201
|
Winter CC, Jacobi A, Su J, Chung L, van Velthoven CTJ, Yao Z, Lee C, Zhang Z, Yu S, Gao K, Duque Salazar G, Kegeles E, Zhang Y, Tomihiro MC, Zhang Y, Yang Z, Zhu J, Tang J, Song X, Donahue RJ, Wang Q, McMillen D, Kunst M, Wang N, Smith KA, Romero GE, Frank MM, Krol A, Kawaguchi R, Geschwind DH, Feng G, Goodrich LV, Liu Y, Tasic B, Zeng H, He Z. A transcriptomic taxonomy of mouse brain-wide spinal projecting neurons. Nature 2023; 624:403-414. [PMID: 38092914 PMCID: PMC10719099 DOI: 10.1038/s41586-023-06817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.
Collapse
Affiliation(s)
- Carla C Winter
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Anne Jacobi
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- F. Hoffman-La Roche, pRED, Basel, Switzerland.
| | - Junfeng Su
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Leeyup Chung
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zicong Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shuguang Yu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kun Gao
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Geraldine Duque Salazar
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Evgenii Kegeles
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Yu Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Makenzie C Tomihiro
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yiming Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Yang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junjie Zhu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xuan Song
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ryan J Donahue
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qing Wang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Ning Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gabriel E Romero
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michelle M Frank
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra Krol
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riki Kawaguchi
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Yuanyuan Liu
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| | - Zhigang He
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
202
|
Jiang T, Gong H, Yuan J. Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level. Neurosci Bull 2023; 39:1840-1858. [PMID: 37715920 PMCID: PMC10661546 DOI: 10.1007/s12264-023-01112-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 09/18/2023] Open
Abstract
The mammalian brain is a highly complex network that consists of millions to billions of densely-interconnected neurons. Precise dissection of neural circuits at the mesoscopic level can provide important structural information for understanding the brain. Optical approaches can achieve submicron lateral resolution and achieve "optical sectioning" by a variety of means, which has the natural advantage of allowing the observation of neural circuits at the mesoscopic level. Automated whole-brain optical imaging methods based on tissue clearing or histological sectioning surpass the limitation of optical imaging depth in biological tissues and can provide delicate structural information in a large volume of tissues. Combined with various fluorescent labeling techniques, whole-brain optical imaging methods have shown great potential in the brain-wide quantitative profiling of cells, circuits, and blood vessels. In this review, we summarize the principles and implementations of various whole-brain optical imaging methods and provide some concepts regarding their future development.
Collapse
Affiliation(s)
- Tao Jiang
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China
| | - Hui Gong
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Yuan
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
203
|
Zu S, Li YE, Wang K, Armand EJ, Mamde S, Amaral ML, Wang Y, Chu A, Xie Y, Miller M, Xu J, Wang Z, Zhang K, Jia B, Hou X, Lin L, Yang Q, Lee S, Li B, Kuan S, Liu H, Zhou J, Pinto-Duarte A, Lucero J, Osteen J, Nunn M, Smith KA, Tasic B, Yao Z, Zeng H, Wang Z, Shang J, Behrens MM, Ecker JR, Wang A, Preissl S, Ren B. Single-cell analysis of chromatin accessibility in the adult mouse brain. Nature 2023; 624:378-389. [PMID: 38092917 PMCID: PMC10719105 DOI: 10.1038/s41586-023-06824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
Recent advances in single-cell technologies have led to the discovery of thousands of brain cell types; however, our understanding of the gene regulatory programs in these cell types is far from complete1-4. Here we report a comprehensive atlas of candidate cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing chromatin accessibility in 2.3 million individual brain cells from 117 anatomical dissections. The atlas includes approximately 1 million cCREs and their chromatin accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs to the most recent such annotation in the mouse genome. The mouse brain cCREs are moderately conserved in the human brain. The mouse-specific cCREs-specifically, those identified from a subset of cortical excitatory neurons-are strongly enriched for transposable elements, suggesting a potential role for transposable elements in the emergence of new regulatory programs and neuronal diversity. Finally, we infer the gene regulatory networks in over 260 subclasses of mouse brain cells and develop deep-learning models to predict the activities of gene regulatory elements in different brain cell types from the DNA sequence alone. Our results provide a resource for the analysis of cell-type-specific gene regulation programs in both mouse and human brains.
Collapse
Affiliation(s)
- Songpeng Zu
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurosurgery and Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Kangli Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ethan J Armand
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sainath Mamde
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Maria Luisa Amaral
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Yuelai Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Andre Chu
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jie Xu
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Bojing Jia
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Xiaomeng Hou
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Qian Yang
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Seoyeon Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Samantha Kuan
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Jacinta Lucero
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia Osteen
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Nunn
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zihan Wang
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jingbo Shang
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | | | - Joseph R Ecker
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA.
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
204
|
Zhou J, Zhang Z, Wu M, Liu H, Pang Y, Bartlett A, Peng Z, Ding W, Rivkin A, Lagos WN, Williams E, Lee CT, Miyazaki PA, Aldridge A, Zeng Q, Salinda JLA, Claffey N, Liem M, Fitzpatrick C, Boggeman L, Yao Z, Smith KA, Tasic B, Altshul J, Kenworthy MA, Valadon C, Nery JR, Castanon RG, Patne NS, Vu M, Rashid M, Jacobs M, Ito T, Osteen J, Emerson N, Lee J, Cho S, Rink J, Huang HH, Pinto-Duartec A, Dominguez B, Smith JB, O'Connor C, Zeng H, Chen S, Lee KF, Mukamel EA, Jin X, Margarita Behrens M, Ecker JR, Callaway EM. Brain-wide correspondence of neuronal epigenomics and distant projections. Nature 2023; 624:355-365. [PMID: 38092919 PMCID: PMC10719087 DOI: 10.1038/s41586-023-06823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.
Collapse
Affiliation(s)
- Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Zhuzhu Zhang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - May Wu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yan Pang
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zihao Peng
- School of Mathematics and Computer Science, Nanchang University, Nanchang, China
- Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, China
| | - Wubin Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Angeline Rivkin
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Will N Lagos
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elora Williams
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cheng-Ta Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Paula Assakura Miyazaki
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - J L Angelo Salinda
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Naomi Claffey
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michelle Liem
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Conor Fitzpatrick
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mia A Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cynthia Valadon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Neelakshi S Patne
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Minh Vu
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mohammad Rashid
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matthew Jacobs
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Ito
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia Osteen
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nora Emerson
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jasper Lee
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Silvia Cho
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jon Rink
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hsiang-Hsuan Huang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - António Pinto-Duartec
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bertha Dominguez
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jared B Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Shengbo Chen
- Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, China
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Xin Jin
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Edward M Callaway
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
205
|
Langlieb J, Sachdev NS, Balderrama KS, Nadaf NM, Raj M, Murray E, Webber JT, Vanderburg C, Gazestani V, Tward D, Mezias C, Li X, Flowers K, Cable DM, Norton T, Mitra P, Chen F, Macosko EZ. The molecular cytoarchitecture of the adult mouse brain. Nature 2023; 624:333-342. [PMID: 38092915 PMCID: PMC10719111 DOI: 10.1038/s41586-023-06818-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.
Collapse
Affiliation(s)
| | | | | | - Naeem M Nadaf
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mukund Raj
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | | | - Daniel Tward
- Departments of Computational Medicine and Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chris Mezias
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xu Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Dylan M Cable
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell and Regenerative Biology, Cambridge, MA, USA.
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
206
|
Michelson NJ, Bolaños F, Bolaños LA, Balbi M, LeDue JM, Murphy TH. Meso-Py: Dual Brain Cortical Calcium Imaging in Mice during Head-Fixed Social Stimulus Presentation. eNeuro 2023; 10:ENEURO.0096-23.2023. [PMID: 38053472 PMCID: PMC10731520 DOI: 10.1523/eneuro.0096-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
We present a cost-effective, compact foot-print, and open-source Raspberry Pi-based widefield imaging system. The compact nature allows the system to be used for close-proximity dual-brain cortical mesoscale functional-imaging to simultaneously observe activity in two head-fixed animals in a staged social touch-like interaction. We provide all schematics, code, and protocols for a rail system where head-fixed mice are brought together to a distance where the macrovibrissae of each mouse make contact. Cortical neuronal functional signals (GCaMP6s; genetically encoded Ca2+ sensor) were recorded from both mice simultaneously before, during, and after the social contact period. When the mice were together, we observed bouts of mutual whisking and cross-mouse correlated cortical activity across the cortex. Correlations were not observed in trial-shuffled mouse pairs, suggesting that correlated activity was specific to individual interactions. Whisking-related cortical signals were observed during the period where mice were together (closest contact). The effects of social stimulus presentation extend outside of regions associated with mutual touch and have global synchronizing effects on cortical activity.
