 2 function has been demonstrated across a variety of pathological settings, the ability to progress NRF2-targeted therapeutics to clinic has remained frustratingly elusive. This is particularly true in the case of age-related pathologies, where nuclear factor erythroid 2-related factor 2 is a well-established mitigator of many of the observed pathogenic effects, yet options to target this pathway remain limited. Along these lines, loss of nuclear factor erythroid 2-related factor 2 function has clearly been shown to enhance neuropathological outcomes, with enhancing nuclear factor erythroid 2-related factor 2 pathway activation to prevent neurodegenerative/neurological disease progression continuing to be an active area of interest. One critical obstacle in generating successful therapeutics for brain-related pathologies is the ability of the compound to cross the blood brain barrier (BBB), which has also hampered the implementation of several promising nuclear factor erythroid 2-related factor 2 inducers. Another limitation is that many nuclear factor erythroid 2-related factor 2 activators have undesirable off-target effects due to their electrophilic nature. Despite these constraints, the field has continued to evolve, and several viable means of targeting nuclear factor erythroid 2-related factor 2 in a neuropathological context have emerged. In this perspective, we will briefly discuss the key findings and promising therapeutic options that have been discovered to date, as well as highlight emerging areas of NRF2-neurodegeneration research that provide hope for successfully targeting this pathway in the future.
Collapse
Affiliation(s)
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
205
|
Yan R, Lin B, Jin W, Tang L, Hu S, Cai R. NRF2, a Superstar of Ferroptosis. Antioxidants (Basel) 2023; 12:1739. [PMID: 37760042 PMCID: PMC10525540 DOI: 10.3390/antiox12091739] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ferroptosis is an iron-dependent and lipid peroxidation-driven cell death cascade, occurring when there is an imbalance of redox homeostasis in the cell. Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is key for cellular antioxidant responses, which promotes downstream genes transcription by binding to their antioxidant response elements (AREs). Numerous studies suggest that NRF2 assumes an extremely important role in the regulation of ferroptosis, for its various functions in iron, lipid, and amino acid metabolism, and so on. Many pathological states are relevant to ferroptosis. Abnormal suppression of ferroptosis is found in many cases of cancer, promoting their progression and metastasis. While during tissue damages, ferroptosis is recurrently promoted, resulting in a large number of cell deaths and even dysfunctions of the corresponding organs. Therefore, targeting NRF2-related signaling pathways, to induce or inhibit ferroptosis, has become a great potential therapy for combating cancers, as well as preventing neurodegenerative and ischemic diseases. In this review, a brief overview of the research process of ferroptosis over the past decade will be presented. In particular, the mechanisms of ferroptosis and a focus on the regulation of ferroptosis by NRF2 will be discussed. Finally, the review will briefly list some clinical applications of targeting the NRF2 signaling pathway in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuming Hu
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| |
Collapse
|
206
|
Su K, Zhao SL, Yang WX, Lo CS, Chenier I, Liao MC, Pang YC, Peng JZ, Miyata KN, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. NRF2 Deficiency Attenuates Diabetic Kidney Disease in Db/Db Mice via Down-Regulation of Angiotensinogen, SGLT2, CD36, and FABP4 Expression and Lipid Accumulation in Renal Proximal Tubular Cells. Antioxidants (Basel) 2023; 12:1715. [PMID: 37760019 PMCID: PMC10525648 DOI: 10.3390/antiox12091715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/dbNrf2 knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/dbNrf2 KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with NRF2 KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/dbNrf2 KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. NRF2 KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D.
Collapse
Affiliation(s)
- Ke Su
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Shui-Ling Zhao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Wen-Xia Yang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Chao-Sheng Lo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Min-Chun Liao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Yu-Chao Pang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jun-Zheng Peng
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Kana N. Miyata
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean-Francois Cailhier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean Ethier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean-Baptiste Lattouf
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Janos G. Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Département de Pathologie et Biologie Cellulaire, Université de Montréal, 5415 Boul. de l’Assomption, Montréal, QC H1T 2M4, Canada;
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC 709, Boston, MA 02114, USA;
| | - Shao-Ling Zhang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - John S. D. Chan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| |
Collapse
|
207
|
Chen C, Yang L, Li M, Gao L, Qin X, Du G, Zhou Y. Study on the targeted regulation of Scutellaria baicalensis leaf on glutamine-glutamate metabolism and glutathione synthesis in the liver of d-gal ageing rats. J Pharm Pharmacol 2023; 75:1212-1224. [PMID: 37329511 DOI: 10.1093/jpp/rgad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/10/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Scutellaria baicalensis leaf (SLE), the above-ground part of the traditional Chinese medicine Scutellaria baicalensis Georgi, is rich in resources and contains a large number of flavonoids with anti-inflammatory, antioxidant and neuroprotective functions. The present study evaluated the ameliorative effects and related mechanisms of SLE on d-gal-induced ageing rats, providing a theoretical basis for the exploitation of SLE. METHODS This experiment investigated the mechanism of SLE for anti-ageing by non-targeted metabonomics technology combined with targeted quantitative analysis and molecular biology technology. KEY FINDINGS Non-targeted metabonomics analysis showed that 39 different metabolites were screened out. Among them, 38 metabolites were regulated by SLE (0.4 g/kg), and 33 metabolites were regulated by SLE (0.8 g/kg). Through enrichment analysis, glutamine-glutamate metabolic pathway was identified as the key metabolic pathway. Subsequently, the results of targeted quantitative and biochemical analysis displayed that the contents of key metabolites and the activities of enzymes in glutamine-glutamate metabolic pathway and glutathione synthesis could be regulated by SLE. Furthermore, the results of Western blotting indicated that SLE significantly modulated the expression of Nrf2, GCLC, GCLM, HO-1, and NQO1 proteins. CONCLUSION To sum up, the anti-ageing mechanism of SLE was related to glutamine-glutamate metabolism pathway and Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Chunni Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Linlin Yang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Mengru Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
208
|
Amezian D, Fricaux T, de Sousa G, Maiwald F, Huditz HI, Nauen R, Le Goff G. Investigating the role of the ROS/CncC signaling pathway in the response to xenobiotics in Spodoptera frugiperda using Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105563. [PMID: 37666619 DOI: 10.1016/j.pestbp.2023.105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023]
Abstract
Spodoptera frugiperda (fall armyworm, FAW) is an invasive polyphagous lepidopteran pest that has developed sophisticated resistance mechanisms involving detoxification enzymes to eliminate toxic compounds it encounters in its diet including insecticides. Although its inventory of detoxification enzymes is known, the mechanisms that enable an adapted response depending on the toxic compound remain largely unexplored. Sf9 cells were used to investigate the role of the transcription factors, Cap n' collar isoform C (CncC) and musculoaponeurotic fibrosarcoma (Maf) in the regulation of the detoxification response. We overexpressed CncC, Maf or both genes, and knocked out (KO) CncC or its repressor Kelch-like ECH associated protein 1 (Keap1). Joint overexpression of CncC and Maf is required to confer increased tolerance to indole 3-carbinol (I3C), a plant secondary metabolite, and to methoprene, an insecticide. Both molecules induce reactive oxygen species (ROS) pulses in the different cell lines. The use of an antioxidant reversed ROS pulses and restored the tolerance to I3C and methoprene. The activity of detoxification enzymes varied according to the cell line. Suppression of Keap1 significantly increased the activity of cytochrome P450s, carboxylesterases and glutathione S-transferases. RNAseq experiments showed that CncC mainly regulates the expression of detoxification genes but is also at the crossroads of several signaling pathways (reproduction and immunity) maintaining homeostasis. We present new data in Sf9 cell lines suggesting that the CncC:Maf pathway plays a central role in FAW response to natural and synthetic xenobiotics. This knowledge helps to better understand detoxification gene expression and may help to design next-generation pest insect control measures.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Thierry Fricaux
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Georges de Sousa
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | | | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France.
| |
Collapse
|
209
|
Levings DC, Pathak SS, Yang YM, Slattery M. Limited expression of Nrf2 in neurons across the central nervous system. Redox Biol 2023; 65:102830. [PMID: 37544245 PMCID: PMC10428127 DOI: 10.1016/j.redox.2023.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Nrf2, encoded by the gene Nfe2l2, is a broadly expressed transcription factor that regulates gene expression in response to reactive oxygen species (ROS) and oxidative stress. It is commonly referred to as a ubiquitous pathway, but this generalization overlooks work indicating that Nrf2 is essentially unexpressed in some neuronal populations. To explore whether this pattern extends throughout the central nervous system (CNS), we quantified Nfe2l2 expression and chromatin accessibility at the Nfe2l2 locus across multiple single cell datasets. In both the mouse and human CNS, Nfe2l2 was repressed in almost all mature neurons, but highly expressed in non-neuronal support cells, and this pattern was robust across multiple human CNS diseases. A subset of key Nrf2 target genes, like Slc7a11, also remained low in neurons. Thus, these data suggest that while most cells express Nfe2l2, with activity determined by ROS levels, neurons actively avoid Nrf2 activity by keeping Nfe2l2 expression low.
