201
|
Porto L, Preibisch C, Hattingen E, Bartels M, Lehrnbecher T, Dewitz R, Zanella F, Good C, Lanfermann H, DuMesnil R, Kieslich M. Voxel-based morphometry and diffusion-tensor MR imaging of the brain in long-term survivors of childhood leukemia. Eur Radiol 2008; 18:2691-700. [PMID: 18491104 DOI: 10.1007/s00330-008-1038-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/06/2008] [Accepted: 04/06/2008] [Indexed: 11/25/2022]
Abstract
The aims of this study were to detect morphological changes in neuroanatomical components in adult survivors of acute lymphoblastic leukemia (ALL). Voxel-based morphometry (VBM) can be used to detect subtle structural changes in brain morphology and via analysis of fractional anisotropy (FA), diffusion-tensor imaging (DTI) can non-invasively probe white matter (WM) integrity. We used VBM and DTI to examine 20 long-term survivors of ALL and 21 healthy matched controls. Ten ALL survivors received chemotherapy and irradiation; ten survivors received chemotherapy alone during childhood. Imaging was performed on a 3.0-T MRI. For VBM, group comparisons of segmented T1-weighted grey matter (GM) and WM images from controls and ALL survivors were performed separately for patients who received chemotherapy alone and who received chemotherapy and irradiation. For DTI, FA in WM was compared for the same groups. Survivors of childhood ALL who underwent cranial irradiation during childhood had smaller WM volumes and reduced GM concentration within the caudate nucleus and thalamus. The FA in WM was reduced in adult survivors of ALL but the effect was more severe after combined treatment with irradiation and chemotherapy. Our results indicate that DTI and VBM can reveal persistent long-term WM and caudate changes in children after ALL treatment, even without T2 changes in conventional imaging.
Collapse
Affiliation(s)
- L Porto
- Department of Neuroradiology, Klinikum Goethe Universität, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci 2008; 28:3707-17. [PMID: 18385329 DOI: 10.1523/jneurosci.4280-07.2008] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurogenesis in the adult hippocampus is a highly regulated process that originates from multipotent progenitors in the subgranular zone (SGZ). Currently, little is known about molecular mechanisms that regulate proliferation and differentiation in the SGZ. To study the role of transcription factors (TFs), we focused on Tbr2 (T-box brain gene 2), which has been implicated previously in developmental glutamatergic neurogenesis. In adult mouse hippocampus, Tbr2 protein and Tbr2-GFP (green fluorescent protein) transgene expression were specifically localized to intermediate-stage progenitor cells (IPCs), a type of transit amplifying cells. The Tbr2+ IPCs were highly responsive to neurogenic stimuli, more than doubling after voluntary wheel running. Notably, the Tbr2+ IPCs formed cellular clusters, the average size of which (Tbr2+ cells per cluster) likewise more than doubled in runners. Conversely, Tbr2+ IPCs were selectively depleted by antimitotic drugs, known to suppress neurogenesis. After cessation of antimitotic treatment, recovery of neurogenesis was paralleled by recovery of Tbr2+ IPCs, including a transient rebound above baseline numbers. Finally, Tbr2 was examined in the context of additional TFs that, together, define a TF cascade in embryonic neocortical neurogenesis (Pax6 --> Ngn2 --> Tbr2 --> NeuroD --> Tbr1). Remarkably, the same TF cascade was found to be linked to stages of neuronal lineage progression in adult SGZ. These results suggest that Tbr2+ IPCs play a major role in the regulation of adult hippocampal neurogenesis, and that a similar transcriptional program controls neurogenesis in adult SGZ as in embryonic cerebral cortex.
Collapse
|
203
|
Salazar-Colocho P, Lanciego JL, Del Rio J, Frechilla D. Ischemia induces cell proliferation and neurogenesis in the gerbil hippocampus in response to neuronal death. Neurosci Res 2008; 61:27-37. [DOI: 10.1016/j.neures.2008.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/30/2007] [Accepted: 01/11/2008] [Indexed: 11/16/2022]
|
204
|
Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol 2008; 317:147-60. [DOI: 10.1016/j.ydbio.2008.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/16/2008] [Accepted: 02/05/2008] [Indexed: 11/19/2022]
|
205
|
Cantarella C, Cayre M, Magalon K, Durbec P. Intranasal HB-EGF administration favors adult SVZ cell mobilization to demyelinated lesions in mouse corpus callosum. Dev Neurobiol 2008; 68:223-36. [PMID: 18000828 DOI: 10.1002/dneu.20588] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the adult rodent brain, the subventricular zone (SVZ) represents a special niche for neural stem cells; these cells proliferate and generate neural progenitors. Most of these migrate along the rostral migratory stream to the olfactory bulb, where they differentiate into interneurons. SVZ-derived progenitors can also be recruited spontaneously to damaged brain areas to replace lost cells, including oligodendrocytes in demyelinated lesions. In this study, we searched for factors able to enhance this spontaneous recruitment of endogenous progenitors. Previous studies have suggested that epidermal growth factor (EGF) could stimulate proliferation, migration, and glial differentiation of SVZ progenitors. In the present study we examined EGF influence on endogenous SVZ cell participation to brain repair in the context of demyelinated lesions. We induced a focal demyelinated lesion in the corpus callosum by lysolecithin injection and showed that intranasal heparin-binding epidermal growth factor (HB-EGF) administration induces a significant increase in SVZ cell proliferation together with a stronger SVZ cell mobilization toward the lesions. Besides, HB-EGF causes a shift of SVZ-derived progenitor cell differentiation toward the astrocytic lineage. However, due to the threefold increase in cell recruitment by EGF treatment, the absolute number of SVZ-derived oligodendrocytes in the lesion of treated mice is higher than in controls. These results suggest that enhancing SVZ cell proliferation could be part of future strategies to promote SVZ progenitor cell mobilization toward brain lesions.
