201
|
McCooke JK, Appels R, Barrero RA, Ding A, Ozimek-Kulik JE, Bellgard MI, Morahan G, Phillips JK. A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8. BMC Genomics 2012; 13:393. [PMID: 22899815 PMCID: PMC3441220 DOI: 10.1186/1471-2164-13-393] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 08/06/2012] [Indexed: 01/03/2023] Open
Abstract
Background Nephronophthisis (NPHP) as a cause of cystic kidney disease is the most common genetic cause of progressive renal failure in children and young adults. NPHP is characterized by abnormal and/or loss of function of proteins associated with primary cilia. Previously, we characterized an autosomal recessive phenotype of cystic kidney disease in the Lewis Polycystic Kidney (LPK) rat. Results In this study, quantitative trait locus analysis was used to define a ~1.6Mbp region on rat chromosome 10q25 harbouring the lpk mutation. Targeted genome capture and next-generation sequencing of this region identified a non-synonymous mutation R650C in the NIMA (never in mitosis gene a)- related kinase 8 ( Nek8) gene. This is a novel Nek8 mutation that occurs within the regulator of chromosome condensation 1 (RCC1)-like region of the protein. Specifically, the R650C substitution is located within a G[QRC]LG repeat motif of the predicted seven bladed beta-propeller structure of the RCC1 domain. The rat Nek8 gene is located in a region syntenic to portions of human chromosome 17 and mouse 11. Scanning electron microscopy confirmed abnormally long cilia on LPK kidney epithelial cells, and fluorescence immunohistochemistry for Nek8 protein revealed altered cilia localisation. Conclusions When assessed relative to other Nek8 NPHP mutations, our results indicate the whole propeller structure of the RCC1 domain is important, as the different mutations cause comparable phenotypes. This study establishes the LPK rat as a novel model system for NPHP and further consolidates the link between cystic kidney disease and cilia proteins.
Collapse
Affiliation(s)
- John K McCooke
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Distinct QTLs cosegregate with worse hypertension and renal disease in ovariectomized F2[Dahl S × R]-intercross rats. J Hypertens 2012; 30:1572-80. [PMID: 22688265 DOI: 10.1097/hjh.0b013e3283550eb8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
203
|
Dahl (S x R) congenic strain analysis confirms and defines a chromosome 5 female-specific blood pressure quantitative trait locus to <7 Mbp. PLoS One 2012; 7:e42214. [PMID: 22860086 PMCID: PMC3408448 DOI: 10.1371/journal.pone.0042214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/02/2012] [Indexed: 12/25/2022] Open
Abstract
The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (−26.5 mmHg, P = 0.002), DBP (−23.7 mmHg, P = 0.004) and MAP (−25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9–141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.
Collapse
|
204
|
Genomic analysis of the appearance of testicular oocytes in MRL/MpJ mice. Mamm Genome 2012; 23:741-8. [PMID: 22814868 DOI: 10.1007/s00335-012-9405-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Mammals produce sperm or oocytes depending on their sex; however, newborn MRL/MpJ (MRL) male mice produce oocytes within their testes. We previously reported that one of the genes responsible for this phenotype is present on the MRL-type Y chromosome (Y(MRL)), and that multiple genes, probably autosomal, are also required for the development of this phenotype. In this study we focused on the autosomal genes and examined their relationship with this phenotype by analyzing the progeny from crosses between MRL mice and other strains. We first observed the male F1 progeny from the crosses between female A/J, C57BL/6 (B6), BALB/c, C3H/He, or DBA/2 mice and male MRL mice, and two consomic strains, male B6-Y(MRL) and MRL-Y(B6). Testicular oocytes that were morphologically similar to those of MRL mice were detected in all mouse strains except BALBMRLF1; however, the incidence of testicular oocytes was significantly lower than that in MRL mice. The appearance of testicular oocytes in MRL-Y(B6) mice indicates that this phenotype is strongly affected by genomic factors present on autosomes, and that there is at least one other causative gene on the MRL-type autosomes (MRL testicular oocyte production, mtop) other than that on Y(MRL). Furthermore, a quantitative trait locus (QTL) analysis using N2 backcross progeny from crosses between female MRLB6F1 and male MRL mice revealed the presence of susceptibility loci for the appearance of testicular oocytes at 8-17 cM on Chr 15. These findings demonstrate that the appearance of testicular oocytes is regulated by the genetic factors on Chr 15 and on Y(MRL).
Collapse
|
205
|
Yang H, Tao Y, Zheng Z, Li C, Sweetingham MW, Howieson JG. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 2012; 13:318. [PMID: 22805587 PMCID: PMC3430595 DOI: 10.1186/1471-2164-13-318] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 06/04/2012] [Indexed: 11/29/2022] Open
Abstract
Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. Conclusions We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species.
Collapse
Affiliation(s)
- Huaan Yang
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, 6151, Australia.
| | | | | | | | | | | |
Collapse
|
206
|
Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 2012; 7:e40563. [PMID: 22802968 PMCID: PMC3393668 DOI: 10.1371/journal.pone.0040563] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/09/2012] [Indexed: 11/19/2022] Open
Abstract
The concurrent development of high-throughput genotyping platforms and next generation sequencing (NGS) has increased the number and density of genetic markers, the efficiency of constructing detailed linkage maps, and our ability to overlay recombination and physical maps of the genome. We developed an array for tomato with 8,784 Single Nucleotide Polymorphisms (SNPs) mainly discovered based on NGS-derived transcriptome sequences. Of the SNPs, 7,720 (88%) passed manufacturing quality control and could be scored in tomato germplasm. The array was used to generate high-density linkage maps for three interspecific F(2) populations: EXPEN 2000 (Solanum lycopersicum LA0925 x S. pennellii LA0716, 79 individuals), EXPEN 2012 (S. lycopersicum Moneymaker x S. pennellii LA0716, 160 individuals), and EXPIM 2012 (S. lycopersicum Moneymaker x S. pimpinellifolium LA0121, 183 individuals). The EXPEN 2000-SNP and EXPEN 2012 maps consisted of 3,503 and 3,687 markers representing 1,076 and 1,229 unique map positions (genetic bins), respectively. The EXPEN 2000-SNP map had an average marker bin interval of 1.6 cM, while the EXPEN 2012 map had an average bin interval of 0.9 cM. The EXPIM 2012 map was constructed with 4,491 markers (1,358 bins) and an average bin interval of 0.8 cM. All three linkage maps revealed an uneven distribution of markers across the genome. The dense EXPEN 2012 and EXPIM 2012 maps showed high levels of colinearity across all 12 chromosomes, and also revealed evidence of small inversions between LA0716 and LA0121. Physical positions of 7,666 SNPs were identified relative to the tomato genome sequence. The genetic and physical positions were mostly consistent. Exceptions were observed for chromosomes 3, 10 and 12. Comparing genetic positions relative to physical positions revealed that genomic regions with high recombination rates were consistent with the known distribution of euchromatin across the 12 chromosomes, while very low recombination rates were observed in the heterochromatic regions.
Collapse
Affiliation(s)
- Sung-Chur Sim
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | | | | | | | | | - Allen Van Deynze
- Seed Biotechnology Center, University of California Davis, Davis, California, United States of America
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mathilde Causse
- Institut National de la Recherche Agronomique, INRA, Unité de Génétique et d’Amélioration des Fruits et Légumes, Montfavet, France
| | - Saranga Wijeratne
- Molecular Cellular and Imagining Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - David M. Francis
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
207
|
Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, Rehman A, Lindbeck K, Luckett D, Wratten N, Batley J, Edwards D, Wang X, Raman H. Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:405-18. [PMID: 22454144 DOI: 10.1007/s00122-012-1842-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/05/2012] [Indexed: 05/02/2023]
Abstract
Blackleg, caused by Leptosphaeria maculans, is one of the most important diseases of oilseed and vegetable crucifiers worldwide. The present study describes (1) the construction of a genetic linkage map, comprising 255 markers, based upon simple sequence repeats (SSR), sequence-related amplified polymorphism, sequence tagged sites, and EST-SSRs and (2) the localization of qualitative (race-specific) and quantitative (race non-specific) trait loci controlling blackleg resistance in a doubled-haploid population derived from the Australian canola (Brassica napus L.) cultivars Skipton and Ag-Spectrum using the whole-genome average interval mapping approach. Marker regression analyses revealed that at least 14 genomic regions with LOD ≥ 2.0 were associated with qualitative and quantitative blackleg resistance, explaining 4.6-88.9 % of genotypic variation. A major qualitative locus, designated RlmSkipton (Rlm4), was mapped on chromosome A7, within 0.8 cM of the SSR marker Xbrms075. Alignment of the molecular markers underlying this QTL region with the genome sequence data of B. rapa L. suggests that RlmSkipton is located approximately 80 kb from the Xbrms075 locus. Molecular marker-RlmSkipton linkage was further validated in an F(2) population from Skipton/Ag-Spectrum. Our results show that SSR markers linked to consistent genomic regions are suitable for enrichment of favourable alleles for blackleg resistance in canola breeding programs.