Collapse
Affiliation(s)
- Daniel C Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| |
Collapse
|
210
|
Mhlekude B, Postmus D, Stenzel S, Weiner J, Jansen J, Zapatero-Belinchón FJ, Olmer R, Richter A, Heinze J, Heinemann N, Mühlemann B, Schroeder S, Jones TC, Müller MA, Drosten C, Pich A, Thiel V, Martin U, Niemeyer D, Gerold G, Beule D, Goffinet C. Pharmacological inhibition of bromodomain and extra-terminal proteins induces an NRF-2-mediated antiviral state that is subverted by SARS-CoV-2 infection. PLoS Pathog 2023; 19:e1011657. [PMID: 37747932 PMCID: PMC10629670 DOI: 10.1371/journal.ppat.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/07/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. The antiviral activity manifested itself by reduced reporter expression of recombinant viruses, and reduced viral RNA quantities and infectious titers in the culture supernatant. While we confirmed JQ-1-mediated downregulation of expression of angiotensin-converting enzyme 2 (ACE2) and interferon-stimulated genes (ISGs), multi-omics analysis addressing the chromatin accessibility, transcriptome and proteome uncovered induction of an antiviral nuclear factor erythroid 2-related factor 2 (NRF-2)-mediated cytoprotective response as an additional mechanism through which JQ-1 inhibits SARS-CoV-2 replication. Pharmacological inhibition of NRF-2, and knockdown of NRF-2 and its target genes reduced JQ-1-mediated inhibition of SARS-CoV-2 replication. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variant, which exhibited resistance to JQ-1 and increased sensitivity to exogenously administered type I interferon (IFN-I), suggesting a minimised need for SARS-CoV-2 ORF6-mediated repression of IFN signalling in the presence of JQ-1. Importantly, JQ-1 exhibited a transient antiviral activity when administered prophylactically in human airway bronchial epithelial cells (hBAECs), which was gradually subverted by SARS-CoV-2, and no antiviral activity when administered therapeutically following an established infection. We propose that JQ-1 exerts pleiotropic effects that collectively induce an antiviral state in the host, which is ultimately nullified by SARS-CoV-2 infection, raising questions about the clinical suitability of the iBETs in the context of COVID-19.
Collapse
Affiliation(s)
- Baxolele Mhlekude
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Saskia Stenzel
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - January Weiner
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Francisco J. Zapatero-Belinchón
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH—Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Heinze
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Mühlemann
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Terry C. Jones
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marcel A. Müller
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Core Facility Proteomics, Hannover, Germany
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH—Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Dieter Beule
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool United Kingdom
| |
Collapse
|
211
|
Pandey A, Trigun SK. Fisetin induces apoptosis in colorectal cancer cells by suppressing autophagy and down-regulating nuclear factor erythroid 2-related factor 2 (Nrf2). J Cell Biochem 2023; 124:1289-1308. [PMID: 37450699 DOI: 10.1002/jcb.30447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Modulation of autophagy is evolving as a relevant strategy in cancer pathogenesis and therapeutic intervention and hence, needs to be examined as a target for the promising anticancer agents. Fisetin, a dietary flavanol, is emerging as a potent anticancer agent, however, its tumour-specific pharmacological targets remain largely unexplored. This article describes correlative profiles of autophagy and apoptotic markers versus nuclear factor erythroid 2-related factor 2 (Nrf2) and reactive oxygen species (ROS) in the colorectal cancer (CRC) cell line SW-480. As compared to the untreated cells, significantly less number of fluorescent detected autophagic vacuoles (AVOs) in the fisetin-treated cells coincided with a similar decline of the autophagy flux markers, Beclin 1 and microtubule-associated protein-1 light chain-3 and accumulation of p62 in those cells. The significantly increased number of annexin-V/propidium iodide (+/+) positive and acridine orange/ethidium bromide-stained apoptotic cells coincided with the enhanced signals for the cleaved caspase 3 and nuclear PARP-1 in those fisetin-treated cells. This was consistent with the collapse of mitochondrial membrane potential and release of cytochrome c. The fisetin-treated cells showed increased ROS level and a significant decline in nuclear Nrf2 immunosignal versus recovery in nuclear Nrf2 due to the treatment with curcumin and resveratrol (Nrf2 activators) and thus, suggesting a role of Nrf2 suppression in fisetin-mediated apoptosis in SW-480 cells. The effect of chloroquine, an autophagy inhibitor, resulted into declined number of AVOs and enhanced apoptosis, similar to that of the fisetin effect. Also, regaining of AVOs number and reduced apoptosis of CRC cells due to the treatment with rapamycin, an autophagy inducer, could be observed. These loss and gain of functions experiments thus suggested a correlation between fisetin-mediated autophagy suppression and apoptotic induction in a colorectal cell line.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Zoology, Biochemistry Section, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Kumar Trigun
- Department of Zoology, Biochemistry Section, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
212
|
Aramouni K, Assaf R, Shaito A, Fardoun M, Al-Asmakh M, Sahebkar A, Eid AH. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J Cell Physiol 2023; 238:1951-1963. [PMID: 37436042 DOI: 10.1002/jcp.31071] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
Cellular oxidation-reduction (redox) systems, which encompass pro- and antioxidant molecules, are integral components of a plethora of essential cellular processes. Any dysregulation of these systems can cause molecular imbalances between the pro- and antioxidant moieties, leading to a state of oxidative stress. Long-lasting oxidative stress can manifest clinically as a variety of chronic illnesses including cancers, neurodegenerative disorders, cardiovascular disease, and metabolic diseases like diabetes. As such, this review investigates the impact of oxidative stress on the human body with emphasis on the underlying oxidants, mechanisms, and pathways. It also discusses the available antioxidant defense mechanisms. The cellular monitoring and regulatory systems that ensure a balanced oxidative cellular environment are detailed. We critically discuss the notion of oxidants as a double-edged sword, being signaling messengers at low physiological concentrations but causative agents of oxidative stress when overproduced. In this regard, the review also presents strategies employed by oxidants including redox signaling and activation of transcriptional programs such as those mediated by the Nrf2/Keap1 and NFk signaling. Likewise, redox molecular switches of peroxiredoxin and DJ-1 and the proteins they regulate are presented. The review concludes that a thorough comprehension of cellular redox systems is essential to develop the evolving field of redox medicine.
Collapse
Affiliation(s)
- Karl Aramouni
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Roland Assaf
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Manal Fardoun
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
213
|
Pihl C, Bendtsen KMS, Jensen HE, Andersen F, Bjerring P, Haedersdal M, Lerche CM. Oral phytochemicals as photoprotectants in UVR exposed hairless mice: A study of hesperidin methyl chalcone, phloroglucinol, and syringic acid. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 246:112760. [PMID: 37535996 DOI: 10.1016/j.jphotobiol.2023.112760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Ultraviolet radiation is the primary risk factor for keratinocyte carcinoma. Because of increasing incidence rates, new methods of photoprotection must be explored. Oral supplementation with photoprotective compounds presents a promising alternative. Phytochemical compounds like hesperidin methyl chalcone, phloroglucinol, and syringic acid are particularly of interest because of their antioxidant properties. Our primary outcome was to evaluate the effects of oral phytochemicals on photocarcinogenesis with time until tumour onset as the primary endpoint. A total of 125 hairless C3.Cg-Hrhr/TifBom Tac mice were randomised to receive tap water supplemented with either 100 mg/kg hesperidin methyl chalcone, phloroglucinol, or syringic acid, 600 mg/kg nicotinamide as a positive control, or no supplementation. The mice were irradiated with 3.5 standard erythema doses thrice weekly to induce photocarcinogenesis. Supplementation with the phytochemicals phloroglucinol and syringic acid and nicotinamide delayed tumour onset from a median of 140 days to 151 (p = 0.036), 157 days (p = 0.02), and 178 (p = 2.7·10-5), respectively. Phloroglucinol and nicotinamide supplementation reduced tumour number. Nicotinamide increased UV-induced pigmentation and reduced oedema formation, while phloroglucinol supplementation reduced epidermal thickness. These results indicate that oral supplementation with phloroglucinol and syringic acid protects against photocarcinogenesis in hairless mice, but not to the same extent as nicotinamide.
Collapse
Affiliation(s)
- Celina Pihl
- Dept of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Dept of Pharmacy, University of Copenhagen, 2400 Copenhagen, Denmark.
| | - Katja M S Bendtsen
- Dept of Veterinary and Animal Sciences, Copenhagen University, 1870 Frederiksberg, Denmark.
| | - Henrik E Jensen
- Dept of Veterinary and Animal Sciences, Copenhagen University, 1870 Frederiksberg, Denmark.
| | - Flemming Andersen
- Dept of Dermatology, Private Hospital Molholm, 7100 Vejle, Denmark; Dept of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark.
| | - Peter Bjerring
- Dept of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark.
| | - Merete Haedersdal
- Dept of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Dept of Clinical Medicine, University of Copenhagen, 2400 Copenhagen, Denmark.
| | - Catharina M Lerche
- Dept of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Dept of Pharmacy, University of Copenhagen, 2400 Copenhagen, Denmark.
| |
Collapse
|
214
|
Patel AO, Caldwell AB, Ramachandran S, Subramaniam S. Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:957-972. [PMID: 37849634 PMCID: PMC10578327 DOI: 10.3233/adr-220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/21/2023] [Indexed: 10/19/2023] Open
Abstract
Background While Alzheimer's disease (AD) pathology is associated with altered brain structure, it is not clear whether gene expression changes mirror the onset and evolution of pathology in distinct brain regions. Deciphering the mechanisms which cause the differential manifestation of the disease across different regions has the potential to help early diagnosis. Objective We aimed to identify common and unique endotypes and their regulation in tangle-free neurons in sporadic AD (SAD) across six brain regions: entorhinal cortex (EC), hippocampus (HC), medial temporal gyrus (MTG), posterior cingulate (PC), superior frontal gyrus (SFG), and visual cortex (VCX). Methods To decipher the states of tangle-free neurons across different brain regions in human subjects afflicted with AD, we performed analysis of the neural transcriptome. We explored changes in differential gene expression, functional and transcription factor target enrichment, and co-expression gene module detection analysis to discern disease-state transcriptomic variances and characterize endotypes. Additionally, we compared our results to tangled AD neuron microarray-based study and the Allen Brain Atlas. Results We identified impaired neuron function in EC, MTG, PC, and VCX resulting from REST activation and reversal of mature neurons to a precursor-like state in EC, MTG, and SFG linked to SOX2 activation. Additionally, decreased neuron function and increased dedifferentiation were linked to the activation of SUZ12. Energetic deficit connected to NRF1 inactivation was found in HC, PC, and VCX. Conclusions Our findings suggest that SAD manifestation varies in scale and severity in different brain regions. We identify endotypes, such as energetic shortfalls, impaired neuronal function, and dedifferentiation.