Collapse
Affiliation(s)
- Nicholas J Michelson
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Federico Bolaños
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Luis A Bolaños
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matilde Balbi
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
207
|
Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Aitken M, Baker K, Baker P, Barkan E, Bertagnolli D, Bhandiwad A, Bielstein C, Bishwakarma P, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, DiValentin P, Dolbeare T, Ellingwood L, Fiabane E, Fliss T, Gee J, Gerstenberger J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Hooper M, Huang M, Hupp M, Jin K, Kroll M, Lathia K, Leon A, Li S, Long B, Madigan Z, Malloy J, Malone J, Maltzer Z, Martin N, McCue R, McGinty R, Mei N, Melchor J, Meyerdierks E, Mollenkopf T, Moonsman S, Nguyen TN, Otto S, Pham T, Rimorin C, Ruiz A, Sanchez R, Sawyer L, Shapovalova N, Shepard N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Valera Cuevas N, Vance S, Wadhwani K, Ward K, Levi B, Farrell C, Young R, Staats B, Wang MQM, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith K, Tasic B, Zhuang X, Zeng H. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 2023; 624:317-332. [PMID: 38092916 PMCID: PMC10719114 DOI: 10.1038/s41586-023-06812-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA.
| | | | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Pamela Baker
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Min Chen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - James Gee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madie Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Arielle Leon
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Su Li
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zach Madigan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ryan McGinty
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nicholas Mei
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Sven Otto
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Noah Shepard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Shane Vance
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Rob Young
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
208
|
Cecyn MN, Abrahao KP. Where do you measure the Bregma for rodent stereotaxic surgery? IBRO Neurosci Rep 2023; 15:143-148. [PMID: 38204571 PMCID: PMC10776314 DOI: 10.1016/j.ibneur.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/26/2023] [Indexed: 01/12/2024] Open
Abstract
The advent of the stereotaxic apparatus developed by Clarke and Horsley revolutionized neuroscience research, enabling precise 3D navigation along the skull mediolateral, anteroposterior, and dorsoventral axes. In rodents, the Bregma is widely used as the origin reference point for the stereotaxic coordinates, but the specific procedure for its measurement varies among different laboratories. Notably, the renowned brain atlas developed by Paxinos and Franklin lacks explicit instructions on the Bregma determination. Recent studies have found discrepancies in skull and brain landmark measurements. This review describes the commonly used brain atlases and highlights the limitations in accurately measuring the stereotaxic coordinates. In addition, we propose alternative and more reliable approaches to measure the Bregma. It is imperative to address the misconceptions about the accuracy of stereotaxic surgeries, as it can significantly impact a substantial portion of neuroscience research.
Collapse
Affiliation(s)
- Marianna Nogueira Cecyn
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Karina Possa Abrahao
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
209
|
Ding SL. A novel subdivision of the bed nucleus of stria terminalis in monkey, rat, and mouse brains. J Comp Neurol 2023; 531:2121-2145. [PMID: 36583448 PMCID: PMC11406555 DOI: 10.1002/cne.25446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
The bed nucleus of stria terminalis (BST) is a critical structure that mediates sustained vigilant responses to contextual, diffuse, and unpredictable threats. Dysfunction of the BST could lead to excessive anxiety and hypervigilance, which are often observed in posttraumatic stress disorder and anxiety disorders. Vigilance of potential future threats from the external environment is a basic brain function and probably requires rapid and/or short neural circuits, which enable both quick detection of the potential threats and fast adaptive responses. However, the BST in literature does not appear to receive spatial information directly from earlier visual or spatial processing structures. In this study, a novel subdivision of the BST is uncovered in monkey, rat, and mouse brains based on the human equivalent and is found in mouse to receive direct inputs from the ventral lateral geniculate nucleus and pretectal nucleus as well as from the spatial processing structures such as subiculum, presubiculum, and medial entorhinal cortex. This new subdivision, termed spindle-shaped small cell subdivision (BSTsc), is located between the known BST and the anterior thalamus. In addition to the unique afferent connections and cell morphology, the BSTsc also displays unique molecular signature (e.g., positive for excitatory markers) compared with other BST subdivisions, which are mostly composed of inhibitory GABAergic neurons. The BSTsc appears to have largely overlapping efferent projections with other BST subdivisions such as the projections to the amygdala, hypothalamus, nucleus accumbens, septum, and brainstem. Together, the present study suggests that the BSTsc is poised to serve as a shortcut bridge directly linking spatial information from the environment to vigilant adaptive internal responses.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington, USA
| |
Collapse
|
210
|
Liu H, Zeng Q, Zhou J, Bartlett A, Wang BA, Berube P, Tian W, Kenworthy M, Altshul J, Nery JR, Chen H, Castanon RG, Zu S, Li YE, Lucero J, Osteen JK, Pinto-Duarte A, Lee J, Rink J, Cho S, Emerson N, Nunn M, O'Connor C, Wu Z, Stoica I, Yao Z, Smith KA, Tasic B, Luo C, Dixon JR, Zeng H, Ren B, Behrens MM, Ecker JR. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. Nature 2023; 624:366-377. [PMID: 38092913 PMCID: PMC10719113 DOI: 10.1038/s41586-023-06805-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.
Collapse
Affiliation(s)
- Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bang-An Wang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Peter Berube
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mia Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Songpeng Zu
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia K Osteen
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Antonio Pinto-Duarte
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jasper Lee
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jon Rink
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Silvia Cho
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nora Emerson
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Nunn
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhanghao Wu
- Sky Computing Lab, University of California, Berkeley, Berkeley, CA, USA
| | - Ion Stoica
- Sky Computing Lab, University of California, Berkeley, Berkeley, CA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
211
|
Zhang M, Pan X, Jung W, Halpern AR, Eichhorn SW, Lei Z, Cohen L, Smith KA, Tasic B, Yao Z, Zeng H, Zhuang X. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 2023; 624:343-354. [PMID: 38092912 PMCID: PMC10719103 DOI: 10.1038/s41586-023-06808-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
In mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues1-3, including several brain regions (for example, refs. 1-11). However, a comprehensive cell atlas of the whole brain is still missing. Here we imaged a panel of more than 1,100 genes in approximately 10 million cells across the entire adult mouse brains using multiplexed error-robust fluorescence in situ hybridization12 and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating multiplexed error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. Using this approach, we generated a comprehensive cell atlas of more than 5,000 transcriptionally distinct cell clusters, belonging to more than 300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of this atlas to the mouse brain common coordinate framework allowed systematic quantifications of the cell-type composition and organization in individual brain regions. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes of cells. Finally, this high-resolution spatial map of cells, each with a transcriptome-wide expression profile, allowed us to infer cell-type-specific interactions between hundreds of cell-type pairs and predict molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a foundation for functional investigations of neural circuits and their dysfunction in health and disease.
Collapse
Affiliation(s)
- Meng Zhang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Xingjie Pan
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aaron R Halpern
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Stephen W Eichhorn
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Zhiyun Lei
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Limor Cohen
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
212
|
Stapleton MC, Koch SP, Cortes DRE, Wyman S, Schwab KE, Mueller S, McKennan CG, Boehm-Sturm P, Wu YL. Apolipoprotein-E deficiency leads to brain network alteration characterized by diffusion MRI and graph theory. Front Neurosci 2023; 17:1183312. [PMID: 38075287 PMCID: PMC10702609 DOI: 10.3389/fnins.2023.1183312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a major health concern for senior citizens, characterized by memory loss, confusion, and impaired cognitive abilities. Apolipoprotein-E (ApoE) is a well-known risk factor for LOAD, though exactly how ApoE affects LOAD risks is unknown. We hypothesize that ApoE attenuation of LOAD resiliency or vulnerability has a neurodevelopmental origin via changing brain network architecture. We investigated the brain network structure in adult ApoE knock out (ApoE KO) and wild-type (WT) mice with diffusion tensor imaging (DTI) followed by graph theory to delineate brain network topology. Left and right hemisphere connectivity revealed significant differences in number of connections between the hippocampus, amygdala, caudate putamen and other brain regions. Network topology based on the graph theory of ApoE KO demonstrated decreased functional integration, network efficiency, and network segregation between the hippocampus and amygdala and the rest of the brain, compared to those in WT counterparts. Our data show that brain network developed differently in ApoE KO and WT mice at 5 months of age, especially in the network reflected in the hippocampus, amygdala, and caudate putamen. This indicates that ApoE is involved in brain network development which might modulate LOAD risks via changing brain network structures.
Collapse
Affiliation(s)
- Margaret Caroline Stapleton
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Stefan Paul Koch
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Devin Raine Everaldo Cortes
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Wyman
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kristina E. Schwab
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Susanne Mueller
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Philipp Boehm-Sturm
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yijen Lin Wu
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| |
Collapse
|
213
|
Suri H, Salgado-Puga K, Wang Y, Allen N, Lane K, Granroth K, Olivei A, Nass N, Rothschild G. A Cortico-Striatal Circuit for Sound-Triggered Prediction of Reward Timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568134. [PMID: 38045246 PMCID: PMC10690153 DOI: 10.1101/2023.11.21.568134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A crucial aspect of auditory perception is the ability to use sound cues to predict future events and to time actions accordingly. For example, distinct smartphone notification sounds reflect a call that needs to be answered within a few seconds, or a text that can be read later; the sound of an approaching vehicle signals when it is safe to cross the street. Other animals similarly use sounds to plan, time and execute behaviors such as hunting, evading predation and tending to offspring. However, the neural mechanisms that underlie sound-guided prediction of upcoming salient event timing are not well understood. To address this gap, we employed an appetitive sound-triggered reward time prediction behavior in head-fixed mice. We find that mice trained on this task reliably estimate the time from a sound cue to upcoming reward on the scale of a few seconds, as demonstrated by learning-dependent well-timed increases in reward-predictive licking. Moreover, mice showed a dramatic impairment in their ability to use sound to predict delayed reward when the auditory cortex was inactivated, demonstrating its causal involvement. To identify the neurophysiological signatures of auditory cortical reward-timing prediction, we recorded local field potentials during learning and performance of this behavior and found that the magnitude of auditory cortical responses to the sound prospectively encoded the duration of the anticipated sound-reward time interval. Next, we explored how and where these sound-triggered time interval prediction signals propagate from the auditory cortex to time and initiate consequent action. We targeted the monosynaptic projections from the auditory cortex to the posterior striatum and found that chemogenetic inactivation of these projections impairs animal's ability to predict sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex and posterior striatum during task performance revealed coordination of neural activity across these regions during the sound cue predicting the time interval to reward. Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-triggered timing-prediction behaviors.