Collapse
Affiliation(s)
- Rosy Raman
- EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, NSW 2650, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Foulongne-Oriol M. Genetic linkage mapping in fungi: current state, applications, and future trends. Appl Microbiol Biotechnol 2012; 95:891-904. [PMID: 22743715 DOI: 10.1007/s00253-012-4228-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.
Collapse
|
209
|
Slankster EE, Chase JM, Jones LA, Wendell DL. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory. FRONTIERS IN PLANT SCIENCE 2012; 3:118. [PMID: 22675329 PMCID: PMC3365483 DOI: 10.3389/fpls.2012.00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/17/2012] [Indexed: 06/01/2023]
Abstract
We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.
Collapse
Affiliation(s)
- Eryn E. Slankster
- Department of Biological Sciences, Oakland University, RochesterMI, USA
| | - Jillian M. Chase
- Department of Biological Sciences, Oakland University, RochesterMI, USA
| | - Lauren A. Jones
- Department of Biological Sciences, Oakland University, RochesterMI, USA
| | | |
Collapse
|
210
|
Leamy LJ, Gordon RR, Pomp D. Epistatic Control of Mammary Cancer Susceptibility in Mice may Depend on the Dietary Environment. HEREDITARY GENETICS : CURRENT RESEARCH 2012; 1:108. [PMID: 24558641 PMCID: PMC3927415 DOI: 10.4172/2161-1041.1000108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies have linked a high fat diet to the development of breast cancer, but any genetic basis for this association is poorly understood. We investigated this association with an epistatic analysis of seven cancer traits in a segregating population of mice with metastatic mammary cancer that were fed either a control or a high-fat diet. We used an interval mapping approach with single nucleotide polymorphisms to scan all 19 autosomes, and discovered a number of diet-independent epistatic interactions of quantitative trait loci (QTLs) affecting these traits. More importantly, we also discovered significant epistatic by diet interactions affecting some of the traits that suggested these epistatic effects varied depending on the dietary environment. An analysis of these interactions showed some were due to epistasis that occurred in mice fed only the control diet or only the high-fat diet whereas other interactions were generated by differential effects of epistasis in the two dietary environments. Some of the epistatic QTLs appeared to colocalize with cancer QTLs mapped in other mouse populations and with candidate genes identified from eQTLs previously mapped in this population, but others represented novel modifying loci affecting these cancer traits. It was concluded that these diet-dependent epistatic QTLs contribute to a genetic susceptibility of dietary effects on breast cancer, and their identification may eventually lead to a better understanding that will be needed for the design of more effective treatments for this disease.
Collapse
Affiliation(s)
- Larry J. Leamy
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223
| | - Ryan R. Gordon
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel Pomp
- Department of Biology, Nutrition, and Cell and Molecular Physiology, University of North Carolina, Chapel Hill North Carolina, 27599
| |
Collapse
|
211
|
Agenbag GM, Pretorius ZA, Boyd LA, Bender CM, Prins R. Identification of adult plant resistance to stripe rust in the wheat cultivar Cappelle-Desprez. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:109-20. [PMID: 22350093 DOI: 10.1007/s00122-012-1819-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 02/03/2012] [Indexed: 05/20/2023]
Abstract
Following the appearance of stripe rust in South Africa in 1996, efforts have been made to identify new sources of durable resistance. The French cultivar Cappelle-Desprez has long been considered a source of durable, adult plant resistance (APR) to stripe rust. As Cappelle-Desprez contains the seedling resistance genes Yr3a and Yr4a, wheat lines were developed from which Yr3a and Yr4a had been removed, while selecting for Cappelle-Desprez derived APR effective against South African pathotypes of the stripe rust fungus, Puccinia striiformis f. sp. tritici. Line Yr16DH70, adapted to South African wheat growing conditions, was selected and crossed to the stripe rust susceptible cultivar Palmiet to develop a segregating recombinant inbred line mapping population. A major effect QTL, QYr.ufs-2A was identified on the short arm of chromosome 2A derived from Cappelle-Desprez, along with three QTL of smaller effect, QYr.ufs-2D, QYr.ufs-5B and QYr.ufs-6D. QYr.ufs-2D was located within a region on the short arm of chromosome 2D believed to be the location of the stripe rust resistance gene Yr16. An additional minor effect QTL, QYr.ufs-4B, was identified in the cv. Palmiet. An examination of individual RILs carrying single or combinations of each QTL indicated significant resistance effects when QYr.ufs-2A was combined with the three minor QTL from Cappelle-Desprez, and between QYr.ufs-2D and QYr.ufs-5B.
Collapse
Affiliation(s)
- G M Agenbag
- Department of Plant Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | | | | | | | | |
Collapse
|
212
|
Calderon CI, Yandell BS, Havey MJ. Genetic mapping of paternal sorting of mitochondria in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:11-18. [PMID: 22350175 DOI: 10.1007/s00122-012-1812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Mitochondria are organelles that have their own DNA; serve as the powerhouses of eukaryotic cells; play important roles in stress responses, programmed cell death, and ageing; and in the vast majority of eukaryotes, are maternally transmitted. Strict maternal transmission of mitochondria makes it difficult to select for better-performing mitochondria, or against deleterious mutations in the mitochondrial DNA. Cucumber is a useful plant for organellar genetics because its mitochondria are paternally transmitted and it possesses one of the largest mitochondrial genomes among all eukaryotes. Recombination among repetitive motifs in the cucumber mitochondrial DNA produces rearrangements associated with strongly mosaic (MSC) phenotypes. We previously reported nuclear control of sorting among paternally transmitted mitochondrial DNAs. The goal of this project was to map paternal sorting of mitochondria as a step towards its eventual cloning. We crossed single plants from plant introduction (PI) 401734 and Cucumis sativus var. hardwickii and produced an F(2) family. A total of 425 F(2) plants were genotyped for molecular markers and testcrossed as the female with MSC16. Testcross families were scored for frequencies of wild-type versus MSC progenies. Discrete segregations for percent wild-type progenies were not observed and paternal sorting of mitochondria was therefore analyzed as a quantitative trait. A major quantitative trait locus (QTL; LOD >23) was mapped between two simple sequence repeats encompassing a 459-kb region on chromosome 3. Nuclear genes previously shown to affect the prevalence of mitochondrial DNAs (MSH1, OSB1, and RECA homologs) were not located near this major QTL on chromosome 3. Sequencing of this region from PI 401734, together with improved annotation of the cucumber genome, should result in the eventual cloning of paternal sorting of mitochondria and provide insights about nuclear control of organellar-DNA sorting.
Collapse
Affiliation(s)
- Claudia I Calderon
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
213
|
Sauce B, de Brito RA, Peripato AC. Genetic architecture of nest building in mice LG/J × SM/J. Front Genet 2012; 3:90. [PMID: 22654894 PMCID: PMC3361010 DOI: 10.3389/fgene.2012.00090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/07/2012] [Indexed: 11/13/2022] Open
Abstract
Maternal care is critical to offspring growth and survival, which is greatly improved by building an effective nest. Some suggest that genetic variation and underlying genetic effects differ between fitness-related traits and other phenotypes. We investigated the genetic architecture of a fitness-related trait, nest building, in F2 female mice intercrossed from inbred strains SM/J and LG/J using a QTL analysis for six related nest phenotypes (Presence and Structure pre- and postpartum, prepartum Material Used and postpartum Temperature). We found 15 direct-effect QTLs explaining from 4 to 13% of the phenotypic variation in nest building, mostly with non-additive effect. Epistatic analyses revealed 71 significant epistatic interactions which together explain from 28.4 to 75.5% of the variation, indicating an important role for epistasis in the adaptive process of nest building behavior in mice. Our results suggest a genetic architecture with small direct effects and a larger number of epistatic interactions as expected for fitness-related phenotypes.
Collapse
Affiliation(s)
- Bruno Sauce
- Department of Genetics and Evolution, Center of Health and Biological Sciences, Federal University of Sao Carlos Sao Carlos, Brazil
| | | | | |
Collapse
|
214
|
Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ. Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1283-94. [PMID: 22274764 DOI: 10.1007/s00122-012-1786-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/05/2012] [Indexed: 05/02/2023]
Abstract
Leaf rust and stripe rust are important diseases of wheat world-wide and deployment of cultivars with genetic resistance is an effective and environmentally sound control method. The use of minor, additive genes conferring adult plant resistance (APR) has been shown to provide resistance that is durable. The wheat cultivar 'Pastor' originated from the CIMMYT breeding program that focuses on minor gene-based APR to both diseases by selecting and advancing generations alternately under leaf rust and stripe rust pressures. As a consequence, Pastor has good resistance to both rusts and was used as the resistant parent to develop a mapping population by crossing with the susceptible 'Avocet'. All 148 F(5) recombinant inbred lines were evaluated under artificially inoculated epidemic environments for leaf rust (3 environments) and stripe rust (4 environments, 2 of which represent two evaluation dates in final year due to the late build-up of a new race virulent to Yr31) in Mexico. Map construction and QTL analysis were completed with 223 polymorphic markers on 84 randomly selected lines in the population. Pastor contributed Yr31, a moderately effective race-specific gene for stripe rust resistance, which was overcome during this study, and this was clearly shown in the statistical analysis. Linked or pleiotropic chromosomal regions contributing to resistance against both pathogens included Lr46/Yr29 on 1BL, the Yr31 region on 2BS, and additional minor genes on 5A, 6B and 7BL. Other minor genes for leaf rust resistance were located on 1B, 2A and 2D and for stripe rust on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL. The 1AL, 1BS and 7AL QTLs are in regions that were not identified previously as having QTLs for stripe rust resistance. The development of uniform and severe epidemics facilitated excellent phenotyping, and when combined with multi-environment analysis, resulted in the relatively large number of QTLs identified in this study.