Collapse
Affiliation(s)
- Ashay O. Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B. Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
215
|
Kimura Y, Ekuban FA, Zong C, Sugie S, Zhang X, Itoh K, Yamamoto M, Ichihara S, Ohsako S, Ichihara G. Role of Nrf2 in 1,2-dichloropropane-induced cell proliferation and DNA damage in the mouse liver. Toxicol Sci 2023; 195:28-41. [PMID: 37326970 DOI: 10.1093/toxsci/kfad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative chemical of occupational cholangiocarcinoma in printing workers in Japan. However, the cellular and molecular mechanisms of 1,2-DCP-induced carcinogenesis remains elusive. The present study investigated cellular proliferation, DNA damage, apoptosis, and expression of antioxidant and proinflammatory genes in the liver of mice exposed daily to 1,2-DCP for 5 weeks, and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in these responses. Wild-type and Nrf2-knockout (Nrf2-/-) mice were administered 1,2-DCP by gastric gavage, and then the livers were collected for analysis. Immunohistochemistry for BrdU or Ki67 and TUNEL assay revealed that exposure to 1,2-DCP dose-dependently increased proliferative cholangiocytes, whereas decreased apoptotic cholangiocytes in wild-type mice but not in Nrf2-/- mice. Western blot and quantitative real-time PCR showed that exposure to 1,2-DCP increased the levels of DNA double-strand break marker γ-H2AX and mRNA expression levels of NQO1, xCT, GSTM1, and G6PD in the livers of wild-type mice in a dose-dependent manner, but no such changes were noted in Nrf2-/- mice. 1,2-DCP increased glutathione levels in the liver of both the wild-type and Nrf2-/- mice, suggesting that an Nrf2-independent mechanism contributes to 1,2-DCP-induced increase in glutathione level. In conclusion, the study demonstrated that exposure to 1,2-DCP induced proliferation but reduced apoptosis in cholangiocytes, and induced double-strand DNA breaks and upregulation of antioxidant genes in the liver in an Nrf2-dependent manner. The study suggests a role of Nrf2 in 1,2-DCP-induced cell proliferation, antiapoptotic effect, and DNA damage, which are recognized as key characteristics of carcinogens.
Collapse
Affiliation(s)
- Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shigeyuki Sugie
- Department of Diagnostic Pathology, Asahi University Murakami Memorial Hospital, Gifu 550-8856, Japan
| | - Xiao Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, People's Republic of China
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Masayuki Yamamoto
- Division of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0431, Japan
| | - Seiichiro Ohsako
- Department of Environmental and Preventive Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
216
|
Wakabayashi N, Yagishita Y, Joshi T, Kensler TW. Forced Hepatic Expression of NRF2 or NQO1 Impedes Hepatocyte Lipid Accumulation in a Lipodystrophy Mouse Model. Int J Mol Sci 2023; 24:13345. [PMID: 37686150 PMCID: PMC10487640 DOI: 10.3390/ijms241713345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Lipodystrophy is a disorder featuring loss of normal adipose tissue depots due to impaired production of normal adipocytes. It leads to a gain of fat deposition in ectopic tissues such as liver and skeletal muscle that results in steatosis, dyslipidemia, and insulin resistance. Previously, we established a Rosa NIC/NIC::AdiCre lipodystrophy model mouse. The lipodystrophic phenotype that included hepatomegaly accompanied with hepatic damage due to higher lipid accumulation was attenuated substantially by amplified systemic NRF2 signaling in mice with hypomorphic expression of Keap1; whole-body Nrf2 deletion abrogated this protection. To determine whether hepatic-specific NRF2 signaling would be sufficient for protection against hepatomegaly and fatty liver development, direct, powerful, transient expression of Nrf2 or its target gene Nqo1 was achieved by administration through hydrodynamic tail vein injection of pCAG expression vectors of dominant-active Nrf2 and Nqo1 in Rosa NIC/NIC::AdiCre mice fed a 9% fat diet. Both vectors enabled protection from hepatic damage, with the pCAG-Nqo1 vector being the more effective as seen with a ~50% decrease in hepatic triglyceride levels. Therefore, activating NRF2 signaling or direct elevation of NQO1 in the liver provides new possibilities to partially reduce steatosis that accompanies lipodystrophy.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| | - Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
- Division of Endocrinology, Columbia University, New York, NY 10032, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| |
Collapse
|
217
|
Chandran A, Oliver HJ, Rochet JC. Role of NFE2L1 in the Regulation of Proteostasis: Implications for Aging and Neurodegenerative Diseases. BIOLOGY 2023; 12:1169. [PMID: 37759569 PMCID: PMC10525699 DOI: 10.3390/biology12091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023]
Abstract
A hallmark of aging and neurodegenerative diseases is a disruption of proteome homeostasis ("proteostasis") that is caused to a considerable extent by a decrease in the efficiency of protein degradation systems. The ubiquitin proteasome system (UPS) is the major cellular pathway involved in the clearance of small, short-lived proteins, including amyloidogenic proteins that form aggregates in neurodegenerative diseases. Age-dependent decreases in proteasome subunit expression coupled with the inhibition of proteasome function by aggregated UPS substrates result in a feedforward loop that accelerates disease progression. Nuclear factor erythroid 2- like 1 (NFE2L1) is a transcription factor primarily responsible for the proteasome inhibitor-induced "bounce-back effect" regulating the expression of proteasome subunits. NFE2L1 is localized to the endoplasmic reticulum (ER), where it is rapidly degraded under basal conditions by the ER-associated degradation (ERAD) pathway. Under conditions leading to proteasome impairment, NFE2L1 is cleaved and transported to the nucleus, where it binds to antioxidant response elements (AREs) in the promoter region of proteasome subunit genes, thereby stimulating their transcription. In this review, we summarize the role of UPS impairment in aging and neurodegenerative disease etiology and consider the potential benefit of enhancing NFE2L1 function as a strategy to upregulate proteasome function and alleviate pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswathy Chandran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Haley Jane Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
218
|
Shimizu R, Hirano I, Hasegawa A, Suzuki M, Otsuki A, Taguchi K, Katsuoka F, Uruno A, Suzuki N, Yumoto A, Okada R, Shirakawa M, Shiba D, Takahashi S, Suzuki T, Yamamoto M. Nrf2 alleviates spaceflight-induced immunosuppression and thrombotic microangiopathy in mice. Commun Biol 2023; 6:875. [PMID: 37626149 PMCID: PMC10457343 DOI: 10.1038/s42003-023-05251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Spaceflight-related stresses impact health via various body systems, including the haematopoietic and immune systems, with effects ranging from moderate alterations of homoeostasis to serious illness. Oxidative stress appears to be involved in these changes, and the transcription factor Nrf2, which regulates expression of a set of cytoprotective and antioxidative stress response genes, has been implicated in the response to spaceflight-induced stresses. Here, we show through analyses of mice from the MHU-3 project, in which Nrf2-knockout mice travelled in space for 31 days, that mice lacking Nrf2 suffer more seriously from spaceflight-induced immunosuppression than wild-type mice. We discovered that a one-month spaceflight-triggered the expression of tissue inflammatory marker genes in wild-type mice, an effect that was even more pronounced in the absence of Nrf2. Concomitant with induction of inflammatory conditions, the consumption of coagulation-fibrinolytic factors and platelets was elevated by spaceflight and further accelerated by Nrf2 deficiency. These results highlight that Nrf2 mitigates spaceflight-induced inflammation, subsequent immunosuppression, and thrombotic microangiopathy. These observations reveal a new strategy to relieve health problems encountered during spaceflight.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan.
| | - Ikuo Hirano
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Hasegawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mikiko Suzuki
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Taguchi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Akira Uruno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, New Industry Creation hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Akane Yumoto
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Risa Okada
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Masaki Shirakawa
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Dai Shiba
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology and Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan.