Collapse
|
214
|
Rummell BP, Bikas S, Babl SS, Gogos JA, Sigurdsson T. Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition. Nat Commun 2023; 14:7388. [PMID: 37968289 PMCID: PMC10651874 DOI: 10.1038/s41467-023-42964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
The ability to distinguish sensations that are self-generated from those caused by external events is disrupted in schizophrenia patients. However, the neural circuit abnormalities underlying this sensory impairment and its relationship to the risk factors for the disease is not well understood. To address this, we examined the processing of self-generated sounds in male Df(16)A+/- mice, which model one of the largest genetic risk factors for schizophrenia, the 22q11.2 microdeletion. We find that auditory cortical neurons in Df(16)A+/- mice fail to attenuate their responses to self-generated sounds, recapitulating deficits seen in schizophrenia patients. Notably, the auditory cortex of Df(16)A+/- mice displayed weaker motor-related signals and received fewer inputs from the motor cortex, suggesting an anatomical basis underlying the sensory deficit. These results provide insights into the mechanisms by which a major genetic risk factor for schizophrenia disrupts the top-down processing of sensory information.
Collapse
Affiliation(s)
- Brian P Rummell
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
| | - Solmaz Bikas
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | - Susanne S Babl
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | - Joseph A Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Departments of Physiology, Neuroscience and Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
215
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nat Commun 2023; 14:7358. [PMID: 37963894 PMCID: PMC10645979 DOI: 10.1038/s41467-023-43252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kylie Swiekatowski
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
216
|
Zhang A, Jin L, Yao S, Matsuyama M, van Velthoven C, Sullivan H, Sun N, Kellis M, Tasic B, Wickersham IR, Chen X. Rabies virus-based barcoded neuroanatomy resolved by single-cell RNA and in situ sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532873. [PMID: 36993334 PMCID: PMC10055146 DOI: 10.1101/2023.03.16.532873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4,130 retrogradely labeled cells and 2,914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.
Collapse
Affiliation(s)
- Aixin Zhang
- Allen Institute for Brain Science, Seattle, WA
| | - Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Lingang Laboratory, Shanghai, China
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Metcela Inc., Kawasaki, Kanagawa, Japan
| | | | - Heather Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Na Sun
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Ian R. Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | | |
Collapse
|
217
|
Vanrobaeys Y, Peterson ZJ, Walsh EN, Chatterjee S, Lin LC, Lyons LC, Nickl-Jockschat T, Abel T. Spatial transcriptomics reveals unique gene expression changes in different brain regions after sleep deprivation. Nat Commun 2023; 14:7095. [PMID: 37925446 PMCID: PMC10625558 DOI: 10.1038/s41467-023-42751-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Sleep deprivation has far-reaching consequences on the brain and behavior, impacting memory, attention, and metabolism. Previous research has focused on gene expression changes in individual brain regions, such as the hippocampus or cortex. Therefore, it is unclear how uniformly or heterogeneously sleep loss affects the brain. Here, we use spatial transcriptomics to define the impact of a brief period of sleep deprivation across the brain in male mice. We find that sleep deprivation induced pronounced differences in gene expression across the brain, with the greatest changes in the hippocampus, neocortex, hypothalamus, and thalamus. Both the differentially expressed genes and the direction of regulation differed markedly across regions. Importantly, we developed bioinformatic tools to register tissue sections and gene expression data into a common anatomical space, allowing a brain-wide comparison of gene expression patterns between samples. Our results suggest that distinct molecular mechanisms acting in discrete brain regions underlie the biological effects of sleep deprivation.
Collapse
Affiliation(s)
- Yann Vanrobaeys
- Interdisciplinary Graduate Program in Genetics, University of Iowa, 357 Medical Research Center Iowa City, Iowa, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA
| | - Zeru J Peterson
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Emily N Walsh
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, USA
| | - Snehajyoti Chatterjee
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA
| | - Li-Chun Lin
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA.
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA.
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA.
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA.
| |
Collapse
|
218
|
Lovelace JW, Ma J, Yadav S, Chhabria K, Shen H, Pang Z, Qi T, Sehgal R, Zhang Y, Bali T, Vaissiere T, Tan S, Liu Y, Rumbaugh G, Ye L, Kleinfeld D, Stringer C, Augustine V. Vagal sensory neurons mediate the Bezold-Jarisch reflex and induce syncope. Nature 2023; 623:387-396. [PMID: 37914931 PMCID: PMC10632149 DOI: 10.1038/s41586-023-06680-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold-Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.
Collapse
Affiliation(s)
- Jonathan W Lovelace
- Department of Neurobiology, University of California, San Diego, CA, USA
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Jingrui Ma
- Department of Neurobiology, University of California, San Diego, CA, USA
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Saurabh Yadav
- Department of Neurobiology, University of California, San Diego, CA, USA
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | | | - Hanbing Shen
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Zhengyuan Pang
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Tianbo Qi
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Ruchi Sehgal
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Yunxiao Zhang
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Tushar Bali
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Thomas Vaissiere
- University of Florida-Scripps Biomedical Research, Jupiter, FL, USA
| | - Shawn Tan
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Yuejia Liu
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Gavin Rumbaugh
- University of Florida-Scripps Biomedical Research, Jupiter, FL, USA
| | - Li Ye
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - David Kleinfeld
- Department of Neurobiology, University of California, San Diego, CA, USA
- Department of Physics, University of California, San Diego, CA, USA
| | | | - Vineet Augustine
- Department of Neurobiology, University of California, San Diego, CA, USA.
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
219
|
Zhang J, Peng Y, Liu C, Zhang Y, Liang X, Yuan C, Shi W, Zhang Y. Dopamine D1-receptor-expressing pathway from the nucleus accumbens to ventral pallidum-mediated sevoflurane anesthesia in mice. CNS Neurosci Ther 2023; 29:3364-3377. [PMID: 37208941 PMCID: PMC10580364 DOI: 10.1111/cns.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND General anesthesia has long been used in clinical practice, but its precise pharmacological effects on neural circuits are not fully understood. Recent investigations suggest that the sleep-wake system may play a role in the reversible loss of consciousness induced by general anesthetics. Studies in mice have shown that microinjection of dopamine receptor 1 (D1R) agonists into the nucleus accumbens (NAc) promotes recovery from isoflurane anesthesia, while microinjection of D1R antagonists has the opposite effect. Furthermore, during the induction and maintenance of sevoflurane anesthesia, there is a significant decrease in extracellular dopamine levels in the NAc, which subsequently increases during the recovery period. These findings suggest the involvement of the NAc in the regulation of general anesthesia. However, the specific role of D1R-expressing neurons in the NAc during general anesthesia and the downstream effect pathways are still not well understood. METHODS In order to analyze the impact of sevoflurane anesthesia on NAcD1R neurons and the NAcD1R -VP pathway, this study employed calcium fiber photometry to investigate alterations in the fluorescence intensity of calcium signals in dopamine D1-receptor-expressing neurons located in the nucleus accumbens (NAcD1R neurons) and the NAcD1R -VP pathway during sevoflurane anesthesia. Subsequently, optogenetic techniques were utilized to activate or inhibit NAcD1R neurons and their synaptic terminals in the ventral pallidum (VP), aiming to elucidate the role of NAcD1R neurons and the NAcD1R -VP pathway in sevoflurane anesthesia. These experiments were supplemented with electroencephalogram (EEG) recordings and behavioral tests. Lastly, a genetically-encoded fluorescent sensor was employed to observe changes in extracellular GABA neurotransmitters in the VP during sevoflurane anesthesia. RESULTS Our findings revealed that sevoflurane administration led to the inhibition of NAcD1R neuron population activity, as well as their connections within the ventral pallidum (VP). We also observed a reversible reduction in extracellular GABA levels in the VP during both the induction and emergence phases of sevoflurane anesthesia. Additionally, the optogenetic activation of NAcD1R neurons and their synaptic terminals in the VP resulted in a promotion of wakefulness during sevoflurane anesthesia, accompanied by a decrease in EEG slow wave activity and burst suppression rate. Conversely, the optogenetic inhibition of the NAcD1R -VP pathway exerted opposite effects. CONCLUSION The NAcD1R -VP pathway serves as a crucial downstream pathway of NAcD1R neurons, playing a significant role in regulating arousal during sevoflurane anesthesia. Importantly, this pathway appears to be associated with the release of GABA neurotransmitters from VP cells.