Collapse
Affiliation(s)
- G M Rosewarne
- International Maize and Wheat Improvement Centre, CIMMYT China, Jinjiang, Chengdu, Sichuan 610066, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
215
|
Laidlaw HKC, Lahnstein J, Burton RA, Fincher GB, Jobling SA. Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3031-45. [PMID: 22378943 PMCID: PMC3350918 DOI: 10.1093/jxb/ers019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 05/11/2023]
Abstract
Arabinoxylan arabinofuranohydrolases (AXAHs) are family GH51 enzymes that have been implicated in the removal of arabinofuranosyl residues from the (1,4)-β-xylan backbone of heteroxylans. Five genes encoding barley AXAHs range in size from 4.6 kb to 7.1 kb and each contains 16 introns. The barley HvAXAH genes map to chromosomes 2H, 4H, and 5H. A small cluster of three HvAXAH genes is located on chromosome 4H and there is evidence for gene duplication and the presence of pseudogenes in barley. The cDNAs corresponding to barley and wheat AXAH genes were cloned, and transcript levels of the genes were profiled across a range of tissues at different developmental stages. Two HvAXAH cDNAs that were successfully expressed in Nicotiana benthamiana leaves exhibited similar activities against 4-nitrophenyl α-L-arabinofuranoside, but HvAXAH2 activity was significantly higher against wheat flour arabinoxylan, compared with HvAXAH1. HvAXAH2 also displayed activity against (1,5)-α-L-arabinopentaose and debranched arabinan. Western blotting with an anti-HvAXAH antibody was used to define further the locations of the AXAH enzymes in developing barley grain, where high levels were detected in the outer layers of the grain but little or no protein was detected in the endosperm. The chromosomal locations of the genes do not correspond to any previously identified genomic regions shown to influence heteroxylan structure. The data are therefore consistent with a role for AXAH in depolymerizing arabinoxylans in maternal tissues during grain development, but do not provide compelling evidence for a role in remodelling arabinoxylans during endosperm or coleoptile development in barley as previously proposed.
Collapse
Affiliation(s)
- Hunter K. C. Laidlaw
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Plant Industry, GPO Box 1600, ACT 2601 Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064 Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064 Australia
| | - Geoffrey B. Fincher
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064 Australia
| | - Stephen A. Jobling
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Plant Industry, GPO Box 1600, ACT 2601 Australia
| |
Collapse
|
216
|
Keller JM, Noben-Trauth K. Genome-wide linkage analyses identify Hfhl1 and Hfhl3 with frequency-specific effects on the hearing spectrum of NIH Swiss mice. BMC Genet 2012; 13:32. [PMID: 22540152 PMCID: PMC3416580 DOI: 10.1186/1471-2156-13-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022] Open
Abstract
Background The mammalian cochlea receives and analyzes sound at specific places along the cochlea coil, commonly referred to as the tonotopic map. Although much is known about the cell-level molecular defects responsible for severe hearing loss, the genetics responsible for less severe and frequency-specific hearing loss remains unclear. We recently identified quantitative trait loci (QTLs) Hfhl1 and Hfhl2 that affect high-frequency hearing loss in NIH Swiss mice. Here we used 2f1-f2 distortion product otoacoustic emissions (DPOAE) measurements to refine the hearing loss phenotype. We crossed the high frequency hearing loss (HFHL) line of NIH Swiss mice to three different inbred strains and performed linkage analysis on the DPOAE data obtained from the second-generation populations. Results We identified a QTL of moderate effect on chromosome 7 that affected 2f1-f2 emissions intensities (Hfhl1), confirming the results of our previous study that used auditory brainstem response (ABR) thresholds to identify QTLs affecting HFHL. We also identified a novel significant QTL on chromosome 9 (Hfhl3) with moderate effects on 2f1-f2 emissions intensities. By partitioning the DPOAE data into frequency subsets, we determined that Hfhl1 and Hfhl3 affect hearing primarily at frequencies above 24 kHz and 35 kHz, respectively. Furthermore, we uncovered additional QTLs with small effects on isolated portions of the DPOAE spectrum. Conclusions This study identifies QTLs with effects that are isolated to limited portions of the frequency map. Our results support the hypothesis that frequency-specific hearing loss results from variation in gene activity along the cochlear partition and suggest a strategy for creating a map of cochlear genes that influence differences in hearing sensitivity and/or vulnerability in restricted portions of the cochlea.
Collapse
Affiliation(s)
- James M Keller
- Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD 20850, USA.
| | | |
Collapse
|
217
|
Bubier JA, Chesler EJ. Accelerating discovery for complex neurological and behavioral disorders through systems genetics and integrative genomics in the laboratory mouse. Neurotherapeutics 2012; 9:338-48. [PMID: 22422471 PMCID: PMC3325414 DOI: 10.1007/s13311-012-0111-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent advances in systems genetics and integrative functional genomics have greatly improved the study of complex neurological and behavioral traits. The methods developed for the integrated characterization of new, high-resolution mouse genetic reference populations and systems genetics enable behavioral geneticists an unprecedented opportunity to address questions of the molecular basis of neurological and psychiatric disorders and their comorbidities. Integrative genomics augment these strategies by enabling rapid informatics-assisted candidate gene prioritization, cross-species translation, and mechanistic comparison across related disorders from a wealth of existing data in mouse and other model organisms. Ultimately, through these complementary approaches, finding the mechanisms and sources of genetic variation underlying complex neurobehavioral disease related traits is becoming tractable. Furthermore, these methods enable categorization of neurobehavioral disorders through their underlying biological basis. Together, these model organism-based approaches can lead to a refinement of diagnostic categories and targeted treatment of neurological and psychiatric disease.
Collapse
|
218
|
Chhuneja P, Kumar K, Stirnweis D, Hurni S, Keller B, Dhaliwal HS, Singh K. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1051-1058. [PMID: 22198205 DOI: 10.1007/s00122-011-1768-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/04/2011] [Indexed: 05/31/2023]
Abstract
Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (A(b)A(b)) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.
Collapse
Affiliation(s)
- Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | | | | | | | | | | | | |
Collapse
|
219
|
Glant TT, Adarichev VA, Boldizsar F, Besenyei T, Laszlo A, Mikecz K, Rauch TA. Disease-promoting and -protective genomic loci on mouse chromosomes 3 and 19 control the incidence and severity of autoimmune arthritis. Genes Immun 2012; 13:336-45. [PMID: 22402741 DOI: 10.1038/gene.2012.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteoglycan (PG)-induced arthritis (PGIA) is a murine model of rheumatoid arthritis. Arthritis-prone BALB/c mice are 100% susceptible, whereas the major histocompatibility complex-matched DBA/2 strain is completely resistant to PGIA. To reduce the size of the disease-suppressive loci for sequencing and to find causative genes of arthritis, we created a set of BALB/c.DBA/2-congenic/subcongenic strains carrying DBA/2 genomic intervals overlapping the entire Pgia26 locus on chromosome 3 (chr3) and Pgia23/Pgia12 loci on chr19 in the arthritis-susceptible BALB/c background. Upon immunization of these subcongenic strains and their wild-type (BALB/c) littermates, we identified a major Pgia26a sublocus on chr3 that suppressed disease onset, incidence and severity via controlling the complex trait of T-cell responses. The region was reduced to 3 Mbp (11.8 Mbp with flanking regions) in size and contained gene(s) influencing the production of a number of proinflammatory cytokines. Additionally, two independent loci (Pgia26b and Pgia26c) suppressed the clinical scores of arthritis. The Pgia23 locus (∼3 Mbp in size) on chr19 reduced arthritis susceptibility and onset, and the Pgia12 locus (6 Mbp) associated with low arthritis severity. Thus, we have reached the critical sizes of arthritis-associated genomic loci on mouse chr3 and chr19, which are ready for high-throughput sequencing of genomic DNA.