| |
Collapse
|
219
|
Wuputra K, Tsai MH, Kato K, Ku CC, Pan JB, Yang YH, Saito S, Wu CC, Lin YC, Cheng KH, Kuo KK, Noguchi M, Nakamura Y, Yoshioka T, Wu DC, Lin CS, Yokoyama KK. Jdp2 is a spatiotemporal transcriptional activator of the AhR via the Nrf2 gene battery. Inflamm Regen 2023; 43:42. [PMID: 37596694 PMCID: PMC10436584 DOI: 10.1186/s41232-023-00290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/06/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Crosstalk between the aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is called the "AhR-Nrf2 gene battery", which works synergistically in detoxification to support cell survival. Nrf2-dependent phase II gene promoters are controlled by coordinated recruitment of the AhR to adjacent dioxin responsive element (DRE) and Nrf2 recruitment to the antioxidative response element (ARE). The molecular interaction between AhR and Nrf2 members, and the regulation of each target, including phase I and II gene complexes, and their mediators are poorly understood. METHODS Knockdown and forced expression of AhR-Nrf2 battery members were used to examine the molecular interactions between the AhR-Nrf2 axis and AhR promoter activation. Sequential immunoprecipitation, chromatin immunoprecipitation, and histology were used to identify each protein complex recruited to their respective cis-elements in the AhR promoter. Actin fiber distribution, cell spreading, and invasion were examined to identify functional differences in the AhR-Jdp2 axis between wild-type and Jdp2 knockout cells. The possible tumorigenic role of Jdp2 in the AhR-Nrf2 axis was examined in mutant Kras-Trp53-driven pancreatic tumors. RESULTS Crosstalk between AhR and Nrf2 was evident at the transcriptional level. The AhR promoter was activated by phase I ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the AhR-Jdp2-Nrf2 axis in a time- and spatial transcription-dependent manner. Jdp2 was a bifunctional activator of DRE- and ARE-mediated transcription in response to TCDD. After TCDD exposure, Jdp2 activated the AhR promoter at the DRE and then moved to the ARE where it activated the promoter to increase reactive oxygen species (ROS)-mediated functions such as cell spreading and invasion in normal cells, and cancer regression in mutant Kras-Trp53-driven pancreatic tumor cells. CONCLUSIONS Jdp2 plays a critical role in AhR promoter activation through the AhR-Jdp2-Nrf2 axis in a spatiotemporal manner. The AhR functions to maintain ROS balance and cell spreading, invasion, and cancer regression in a mouse model of mutant Kras-Trp53 pancreatic cancer. These findings provide new insights into the roles of Jdp2 in the homeostatic regulation of oxidative stress and in the antioxidation response in detoxification, inflammation, and cancer progression.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Ya-Han Yang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kuang-Hung Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Kung-Kai Kuo
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Michiya Noguchi
- Cell Engineering Division, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
| |
Collapse
|
220
|
Restivo I, Basilicata MG, Giardina IC, Massaro A, Pepe G, Salviati E, Pecoraro C, Carbone D, Cascioferro S, Parrino B, Diana P, Ostacolo C, Campiglia P, Attanzio A, D’Anneo A, Pojero F, Allegra M, Tesoriere L. A Combination of Polymethoxyflavones from Citrus sinensis and Prenylflavonoids from Humulus lupulus Counteracts IL-1β-Induced Differentiated Caco-2 Cells Dysfunction via a Modulation of NF-κB/Nrf2 Activation. Antioxidants (Basel) 2023; 12:1621. [PMID: 37627616 PMCID: PMC10451557 DOI: 10.3390/antiox12081621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
We here investigated the anti-inflammatory activity of a polymethoxylated flavone-containing fraction (PMFF) from Citrus sinensis and of a prenylflavonoid-containing one (PFF) from Humulus lupulus, either alone or in combination (MIX). To this end, an in vitro model of inflammatory bowel disease (IBD), consisting of differentiated, interleukin (IL)-1β-stimulated Caco-2 cells, was employed. We demonstrated that non-cytotoxic concentrations of either PMFF or PFF or MIX reduced nitric oxide (NO) production while PFF and MIX, but not PMFF, also inhibited prostaglandin E2 release. Coherently, MIX suppressed both inducible NO synthase and cyclooxygenase-2 over-expression besides NF-κB activation. Moreover, MIX increased nuclear factor erythroid 2-related factor 2 (Nrf2) activation, heme oxygenase-1 expression, restoring GSH and reactive oxygen and nitrogen species (RONs) levels. Remarkably, these effects with MIX were stronger than those produced by PMFF or PFF alone. Noteworthy, nobiletin (NOB) and xanthohumol (XTM), two of the most represented phytochemicals in PMFF and PFF, respectively, synergistically inhibited RONs production. Overall, our results demonstrate that MIX enhances the anti-inflammatory and anti-oxidative effects of the individual fractions in a model of IBD, via a mechanism involving modulation of NF-κB and Nrf2 signalling. Synergistic interactions between NOB and XTM emerge as a relevant aspect underlying this evidence.
Collapse
Affiliation(s)
- Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | | | - Ilenia Concetta Giardina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Alessandro Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| |
Collapse
|
221
|
Petsouki E, Ender S, Sosa Cabrera SN, Heiss EH. AMPK-Mediated Phosphorylation of Nrf2 at S374/S408/S433 Favors Its βTrCP2-Mediated Degradation in KEAP1-Deficient Cells. Antioxidants (Basel) 2023; 12:1586. [PMID: 37627580 PMCID: PMC10451539 DOI: 10.3390/antiox12081586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Nrf2 is a transcription factor facilitating cells' resilience against redox and various other forms of stress. In the absence of stressors, KEAP1 and/or βTrCP mediate the ubiquitination of Nrf2 and prevent Nrf2-dependent gene expression and detoxification. AMPK regulates cellular energy homeostasis and redox balance. Previous studies indicated a potential Nrf2-AMPK cooperativity. In line with this, our lab had previously identified three AMPK-dependent phosphorylation sites (S374/408/433) in Nrf2. Given their localization in or near the Neh6 domain, known to regulate βTrCP-mediated degradation, we examined whether they may influence the βTrCP-driven degradation of Nrf2. By employing expression plasmids for WT and triple mutant (TM)-Nrf2 (Nrf2S374/408/433→A), (co)immunoprecipitation, proximity ligation, protein half-life, knockdown, ubiquitination experiments, and qPCR in Keap1-null mouse embryonic fibroblasts, we show that TM-Nrf2S→A374/408/433 had enhanced stability due to impeded interaction with βTrCP2 and reduced ubiquitination in comparison to WT-Nrf2. In addition, TM-Nrf2 elicited higher expression of the Nrf2 target gene Gclc, potentiated in the presence of a pharmacological AMPK activator. Overall, we propose that AMPK-dependent phospho-sites of Nrf2 can favor its βTrCP2-mediated degradation and dampen the extent of Nrf2 target gene expression. Therefore, targeting AMPK might be able to diminish Nrf2-mediated responses in cells with overactive Nrf2 due to KEAP1 deficiency.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (S.E.); (S.N.S.C.); (E.H.H.)
| | - Sylvia Ender
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (S.E.); (S.N.S.C.); (E.H.H.)
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (S.E.); (S.N.S.C.); (E.H.H.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (S.E.); (S.N.S.C.); (E.H.H.)
| |
Collapse
|
222
|
Sorice M, Profumo E, Capozzi A, Recalchi S, Riitano G, Di Veroli B, Saso L, Buttari B. Oxidative Stress as a Regulatory Checkpoint in the Production of Antiphospholipid Autoantibodies: The Protective Role of NRF2 Pathway. Biomolecules 2023; 13:1221. [PMID: 37627286 PMCID: PMC10452087 DOI: 10.3390/biom13081221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress is a well-known hallmark of Antiphospholipid Antibody Syndrome (APS), a systemic autoimmune disease characterized by arterial and venous thrombosis and/or pregnancy morbidity. Oxidative stress may affect various signaling pathways and biological processes, promoting dysfunctional immune responses and inflammation, inducing apoptosis, deregulating autophagy and impairing mitochondrial function. The chronic oxidative stress and the dysregulation of the immune system leads to the loss of tolerance, which drives autoantibody production and inflammation with the development of endothelial dysfunction. In particular, anti-phospholipid antibodies (aPL), which target phospholipids and/or phospholipid binding proteins, mainly β-glycoprotein I (β-GPI), play a functional role in the cell signal transduction pathway(s), thus contributing to oxidative stress and thrombotic events. An oxidation-antioxidant imbalance may be detected in the blood of patients with APS as a reflection of disease progression. This review focuses on functional evidence highlighting the role of oxidative stress in the initiation and progression of APS. The protective role of food supplements and Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) activators in APS patients will be summarized to point out the potential of these therapeutic approaches to reduce APS-related clinical complications.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.C.); (S.R.); (G.R.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (B.D.V.)
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.C.); (S.R.); (G.R.)
| | - Serena Recalchi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.C.); (S.R.); (G.R.)
| | - Gloria Riitano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.C.); (S.R.); (G.R.)
| | - Benedetta Di Veroli
- Department of Cardiovascular and Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (B.D.V.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (B.D.V.)
| |
Collapse
|
223
|
Brackhan M, Arribas-Blazquez M, Lastres-Becker I. Aging, NRF2, and TAU: A Perfect Match for Neurodegeneration? Antioxidants (Basel) 2023; 12:1564. [PMID: 37627559 PMCID: PMC10451380 DOI: 10.3390/antiox12081564] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Although the trigger for the neurodegenerative disease process is unknown, the relevance of aging stands out as a major risk for the development of neurodegeneration. In this review, we highlighted the relationship between the different cellular mechanisms that occur as a consequence of aging and transcription factor nuclear factor erythroid-2-related factor 2 (NRF2) and the connection with the TAU protein. We focused on the relevance of NRF2 in the main processes involved in neurodegeneration and associated with aging, such as genomic instability, protein degradation systems (proteasomes/autophagy), cellular senescence, and stem cell exhaustion, as well as inflammation. We also analyzed the effect of aging on TAU protein levels and its aggregation and spread process. Finally, we investigated the interconnection between NRF2 and TAU and the relevance of alterations in the NRF2 signaling pathway in both primary and secondary tauopathies. All these points highlight NRF2 as a possible therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Mirjam Brackhan
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
| | - Marina Arribas-Blazquez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| |
Collapse
|
224
|
Li X, Ni J, Chen L. Advances in the study of acetaminophen-induced liver injury. Front Pharmacol 2023; 14:1239395. [PMID: 37601069 PMCID: PMC10436315 DOI: 10.3389/fphar.2023.1239395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Acetaminophen (APAP) overdose is a significant cause of drug-induced liver injury and acute liver failure. The diagnosis, screening, and management of APAP-induced liver injury (AILI) is challenging because of the complex mechanisms involved. Starting from the current studies on the mechanisms of AILI, this review focuses on novel findings in the field of diagnosis, screening, and management of AILI. It highlights the current issues that need to be addressed. This review is supposed to summarize the recent research progress and make recommendations for future research.
Collapse
Affiliation(s)
- Xinghui Li
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiaqi Ni
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Li Chen
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
225
|
Adamson RJ, Payne NC, Bartual SG, Mazitschek R, Bullock AN. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly. Free Radic Biol Med 2023; 204:215-225. [PMID: 37156295 PMCID: PMC10564622 DOI: 10.1016/j.freeradbiomed.2023.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
KEAP1 promotes the ubiquitin-dependent degradation of NRF2 by assembling into a CUL3-dependent ubiquitin ligase complex. Oxidative and electrophilic stress inhibit KEAP1 allowing NRF2 to accumulate for the transactivation of stress response genes. To date there are no structures of the KEAP1-CUL3 interaction nor binding data to show the contributions of different domains to their binding affinity. We determined a crystal structure of the BTB and 3-box domains of human KEAP1 in complex with the CUL3 N-terminal domain that showed a heterotetrameric assembly with 2:2 stoichiometry. To support the structural data, we developed a versatile TR-FRET-based assay system to profile the binding of BTB-domain-containing proteins to CUL3 and determine the contribution of distinct protein features, revealing the importance of the CUL3 N-terminal extension for high affinity binding. We further provide direct evidence that the investigational drug CDDO does not disrupt the KEAP1-CUL3 interaction, even at high concentrations, but reduces the affinity of KEAP1-CUL3 binding. The TR-FRET-based assay system offers a generalizable platform for profiling this protein class and may form a suitable screening platform for ligands that disrupt these interactions by targeting the BTB or 3-box domains to block E3 ligase function.