Collapse
Affiliation(s)
- Jie Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Yiting Peng
- Department of AnesthesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Chengxi Liu
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Xiaoli Liang
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Chengdong Yuan
- Department of AnesthesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Wenyan Shi
- Department of AnesthesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Yi Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| |
Collapse
|
220
|
Zhu J, Hasanbegović H, Liu LD, Gao Z, Li N. Activity map of a cortico-cerebellar loop underlying motor planning. Nat Neurosci 2023; 26:1916-1928. [PMID: 37814026 PMCID: PMC10620095 DOI: 10.1038/s41593-023-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Liu D Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
221
|
Richman EB, Ticea N, Allen WE, Deisseroth K, Luo L. Neural landscape diffusion resolves conflicts between needs across time. Nature 2023; 623:571-579. [PMID: 37938783 PMCID: PMC10651489 DOI: 10.1038/s41586-023-06715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Animals perform flexible goal-directed behaviours to satisfy their basic physiological needs1-12. However, little is known about how unitary behaviours are chosen under conflicting needs. Here we reveal principles by which the brain resolves such conflicts between needs across time. We developed an experimental paradigm in which a hungry and thirsty mouse is given free choices between equidistant food and water. We found that mice collect need-appropriate rewards by structuring their choices into persistent bouts with stochastic transitions. High-density electrophysiological recordings during this behaviour revealed distributed single neuron and neuronal population correlates of a persistent internal goal state guiding future choices of the mouse. We captured these phenomena with a mathematical model describing a global need state that noisily diffuses across a shifting energy landscape. Model simulations successfully predicted behavioural and neural data, including population neural dynamics before choice transitions and in response to optogenetic thirst stimulation. These results provide a general framework for resolving conflicts between needs across time, rooted in the emergent properties of need-dependent state persistence and noise-driven shifts between behavioural goals.
Collapse
Affiliation(s)
- Ethan B Richman
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Nicole Ticea
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - William E Allen
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
222
|
Purandare C, Mehta M. Mega-scale movie-fields in the mouse visuo-hippocampal network. eLife 2023; 12:RP85069. [PMID: 37910428 PMCID: PMC10619982 DOI: 10.7554/elife.85069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Natural visual experience involves a continuous series of related images while the subject is immobile. How does the cortico-hippocampal circuit process a visual episode? The hippocampus is crucial for episodic memory, but most rodent single unit studies require spatial exploration or active engagement. Hence, we investigated neural responses to a silent movie (Allen Brain Observatory) in head-fixed mice without any task or locomotion demands, or rewards. Surprisingly, a third (33%, 3379/10263) of hippocampal -dentate gyrus, CA3, CA1 and subiculum- neurons showed movie-selectivity, with elevated firing in specific movie sub-segments, termed movie-fields, similar to the vast majority of thalamo-cortical (LGN, V1, AM-PM) neurons (97%, 6554/6785). Movie-tuning remained intact in immobile or spontaneously running mice. Visual neurons had >5 movie-fields per cell, but only ~2 in hippocampus. The movie-field durations in all brain regions spanned an unprecedented 1000-fold range: from 0.02s to 20s, termed mega-scale coding. Yet, the total duration of all the movie-fields of a cell was comparable across neurons and brain regions. The hippocampal responses thus showed greater continuous-sequence encoding than visual areas, as evidenced by fewer and broader movie-fields than in visual areas. Consistently, repeated presentation of the movie images in a fixed, but scrambled sequence virtually abolished hippocampal but not visual-cortical selectivity. The preference for continuous, compared to scrambled sequence was eight-fold greater in hippocampal than visual areas, further supporting episodic-sequence encoding. Movies could thus provide a unified way to probe neural mechanisms of episodic information processing and memory, even in immobile subjects, across brain regions, and species.
Collapse
Affiliation(s)
- Chinmay Purandare
- Department of Bioengineering, University of California, Los AngelesLos AngelesUnited States
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, University of California, Los AngelesLos AngelesUnited States
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Mayank Mehta
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, University of California, Los AngelesLos AngelesUnited States
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
- Department of Electrical and Computer Engineering, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
223
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
224
|
Kleven H, Bjerke IE, Clascá F, Groenewegen HJ, Bjaalie JG, Leergaard TB. Waxholm Space atlas of the rat brain: a 3D atlas supporting data analysis and integration. Nat Methods 2023; 20:1822-1829. [PMID: 37783883 PMCID: PMC10630136 DOI: 10.1038/s41592-023-02034-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Volumetric brain atlases are increasingly used to integrate and analyze diverse experimental neuroscience data acquired from animal models, but until recently a publicly available digital atlas with complete coverage of the rat brain has been missing. Here we present an update of the Waxholm Space rat brain atlas, a comprehensive open-access volumetric atlas resource. This brain atlas features annotations of 222 structures, of which 112 are new and 57 revised compared to previous versions. It provides a detailed map of the cerebral cortex, hippocampal region, striatopallidal areas, midbrain dopaminergic system, thalamic cell groups, the auditory system and main fiber tracts. We document the criteria underlying the annotations and demonstrate how the atlas with related tools and workflows can be used to support interpretation, integration, analysis and dissemination of experimental rat brain data.
Collapse
Affiliation(s)
- Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvild E Bjerke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, Autónoma de Madrid University, Madrid, Spain
| | - Henk J Groenewegen
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
225
|
Imani E, Radkani S, Hashemi A, Harati A, Pourreza H, Moazami Goudarzi M. Distributed Coding of Evidence Accumulation across the Mouse Brain Using Microcircuits with a Diversity of Timescales. eNeuro 2023; 10:ENEURO.0282-23.2023. [PMID: 37863657 PMCID: PMC10626503 DOI: 10.1523/eneuro.0282-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
The gradual accumulation of noisy evidence for or against options is the main step in the perceptual decision-making process. Using brain-wide electrophysiological recording in mice (Steinmetz et al., 2019), we examined neural correlates of evidence accumulation across brain areas. We demonstrated that the neurons with drift-diffusion model (DDM)-like firing rate activity (i.e., evidence-sensitive ramping firing rate) were distributed across the brain. Exploring the underlying neural mechanism of evidence accumulation for the DDM-like neurons revealed different accumulation mechanisms (i.e., single and race) both within and across the brain areas. Our findings support the hypothesis that evidence accumulation is happening through multiple integration mechanisms in the brain. We further explored the timescale of the integration process in the single and race accumulator models. The results demonstrated that the accumulator microcircuits within each brain area had distinct properties in terms of their integration timescale, which were organized hierarchically across the brain. These findings support the existence of evidence accumulation over multiple timescales. Besides the variability of integration timescale across the brain, a heterogeneity of timescales was observed within each brain area as well. We demonstrated that this variability reflected the diversity of microcircuit parameters, such that accumulators with longer integration timescales had higher recurrent excitation strength.
Collapse
Affiliation(s)
- Elaheh Imani
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Setayesh Radkani
- Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Ahad Harati
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Hamidreza Pourreza
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | | |
Collapse
|
226
|
Rijsketic DR, Casey AB, Barbosa DAN, Zhang X, Hietamies TM, Ramirez-Ovalle G, Pomrenze MB, Halpern CH, Williams LM, Malenka RC, Heifets BD. UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice. Neuropsychopharmacology 2023; 48:1798-1807. [PMID: 37248402 PMCID: PMC10579391 DOI: 10.1038/s41386-023-01613-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
The effects of context on the subjective experience of serotonergic psychedelics have not been fully examined in human neuroimaging studies, partly due to limitations of the imaging environment. Here, we administered saline or psilocybin to mice in their home cage or an enriched environment, immunofluorescently-labeled brain-wide c-Fos, and imaged iDISCO+ cleared tissue with light sheet fluorescence microscopy (LSFM) to examine the impact of environmental context on psilocybin-elicited neural activity at cellular resolution. Voxel-wise analysis of c-Fos-immunofluorescence revealed clusters of neural activity associated with main effects of context and psilocybin-treatment, which were validated with c-Fos+ cell density measurements. Psilocybin increased c-Fos expression in subregions of the neocortex, caudoputamen, central amygdala, and parasubthalamic nucleus while it decreased c-Fos in the hypothalamus, cortical amygdala, striatum, and pallidum in a predominantly context-independent manner. To gauge feasibility of future mechanistic studies on ensembles activated by psilocybin, we confirmed activity- and Cre-dependent genetic labeling in a subset of these neurons using TRAP2+/-;Ai14+ mice. Network analyses treating each psilocybin-sensitive cluster as a node indicated that psilocybin disrupted co-activity between highly correlated regions, reduced brain modularity, and dramatically attenuated intermodular co-activity. Overall, our results indicate that main effects of context and psilocybin were robust, widespread, and reorganized network architecture, whereas context×psilocybin interactions were surprisingly sparse.
Collapse
Affiliation(s)
- Daniel Ryskamp Rijsketic
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Austen B Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daniel A N Barbosa
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Tuuli M Hietamies
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grecia Ramirez-Ovalle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew B Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Nancy Pritzker Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Nancy Pritzker Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
227
|
Bhattacherjee A, Zhang C, Watson BR, Djekidel MN, Moffitt JR, Zhang Y. Spatial transcriptomics reveals the distinct organization of mouse prefrontal cortex and neuronal subtypes regulating chronic pain. Nat Neurosci 2023; 26:1880-1893. [PMID: 37845544 PMCID: PMC10620082 DOI: 10.1038/s41593-023-01455-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
The prefrontal cortex (PFC) is a complex brain region that regulates diverse functions ranging from cognition, emotion and executive action to even pain processing. To decode the cellular and circuit organization of such diverse functions, we employed spatially resolved single-cell transcriptome profiling of the adult mouse PFC. Results revealed that PFC has distinct cell-type composition and gene-expression patterns relative to neighboring cortical areas-with neuronal excitability-regulating genes differently expressed. These cellular and molecular features are further segregated within PFC subregions, alluding to the subregion-specificity of several PFC functions. PFC projects to major subcortical targets through combinations of neuronal subtypes, which emerge in a target-intrinsic fashion. Finally, based on these features, we identified distinct cell types and circuits in PFC underlying chronic pain, an escalating healthcare challenge with limited molecular understanding. Collectively, this comprehensive map will facilitate decoding of discrete molecular, cellular and circuit mechanisms underlying specific PFC functions in health and disease.