Collapse
Affiliation(s)
- T T Glant
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
220
|
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:697-711. [PMID: 22045047 DOI: 10.1007/s00122-011-1740-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 10/18/2011] [Indexed: 05/27/2023]
Abstract
In southern Australia, where the climate is predominantly Mediterranean, achieving the correct flowering time in bread wheat minimizes the impact of in-season cyclical and terminal drought. Flag leaf glaucousness has been hypothesized as an important component of drought tolerance but its value and genetic basis in locally adapted germplasm is unknown. From a cross between Kukri and RAC875, a doubled-haploid (DH) population was developed. A genetic linkage map consisting of 456 DArT and SSR markers was used to detect QTL affecting time to ear emergence and Zadoks growth score in seven field experiments. While ear emergence time was similar between the parents, there was significant transgressive segregation in the population. This was the result of segregation for the previously characterized Ppd-D1a and Ppd-B1 photoperiod responsive alleles. QTL of smaller effect were also detected on chromosomes 1A, 4A, 4B, 5A, 5B, 7A and 7B. A novel QTL for flag leaf glaucousness of large, repeatable effect was detected in six field experiments, on chromosome 3A (QW.aww-3A) and accounted for up to 52 percent of genetic variance for this trait. QW.aww-3A was validated under glasshouse conditions in a recombinant inbred line population from the same cross. The genetic basis of time to ear emergence in this population will aid breeders' understanding of phenological adaptation to the local environment. Novel loci identified for flag leaf glaucousness and the wide phenotypic variation within the DH population offers considerable scope to investigate the impact and value of this trait for bread wheat production in southern Australia.
Collapse
Affiliation(s)
- Dion Bennett
- Australian Centre for Plant Functional Genomics, Waite Campus, University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Septiningsih EM, Sanchez DL, Singh N, Sendon PMD, Pamplona AM, Heuer S, Mackill DJ. Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:867-74. [PMID: 22083356 DOI: 10.1007/s00122-011-1751-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/28/2011] [Indexed: 05/21/2023]
Abstract
Short-term submergence is a recurring problem in many rice production areas. The SUB1 gene, derived from the tolerant variety FR13A, has been transferred to a number of widely grown varieties, allowing them to withstand complete submergence for up to 2 weeks. However, in areas where longer-term submergence occurs, improved varieties having higher tolerance levels are needed. To search for novel quantitative trait loci (QTLs) from other donors, an F(2:3) population between IR72 and Madabaru, both moderately tolerant varieties, was investigated. After a repeated phenotyping of 466 families under submergence stress, a subset of 80 families selected from the two extreme phenotypic tails was used for the QTL analysis. Phenotypic data showed transgressive segregation, with several families having an even higher survival rate than the FR13A-derived tolerant check (IR40931). Four QTLs were identified on chromosomes 1, 2, 9, and 12; the largest QTL on chromosome 1 had a LOD score of 11.2 and R (2) of 52.3%. A QTL mapping to the SUB1 region on chromosome 9, with a LOD score of 3.6 and R (2) of 18.6%, had the tolerant allele from Madabaru, while the other three QTLs had tolerant alleles from IR72. The identification of three non-SUB1 QTLs from IR72 suggests that an alternative pathway may be present in this variety that is independent of the ethylene-dependent pathway mediated by the SUB1A gene. These novel QTLs can be combined with SUB1 using marker assisted backcrossing in an effort to enhance the level of submergence tolerance for flood-prone areas.
Collapse
|
222
|
Suzuki T, Sato M, Takeuchi T. Evaluation of the effects of five QTL regions on Fusarium head blight resistance and agronomic traits in spring wheat (Triticum aestivum L.). BREEDING SCIENCE 2012; 62:11-7. [PMID: 23136509 PMCID: PMC3405959 DOI: 10.1270/jsbbs.62.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/15/2011] [Indexed: 05/07/2023]
Abstract
Fusarium head blight (FHB) is an important disease of wheat (Triticum aestivum L.). The aim of this study was to determine the effects of quantitative trait locus (QTL) regions for resistance to FHB and estimate their effects on reducing FHB damage to wheat in Hokkaido, northern Japan. We examined 233 F(1)-derived doubled-haploid (DH) lines from a cross between 'Kukeiharu 14' and 'Sumai 3' to determine their reaction to FHB during two seasons under field conditions. The DH lines were genotyped at five known FHB-resistance QTL regions (on chromosomes 3BS, 5AS, 6BS, 2DL and 4BS) by using SSR markers. 'Sumai 3' alleles at the QTLs at 3BS and 5AS effectively reduced FHB damage in the environment of Hokkaido, indicating that these QTLs will be useful for breeding spring wheat cultivars suitable for Hokkaido. Some of the QTL regions influenced agronomic traits: 'Sumai 3' alleles at the 4BS and 5AS QTLs significantly increased stem length and spike length, that at the 2DL QTL significantly decreased grain weight, and that at the 6BS QTL significantly delayed heading, indicating pleiotropic or linkage effects between these agronomic traits and FHB resistance.
Collapse
Affiliation(s)
- Takako Suzuki
- Hokkaido Research Organization, Agricultural Research Department, Chuo Agricultural Experiment Station, Higashi-6, Kita-15, Naganuma, Hokkaido 069-1395, Japan
- Corresponding author (e-mail: )
| | - Michinori Sato
- Hokkaido Research Organization, Agricultural Research Department, Chuo Agricultural Experiment Station, Higashi-6, Kita-15, Naganuma, Hokkaido 069-1395, Japan
- Sato Professional Engineer’s Office, Kaminayoro-590, Shimokawa, Hokkaido 098-1216, Japan
| | - Toru Takeuchi
- Hokkaido Research Organization, Agricultural Research Department, Chuo Agricultural Experiment Station, Higashi-6, Kita-15, Naganuma, Hokkaido 069-1395, Japan
- Hokkaido Research Organization, Agricultural Research Department, Kitami Agricultural Experiment Station, Yayoi, Kunneppu, Hokkaido 099-1496, Japan
| |
Collapse
|
223
|
Burkart-Waco D, Josefsson C, Dilkes B, Kozloff N, Torjek O, Meyer R, Altmann T, Comai L. Hybrid incompatibility in Arabidopsis is determined by a multiple-locus genetic network. PLANT PHYSIOLOGY 2012; 158:801-12. [PMID: 22135429 PMCID: PMC3271768 DOI: 10.1104/pp.111.188706] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/21/2011] [Indexed: 05/24/2023]
Abstract
The cross between Arabidopsis thaliana and the closely related species Arabidopsis arenosa results in postzygotic hybrid incompatibility, manifested as seed death. Ecotypes of A. thaliana were tested for their ability to produce live seed when crossed to A. arenosa. The identified genetic variation was used to map quantitative trait loci (QTLs) encoded by the A. thaliana genome that affect the frequency of postzygotic lethality and the phenotypes of surviving seeds. Seven QTLs affecting the A. thaliana component of this hybrid incompatibility were identified by crossing a Columbia × C24 recombinant inbred line population to diploid A. arenosa pollen donors. Additional epistatic loci were identified based on their pairwise interaction with one or several of these QTLs. Epistatic interactions were detected for all seven QTLs. The two largest additive QTLs were subjected to fine-mapping, indicating the action of at least two genes in each. The topology of this network reveals a large set of minor-effect loci from the maternal genome controlling hybrid growth and viability at different developmental stages. Our study establishes a framework that will enable the identification and characterization of genes and pathways in A. thaliana responsible for hybrid lethality in the A. thaliana × A. arenosa interspecific cross.
Collapse
|
224
|
Hosoda Y, Sasaki N, Kameda Y, Torigoe D, Agui T. Identifying quantitative trait loci affecting resistance to congenital hypothyroidism in 129/SvJcl strain mice. PLoS One 2012; 7:e31035. [PMID: 22299049 PMCID: PMC3267771 DOI: 10.1371/journal.pone.0031035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/30/2011] [Indexed: 02/06/2023] Open
Abstract
Tyrosylprotein sulfotransferase 2 (TPST2) is one of the enzymes responsible for tyrosine O-sulfation and catalyzes the sulfation of the specific tyrosine residue of thyroid stimulating hormone receptor (TSHR). Since this modification is indispensable for the activation of TSH signaling, a non-functional TPST2 mutation (Tpst2(grt)) in DW/J-grt mice leads to congenital hypothyroidism (CH) characterized by severe thyroid hypoplasia and dwarfism related to TSH hyporesponsiveness. Previous studies indicated that the genetic background of the 129(+Ter)/SvJcl (129) mouse strain ameliorates Tpst2(grt)-induced CH. To identify loci responsible for CH resistance in 129 mice, we performed quantitative trait locus (QTL) analysis using backcross progenies from susceptible DW/J and resistant 129 mice. We used the first principal component calculated from body weights at 5, 8 and 10 weeks as an indicator of CH, and QTL analysis mapped a major QTL showing a highly significant linkage to the distal portion of chromosome (Chr) 2; between D2Mit62 and D2Mit304, particularly close to D2Mit255. In addition, two male-specific QTLs showing statistically suggestive linkage were also detected on Chrs 4 and 18, respectively. All QTL alleles derived from the 129 strain increased resistance to growth retardation. There was also a positive correlation between recovery from thyroid hypoplasia and the presence of the 129 allele at D2Mit255 in male progenies. These results suggested that the major QTL on Chr 2 is involved in thyroid development. Moreover, since DW/J congenic strain mice carrying both a Tpst2(grt) mutation and 129 alleles in the major QTL show resistance to dwarfism and thyroid hypoplasia, we confirmed the presence of the resistant gene in this region, and that it is involved in thyroid development. Further genetical analysis should lead to identification of genes for CH tolerance and, from a better understanding of thyroid organogenesis and function, the subsequent development of new treatments for thyroid disorders.