Collapse
Affiliation(s)
- Roslin J Adamson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sergio G Bartual
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
226
|
Gatbonton-Schwager T, Yagishita Y, Joshi T, Wakabayashi N, Srinivasan H, Suzuki T, Yamamoto M, Kensler TW. A Point Mutation at C151 of Keap1 of Mice Abrogates NRF2 Signaling, Cytoprotection in Vitro, and Hepatoprotection in Vivo by Bardoxolone Methyl (CDDO-Me). Mol Pharmacol 2023; 104:51-61. [PMID: 37188495 PMCID: PMC10353147 DOI: 10.1124/molpharm.123.000671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Bardoxolone methyl (CDDO-Me) is an oleanane triterpenoid in late-stage clinical development for the treatment of patients with diabetic kidney disease. Preclinical studies in rodents demonstrate the efficacy of triterpenoids against carcinogenesis and other diseases, including renal ischemia-reperfusion injury, hyperoxia-induced acute lung injury, and immune hepatitis. Genetic disruption of Nrf2 abrogates protection by triterpenoids, suggesting that induction of the NRF2 pathway may drive this protection. Herein, we examined the effect of a point mutation (C151S) in KEAP1, a repressor of NRF2 signaling, at cysteine 151 in mouse embryo fibroblasts and mouse liver. Induction of target gene transcripts and enzyme activity by CDDO-Me was lost in C151S mutant fibroblasts compared with wild-type. Protection against menadione toxicity was also nullified in the mutant fibroblasts. In mouse liver, CDDO-Me evoked the nuclear translocation of NRF2, followed by increased transcript and activity levels of a prototypic target gene, Nqo1, in wild-type, but not C151S mutant, mice. To test the role of KEAP1 Cys151 in governing the broader pharmacodynamic action of CDDO-Me, wild-type and C151S mutant mice were challenged with concanavalin A to induce immune hepatitis. Strong protection was seen in wild-type but not C151S mutant mice. RNA-seq analysis of mouse liver from wild-type, C151S mutant, and Nrf2-knockout mice revealed a vigorous response of the NRF2 transcriptome in wild-type, but in neither C151S mutant nor Nrf2-knockout, mice. Activation of "off-target" pathways by CDDO were not observed. These data highlight the singular importance of the KEAP1 cysteine 151 sensor for activation of NRF2 signaling by CDDO-Me. SIGNIFICANCE STATEMENT: KEAP1 serves as a key sensor for induction of the cytoprotective signaling pathway driven by the transcription factor NRF2. Mutation of a single cysteine (C151) in KEAP1 abrogates the induction of NRF2 signaling and its downstream cytoprotective actions in vitro and in vivo by bardoxolone methyl (CDDO-Me), a drug in late-stage clinical development. Further, at these bioeffective concentrations/doses, activation of "off-target" pathways by CDDO-Me are not observed, highlighting the singular importance of NRF2 in its mode of action.
Collapse
Affiliation(s)
- Tonibelle Gatbonton-Schwager
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Yoko Yagishita
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Tanvi Joshi
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Nobunao Wakabayashi
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Harini Srinivasan
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Takafumi Suzuki
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Masayuki Yamamoto
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Thomas W Kensler
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| |
Collapse
|
227
|
Lacher SE, Skon-Hegg C, Ruis BL, Krznarich J, Slattery M. An antioxidant response element regulates the HIF1α axis in breast cancer cells. Free Radic Biol Med 2023; 204:243-251. [PMID: 37179033 PMCID: PMC10321210 DOI: 10.1016/j.freeradbiomed.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The redox sensitive transcription factor NRF2 is a central regulator of the transcriptional response to reactive oxygen species (ROS). NRF2 is widely recognized for its ROS-responsive upregulation of antioxidant genes that are essential for mitigating the damaging effects of oxidative stress. However, multiple genome-wide approaches have suggested that NRF2's regulatory reach extends well beyond the canonical antioxidant genes, with the potential to regulate many noncanonical target genes. Recent work from our lab and others suggests HIF1A, which encodes the hypoxia-responsive transcription factor HIF1α, is one such noncanonical NRF2 target. These studies found that NRF2 activity is associated with high HIF1A expression in multiple cellular contexts, HIF1A expression is partially dependent on NRF2, and there is a putative NRF2 binding site (antioxidant response element, or ARE) approximately 30 kilobases upstream of HIF1A. These findings all support a model in which HIF1A is a direct target of NRF2, but did not confirm the functional importance of the upstream ARE in HIF1A expression. Here we use CRISPR/Cas9 genome editing to mutate this ARE in its genomic context and test the impact on HIF1A expression. We find that mutation of this ARE in a breast cancer cell line (MDA-MB-231) eliminates NRF2 binding and decreases HIF1A expression at the transcript and protein levels, and disrupts HIF1α target genes as well as phenotypes driven by these HIF1α targets. Taken together, these results indicate that this NRF2 targeted ARE plays an important role in the expression of HIF1A and activity of the HIF1α axis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| | - Cara Skon-Hegg
- Whiteside Institute for Clinical Research, St. Luke's Hospital, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Brian L Ruis
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jennifer Krznarich
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| |
Collapse
|
228
|
Chen C, Zhou Z, Yu S, Ma Y, Wang G, Han X, Jiao C, Luan J, Liu Z, Xu Y, Wang H, Zhang Q, Fu J, Zhou H, Pi J. Nrf2 protects against renal fibrosis induced by chronic cadmium exposure in mice. Food Chem Toxicol 2023; 178:113875. [PMID: 37286028 DOI: 10.1016/j.fct.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Environmental cadmium (Cd) exposure is a serious public health concern, as the kidney is the primary target for Cd exposure. The present study aimed to investigate the role and underlying mechanisms of nuclear factor erythroid-derived 2-like 2 (Nrf2) in renal fibrosis induced by chronic Cd exposure. Nrf2 knockout (Nrf2-KO) mice and their wild-type littermates (Nrf2-WT) were exposed to 100 or 200 ppm Cd in drinking water for up to 16 or 24 weeks. Following the Cd exposures, Nrf2-KO mice showed elevated urinary neutrophil gelatinase-associated lipocalin (NGAL) and BUN levels compared to Nrf2-WT mice. Masson's trichrome staining and expression of fibrosis-associated proteins revealed that more severe renal fibrosis occurred in Nrf2-KO than that in Nrf2-WT mice. Renal Cd content in the Nrf2-KO mice exposed to 200 ppm Cd was lower than that in Nrf2-WT mice, which might be a consequence of the severe renal fibrosis in the Nrf2-KO mice. Mechanistic studies showed that Nrf2-KO mice exhibited higher levels of oxidative damage, lower antioxidant levels, and more regulated cell death, apoptosis in particular, than those in Nrf2-WT mice caused by Cd exposure. In conclusion, Nrf2-KO mice were more prone to develop renal fibrosis induced by chronic Cd exposure, partially due to a weakened antioxidant, detoxification capacity and increased oxidative damage.
Collapse
Affiliation(s)
- Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Siqi Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yawei Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Gang Wang
- Experimental and Teaching Center, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Xue Han
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Congcong Jiao
- Department of Nephrology, The Affiliated Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China
| | - Junjun Luan
- Department of Nephrology, The Affiliated Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China
| | - Zhiyuan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Hua Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Nephrology, The Affiliated Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
229
|
Cannavacciuolo C, Cerulli A, Dirsch VM, Heiss EH, Masullo M, Piacente S. LC-MS- and 1H NMR-Based Metabolomics to Highlight the Impact of Extraction Solvents on Chemical Profile and Antioxidant Activity of Daikon Sprouts ( Raphanus sativus L.). Antioxidants (Basel) 2023; 12:1542. [PMID: 37627537 PMCID: PMC10451950 DOI: 10.3390/antiox12081542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Currently, the interest of consumers towards functional foods as source of bioactive compounds is increasing. The sprouts of Raphanus sativus var longipinnatus (Brassicaceae) are "microgreens" popular, especially in gourmet cuisine, for their appealing aspect and piquant flavour. They represent a functional food due to their high nutritional value and health-promoting effects. Herein, the sprouts of daikon were extracted by different solvent mixtures to highlight how this process can affect the chemical profile and the antioxidant activity. An in-depth investigation based on a preliminary LC-ESI/LTQOrbitrap/MS profiling was carried out, leading to the identification of nineteen compounds, including glucosinolates and hydroxycinnamic acid derivatives. An undescribed compound, 1-O-feruloyl-2-O-sinapoyl-β-D-glucopyranoside, was isolated, and its structure was elucidated by NMR spectroscopy. The phenolic content and radical scavenging activity (DPPH and TEAC assays), along with the ability to activate Nrf2 (Nrf2-mediated luciferase reporter gene assay) of polar extracts, were evaluated. The results showed the highest antioxidant activity for the 70% EtOH/H2O extract with a TEAC value of 1.95 mM and IC50 = 93.97 µg/mL in the DPPH assay. Some 50% and 70% EtOH/H2O extracts showed a pronounced concentration-dependent induction of Nrf2 activity. The extracts of daikon sprouts were submitted to 1H NMR experiments and then analyzed by untargeted and targeted approaches of multivariate data analysis to highlight differences related to extraction solvents.