Collapse
Affiliation(s)
- Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mohamed Nadhir Djekidel
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
228
|
Shima Y, Skibbe H, Sasagawa Y, Fujimori N, Iwayama Y, Isomura-Matoba A, Yano M, Ichikawa T, Nikaido I, Hattori N, Kato T. Distinctiveness and continuity in transcriptome and connectivity in the anterior-posterior axis of the paraventricular nucleus of the thalamus. Cell Rep 2023; 42:113309. [PMID: 37862168 DOI: 10.1016/j.celrep.2023.113309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) projects axons to multiple areas, mediates a wide range of behaviors, and exhibits regional heterogeneity in both functions and axonal projections. Still, questions regarding the cell types present in the PVT and the extent of their differences remain inadequately addressed. We applied single-cell RNA sequencing to depict the transcriptomic characteristics of mouse PVT neurons. We found that one of the most significant variances in the PVT transcriptome corresponded to the anterior-posterior axis. While the single-cell transcriptome classified PVT neurons into five types, our transcriptomic and histological analyses showed continuity among the cell types. We discovered that anterior and posterior subpopulations had nearly non-overlapping projection patterns, while another population showed intermediate patterns. In addition, these subpopulations responded differently to appetite-related neuropeptides, with their activation showing opposing effects on food consumption. Our studies unveiled the contrasts and the continuity of PVT neurons that underpin their function.
Collapse
Affiliation(s)
- Yasuyuki Shima
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan.
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Noriko Fujimori
- Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Support Unit for Bio-Material Analysis, Research Resource Division, Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Ayako Isomura-Matoba
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Minoru Yano
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Takumi Ichikawa
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Nobutaka Hattori
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Department of Neurology, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan
| | - Tadafumi Kato
- Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Department of Psychiatry, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan.
| |
Collapse
|
229
|
Li R, Ohki K, Matsui T. Ketamine-induced 1-Hz oscillation of spontaneous neural activity is not directly visible in the hemodynamics. Biochem Biophys Res Commun 2023; 678:102-108. [PMID: 37625269 DOI: 10.1016/j.bbrc.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The extent to which resting-state hemodynamics reflects the underlying neural activity is still under debate. Especially in the delta frequency band (0.5-4 Hz), it is unclear whether the hemodynamics can directly track the dynamics of underlying neural activity. Based on a recent report showing that ketamine administration induced a 1-Hz neural activity oscillation in the retrosplenial cortex, we conducted simultaneous recordings of the calcium signal and hemodynamics in mice and examined whether the hemodynamics tracked the oscillatory neural activity. Although we observed that the oscillation induced by ketamine appeared in the calcium signal, no sign of oscillation was detected in the simultaneously recorded hemodynamics. Consistently, there was a notable decrease in the correlation between simultaneously recorded calcium signal and hemodynamics. However, on a much longer time scale (10-60 min), we unexpectedly observed an ultraslow increase of hemodynamic signals specifically in the same cortical region exhibiting the neural activity oscillation. These results indicated that hemodynamics cannot track the 1-Hz oscillation in neural activity, although the presence of neural activity oscillation was detectable on a longer timescale. Such ultraslow hemodynamics may be useful for detecting abnormal neural activity induced by psychotic drugs or mental disorders.
Collapse
Affiliation(s)
- Ruixiang Li
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Teppei Matsui
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan; Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
230
|
Urushihata T, Goto M, Kabetani K, Kiyozuka M, Maruyama S, Tsuji S, Tada H, Satoh A. Evaluation of cellular activity in response to sleep deprivation by a comprehensive analysis of the whole mouse brain. Front Neurosci 2023; 17:1252689. [PMID: 37928729 PMCID: PMC10620513 DOI: 10.3389/fnins.2023.1252689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Sleep deprivation (SD) causes several adverse functional outcomes, and understanding the associated processes can improve quality of life. Although the effects of SD on neuronal activity in several brain regions have been identified, a comprehensive evaluation of the whole brain is still lacking. Hence, we performed SD using two different methods, gentle handling and a dedicated chamber, in targeted recombination in active populations 2 (TRAP2) mice crossed with Rosa-ZsGreen reporter mice and visualized cellular activity in the whole brain. Using the semi-automated post-imaging analysis tool Slice Histology Alignment, Registration, and Cell Quantification (SHARCQ), the number of activated cells was quantified. From the analysis of 14 brain regions, cellular activity was significantly increased in the olfactory areas and decreased in the medulla by the two SD methods. From the analysis of the further subdivided 348 regions, cellular activity was significantly increased in the vascular organ of the lamina terminalis, lateral hypothalamic area, parabigeminal nucleus, ventral tegmental area, and magnocellular reticular nucleus, and decreased in the anterior part of the basolateral amygdalar nucleus, nucleus accumbens, septohippocampal nucleus, reticular nucleus of the thalamus, preoptic part of the periventricular hypothalamic nucleus, ventromedial preoptic nucleus, rostral linear nucleus raphe, facial motor nucleus, vestibular nuclei, and some fiber tracts (oculomotor nerve, genu of corpus callosum, and rubrospinal tract) by the two SD methods. Two subdivided regions of the striatum (caudoputamen and other striatum), epithalamus, vascular organ of the lamina terminalis, anteroventral preoptic nucleus, superior colliculus optic layer, medial terminal nucleus of the accessory optic tract, pontine gray, and fiber tracts (medial lemniscus, columns of the fornix, brachium of the inferior colliculus, and mammillary peduncle) were differentially affected by the two SD methods. Most brain regions detected from these analyses have been reported to be involved in regulating sleep/wake regulatory circuits. Moreover, the results from the connectivity analysis indicated that the connectivity of cellular activity among brain regions was altered by SD. Together, such a comprehensive analysis of the whole brain is useful for understanding the mechanisms by which SD and/or sleep disruption affects brain function.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mio Goto
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiko Kabetani
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mai Kiyozuka
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
| | - Shiho Maruyama
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
| | - Shogo Tsuji
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hirobumi Tada
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
231
|
Koschinski L, Lenyk B, Jung M, Lenzi I, Kampa B, Mayer D, Offenhäusser A, Musall S, Rincón Montes V. Validation of transparent and flexible neural implants for simultaneous electrophysiology, functional imaging, and optogenetics. J Mater Chem B 2023; 11:9639-9657. [PMID: 37610228 DOI: 10.1039/d3tb01191g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combination of electrophysiology and neuroimaging methods allows the simultaneous measurement of electrical activity signals with calcium dynamics from single neurons to neuronal networks across distinct brain regions in vivo. While traditional electrophysiological techniques are limited by photo-induced artefacts and optical occlusion for neuroimaging, different types of transparent neural implants have been proposed to resolve these issues. However, reproducing proposed solutions is often challenging and it remains unclear which approach offers the best properties for long-term chronic multimodal recordings. We therefore created a streamlined fabrication process to produce, and directly compare, two types of transparent surface micro-electrocorticography (μECoG) implants: nano-mesh gold structures (m-μECoGs) versus a combination of solid gold interconnects and PEDOT:PSS-based electrodes (pp-μECoGs). Both implants allowed simultaneous multimodal recordings but pp-μECoGs offered the best overall electrical, electrochemical, and optical properties with negligible photo-induced artefacts to light wavelengths of interest. Showing functional chronic stability for up to four months, pp-μECoGs also allowed the simultaneous functional mapping of electrical and calcium neural signals upon visual and tactile stimuli during widefield imaging. Moreover, recordings during two-photon imaging showed no visible signal attenuation and enabled the correlation of network dynamics across brain regions to individual neurons located directly below the transparent electrical contacts.