Collapse
Affiliation(s)
- Yayoi Hosoda
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Yayoi Kameda
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Torigoe
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
225
|
Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012. [PMID: 22274764 DOI: 10.1007/s00122‐012‐1786‐x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Leaf rust and stripe rust are important diseases of wheat world-wide and deployment of cultivars with genetic resistance is an effective and environmentally sound control method. The use of minor, additive genes conferring adult plant resistance (APR) has been shown to provide resistance that is durable. The wheat cultivar 'Pastor' originated from the CIMMYT breeding program that focuses on minor gene-based APR to both diseases by selecting and advancing generations alternately under leaf rust and stripe rust pressures. As a consequence, Pastor has good resistance to both rusts and was used as the resistant parent to develop a mapping population by crossing with the susceptible 'Avocet'. All 148 F(5) recombinant inbred lines were evaluated under artificially inoculated epidemic environments for leaf rust (3 environments) and stripe rust (4 environments, 2 of which represent two evaluation dates in final year due to the late build-up of a new race virulent to Yr31) in Mexico. Map construction and QTL analysis were completed with 223 polymorphic markers on 84 randomly selected lines in the population. Pastor contributed Yr31, a moderately effective race-specific gene for stripe rust resistance, which was overcome during this study, and this was clearly shown in the statistical analysis. Linked or pleiotropic chromosomal regions contributing to resistance against both pathogens included Lr46/Yr29 on 1BL, the Yr31 region on 2BS, and additional minor genes on 5A, 6B and 7BL. Other minor genes for leaf rust resistance were located on 1B, 2A and 2D and for stripe rust on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL. The 1AL, 1BS and 7AL QTLs are in regions that were not identified previously as having QTLs for stripe rust resistance. The development of uniform and severe epidemics facilitated excellent phenotyping, and when combined with multi-environment analysis, resulted in the relatively large number of QTLs identified in this study.
Collapse
|
226
|
Jiao Y, Lu L, Williams RW, Smeyne RJ. Genetic dissection of strain dependent paraquat-induced neurodegeneration in the substantia nigra pars compacta. PLoS One 2012; 7:e29447. [PMID: 22291891 PMCID: PMC3265472 DOI: 10.1371/journal.pone.0029447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/28/2011] [Indexed: 02/03/2023] Open
Abstract
The etiology of the vast majority of Parkinson's disease (PD) cases is unknown. It is generally accepted that there is an interaction between exposures to environmental agents with underlying genetic sensitivity. Recent epidemiological studies have shown that people living in agricultural communities have an increased risk of PD. Within these communities, paraquat (PQ) is one of the most utilized herbicides. PQ acts as a direct redox cycling agent to induce formation of free radicals and when administered to mice induces the cardinal symptoms of parkinsonism, including loss of TH+-positive dopaminergic (DA) neurons in the ventral midbrain's substantia nigra pars compacta (SNpc). Here we show that PQ-induced SNpc neuron loss is highly dependent on genetic background: C57BL/6J mice rapidly lose ∼50% of their SNpc DA neurons, whereas inbred Swiss-Webster (SWR/J) mice do not show any significant loss. We intercrossed these two strains to map quantitative trait loci (QTLs) that underlie PQ-induced SNpc neuron loss. Using genome-wide linkage analysis we detected two significant QTLs. The first is located on chromosome 5 (Chr 5) centered near D5Mit338, whereas the second is on Chr 14 centered near D14Mit206. These two QTLs map to different loci than a previously identified QTL (Mptp1) that controls a significant portion of strain sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that the mechanism of action of these two parkinsonian neurotoxins are different.
Collapse
Affiliation(s)
- Yun Jiao
- Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Richard J. Smeyne
- Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
227
|
Buyyarapu R, Kantety RV, Yu JZ, Saha S, Sharma GC. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2011:894598. [PMID: 22315588 PMCID: PMC3270397 DOI: 10.1155/2011/894598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/26/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps.
Collapse
Affiliation(s)
- Ramesh Buyyarapu
- Center for Molecular Biology, Department of Natural Resources and Environmental Sciences, Alabama A&M University, 134 ARC Building, P.O. Box 1927, Normal, AL 35762, USA
| | - Ramesh V. Kantety
- Center for Molecular Biology, Department of Natural Resources and Environmental Sciences, Alabama A&M University, 134 ARC Building, P.O. Box 1927, Normal, AL 35762, USA
| | - John Z. Yu
- Southern Plains Agricultural Research Center, USDA-ARS, 2881 F&B Road, College Station, TX 77845, USA
| | - Sukumar Saha
- Genetics and Precision Agriculture Research Unit, USDA-ARS, P.O. Box 5367, MS 39762, USA
| | - Govind C. Sharma
- Center for Molecular Biology, Department of Natural Resources and Environmental Sciences, Alabama A&M University, 134 ARC Building, P.O. Box 1927, Normal, AL 35762, USA
| |
Collapse
|
228
|
Friesen TL, Faris JD. Characterization of plant-fungal interactions involving necrotrophic effector-producing plant pathogens. Methods Mol Biol 2012; 835:191-207. [PMID: 22183655 DOI: 10.1007/978-1-61779-501-5_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently, great strides have been made in the area of host-pathogen interactions involving necrotrophic fungi. In this article we describe a method to identify, produce, and characterize effectors that are important in host-necrotrophic fungal pathogen interactions, and to genetically characterize the interactions. The main strength of this method is the combined use of pathogen inoculation, a pathogen culture filtrate bioassay, and genetic analysis of susceptibility and sensitivity in segregating host-mapping populations. These methods have been successfully used to identify several Stagonospora nodorum necrotrophic effectors and to characterize the genetic and phenotypic effects of individual host-effector interactions in the wheat-S. nodorum system. S. nodorum isolates that induce a differential response on two lines are used to produce culture filtrates that contain necrotrophic effectors while the wheat lines differing in reaction to the pathogen are used to develop a mapping population. The wheat population is used to develop DNA marker-based genetic linkage maps and culture filtrates are infiltrated across the mapping population. Linkage and quantitative trait loci (QTL) analysis is used to identify regions of the wheat genome harboring genes that govern sensitivity to necrotrophic effectors. The same populations are inoculated with the effector-producing isolate to determine the significance and proportion of disease explained by individual host gene-effector interactions. Additionally, from this information, differential lines that are sensitive to single effectors are developed for further purification and characterization of the effectors, eventually resulting in the identification, molecular cloning, and characterization of the effector genes.
Collapse
Affiliation(s)
- Timothy L Friesen
- Cereal Crops Research Unit, Northern Crop Science Laboratory, USDA-ARS, Fargo, ND, USA.
| | | |
Collapse
|
229
|
Diepeveen D, Clarke G, Ryan K, Tarr A, Ma W, Appels R. Molecular genetic mapping of NIR spectra variation. J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2011.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
230
|
Tarantino LM, Eisener-Dorman AF. Forward genetic approaches to understanding complex behaviors. Curr Top Behav Neurosci 2012; 12:25-58. [PMID: 22297575 PMCID: PMC6989028 DOI: 10.1007/7854_2011_189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assigning function to genes has long been a focus of biomedical research.Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions,insertions, deletions, copy number variation, epigenetic changes (DNA methylation,histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.
Collapse
|
231
|
Watanabe K, Oue Y, Miyamoto Y, Matsuura M, Mizuno Y, Ikegawa S. Identification of a quantitative trait locus for spontaneous osteoarthritis in STR/ort mice. J Orthop Res 2012; 30:15-20. [PMID: 21678482 DOI: 10.1002/jor.21483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/26/2011] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is the most common joint disorder in humans. Most of the animal models of OA were developed by surgical destabilization of joints or through transgenic approaches, and information from naturally occurring models of OA is very limited. The mouse strain STR/ort is recognized as a spontaneous model of OA. This mouse is unique in that it develops late onset cartilage degeneration of the tibio-femoral joint, similar to human OA. The purpose of this study was to identify quantitative trait loci (QTL) for the OA phenotype in STR/ort. Whereas the trait had been reported to be recessive, a significant population of the F1 generation exhibited OA phenotype. Thus, backcrossed (BC) mice generated by crossing F1 male to C57BL/6N female mice were used for genetic analysis. Degeneration of articular cartilage in BC mice was evaluated by scanning electron microscopy. Linkage analysis was carried out using microsatellite markers covering the entire genome. Cartilage degeneration in STR/ort mice was a polygenic trait. A QTL for the OA phenotype was mapped to a region 20 centimorgans proximal to the centromere of chromosome 4 (LOD = 3.37, p = 0.0065). A QTL associated with the onset of cartilage degeneration in C57BL/6N mice was also identified on chromosome 5 (LOD = 3.04, p = 0.0147). These results suggest that multiple loci are involved in the OA phenotype in mice.