Collapse
Affiliation(s)
- Ciro Cannavacciuolo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; (C.C.); (A.C.); (M.M.)
- Ph.D. Program in Drug Discovery and Development, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy
| | - Antonietta Cerulli
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; (C.C.); (A.C.); (M.M.)
| | - Verena M. Dirsch
- Department of Pharmaceutical Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; (V.M.D.); (E.H.H.)
| | - Elke H. Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; (V.M.D.); (E.H.H.)
| | - Milena Masullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; (C.C.); (A.C.); (M.M.)
| | - Sonia Piacente
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; (C.C.); (A.C.); (M.M.)
| |
Collapse
|
230
|
Evans JA, Mendonca P, Soliman KFA. Involvement of Nrf2 Activation and NF-kB Pathway Inhibition in the Antioxidant and Anti-Inflammatory Effects of Hesperetin in Activated BV-2 Microglial Cells. Brain Sci 2023; 13:1144. [PMID: 37626501 PMCID: PMC10452655 DOI: 10.3390/brainsci13081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder leading to cognitive decline and memory loss. The incidence of this disease continues to increase due to the limited number of novel therapeutics that prevent or slow down its progression. Flavonoids have been investigated for their potential effects on cellular damage triggered by excessive reactive oxygen species (ROS) and neuroinflammatory conditions. This study investigated the effect of the flavonoid hesperetin on LPS-activated murine BV-2 microglial cells. Results show that hesperetin reduced nitric oxide levels and increased catalase, glutathione, and superoxide dismutase levels, suggesting its potential to reduce neuroinflammation and oxidative stress. Moreover, RT-PCR arrays showed that hesperetin modulated multiple genes that regulate oxidative stress. Hesperetin downregulated the mRNA expression of ERCC6, NOS2, and NCF1 and upregulated HMOX1 and GCLC. RT-PCR results showed that hesperetin-induced Nrf2 mRNA and protein expression in LPS-activated BV-2 microglial cells is involved in the transcription of several antioxidant genes, suggesting that hesperetin's antioxidant effects may be exerted via the Keap1/Nrf2 signaling pathway. Furthermore, the data demonstrated that hesperetin reduced the gene expression of PD-L1, which is upregulated as an individual ages and during chronic inflammatory processes, and inhibited the expression of genes associated with NF-kB signaling activation, which is overactivated during chronic inflammation. It was concluded from this investigation that hesperetin may have therapeutic potential to prevent or slow down the progression of neurodegenerative diseases, such as Alzheimer's disease, by reducing chronic oxidative stress and modulating neuroinflammation.
Collapse
Affiliation(s)
- Jasmine A. Evans
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
231
|
Fuertes-Agudo M, Luque-Tévar M, Cucarella C, Martín-Sanz P, Casado M. Advances in Understanding the Role of NRF2 in Liver Pathophysiology and Its Relationship with Hepatic-Specific Cyclooxygenase-2 Expression. Antioxidants (Basel) 2023; 12:1491. [PMID: 37627486 PMCID: PMC10451723 DOI: 10.3390/antiox12081491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress and inflammation play an important role in the pathophysiological changes of liver diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that positively regulates the basal and inducible expression of a large battery of cytoprotective genes, thus playing a key role in protecting against oxidative damage. Cyclooxygenase-2 (COX-2) is a key enzyme in prostaglandin biosynthesis. Its expression has always been associated with the induction of inflammation, but we have shown that, in addition to possessing other benefits, the constitutive expression of COX-2 in hepatocytes is beneficial in reducing inflammation and oxidative stress in multiple liver diseases. In this review, we summarized the role of NRF2 as a main agent in the resolution of oxidative stress, the crucial role of NRF2 signaling pathways during the development of chronic liver diseases, and, finally we related its action to that of COX-2, where it appears to operate as its partner in providing a hepatoprotective effect.
Collapse
Affiliation(s)
- Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María Luque-Tévar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB) “Alberto Sols”, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
232
|
Mukherjee AG, Gopalakrishnan AV. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med Oncol 2023; 40:248. [PMID: 37480500 DOI: 10.1007/s12032-023-02124-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) protein has garnered significant interest due to its crucial function in safeguarding cells and tissues. The Nrf2 protein is crucial in preserving tissue integrity by safeguarding cells against metabolic, xenobiotic and oxidative stress. Due to its various functions, Nrf2 is a potential pharmacological target for reducing the incidence of diseases such as cancer. However, mutations in Keap1-Nrf2 are not consistently favored in all types of cancer. Instead, they seem to interact with specific driver mutations of tumors and their respective tissue origins. The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway mutations are a powerful cancer adaptation that utilizes inherent cytoprotective pathways, encompassing nutrient metabolism and ROS regulation. The augmentation of Nrf2 activity elicits significant alterations in the characteristics of neoplastic cells, such as resistance to radiotherapy and chemotherapy, safeguarding against apoptosis, heightened invasiveness, hindered senescence, impaired autophagy and increased angiogenesis. The altered activity of Nrf2 can arise from diverse genetic and epigenetic modifications that instantly impact Nrf2 regulation. The present study aims to showcase the correlation between the Keap1-Nrf2 pathway and the progression of cancers, emphasizing genetic mutations, metabolic processes, immune regulation, and potential therapeutic strategies. This article delves into the intricacies of Nrf2 pathway anomalies in cancer, the potential ramifications of uncontrolled Nrf2 activity, and therapeutic interventions to modulate the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
233
|
Tyagi R, Chakraborty S, Tripathi SJ, Jung IR, Kim SF, Snyder SH, Paul BD. Inositol polyphosphate multikinase modulates redox signaling through nuclear factor erythroid 2-related factor 2 and glutathione metabolism. iScience 2023; 26:107199. [PMID: 37456841 PMCID: PMC10345128 DOI: 10.1016/j.isci.2023.107199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Maintenance of redox balance plays central roles in a plethora of signaling processes. Although physiological levels of reactive oxygen and nitrogen species are crucial for functioning of certain signaling pathways, excessive production of free radicals and oxidants can damage cell components. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling cascade is the key pathway that mediates cellular response to oxidative stress. It is controlled at multiple levels, which serve to maintain redox homeostasis within cells. We show here that inositol polyphosphate multikinase (IPMK) is a modulator of Nrf2 signaling. IPMK binds Nrf2 and attenuates activation and expression of Nrf2 target genes. Furthermore, depletion of IPMK leads to elevated glutathione and cysteine levels, resulting in increased resistance to oxidants. Accordingly, targeting IPMK may restore redox balance under conditions of cysteine and glutathione insufficiency.
Collapse
Affiliation(s)
- Richa Tyagi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ik-Rak Jung
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sangwon F. Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| |
Collapse
|
234
|
Sharma S, Khan Q, Schreurs OJF, Sapkota D, Samuelsen JT. Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes. Biomater Investig Dent 2023; 10:2234400. [PMID: 37456807 PMCID: PMC10348043 DOI: 10.1080/26415275.2023.2234400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Several in vitro studies utilizing 2-dimensional (2D) cell culture systems have linked 2-hydroxyethyl methacrylate (HEMA) with cytotoxic effects in oral mucosa and dental pulp cells. Although such studies are invaluable in dissecting the cellular and molecular effects of HEMA, there is a growing interest in the utilization of appropriate 3-dimensional (3D) models that mimic the structure of oral mucosa. Using a previously characterized 3D-organotypic co-culture model, this study aimed to investigate the cellular and molecular effects of HEMA on a 3D-co-culture model consisting of primary normal oral keratinocyte (NOK) grown directly on top of collagen I gel containing primary oral fibroblasts (NOF). The second aim was to examine the suitability of a 3D-co-culture system consisting of oral squamous cell carcinoma (OSCC) cells as a model system to investigate the biological effects of HEMA. We demonstrated that HEMA treatment led to reduced viability of NOK, NOF and OSCC-cell lines in 2D-culture. The keratinocytes in 3D-co-cultures of NOK and OSCC-cells reacted similarly with respect to cell proliferation and activation of autophagy flux, to HEMA treatment. Nevertheless, NOK was found to be more susceptible to apoptosis following HEMA treatment than OSCC in 3D-co-cultures. These results indicate that 3D-organotypic co-cultures of NOK might represent an appropriate model system for the investigation of the biological effects of HEMA and other dental biomaterials. Given the challenges in obtaining primary cultures of NOK and issues associated with their rapid differentiation in culture, the possible use of OSCC cells as an alternative to NOK for 3D models represents an area for future research.
Collapse
Affiliation(s)
- Sunita Sharma
- Nordic Institute of Dental Materials, Oslo, Norway
- Christiania Dental Clinic, Malo Dental, Oslo, Norway
| | - Qalbi Khan
- Department of Oral Biology, University of Oslo, Oslo, Blindern, Norway
| | | | - Dipak Sapkota
- Department of Oral Biology, University of Oslo, Oslo, Blindern, Norway
| | | |
Collapse
|
235
|
Zhao Z, Dong R, You Q, Jiang Z. Medicinal Chemistry Insights into the Development of Small-Molecule Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors. J Med Chem 2023. [PMID: 37441735 DOI: 10.1021/acs.jmedchem.3c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
236
|
Earland N, Chen K, Semenkovich NP, Chauhan PS, Zevallos JP, Chaudhuri AA. Emerging Roles of Circulating Tumor DNA for Increased Precision and Personalization in Radiation Oncology. Semin Radiat Oncol 2023; 33:262-278. [PMID: 37331781 DOI: 10.1016/j.semradonc.2023.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Recent breakthroughs in circulating tumor DNA (ctDNA) technologies present a compelling opportunity to combine this emerging liquid biopsy approach with the field of radiogenomics, the study of how tumor genomics correlate with radiotherapy response and radiotoxicity. Canonically, ctDNA levels reflect metastatic tumor burden, although newer ultrasensitive technologies can be used after curative-intent radiotherapy of localized disease to assess ctDNA for minimal residual disease (MRD) detection or for post-treatment surveillance. Furthermore, several studies have demonstrated the potential utility of ctDNA analysis across various cancer types managed with radiotherapy or chemoradiotherapy, including sarcoma and cancers of the head and neck, lung, colon, rectum, bladder, and prostate . Additionally, because peripheral blood mononuclear cells are routinely collected alongside ctDNA to filter out mutations associated with clonal hematopoiesis, these cells are also available for single nucleotide polymorphism analysis and could potentially be used to detect patients at high risk for radiotoxicity. Lastly, future ctDNA assays will be utilized to better assess locoregional MRD in order to more precisely guide adjuvant radiotherapy after surgery in cases of localized disease, and guide ablative radiotherapy in cases of oligometastatic disease.