Collapse
Affiliation(s)
- Lina Koschinski
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- Helmholtz Nano Facility (HNF), Forschungszentrum, Jülich, Germany
- RWTH Aachen University, Germany
| | - Bohdan Lenyk
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Marie Jung
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
| | - Irene Lenzi
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
| | - Björn Kampa
- RWTH Aachen University, Germany
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Forschungszentrum, Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Simon Musall
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, Germany
- University Hospital Bonn, Germany
| | - Viviana Rincón Montes
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| |
Collapse
|
232
|
Zhang X, Weickenmeier J. Brain Stiffness Follows Cuprizone-Induced Variations in Local Myelin Content. Acta Biomater 2023; 170:507-518. [PMID: 37660962 DOI: 10.1016/j.actbio.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Brain maturation and neurological diseases are intricately linked to microstructural changes that inherently affect the brain's mechanical behavior. Animal models are frequently used to explore relative brain stiffness changes as a function of underlying microstructure. Here, we are using the cuprizone mouse model to study indentation-derived stiffness changes resulting from acute and chronic demyelination during a 15-week observation period. We focus on the corpus callosum, cingulum, and cortex which undergo different degrees of de- and remyelination and, therefore, result in region-specific stiffness changes. Mean stiffness of the corpus callosum starts at 1.1 ± 0.3 kPa in untreated mice, then cuprizone treatment causes stiffness to drop to 0.6 ± 0.1 kPa by week 3, temporarily increase to 0.9 ± 0.3 kPa by week 6, and ultimately stabilize around 0.7 ± 0.1 kPa by week 9 for the rest of the observation period. The cingulum starts at 3.2 ± 0.9 kPa, then drops to 1.6 ± 0.4 kPa by week 3, and then gradually stabilizes around 1.4 ± 0.3 kPa by week 9. Cortical stiffness exhibits less stiffness variations overall; it starts at 4.2 ± 1.3 kPa, drops to 2.4 ± 0.6 kPa by week 3, and stabilizes around 2.7 ± 0.9 kPa by week 6. We also assess the impact of tissue fixation on indentation-based mechanical tissue characterization. On the one hand, fixation drastically increases untreated mean tissue stiffness by a factor of 3.3 for the corpus callosum, 2.9 for the cingulum, and 3.6 for the cortex; on the other hand, fixation influences interregional stiffness ratios during demyelination, thus suggesting that fixation affects individual brain tissues differently. Lastly, we determine the spatial correlation between stiffness measurements and myelin density and observe a region-specific proportionality between myelin content and tissue stiffness. STATEMENT OF SIGNIFICANCE: Despite extensive work, the relationship between microstructure and mechanical behavior in the brain remains mostly unknown. Additionally, the existing variation of measurement results reported in literature requires in depth investigation of the impact of individual cell and protein populations on tissue stiffness and interregional stiffness ratios. Here, we used microindentation measurements to show that brain stiffness changes with myelin density in the cuprizone-based demyelination mouse model. Moreover, we explored the impact of tissue fixation prior to mechanical characterization because of conflicting results reported in literature. We observe that fixation has a distinctly different impact on our three regions of interest, thus causing region-specific tissue stiffening and, more importantly, changing interregional stiffness ratios.
Collapse
Affiliation(s)
- Xuesong Zhang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 United States
| | - Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 United States.
| |
Collapse
|
233
|
Leva TM, Whitmire CJ. Thermosensory thalamus: parallel processing across model organisms. Front Neurosci 2023; 17:1210949. [PMID: 37901427 PMCID: PMC10611468 DOI: 10.3389/fnins.2023.1210949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
The thalamus acts as an interface between the periphery and the cortex, with nearly every sensory modality processing information in the thalamocortical circuit. Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, the key thalamic nuclei responsible for innocuous thermosensation remains under debate. Thermosensory information is first transduced by thermoreceptors located in the skin and then processed in the spinal cord. Temperature information is then transmitted to the brain through multiple spinal projection pathways including the spinothalamic tract and the spinoparabrachial tract. While there are fundamental studies of thermal transduction via thermosensitive channels in primary sensory afferents, thermal representation in the spinal projection neurons, and encoding of temperature in the primary cortical targets, comparatively little is known about the intermediate stage of processing in the thalamus. Multiple thalamic nuclei have been implicated in thermal encoding, each with a corresponding cortical target, but without a consensus on the role of each pathway. Here, we review a combination of anatomy, physiology, and behavioral studies across multiple animal models to characterize the thalamic representation of temperature in two proposed thermosensory information streams.
Collapse
Affiliation(s)
- Tobias M. Leva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarissa J. Whitmire
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
234
|
Chartrand T, Dalley R, Close J, Goriounova NA, Lee BR, Mann R, Miller JA, Molnar G, Mukora A, Alfiler L, Baker K, Bakken TE, Berg J, Bertagnolli D, Braun T, Brouner K, Casper T, Csajbok EA, Dee N, Egdorf T, Enstrom R, Galakhova AA, Gary A, Gelfand E, Goldy J, Hadley K, Heistek TS, Hill D, Jorstad N, Kim L, Kocsis AK, Kruse L, Kunst M, Leon G, Long B, Mallory M, McGraw M, McMillen D, Melief EJ, Mihut N, Ng L, Nyhus J, Oláh G, Ozsvár A, Omstead V, Peterfi Z, Pom A, Potekhina L, Rajanbabu R, Rozsa M, Ruiz A, Sandle J, Sunkin SM, Szots I, Tieu M, Toth M, Trinh J, Vargas S, Vumbaco D, Williams G, Wilson J, Yao Z, Barzo P, Cobbs C, Ellenbogen RG, Esposito L, Ferreira M, Gouwens NW, Grannan B, Gwinn RP, Hauptman JS, Jarsky T, Keene CD, Ko AL, Koch C, Ojemann JG, Patel A, Ruzevick J, Silbergeld DL, Smith K, Sorensen SA, Tasic B, Ting JT, Waters J, de Kock CPJ, Mansvelder HD, Tamas G, Zeng H, Kalmbach B, Lein ES. Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science 2023; 382:eadf0805. [PMID: 37824667 DOI: 10.1126/science.adf0805] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.
Collapse
Affiliation(s)
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Natalia A Goriounova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rusty Mann
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gabor Molnar
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Alice Mukora
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jim Berg
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Eva Adrienn Csajbok
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Anna A Galakhova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - DiJon Hill
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nik Jorstad
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lisa Kim
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Agnes Katalin Kocsis
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Medea McGraw
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Erica J Melief
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Norbert Mihut
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Lindsay Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Gáspár Oláh
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Attila Ozsvár
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | | | - Zoltan Peterfi
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Alice Pom
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Marton Rozsa
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | | | - Joanna Sandle
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | | | - Ildiko Szots
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Martin Toth
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | | | - Sara Vargas
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Julia Wilson
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | | | | | | | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | - Benjamin Grannan
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | - Jason S Hauptman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Anoop Patel
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jacob Ruzevick
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Huib D Mansvelder
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Gabor Tamas
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
235
|
Lu X, Wang Y, Liu Z, Gou Y, Jaeger D, St-Pierre F. Widefield imaging of rapid pan-cortical voltage dynamics with an indicator evolved for one-photon microscopy. Nat Commun 2023; 14:6423. [PMID: 37828037 PMCID: PMC10570354 DOI: 10.1038/s41467-023-41975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Widefield imaging with genetically encoded voltage indicators (GEVIs) is a promising approach for understanding the role of large cortical networks in the neural coding of behavior. However, the limited performance of current GEVIs restricts their deployment for single-trial imaging of rapid neuronal voltage dynamics. Here, we developed a high-throughput platform to screen for GEVIs that combine fast kinetics with high brightness, sensitivity, and photostability under widefield one-photon illumination. Rounds of directed evolution produced JEDI-1P, a green-emitting fluorescent indicator with enhanced performance across all metrics. Next, we optimized a neonatal intracerebroventricular delivery method to achieve cost-effective and wide-spread JEDI-1P expression in mice. We also developed an approach to correct optical measurements from hemodynamic and motion artifacts effectively. Finally, we achieved stable brain-wide voltage imaging and successfully tracked gamma-frequency whisker and visual stimulations in awake mice in single trials, opening the door to investigating the role of high-frequency signals in brain computations.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yunmiao Wang
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Biology Department, Emory University, Atlanta, GA, 30322, USA
| | - Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dieter Jaeger
- Biology Department, Emory University, Atlanta, GA, 30322, USA.