Collapse
Affiliation(s)
- Ken Watanabe
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Aichi, Japan.
| | | | | | | | | | | |
Collapse
|
232
|
Zhang SJ, Song XQ, Yu BS, Zhang BC, Sun CQ, Knox JP, Zhou YH. Identification of quantitative trait loci affecting hemicellulose characteristics based on cell wall composition in a wild and cultivated rice species. MOLECULAR PLANT 2012; 5:162-75. [PMID: 21914650 DOI: 10.1093/mp/ssr076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cell wall hemicellulosic polysaccharides are structurally complex and diverse. Knowledge about the synthesis of cell wall hemicelluloses and their biological roles is limited. Quantitative trait loci (QTL) mapping is a helpful tool for the dissection of complex phenotypes for gene identification. In this study, we exploited the natural variation in cell wall monosaccharide levels between a common wild rice, Yuanj, and an elite indica cultivar, Teqing, and performed QTL mapping with their introgression lines (ILs). Chemical analyses conducted on the culms of Yuanj and Teqing showed that the major alterations are found in glucose and xylose levels, which are correlated with specific hemicellulosic polymers. Glycosidic linkage examination revealed that, in Yuanj, an increase in glucose content results from a higher level of mixed linkage β-glucan (MLG), whereas a reduction in xylose content reflects a low level of xylan backbone and a varied arabinoxylan (AX) structure. Seventeen QTLs for monosaccharides have been identified through composition analysis of the culm residues of 95 core ILs. Four major QTLs affecting xylose and glucose levels are responsible for 19 and 21% of the phenotypic variance, respectively. This study provides a unique resource for the genetic dissection of rice cell wall formation and remodeling in the vegetative organs.
Collapse
Affiliation(s)
- Si-Ju Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
233
|
Abeysekara NS, Faris JD, Chao S, McClean PE, Friesen TL. Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4-Snn4 interaction in hexaploid wheat. PHYTOPATHOLOGY 2012; 102:94-104. [PMID: 21864084 DOI: 10.1094/phyto-02-11-0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Necrotrophic effectors (also known as host-selective toxins) are important determinants of disease in the wheat-Stagonospora nodorum pathosystem. To date, five necrotrophic effector-host gene interactions have been identified in this system. Most of these interactions have additive effects while some are epistatic. The Snn4-SnTox4 interaction was originally identified in a recombinant-inbred population derived from a cross between the Swiss winter wheat cultivars 'Arina' and 'Forno' using the S. nodorum isolate Sn99CH 1A7a. Here, we used a recombinant-inbred population consisting of 121 lines developed from a cross between the hexaploid land race Salamouni and the hexaploid wheat 'Katepwa' (SK population). The SK population was used for the construction of linkage maps and quantitative trait loci (QTL) detection using the Swiss S. nodorum isolate Sn99CH 1A7a. The linkage maps developed in the SK population spanned 3,228 centimorgans (cM) and consisted of 441 simple-sequence repeats, 9 restriction fragment length polymorphisms, 29 expressed sequence tag sequence-tagged site markers, and 5 phenotypic markers. The average marker density was 6.7 cM/marker. Two QTL, designated QSnb.fcu-1A and QSnb.fcu-7A on chromosome arms 1AS and 7AS, respectively, were associated with disease caused by the S. nodorum isolate Sn99CH 1A7a. The effects of QSnb.fcu-1A were determined by the Snn4-SnTox4 interaction and accounted for 23.5% of the phenotypic variation in this population, whereas QSnb.fcu-7A accounted for 16.4% of the phenotypic variation for disease but was not associated with any known effector sensitivity locus. The effects of both QTL were largely additive and collectively accounted for 35.7% of the total phenotypic variation. The results of this research validate the effects of a compatible Snn4-SnTox4 interaction in a different genetic background, and it provides knowledge regarding genomic regions and molecular markers that can be used to improve Stagonospora nodorum blotch resistance in wheat germplasm.
Collapse
|
234
|
Loos M, Staal J, Pattij T, Smit AB, Spijker S. Independent genetic loci for sensorimotor gating and attentional performance in BXD recombinant inbred strains. GENES BRAIN AND BEHAVIOR 2011; 11:147-56. [DOI: 10.1111/j.1601-183x.2011.00754.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
235
|
A Novel Retrotransposon Inserted in the Dominant Vrn-B1 Allele Confers Spring Growth Habit in Tetraploid Wheat (Triticum turgidum L.). G3-GENES GENOMES GENETICS 2011; 1:637-45. [PMID: 22384375 PMCID: PMC3276170 DOI: 10.1534/g3.111.001131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/27/2011] [Indexed: 12/27/2022]
Abstract
Vernalization genes determine winter/spring growth habit in temperate cereals and play important roles in plant development and environmental adaptation. In wheat (Triticum L. sp.), it was previously shown that allelic variation in the vernalization gene VRN1 was due to deletions or insertions either in the promoter or in the first intron. Here, we report a novel Vrn-B1 allele that has a retrotransposon in its promoter conferring spring growth habit. The VRN-B1 gene was mapped in a doubled haploid population that segregated for winter-spring growth habit but was derived from two spring tetraploid wheat genotypes, the durum wheat (T. turgidum subsp. durum) variety ‘Lebsock’ and T. turgidum subsp. carthlicum accession PI 94749. Genetic analysis revealed that Lebsock carried the dominant Vrn-A1 and recessive vrn-B1 alleles, whereas PI 94749 had the recessive vrn-A1 and dominant Vrn-B1 alleles. The Vrn-A1 allele in Lebsock was the same as the Vrn-A1c allele previously reported in hexaploid wheat. No differences existed between the vrn-B1 and Vrn-B1 alleles, except that a 5463-bp insertion was detected in the 5′-UTR region of the Vrn-B1 allele. This insertion was a novel retrotransposon (designated as retrotrans_VRN), which was flanked by a 5-bp target site duplication and contained primer binding site and polypurine tract motifs, a 325-bp long terminal repeat, and an open reading frame encoding 1231 amino acids. The insertion of retrotrans_VRN resulted in expression of Vrn-B1 without vernalization. Retrotrans_VRN is prevalent among T. turgidum subsp. carthlicum accessions, less prevalent among T. turgidum subsp. dicoccum accessions, and rarely found in other tetraploid wheat subspecies.
Collapse
|
236
|
Tian L, Tan L, Liu F, Cai H, Sun C. Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. J Genet Genomics 2011; 38:593-601. [DOI: 10.1016/j.jgg.2011.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 11/25/2022]
|
237
|
Behrens D, Huang Q, Geßner C, Rosenkranz P, Frey E, Locke B, Moritz RFA, Kraus FB. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol Evol 2011; 1:451-8. [PMID: 22393513 PMCID: PMC3287329 DOI: 10.1002/ece3.17] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/16/2011] [Accepted: 07/19/2011] [Indexed: 11/07/2022] Open
Abstract
Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock.
Collapse
Affiliation(s)
- Dieter Behrens
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
| | - Qiang Huang
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
- Honeybee Research Institute, Jiangxi Agricultural UniversityNanchang 330045, China
| | - Cornelia Geßner
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
- Department of Anatomy and Structural Biology, University of Otago270 Great King Street, 9016 Dunedin, New Zealand
| | - Peter Rosenkranz
- Apicultural State Institute, University of HohenheimAugust-von-Hartmannstraße 13, 70599 Stuttgart, Germany
| | - Eva Frey
- Apicultural State Institute, University of HohenheimAugust-von-Hartmannstraße 13, 70599 Stuttgart, Germany
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural SciencesUlls Väg 16, 750–07 Uppsala, Sweden
| | - Robin F A Moritz
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
- Department of Zoology and Entomology, University of PretoriaPretoria, South Africa
| | - F B Kraus
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
| |
Collapse
|
238
|
Xin XY, Wang WX, Yang JS, Luo XJ. Genetic analysis of heterotic loci detected in a cross between indica and japonica rice (Oryza sativa L.). BREEDING SCIENCE 2011; 61:380-8. [PMID: 23136475 PMCID: PMC3406766 DOI: 10.1270/jsbbs.61.380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/05/2011] [Indexed: 05/04/2023]
Abstract
The study on the genetic basis of heterosis has received significant attention in recent years. In this study, using a set of introgression lines (ILs) and corresponding testcross F(1) populations, we investigated heterotic loci (HL) associated with six yield-related traits in both Oryza sativa L. subsp. indica and japonica. A total of 41 HL were detected on the basis of mid-parent heterosis values with single-point analysis. The F(1) test-cross population showed superiority in most yield-related traits and was characterized by a high frequency of overdominant HL. Thirty-eight of the 41 HL were overdominant, and in the absence of epistasis, three HL were dominant, suggesting that heterotic effects at the single-locus level mainly appeared to be overdominant in rice. Twenty-four HL had a real positive effect, suggesting that they are viable candidates for the improvement of rice yield potential. Compared with the quantitative trait loci (QTLs) detected in the ILs, only six out of the 41 (14.6%) HL were detected in QTL analysis under the same statistical threshold, indicating that heterosis and trait performance may be conditioned by different sets of loci.