Collapse
Affiliation(s)
- Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Kevin Chen
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pradeep S Chauhan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Jose P Zevallos
- Department of Otolaryngology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Aadel A Chaudhuri
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO; Department of Genetics, Washington University School of Medicine, St. Louis, MO; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO; Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
237
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
238
|
Pillai R, LeBoeuf SE, Hao Y, New C, Blum JLE, Rashidfarrokhi A, Huang SM, Bahamon C, Wu WL, Karadal-Ferrena B, Herrera A, Ivanova E, Cross M, Bossowski JP, Ding H, Hayashi M, Rajalingam S, Karakousi T, Sayin VI, Khanna KM, Wong KK, Wild R, Tsirigos A, Poirier JT, Rudin CM, Davidson SM, Koralov SB, Papagiannakopoulos T. Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546750. [PMID: 37425844 PMCID: PMC10327154 DOI: 10.1101/2023.06.27.546750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.
Collapse
|
239
|
Qadri MM, Alam MF, Khired ZA, Alaqi RO, Khardali AA, Alasmari MM, Alrashah ASS, Muzafar HMA, Qahl AM. Thymoquinone Ameliorates Carfilzomib-Induced Renal Impairment by Modulating Oxidative Stress Markers, Inflammatory/Apoptotic Mediators, and Augmenting Nrf2 in Rats. Int J Mol Sci 2023; 24:10621. [PMID: 37445797 DOI: 10.3390/ijms241310621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Chemotherapy-induced kidney damage is an emerging problem that restricts cancer treatment effectiveness. The proteasome inhibitor carfilzomib (CFZ) is primarily used to treat multiple myeloma and has been associated with severe renal injury in humans. CFZ-induced nephrotoxicity remains an unmet medical need, and there is an urgent need to find and develop a nephroprotective and antioxidant therapy for this condition. Thymoquinone (TQ) is a bioactive compound that has been isolated from Nigella sativa seeds. It has a wide range of pharmacological properties. Therefore, this experimental design aimed to study the effectiveness of TQ against CFZ-induced renal toxicity in rats. The first group of rats was a normal control (CNT); the second group received CFZ (4 mg/kg b.w.); the third and fourth groups received TQ (10 and 20 mg/kg b.w.) 2 h before receiving CFZ; the fifth group received only TQ (20 mg/kg b.w.). This experiment was conducted for 16 days, and at the end of the experiment, blood samples and kidney tissue were collected for biochemical assays. The results indicated that administration of CFZ significantly enhanced serum marker levels such as BUN, creatinine, and uric acid in the CFZ group. Similarly, it was also noticed that CFZ administration induced oxidative stress by reducing antioxidants (GSH) and antioxidant enzymes (CAT and SOD) and increasing lipid peroxidation. CFZ treatment also enhanced the expression of IL-1β, IL-6, and TNF-α production. Moreover, CFZ increased caspase-3 concentrations and reduced Nrf2 expression in the CFZ-administered group. However, treatment with 10 and 20 mg/kg TQ significantly decreased serum markers and increased antioxidant enzymes. TQ treatment considerably reduced IL-1β, IL-6, TNF-α, and caspase-3 concentrations. Overall, this biochemical estimation was also supported by histopathological outcomes. This study revealed that TQ administration significantly mitigated the negative effects of CFZ treatment on Nrf2 expression. Thus, it indicates that TQ may have utility as a potential drug to prevent CFZ-induced nephrotoxicity in the future.
Collapse
Affiliation(s)
- Marwa M Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Zenat A Khired
- Surgical Department, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Reem O Alaqi
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, Jazan 45142, Saudi Arabia
| | - Amani A Khardali
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Jeddah 22384, Saudi Arabia
| | - Ahmad S S Alrashah
- Pharmacy Administration, Ministry of Health, Health Affairs General Directorate, Najran 66251, Saudi Arabia
| | - Hisham M A Muzafar
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah M Qahl
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
240
|
Li L, Dong Y, Liu X, Wang M. Mangiferin for the Management of Liver Diseases: A Review. Foods 2023; 12:2469. [PMID: 37444207 DOI: 10.3390/foods12132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is a digestive and metabolic organ, and several factors can induce liver damage, which is a severe threat to human health. As a natural polyphenolic compound, mangiferin belongs to xanthone glucoside and mainly exists in many plants, such as mango. It is notorious that mangiferin has remarkable pharmacological activities such as anti-inflammatory, anti-tumor, antioxidative stress, antiviral and so on. Emerging evidence indicates the therapeutic benefits of mangiferin against liver disease, including liver injury, nonalcoholic fatty liver disease, alcoholic liver disease, liver fibrosis, and hepatocellular carcinoma. This review aims to summarize the possible underlying signaling mediated by mangiferin in liver disease treatment and the available findings of mangiferin, which can be used to treat different liver diseases and may contribute to mangiferin as a therapeutic agent for liver disease in humans.
Collapse
Affiliation(s)
- Lisi Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yujia Dong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Meng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100086, China
| |
Collapse
|
241
|
Krakowiak A, Pietrasik S. New Insights into Oxidative and Reductive Stress Responses and Their Relation to the Anticancer Activity of Selenium-Containing Compounds as Hydrogen Selenide Donors. BIOLOGY 2023; 12:875. [PMID: 37372159 DOI: 10.3390/biology12060875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Redox balance is important for the homeostasis of normal cells, but also for the proliferation, progression, and survival of cancer cells. Both oxidative and reductive stress can be harmful to cells. In contrast to oxidative stress, reductive stress and the therapeutic opportunities underlying the mechanisms of reductive stress in cancer, as well as how cancer cells respond to reductive stress, have received little attention and are not as well characterized. Therefore, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic treatment and disease progression in cancer. There is also the question of how cancer cells respond to reductive stress. Selenium compounds have been shown to have chemotherapeutic effects against cancer, and their anticancer mechanism is thought to be related to the formation of their metabolites, including hydrogen selenide (H2Se), which is a highly reactive and reducing molecule. Here, we highlight recent reports on the molecular mechanism of how cells recognize and respond to oxidative and reductive stress (1) and the mechanisms through which different types of selenium compounds can generate H2Se (2) and thus selectively affect reductive stress under controlled conditions, which may be important for their anticancer effects.
Collapse
Affiliation(s)
- Agnieszka Krakowiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Sylwia Pietrasik
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
242
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
243
|
Gjorgieva Ackova D, Maksimova V, Smilkov K, Buttari B, Arese M, Saso L. Alkaloids as Natural NRF2 Inhibitors: Chemoprevention and Cytotoxic Action in Cancer. Pharmaceuticals (Basel) 2023; 16:850. [PMID: 37375797 DOI: 10.3390/ph16060850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Being a controller of cytoprotective actions, inflammation, and mitochondrial function through participating in the regulation of multiple genes in response to stress-inducing endogenous or exogenous stressors, the transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) is considered the main cellular defense mechanism to maintain redox balance at cellular and tissue level. While a transient activation of NRF2 protects normal cells under oxidative stress, the hyperactivation of NRF2 in cancer cells may help them to survive and to adapt under oxidative stress. This can be detrimental and related to cancer progression and chemotherapy resistance. Therefore, inhibition of NRF2 activity may be an effective approach for sensitizing cancer cells to anticancer therapy. In this review, we examine alkaloids as NRF2 inhibitors from natural origin, their effects on cancer therapy, and/or as sensitizers of cancer cells to anticancer chemotherapeutics, and their potential clinical applications. Alkaloids, as inhibitor of the NRF2/KEAP1 signaling pathway, can have direct (berberine, evodiamine, and diterpenic aconitine types of alkaloids) or indirect (trigonelline) therapeutic/preventive effects. The network linking alkaloid action with oxidative stress and NRF2 modulation may result in an increased NRF2 synthesis, nuclear translocation, as well in a downstream impact on the synthesis of endogenous antioxidants, effects strongly presumed to be the mechanism of action of alkaloids in inducing cancer cell death or promoting sensitivity of cancer cells to chemotherapeutic agents. In this regard, the identification of additional alkaloids targeting the NRF2 pathway is desirable and the information arising from clinical trials will reveal the potential of these compounds as a promising target for anticancer therapy.
Collapse
Affiliation(s)
- Darinka Gjorgieva Ackova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Katarina Smilkov
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazz. le A. Moro 5, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
244
|
Rosche KL, Hurtado J, Fisk EA, Vosbigian KA, Warren AL, Sidak-Loftis LC, Wright SJ, Ramirez-Zepp E, Park JM, Shaw DK. PERK-mediated antioxidant response is key for pathogen persistence in ticks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542958. [PMID: 37398437 PMCID: PMC10312570 DOI: 10.1101/2023.05.30.542958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A crucial phase in the lifecycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown. In persistently infected Ixodes scapularis , we found that Borrelia burgdorferi (Lyme disease) and Anaplasma phagocytophilum (granulocytic anaplasmosis) activate a cellular stress pathway mediated by the endoplasmic reticulum receptor PERK and the central regulatory molecule, eIF2α. Disabling the PERK pathway through pharmacological inhibition and RNAi significantly decreased microbial numbers. In vivo RNA interference of the PERK pathway not only reduced the number of A. phagocytophilum and B. burgdorferi colonizing larvae after a bloodmeal, but also significantly reduced the number of bacteria that survive the molt. An investigation into PERK pathway-regulated targets revealed that A. phagocytophilum and B. burgdorferi induce activity of the antioxidant response regulator, Nrf2. Tick cells deficient for nrf2 expression or PERK signaling showed accumulation of reactive oxygen and nitrogen species in addition to reduced microbial survival. Supplementation with antioxidants rescued the microbicidal phenotype caused by blocking the PERK pathway. Altogether, our study demonstrates that the Ixodes PERK pathway is activated by transmissible microbes and facilitates persistence in the arthropod by potentiating an Nrf2-regulated antioxidant environment.