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, 77005, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
236
|
Markicevic M, Sturman O, Bohacek J, Rudin M, Zerbi V, Fulcher BD, Wenderoth N. Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions. eLife 2023; 12:e78620. [PMID: 37824184 PMCID: PMC10569790 DOI: 10.7554/elife.78620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale UniversityNew HavenUnited States
| | - Oliver Sturman
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Markus Rudin
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- Institute for Biomedical Engineering, University and ETH ZurichZurichSwitzerland
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFLLausanneSwitzerland
- CIBM Centre for Biomedical ImagingLausanneSwitzerland
| | - Ben D Fulcher
- School of Physics, The University of SydneyCamperdownAustralia
| | - Nicole Wenderoth
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE)SingaporeSingapore
| |
Collapse
|
237
|
Dembitskaya Y, Boyce AKJ, Idziak A, Pourkhalili Langeroudi A, Arizono M, Girard J, Le Bourdellès G, Ducros M, Sato-Fitoussi M, Ochoa de Amezaga A, Oizel K, Bancelin S, Mercier L, Pfeiffer T, Thompson RJ, Kim SK, Bikfalvi A, Nägerl UV. Shadow imaging for panoptical visualization of brain tissue in vivo. Nat Commun 2023; 14:6411. [PMID: 37828018 PMCID: PMC10570379 DOI: 10.1038/s41467-023-42055-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Progress in neuroscience research hinges on technical advances in visualizing living brain tissue with high fidelity and facility. Current neuroanatomical imaging approaches either require tissue fixation (electron microscopy), do not have cellular resolution (magnetic resonance imaging) or only give a fragmented view (fluorescence microscopy). Here, we show how regular light microscopy together with fluorescence labeling of the interstitial fluid in the extracellular space provide comprehensive optical access in real-time to the anatomical complexity and dynamics of living brain tissue at submicron scale. Using several common fluorescence microscopy modalities (confocal, light-sheet and 2-photon microscopy) in mouse organotypic and acute brain slices and the intact mouse brain in vivo, we demonstrate the value of this straightforward 'shadow imaging' approach by revealing neurons, microglia, tumor cells and blood capillaries together with their complete anatomical tissue contexts. In addition, we provide quantifications of perivascular spaces and the volume fraction of the extracellular space of brain tissue in vivo.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | - Andrew K J Boyce
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Agata Idziak
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | | | - Misa Arizono
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
- Department of Pharmacology, Kyoto University Graduate School of Medicine/The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Jordan Girard
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | - Guillaume Le Bourdellès
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | - Mathieu Ducros
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), UAR 3420, US 4, F-33000, Bordeaux, France
| | - Marie Sato-Fitoussi
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | - Amaia Ochoa de Amezaga
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | - Kristell Oizel
- Université de Bordeaux, INSERM, Bordeaux Institute of Oncology (BRIC), U1312, Bat B2, Allée Geoffroy St Hilaire, 33615, Pessac, France
| | - Stephane Bancelin
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | - Luc Mercier
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | - Thomas Pfeiffer
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sun Kwang Kim
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Andreas Bikfalvi
- Université de Bordeaux, INSERM, Bordeaux Institute of Oncology (BRIC), U1312, Bat B2, Allée Geoffroy St Hilaire, 33615, Pessac, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
238
|
Masuda FK, Aery Jones EA, Sun Y, Giocomo LM. Ketamine evoked disruption of entorhinal and hippocampal spatial maps. Nat Commun 2023; 14:6285. [PMID: 37805575 PMCID: PMC10560293 DOI: 10.1038/s41467-023-41750-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
Ketamine, a rapid-acting anesthetic and acute antidepressant, carries undesirable spatial cognition side effects including out-of-body experiences and spatial memory impairments. The neural substrates that underlie these alterations in spatial cognition however, remain incompletely understood. Here, we used electrophysiology and calcium imaging to examine ketamine's impacts on the medial entorhinal cortex and hippocampus, which contain neurons that encode an animal's spatial position, as mice navigated virtual reality and real world environments. Ketamine acutely increased firing rates, degraded cell-pair temporal firing-rate relationships, and altered oscillations, leading to longer-term remapping of spatial representations. In the reciprocally connected hippocampus, the activity of neurons that encode the position of the animal was suppressed after ketamine administration. Together, these findings demonstrate ketamine-induced dysfunction of the MEC-hippocampal circuit at the single cell, local-circuit population, and network levels, connecting previously demonstrated physiological effects of ketamine on spatial cognition to alterations in the spatial navigation circuit.
Collapse
Affiliation(s)
- Francis Kei Masuda
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emily A Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
239
|
Ammari R, Monaca F, Cao M, Nassar E, Wai P, Del Grosso NA, Lee M, Borak N, Schneider-Luftman D, Kohl J. Hormone-mediated neural remodeling orchestrates parenting onset during pregnancy. Science 2023; 382:76-81. [PMID: 37797007 PMCID: PMC7615220 DOI: 10.1126/science.adi0576] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
During pregnancy, physiological adaptations prepare the female body for the challenges of motherhood. Becoming a parent also requires behavioral adaptations. Such adaptations can occur as early as during pregnancy, but how pregnancy hormones remodel parenting circuits to instruct preparatory behavioral changes remains unknown. We found that action of estradiol and progesterone on galanin (Gal)-expressing neurons in the mouse medial preoptic area (MPOA) is critical for pregnancy-induced parental behavior. Whereas estradiol silences MPOAGal neurons and paradoxically increases their excitability, progesterone permanently rewires this circuit node by promoting dendritic spine formation and recruitment of excitatory synaptic inputs. This MPOAGal-specific neural remodeling sparsens population activity in vivo and results in persistently stronger, more selective responses to pup stimuli. Pregnancy hormones thus remodel parenting circuits in anticipation of future behavioral need.
Collapse
Affiliation(s)
- Rachida Ammari
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Francesco Monaca
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Mingran Cao
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Estelle Nassar
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Patty Wai
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Nicholas A. Del Grosso
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Matthew Lee
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Neven Borak
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Deborah Schneider-Luftman
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Johannes Kohl
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
240
|
Buck SA, Rubin SA, Kunkhyen T, Treiber CD, Xue X, Fenno LE, Mabry SJ, Sundar VR, Yang Z, Shah D, Ketchesin KD, Becker-Krail DD, Vasylieva I, Smith MC, Weisel FJ, Wang W, Erickson-Oberg MQ, O’Leary EI, Aravind E, Ramakrishnan C, Kim YS, Wu Y, Quick M, Coleman JA, MacDonald WA, Elbakri R, De Miranda BR, Palladino MJ, McCabe BD, Fish KN, Seney ML, Rayport S, Mingote S, Deisseroth K, Hnasko TS, Awatramani R, Watson AM, Waddell S, Cheetham CEJ, Logan RW, Freyberg Z. Sexually dimorphic mechanisms of VGLUT-mediated protection from dopaminergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560584. [PMID: 37873436 PMCID: PMC10592912 DOI: 10.1101/2023.10.02.560584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1β as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.
Collapse
Affiliation(s)
- Silas A. Buck
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sophie A. Rubin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christoph D. Treiber
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Lief E. Fenno
- Departments of Psychiatry and Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Samuel J. Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Varun R. Sundar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zilu Yang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Divia Shah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kyle D. Ketchesin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Darius D. Becker-Krail
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Iaroslavna Vasylieva
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Megan C. Smith
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Florian J. Weisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wenjia Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - M. Quincy Erickson-Oberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emma I. O’Leary
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eshan Aravind
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yanying Wu
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Matthias Quick
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jonathan A. Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Rania Elbakri
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Briana R. De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael J. Palladino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brian D. McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY 10031, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Thomas S. Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Alan M. Watson
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | | | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
241
|
Athey TL, Wright MA, Pavlovic M, Chandrashekhar V, Deisseroth K, Miller MI, Vogelstein JT. BrainLine: An Open Pipeline for Connectivity Analysis of Heterogeneous Whole-Brain Fluorescence Volumes. Neuroinformatics 2023; 21:637-639. [PMID: 37394568 PMCID: PMC10582119 DOI: 10.1007/s12021-023-09638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Thomas L Athey
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Matthew A Wright
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Marija Pavlovic
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua T Vogelstein
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
242
|
Shi H, He Y, Zhou Y, Huang J, Maher K, Wang B, Tang Z, Luo S, Tan P, Wu M, Lin Z, Ren J, Thapa Y, Tang X, Chan KY, Deverman BE, Shen H, Liu A, Liu J, Wang X. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 2023; 622:552-561. [PMID: 37758947 PMCID: PMC10709140 DOI: 10.1038/s41586-023-06569-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.
Collapse
Affiliation(s)
- Hailing Shi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yichun He
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiahao Huang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamal Maher
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brandon Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zefang Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuchen Luo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peng Tan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zuwan Lin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jingyi Ren
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yaman Thapa
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Ken Y Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin E Deverman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hao Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Albert Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
243
|
Barrile F, Cassano D, Fernandez G, De Francesco PN, Reynaldo M, Cantel S, Fehrentz JA, Donato J, Schiöth HB, Zigman JM, Perello M. Ghrelin's orexigenic action in the lateral hypothalamic area involves indirect recruitment of orexin neurons and arcuate nucleus activation. Psychoneuroendocrinology 2023; 156:106333. [PMID: 37454647 PMCID: PMC10530520 DOI: 10.1016/j.psyneuen.2023.106333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Ghrelin is a potent orexigenic hormone, and the lateral hypothalamic area (LHA) has been suggested as a putative target mediating ghrelin's effects on food intake. Here, we aimed to investigate the presence of neurons expressing ghrelin receptor (a.k.a. growth hormone secretagogue receptor, GHSR) in the mouse LHA (LHAGHSR neurons), its physiological implications and the neuronal circuit recruited by local ghrelin action. METHODS We investigated the distribution of LHAGHSR neurons using different histologic strategies, including the use of a reporter mice expressing enhanced green fluorescent protein under the control of the GHSR promoter. Also, we investigated the physiological implications of local injections of ghrelin within the LHA, and the extent to which the orexigenic effect of intra-LHA-injected ghrelin involves the arcuate nucleus (ARH) and orexin neurons of the LHA (LHAorexin neurons) RESULTS: We found that: 1) LHAGHSR neurons are homogeneously distributed throughout the entire LHA; 2) intra-LHA injections of ghrelin transiently increase food intake and locomotor activity; 3) ghrelin's orexigenic effect in the LHA involves the indirect recruitment of LHAorexin neurons and the activation of ARH neurons; and 4) LHAGHSR neurons are not targeted by plasma ghrelin. CONCLUSIONS We provide a compelling neuroanatomical and functional characterization of LHAGHSR neurons in male mice that indicates that LHAGHSR cells are part of a hypothalamic neuronal circuit that potently induces food intake.