Collapse
|
239
|
Faris JD, Zhang Z, Rasmussen JB, Friesen TL. Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1419-26. [PMID: 21770771 DOI: 10.1094/mpmi-04-11-0094] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Most research on host?pathogen interactions is focused on mechanisms of resistance, but less is known regarding mechanisms of susceptibility. The wheat?Stagonospora nodorum pathosystem involves pathogen-produced effectors, also known as host-selective toxins, that interact with corresponding dominant host genes to cause disease. Recognition of the S. nodorum effectors SnToxA and SnTox2 is mediated by the wheat genes Tsn1 and Snn2, respectively. Here, we inoculated a population of wheat recombinant inbred lines that segregates for Tsn1 and Snn2 with conidia from two S. nodorum isolates, Sn4 and Sn5, which both produce SnToxA and SnTox2 to compare the effects of compatible Tsn1?SnToxA and Snn2?SnTox2 interactions between the two isolates. Genetic analysis revealed that the two interactions contribute equally to disease caused by isolate Sn4 but the Tsn1?SnToxA interaction contributed substantially more to disease conferred by Sn5 than did the Snn2?SnTox2 interaction. Sequence analysis of the SnToxA locus from Sn4 and Sn5 indicated that they were 99.5% identical, with no polymorphisms in the coding region or the predicted promoters. Analysis of transcription levels showed that expression levels of SnToxA peaked at 26 h postinoculation for both isolates but SnToxA expression in Sn5 was more than twice that of Sn4. This work demonstrates that necrotrophic effectors of different isolates can be expressed at different levels in planta, and that higher levels of expression lead to increased levels of disease in the wheat?S. nodorum pathosystem.
Collapse
Affiliation(s)
- Justin D Faris
- United States Department of Agriculture, Fargo, ND, USA.
| | | | | | | |
Collapse
|
240
|
Dang R, Torigoe D, Sasaki N, Agui T. QTL analysis identifies a modifier locus of aganglionosis in the rat model of Hirschsprung disease carrying Ednrb(sl) mutations. PLoS One 2011; 6:e27902. [PMID: 22132166 PMCID: PMC3222640 DOI: 10.1371/journal.pone.0027902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/27/2011] [Indexed: 01/31/2023] Open
Abstract
Hirschsprung disease (HSCR) exhibits complex genetics with incomplete penetrance and variable severity thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. As reported previously, when the same null mutation of the Ednrb gene, Ednrbsl, was introgressed into the F344 strain, almost 60% of F344-Ednrbsl/sl pups did not show any symptoms of aganglionosis, appearing healthy and normally fertile. These findings strongly suggested that the severity of HSCR was affected by strain-specific genetic factor (s). In this study, the genetic basis of such large strain differences in the severity of aganglionosis in the rat model was studied by whole-genome scanning for quantitative trait loci (QTLs) using an intercross of (AGH-Ednrbsl×F344-Ednrbsl) F1 with the varying severity of aganglionosis. Genome linkage analysis identified one significant QTL on chromosome 2 for the severity of aganglionosis. Our QTL analyses using rat models of HSCR revealed that multiple genetic factors regulated the severity of aganglionosis. Moreover, a known HSCR susceptibility gene, Gdnf, was found in QTL that suggested a novel non-coding sequence mutation in GDNF that modifies the penetrance and severity of the aganglionosis phenotype in EDNRB-deficient rats. A further identification and analysis of responsible genes located on the identified QTL could lead to the richer understanding of the genetic basis of HSCR development.
Collapse
Affiliation(s)
- Ruihua Dang
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Daisuke Torigoe
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
241
|
Yang HS, Shimomura K, Vitaterna MH, Turek FW. High-resolution mapping of a novel genetic locus regulating voluntary physical activity in mice. GENES BRAIN AND BEHAVIOR 2011; 11:113-24. [PMID: 21978078 DOI: 10.1111/j.1601-183x.2011.00737.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both human beings and animals exhibit substantial inter-individual variation in voluntary physical activity, and evidence indicates that a significant component of this variation is because of genetic factors. However, little is known of the genetic basis underlying central regulation of voluntary physical activity in mammals. In this study, using an F(2) intercross population and interval-specific congenic strains (ISCS) derived from the C57BL/6J strain and a chromosome 13 substitution strain, C57BL/6J-Chr13A/J/NA/J, we identified a 3.76-Mb interval on chromosome 13 containing 25 genes with a significant impact on daily voluntary wheel running activity in mice. Brain expression and polymorphisms between the C57BL/6J and A/J strains were examined to prioritize candidate genes. As the dopaminergic pathway regulates motor movement and motivational behaviors, we tested its function by examining cocaine-induced locomotor responses in ISCS with different levels of activity. The low-activity ISCS exhibited a significantly higher response to acute cocaine administration than the high-activity ISCS. Expression analysis of key dopamine-related genes (dopamine transporter and D1, D2, D3, D4 and D5 receptors) revealed that expression of D1 receptor was higher in the low-activity ISCS than in the high-activity ISCS in both the dorsal striatum and nucleus accumbens. Pathway analysis implicated Tcfap2a, a gene found within the 3.76-Mb interval, involved in the D1 receptor pathway. Using a luciferase reporter assay, we confirmed that the transcriptional factor, Tcfap2a, regulates the promoter activity of the D1 receptor gene. Thus, Tcfap2a is proposed as a candidate genetic regulator of the level of voluntary physical activity through its influence on a dopaminergic pathway.
Collapse
Affiliation(s)
- H S Yang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208-3520, USA
| | | | | | | |
Collapse
|
242
|
Strzalkowska A, Unrug-Bielawska K, Bluszcz A, Sandowska-Markiewicz Z, Karaszewska J, Pysniak K, Gajewska M, Wirth-Dzieciolowska E. Quantitative trait loci analysis for peripheral blood parameters in a (BALB/cW × C57BL/6J-Mpl (hlb219)/J) F(2) mice. Exp Anim 2011; 60:405-16. [PMID: 21791880 DOI: 10.1538/expanim.60.405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genetic basis of the peripheral blood cell parameters is not fully elucidated. Thus, it is essential to research the correlation between blood cell counts levels and the genome in laboratory animals and subsequently in humans. In the present study, we examined 288 F(2) mice from a cross between BALB/cW and C57BL/6J-Mpl(hlb219)/J. The C57BL/6J-Mpl (hlb219)/J strain is a mouse model of thrombocytopenia. We found very strong correlations for PLT counts and revealed some highly significant correlations for RBC counts. On the basis of the obtained results, we presume that genetic control of erythrocyte parameters is divided into two pathways: first, the morphological determinants responsible for the red blood cell count (RBC), hematocrit (HCT), and mean corpuscular volume (MCV), and second, the functional pathway determining the hemoglobin content (HGB). The locus on Chromosome 4 is the only detected quantitative trait locus (QTL) influencing the analyzed platelets parameters. We also detected highly significant correlations for erythrocyte parameters on Chromosome 1 (RBC, MCV, MCH), Chr 7 (HGB), Chr 9 (MCHC), Chr 11 (RBC), and Chr 17 (MCH). Finally, with regards to the given correlations, using the Mouse Genome Database resource, we proposed candidate genes with possible meaning for the level of these parameters: cytokine receptor genes (e.g., Mpl), transcription factor genes (e.g., Xbp1, Ikzf1), hemoglobin chain genes (e.g., Hbb-b1, Hbb-ar), and many others localized in the confidence intervals of found QTLs.
Collapse
Affiliation(s)
- Adriana Strzalkowska
- Department of Genetics and Laboratory Animal Breeding, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, W. K. Roentgen St. 5, 02-871 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Dwiyanti MS, Yamada T, Sato M, Abe J, Kitamura K. Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds. BMC PLANT BIOLOGY 2011; 11:152. [PMID: 22053941 PMCID: PMC3220646 DOI: 10.1186/1471-2229-11-152] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 11/07/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Improvement of α-tocopherol content is an important breeding aim to increase the nutritional value of crops. Several efforts have been conducted to improve the α-tocopherol content in soybean [Glycine max (L.) Merr.] through transgenic technology by overexpressing genes related to α-tocopherol biosynthesis or through changes to crop management practices. Varieties with high α-tocopherol content have been identified in soybean germplasms. The heritability of this trait has been characterized in a cross between high α-tocopherol variety Keszthelyi Aproszemu Sarga (KAS) and low α-tocopherol variety Ichihime. In this study, the genetic mechanism of the high α-tocopherol content trait of KAS was elucidated. RESULTS Through QTL analysis and fine mapping in populations from a cross between KAS and a Japanese variety Ichihime, we identified γ-TMT3, which encodes γ-tocopherol methyltransferase, as a candidate gene responsible for high α-tocopherol concentration in KAS. Several nucleotide polymorphisms including two nonsynonymous mutations were found in the coding region of γ-TMT3 between Ichihime and KAS, but none of which was responsible for the difference in α-tocopherol concentration. Therefore, we focused on transcriptional regulation of γ-TMT3 in developing seeds and leaves. An F5 line that was heterozygous for the region containing γ-TMT3 was self-pollinated. From among the progeny, plants that were homozygous at the γ-TMT3 locus were chosen for further evaluation. The expression level of γ-TMT3 was higher both in developing seeds and leaves of plants homozygous for the γ-TMT3 allele from KAS. The higher expression level was closely correlated with high α-tocopherol content in developing seeds. We generated transgenic Arabidopsis plants harboring GUS gene under the control of γ-TMT3 promoter from KAS or Ichihime. The GUS activity assay showed that the activity of γ-TMT3 promoter from KAS was higher than that of Ichihime. CONCLUSIONS The genetic variation in γ-TMT3, which plays a major role in determining α-tocopherol concentration, provides significant information about the regulation of tocopherol biosynthesis in soybean seeds. This knowledge will help breeding programs to develop new soybean varieties with high α-tocopherol content.