Collapse
Affiliation(s)
- Kristin L. Rosche
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Joanna Hurtado
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kaylee A. Vosbigian
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Ashley L. Warren
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Lindsay C. Sidak-Loftis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Sarah J. Wright
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Elisabeth Ramirez-Zepp
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Jason M. Park
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Dana K. Shaw
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
245
|
Tatara Y, Monzen S. Proteomics and secreted lipidomics of mouse-derived bone marrow cells exposed to a lethal level of ionizing radiation. Sci Rep 2023; 13:8802. [PMID: 37258593 DOI: 10.1038/s41598-023-35924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
High doses of ionizing radiation (IR) exposure can lead to the development of severe acute radiation syndrome with bone marrow failure. Defining risk factors that predict adverse events is a critical mission to guide patient selection for personalized treatment protocols. Since non-hematopoietic stem cells act as feeder cells in the niche and their secreted lipids may regulate hematopoietic stem cells, we focused on non-hematopoietic stem cells and aimed to discover biomarkers that can assess radiation exposure from their secreted lipids. Bone marrow stromal cells (BMSCs) and osteoblast differentiation-inducing cells (ODICs) isolated from mouse femurs were exposed to lethal doses of IR and the proteomic differences between BMSC and ODIC cell layers were compared. We observed an increased Nrf2-mediated oxidative stress response and IL6 expression in ODICs and decreased expression of mitochondrial proteins in BMSCs. To elucidate secreted factors, lipidomics of the cultures were profiled; the relevant lipids distinguishing IR-exposed and control groups of BMSC were acyl-acyl phosphatidylcholine (PC aa C34:1 and PC aa C34:4), lysophosphatidylcholine (lyso-PC a C18:0 and lyso PC a C17:0) and sphingomyelin (SM C20:2). These analyses suggest that certain lipids are candidate markers for the toxic effects of IR.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-Cho, Hirosaki, Aomori, 036-8562, Japan
| | - Satoru Monzen
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-Cho, Hirosaki, Aomori, 036-8564, Japan.
| |
Collapse
|
246
|
Singh S, Maurya AK. Junction of the redox dynamic, orchestra of signaling, and altered metabolism in regulation of T- cell lymphoma. Front Oncol 2023; 13:1108729. [PMID: 37274286 PMCID: PMC10235457 DOI: 10.3389/fonc.2023.1108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023] Open
Abstract
T-cell lymphoma is a hematologic neoplasm derived from the lymphoid lineage. It belongs to a diverse group of malignant disorders, mostly affecting the young population worldwide, that vary with respect to molecular features as well as genetic and clinical complexities. Cancer cells rewire the cellular metabolism, persuading it to meet new demands of growth and proliferation. Furthermore, the metabolic alterations and heterogeneity are aberrantly driven in cancer by a combination of genetic and non-genetic factors, including the tumor microenvironment. New insight into cancer metabolism highlights the importance of nutrient supply to tumor development and therapeutic responses. Importantly, oxidative stress due to an imbalance in the redox status of reactive species via exogenous and/or endogenous factors is closely related to multiple aspects of cancer. This alters the signaling pathways governed through the multiple intracellular signal transduction and transcription factors, leading to tumor progression. These oncogenic signaling molecules are regulated through different redox sensors, including nuclear factor-erythroid 2 related factor 2 (Nrf2), phase-II antioxidant enzyme, and NQO1 (NADPH quinone oxidoreductase (1). The existing understanding of the molecular mechanisms of T-cell lymphoma regulation through the cross-talk of redox sensors under the influence of metabolic vulnerability is not well explored. This review highlights the role of the redox dynamics, orchestra of signaling, and genetic regulation involved in T-cell lymphoma progression in addition to the challenges to their etiology, treatment, and clinical response in light of recent updates.
Collapse
|
247
|
Modi R, McKee N, Zhang N, Alwali A, Nelson S, Lohar A, Ostafe R, Zhang DD, Parkinson EI. Stapled Peptides as Direct Inhibitors of Nrf2-sMAF Transcription Factors. J Med Chem 2023; 66:6184-6192. [PMID: 37097833 PMCID: PMC10184664 DOI: 10.1021/acs.jmedchem.2c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 04/26/2023]
Abstract
Nuclear factor erythroid-related 2-factor 2 (Nrf2) is a transcription factor traditionally thought of as a cellular protector. However, in many cancers, Nrf2 is constitutively activated and correlated with therapeutic resistance. Nrf2 heterodimerizes with small musculoaponeurotic fibrosarcoma Maf (sMAF) transcription factors, allowing binding to the antioxidant responsive element (ARE) and induction of transcription of Nrf2 target genes. While transcription factors are historically challenging to target, stapled peptides have shown great promise for inhibiting these protein-protein interactions. Herein, we describe the first direct cell-permeable inhibitor of Nrf2/sMAF heterodimerization. N1S is a stapled peptide designed based on AlphaFold predictions of the interactions between Nrf2 and sMAF MafG. A cell-based reporter assay combined with in vitro biophysical assays demonstrates that N1S directly inhibits Nrf2/MafG heterodimerization. N1S treatment decreases the transcription of Nrf2-dependent genes and sensitizes Nrf2-dependent cancer cells to cisplatin. Overall, N1S is a promising lead for the sensitization of Nrf2-addicted cancers.
Collapse
Affiliation(s)
- Ramya Modi
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nick McKee
- Department
of Pharmacology and Toxicology, University
of Arizona, Tucson, Arizona 85721, United States
| | - Ning Zhang
- Department
of Pharmacology and Toxicology, University
of Arizona, Tucson, Arizona 85721, United States
| | - Amir Alwali
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samantha Nelson
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aditi Lohar
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Raluca Ostafe
- Molecular
Evolution Protein Engineering and Production, Purdue University, West Lafayette, Indiana 47907, United States
| | - Donna D. Zhang
- Department
of Pharmacology and Toxicology, University
of Arizona, Tucson, Arizona 85721, United States
| | - Elizabeth I. Parkinson
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
248
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
249
|
Levings DC, Pathak SS, Yang YM, Slattery M. Limited Expression of Nrf2 in Neurons Across the Central Nervous System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540014. [PMID: 37214946 PMCID: PMC10197674 DOI: 10.1101/2023.05.09.540014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nrf2 is a broadly expressed transcription factor that regulates gene expression in response to reactive oxygen species (ROS) and oxidative stress. It is commonly referred to as a ubiquitous pathway, but this generalization overlooks work indicating that Nrf2 is essentially unexpressed in some neuronal populations. To explore whether this pattern extends throughout the central nervous system (CNS), we quantified Nrf2 expression and chromatin accessibility at the Nrf2 locus across multiple single cell datasets. In both the mouse and human CNS, Nrf2 was repressed in almost all mature neurons, but highly expressed in non-neuronal support cells, and this pattern was robust across multiple human CNS diseases. A subset of key Nrf2 target genes, like Slc7a11 , also remained low in neurons. Thus, these data suggest that while most cells express Nrf2, with activity determined by ROS levels, neurons actively avoid Nrf2 activity by keeping Nrf2 expression low.
Collapse
Affiliation(s)
- Daniel C. Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|
250
|
Ma DY, Liu JX, Wang LD, Zhi XY, Luo L, Zhao JY, Qin Y. GSK-3β-dependent Nrf2 antioxidant response modulates ferroptosis of lens epithelial cells in age-related cataract. Free Radic Biol Med 2023; 204:161-176. [PMID: 37156294 DOI: 10.1016/j.freeradbiomed.2023.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in age-related cataract (ARC) with severe visual impairment, in which ferroptosis is gradually receiving numerous attention resulting from lipid peroxide accumulation and reactive oxygen species (ROS) overproduction. However, the essential pathogenic factors and the targeted medical strategies still remain skeptical and indistinct. In this work, by transmission electron microscopy (TEM) analysis, the major pathological courses in the LECs of ARC patients have been identified as ferroptosis, which was manifested with remarkable mitochondrial alterations, and similar results were found in aged mice (24-month-old). Furthermore, the primary pathological processes in the NaIO3-induced mice and HLE-B3 cell model have also been verified to be ferroptosis with an irreplaceable function of Nrf2, proved by the increased sensitivity to ferroptosis when Nrf2 was blocked in Nrf2-KO mice and si-Nrf2-treated HLE-B3 cells. Importantly, it has been found that an increased expression of GSK-3β was indicated in low-Nrf2-expressed tissues and cells. Subsequently, the contributions of abnormal GSK-3β expression to NaIO3-induced mice and HLE-B3 cell model were further evaluated, inhibition of GSK-3β utilizing SB216763 significantly alleviated LECs ferroptosis with less iron accumulation and ROS generation, as well as reversed expression alterations of ferroptosis markers, including GPX4, SLC7A11, SLC40A1, FTH1 and TfR1, in vitro and in vivo. Collectively, our findings conclude that targeting GSK-3β/Nrf2 balance might be a promising therapeutic strategy to mitigate LECs ferroptosis and thus probably delay the pathogenesis and development of ARC.
Collapse
Affiliation(s)
- Dong-Yue Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jin-Xia Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Lu-di Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Xin-Yu Zhi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Li Luo
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Yu Qin
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|