Collapse
Affiliation(s)
- Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - José Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
244
|
Velten B, Stegle O. Principles and challenges of modeling temporal and spatial omics data. Nat Methods 2023; 20:1462-1474. [PMID: 37710019 DOI: 10.1038/s41592-023-01992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
Collapse
Affiliation(s)
- Britta Velten
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Centre for Organismal Studies (COS) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
245
|
Légaré A, Lemieux M, Desrosiers P, De Koninck P. Zebrafish brain atlases: a collective effort for a tiny vertebrate brain. NEUROPHOTONICS 2023; 10:044409. [PMID: 37786400 PMCID: PMC10541682 DOI: 10.1117/1.nph.10.4.044409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
In the past two decades, digital brain atlases have emerged as essential tools for sharing and integrating complex neuroscience datasets. Concurrently, the larval zebrafish has become a prominent vertebrate model offering a strategic compromise for brain size, complexity, transparency, optogenetic access, and behavior. We provide a brief overview of digital atlases recently developed for the larval zebrafish brain, intersecting neuroanatomical information, gene expression patterns, and connectivity. These atlases are becoming pivotal by centralizing large datasets while supporting the generation of circuit hypotheses as functional measurements can be registered into an atlas' standard coordinate system to interrogate its structural database. As challenges persist in mapping neural circuits and incorporating functional measurements into zebrafish atlases, we emphasize the importance of collaborative efforts and standardized protocols to expand these resources to crack the complex codes of neuronal activity guiding behavior in this tiny vertebrate brain.
Collapse
Affiliation(s)
| | - Mado Lemieux
- CERVO Brain Research Center, Québec, Québec, Canada
| | - Patrick Desrosiers
- CERVO Brain Research Center, Québec, Québec, Canada
- Université Laval, Department of Physics, Engineering Physics and Optics, Québec, Québec, Canada
| | - Paul De Koninck
- CERVO Brain Research Center, Québec, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology and Bio-informatics, Québec, Québec, Canada
| |
Collapse
|
246
|
Guyonnet-Hencke T, Reimann MW. A parcellation scheme of mouse isocortex based on reversals in connectivity gradients. Netw Neurosci 2023; 7:999-1021. [PMID: 37781146 PMCID: PMC10473268 DOI: 10.1162/netn_a_00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 10/03/2023] Open
Abstract
The brain is composed of several anatomically clearly separated structures. This parcellation is often extended into the isocortex, based on anatomical, physiological, or functional differences. Here, we derive a parcellation scheme based purely on the spatial structure of long-range synaptic connections within the cortex. To that end, we analyzed a publicly available dataset of average mouse brain connectivity, and split the isocortex into disjunct regions. Instead of clustering connectivity based on modularity, our scheme is inspired by methods that split sensory cortices into subregions where gradients of neuronal response properties, such as the location of the receptive field, reverse. We calculated comparable gradients from voxelized brain connectivity data and automatically detected reversals in them. This approach better respects the known presence of functional gradients within brain regions than clustering-based approaches. Placing borders at the reversals resulted in a parcellation into 41 subregions that differs significantly from an established scheme in nonrandom ways, but is comparable in terms of the modularity of connectivity between regions. It reveals unexpected trends of connectivity, such as a tripartite split of somatomotor regions along an anterior to posterior gradient. The method can be readily adapted to other organisms and data sources, such as human functional connectivity.
Collapse
Affiliation(s)
- Timothé Guyonnet-Hencke
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michael W. Reimann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
247
|
Li Z, Shang Z, Liu J, Zhen H, Zhu E, Zhong S, Sturgess RN, Zhou Y, Hu X, Zhao X, Wu Y, Li P, Lin R, Ren J. D-LMBmap: a fully automated deep-learning pipeline for whole-brain profiling of neural circuitry. Nat Methods 2023; 20:1593-1604. [PMID: 37770711 PMCID: PMC10555838 DOI: 10.1038/s41592-023-01998-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/02/2023] [Indexed: 09/30/2023]
Abstract
Recent proliferation and integration of tissue-clearing methods and light-sheet fluorescence microscopy has created new opportunities to achieve mesoscale three-dimensional whole-brain connectivity mapping with exceptionally high throughput. With the rapid generation of large, high-quality imaging datasets, downstream analysis is becoming the major technical bottleneck for mesoscale connectomics. Current computational solutions are labor intensive with limited applications because of the exhaustive manual annotation and heavily customized training. Meanwhile, whole-brain data analysis always requires combining multiple packages and secondary development by users. To address these challenges, we developed D-LMBmap, an end-to-end package providing an integrated workflow containing three modules based on deep-learning algorithms for whole-brain connectivity mapping: axon segmentation, brain region segmentation and whole-brain registration. D-LMBmap does not require manual annotation for axon segmentation and achieves quantitative analysis of whole-brain projectome in a single workflow with superior accuracy for multiple cell types in all of the modalities tested.
Collapse
Affiliation(s)
- Zhongyu Li
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Zengyi Shang
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Liu
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Haotian Zhen
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Entao Zhu
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shilin Zhong
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Robyn N Sturgess
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yitian Zhou
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xuemeng Hu
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xingyue Zhao
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yi Wu
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Peiqi Li
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Jing Ren
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
248
|
Rodgers G, Bikis C, Janz P, Tanner C, Schulz G, Thalmann P, Haas CA, Müller B. 3D X-ray Histology for the Investigation of Temporal Lobe Epilepsy in a Mouse Model. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1730-1745. [PMID: 37584515 DOI: 10.1093/micmic/ozad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
Abstract
The most common form of epilepsy among adults is mesial temporal lobe epilepsy (mTLE), with seizures often originating in the hippocampus due to abnormal electrical activity. The gold standard for the histopathological analysis of mTLE is histology, which is a two-dimensional technique. To fill this gap, we propose complementary three-dimensional (3D) X-ray histology. Herein, we used synchrotron radiation-based phase-contrast microtomography with 1.6 μm-wide voxels for the post mortem visualization of tissue microstructure in an intrahippocampal-kainate mouse model for mTLE. We demonstrated that the 3D X-ray histology of unstained, unsectioned, paraffin-embedded brain hemispheres can identify hippocampal sclerosis through the loss of pyramidal neurons in the first and third regions of the Cornu ammonis as well as granule cell dispersion within the dentate gyrus. Morphology and density changes during epileptogenesis were quantified by segmentations from a deep convolutional neural network. Compared to control mice, the total dentate gyrus volume doubled and the granular layer volume quadrupled 21 days after injecting kainate. Subsequent sectioning of the same mouse brains allowed for benchmarking 3D X-ray histology against well-established histochemical and immunofluorescence stainings. Thus, 3D X-ray histology is a complementary neuroimaging tool to unlock the third dimension for the cellular-resolution histopathological analysis of mTLE.
Collapse
Affiliation(s)
- Griffin Rodgers
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Christos Bikis
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Integrierte Psychiatrie Winterthur-Zürcher Unterland, 8408 Winterthur, Switzerland
| | - Philipp Janz
- Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79106 Freiburg, Germany
| | - Christine Tanner
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
- Core Facility Micro- and Nanotomography, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Peter Thalmann
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Carola A Haas
- Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79106 Freiburg, Germany
- Center of Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79114 Freiburg, Germany
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
249
|
Young TR, Yamamoto M, Kikuchi SS, Yoshida AC, Abe T, Inoue K, Johansen JP, Benucci A, Yoshimura Y, Shimogori T. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat Commun 2023; 14:6077. [PMID: 37770450 PMCID: PMC10539368 DOI: 10.1038/s41467-023-41749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.
Collapse
Affiliation(s)
- Timothy R Young
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Aya C Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Andrea Benucci
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
250
|
Tian Y, Johnson GA, Williams RW, White LE. A rapid workflow for neuron counting in combined light sheet microscopy and magnetic resonance histology. Front Neurosci 2023; 17:1223226. [PMID: 37841684 PMCID: PMC10569694 DOI: 10.3389/fnins.2023.1223226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Information on regional variation in cell numbers and densities in the CNS provides critical insight into structure, function, and the progression of CNS diseases. However, variability can be real or a consequence of methods that do not account for technical biases, including morphologic deformations, errors in the application of cell type labels and boundaries of regions, errors of counting rules and sampling sites. We address these issues in a mouse model by introducing a workflow that consists of the following steps: 1. Magnetic resonance histology (MRH) to establish the size, shape, and regional morphology of the mouse brain in situ. 2. Light-sheet microscopy (LSM) to selectively label neurons or other cells in the entire brain without sectioning artifacts. 3. Register LSM volumes to MRH volumes to correct for dissection errors and both global and regional deformations. 4. Implement stereological protocols for automated sampling and counting of cells in 3D LSM volumes. This workflow can analyze the cell densities of one brain region in less than 1 min and is highly replicable in cortical and subcortical gray matter regions and structures throughout the brain. This method demonstrates the advantage of not requiring an extensive amount of training data, achieving a F1 score of approximately 0.9 with just 20 training nuclei. We report deformation-corrected neuron (NeuN) counts and neuronal density in 13 representative regions in 5 C57BL/6J cases and 2 BXD strains. The data represent the variability among specimens for the same brain region and across regions within the specimen. Neuronal densities estimated with our workflow are within the range of values in previous classical stereological studies. We demonstrate the application of our workflow to a mouse model of aging. This workflow improves the accuracy of neuron counting and the assessment of neuronal density on a region-by-region basis, with broad applications for studies of how genetics, environment, and development across the lifespan impact cell numbers in the CNS.
Collapse
Affiliation(s)
- Yuqi Tian
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, United States
| | - G. Allan Johnson
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, United States
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Leonard E. White
- Department of Neurology, Duke University, Durham, NC, United States
| |
Collapse
|