Collapse
Affiliation(s)
- Maria S Dwiyanti
- Laboratory of Plant Genetics and Evolution, Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9 Sapporo 060-8589, Hokkaido, Japan
| | - Tetsuya Yamada
- Laboratory of Plant Genetics and Evolution, Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9 Sapporo 060-8589, Hokkaido, Japan
| | - Masako Sato
- Laboratory of Plant Genetics and Evolution, Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9 Sapporo 060-8589, Hokkaido, Japan
| | - Jun Abe
- Laboratory of Plant Genetics and Evolution, Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9 Sapporo 060-8589, Hokkaido, Japan
| | - Keisuke Kitamura
- Laboratory of Plant Genetics and Evolution, Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9 Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
244
|
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011. [PMID: 22045047 DOI: 10.1007/s00122‐011‐1740‐3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In southern Australia, where the climate is predominantly Mediterranean, achieving the correct flowering time in bread wheat minimizes the impact of in-season cyclical and terminal drought. Flag leaf glaucousness has been hypothesized as an important component of drought tolerance but its value and genetic basis in locally adapted germplasm is unknown. From a cross between Kukri and RAC875, a doubled-haploid (DH) population was developed. A genetic linkage map consisting of 456 DArT and SSR markers was used to detect QTL affecting time to ear emergence and Zadoks growth score in seven field experiments. While ear emergence time was similar between the parents, there was significant transgressive segregation in the population. This was the result of segregation for the previously characterized Ppd-D1a and Ppd-B1 photoperiod responsive alleles. QTL of smaller effect were also detected on chromosomes 1A, 4A, 4B, 5A, 5B, 7A and 7B. A novel QTL for flag leaf glaucousness of large, repeatable effect was detected in six field experiments, on chromosome 3A (QW.aww-3A) and accounted for up to 52 percent of genetic variance for this trait. QW.aww-3A was validated under glasshouse conditions in a recombinant inbred line population from the same cross. The genetic basis of time to ear emergence in this population will aid breeders' understanding of phenological adaptation to the local environment. Novel loci identified for flag leaf glaucousness and the wide phenotypic variation within the DH population offers considerable scope to investigate the impact and value of this trait for bread wheat production in southern Australia.
Collapse
Affiliation(s)
- Dion Bennett
- Australian Centre for Plant Functional Genomics, Waite Campus, University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Li J, Wang D, Xie Y, Zhang H, Hu G, Li J, Dai A, Liu L, Li Z. Development of upland rice introgression lines and identification of QTLs for basal root thickness under different water regimes. J Genet Genomics 2011; 38:547-56. [DOI: 10.1016/j.jgg.2011.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 08/01/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
|
246
|
Chu C, Niu Z, Zhong S, Chao S, Friesen TL, Halley S, Elias EM, Dong Y, Faris JD, Xu SS. Identification and molecular mapping of two QTLs with major effects for resistance to Fusarium head blight in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1107-19. [PMID: 21833554 DOI: 10.1007/s00122-011-1652-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 06/28/2011] [Indexed: 05/23/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease of wheat worldwide. Novel sources of resistance are critical for improving FHB resistance levels in wheat. From a large-scale evaluation of germplasm for reactions to FHB, we identified one wheat accession (PI 277012) that consistently showed a high level of resistance in both greenhouse and field experiments. To characterize the FHB resistance in this accession, we developed a doubled haploid (DH) mapping population consisting of 130 lines from the cross between PI 277012 and the hard red spring wheat cultivar 'Grandin'. The DH population was then evaluated for reactions to FHB in three greenhouse seasons and five field environments. Based on a linkage map that consisted of 340 SSR markers spanning 2,703 cM of genetic distance, two major quantitative trait loci (QTLs) for FHB resistance were identified on chromosome arms 5AS and 5AL, with each explaining up to 20 and 32% of the variation in FHB severity, respectively. The two QTLs also showed major effects on reducing the percentage of Fusarium damaged kernels (FDK) and deoxynivalenol (DON) accumulation in seeds. FHB resistance has not previously been reported to be associated with this particular genomic region of chromosome arm 5AL, thus indicating the novelty of FHB resistance in PI 277012. Plant maturity was not associated with FHB resistance and the effects of plant height on FHB resistance were minor. Therefore, these results suggest that PI 277012 is an excellent source for improving FHB resistance in wheat. The markers identified in this research are being used for marker-assisted introgression of the QTLs into adapted durum and hard red spring wheat cultivars.
Collapse
Affiliation(s)
- Chenggen Chu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Leamy LJ, Gordon RR, Pomp D. Sex-, diet-, and cancer-dependent epistatic effects on complex traits in mice. Front Genet 2011; 2:71. [PMID: 22303366 PMCID: PMC3268624 DOI: 10.3389/fgene.2011.00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/29/2011] [Indexed: 01/23/2023] Open
Abstract
The genetic basis of quantitative traits such as body weight and obesity is complex, with several hundred quantitative trait loci (QTLs) known to affect these and related traits in humans and mice. It also has become increasingly evident that the single-locus effects of these QTLs vary considerably depending on factors such as the sex of the individuals and their dietary environment, and we were interested to know whether this context-dependency also applies to two-locus epistatic effects of QTLs as well. We therefore conducted a genome scan to search for epistatic effects on 13 different weight and adiposity traits in an F2 population of mice (created from an original intercross of the FVB strain with M16i, a polygenic obesity model) that were fed either a control or a high-fat diet and half of which harbored a transgene (PyMT) that caused the development of metastatic mammary cancer. We used a conventional interval mapping approach with SNPs to scan all 19 autosomes, and found extensive epistasis affecting all of these traits. More importantly, we also discovered that the majority of these epistatic effects exhibited significant interactions with sex, diet, and/or presence of PyMT. Analysis of these interactions showed that many of them appeared to involve QTLs previously identified as affecting these traits, but whose single-locus effects were variously modified by two-locus epistatic effects of other QTLs depending on the sex, diet, or PyMT environment. It was concluded that this context-dependency of epistatic effects is an important component of the genetic architecture of complex traits such as those contributing to weight and obesity.
Collapse
Affiliation(s)
- Larry J Leamy
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | | | | |
Collapse
|
248
|
GUTIÉRREZ MARÍALAURA, GARCÍA GRACIELA. A preliminary linkage map using spotted melanic laboratory strains of the livebearing fish Phalloceros caudimaculatus var. reticulata (Cyprinodontiformes: Poeciliidae). J Genet 2011. [DOI: 10.1007/s12041-011-0085-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
249
|
Nakao R, Kameda Y, Kouguchi H, Matsumoto J, Dang Z, Simon AY, Torigoe D, Sasaki N, Oku Y, Sugimoto C, Agui T, Yagi K. Identification of genetic loci affecting the establishment and development of Echinococcus multilocularis larvae in mice. Int J Parasitol 2011; 41:1121-8. [DOI: 10.1016/j.ijpara.2011.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 11/25/2022]
|
250
|
Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics 2011; 189:1083-92. [PMID: 21868603 DOI: 10.1534/genetics.111.132035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In intraspecific crosses between cultivated rice (Oryza sativa) subspecies indica and japonica, the hybrid male sterility gene S24 causes the selective abortion of male gametes carrying the japonica allele (S24-j) via an allelic interaction in the heterozygous hybrids. In this study, we first examined whether male sterility is due solely to the single locus S24. An analysis of near-isogenic lines (NIL-F(1)) showed different phenotypes for S24 in different genetic backgrounds. The S24 heterozygote with the japonica genetic background showed male semisterility, but no sterility was found in heterozygotes with the indica background. This result indicates that S24 is regulated epistatically. A QTL analysis of a BC(2)F(1) population revealed a novel sterility locus that interacts with S24 and is found on rice chromosome 2. The locus was named Epistatic Factor for S24 (EFS). Further genetic analyses revealed that S24 causes male sterility when in combination with the homozygous japonica EFS allele (efs-j). The results suggest that efs-j is a recessive sporophytic allele, while the indica allele (EFS-i) can dominantly counteract the pollen sterility caused by S24 heterozygosity. In summary, our results demonstrate that an additional epistatic locus is an essential element in the hybrid sterility caused by allelic interaction at a single locus in rice. This finding provides a significant contribution to our understanding of the complex molecular mechanisms underlying hybrid sterility and microsporogenesis.
Collapse
|