Collapse
Affiliation(s)
- Cristina Cantarella
- Université de la Méditerranée, CNRS-UMR 6216, Institute for Developmental Biology of Marseille-Luminy, Case 907, Campus de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
206
|
Whitney NP, Peng H, Erdmann NB, Tian C, Monaghan DT, Zheng JC. Calcium-permeable AMPA receptors containing Q/R-unedited GluR2 direct human neural progenitor cell differentiation to neurons. FASEB J 2008; 22:2888-900. [PMID: 18403631 DOI: 10.1096/fj.07-104661] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We identify calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on human neural progenitor cells (NPCs) and present a physiological role in neurogenesis. RNA editing of the GluR2 subunit at the Q/R site is responsible for making most AMPA receptors impermeable to calcium. Because a single-point mutation could eliminate the need for editing at the Q/R site and Q/R-unedited GluR2 exists during embryogenesis, the Q/R-unedited GluR2 subunit presumably has some important actions early in development. Using calcium imaging, we found that NPCs contain calcium-permeable AMPA receptors, whereas NPCs differentiated to neurons and astrocytes express calcium-impermeable AMPA receptors. We utilized reverse-transcription polymerase chain reaction and BbvI digestion to demonstrate that NPCs contain Q/R-unedited GluR2, and differentiated cells contain Q/R-edited GluR2 subunits. This is consistent with the observation that the nuclear enzyme responsible for Q/R-editing, adenosine deaminase (ADAR2), is increased during differentiation. Activation of calcium-permeable AMPA receptors induces NPCs to differentiate to the neuronal lineage and increases dendritic arbor formation in NPCs differentiated to neurons. AMPA-induced differentiation of NPCs to neurons is abrogated by overexpression of ADAR2 in NPCs. This elucidates the role of AMPA receptors as inductors of neurogenesis and provides a possible explanation for why the Q/R editing process exists.
Collapse
Affiliation(s)
- Nicholas P Whitney
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
207
|
Ormerod BK, Palmer TD, Caldwell MA. Neurodegeneration and cell replacement. Philos Trans R Soc Lond B Biol Sci 2008; 363:153-70. [PMID: 17331894 PMCID: PMC2605492 DOI: 10.1098/rstb.2006.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The past decade has witnessed ground-breaking advances in human stem cell biology with scientists validating adult neurogenesis and establishing methods to isolate and propagate stem cell populations suitable for transplantation. These advances have forged promising strategies against human neurodegenerative diseases. For example, growth factor administration could stimulate intrinsic repair from endogenous neural stem cells, and cultured stem cells engineered into biopumps could be transplanted to deliver neuroprotective or restorative agents. Stem cells could also be transplanted to generate new neural elements that augment and potentially replace degenerating central nervous system (CNS) circuitry. Early efforts in neural tissue transplantation have shown that these strategies can improve functional outcome, but the ultimate success of clinical stem cell-based strategies will depend on detailed understanding of stem cell biology in the degenerating brain and detailed evaluation of their functional efficacy and safety in preclinical animal models.
Collapse
Affiliation(s)
- Brandi K Ormerod
- Department of Neurosurgery, Stanford University300 Pasteur Drive, Boswell Building, A301, Stanford, CA 94305-5327, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University300 Pasteur Drive, Boswell Building, A301, Stanford, CA 94305-5327, USA
| | - Maeve A Caldwell
- Centre for Brain Repair, University of Cambridge School of Clinical MedicineAddenbrooke's Hospital, Box 111, Hills Road, Cambridge CB2 2SP, UK
- Author and address for correspondence: Laboratory for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK ()
| |
Collapse
|
208
|
Mukhida K, Baghbaderani BA, Hong M, Lewington M, Phillips T, McLeod M, Sen A, Behie LA, Mendez I. Survival, differentiation, and migration of bioreactor-expanded human neural precursor cells in a model of Parkinson disease in rats. Neurosurg Focus 2008; 24:E8. [DOI: 10.3171/foc/2008/24/3-4/e7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Object
Fetal tissue transplantation for Parkinson disease (PD) has demonstrated promising results in experimental and clinical studies. However, the widespread clinical application of this therapeutic approach is limited by a lack of fetal tissue. Human neural precursor cells (HNPCs) are attractive candidates for transplantation because of their long-term proliferation activity. Furthermore, these cells can be reproducibly expanded in a standardized fashion in suspension bioreactors. In this study the authors sought to determine whether the survival, differentiation, and migration of HNPCs after transplantation depended on the region of precursor cell origin, intracerebral site of transplantation, and duration of their expansion.
Methods
Human neural precursor cells were isolated from the telencephalon, brainstem, ventral mesencephalon, and spinal cord of human fetuses 8–10 weeks of gestational age, and their differentiation potential characterized in vitro. After expansion in suspension bioreactors, the HNPCs were transplanted into the striatum and substantia nigra of parkinsonian rats. Histological analyses were performed 7 weeks posttransplantation.
Results
The HNPCs isolated from various regions of the neuraxis demonstrated diverse propensities to differentiate into astrocytes and neurons and could all successfully expand under standardized conditions in suspension bioreactors. At 7 weeks posttransplantation, survival and migration were significantly greater for HNPCs obtained from the more rostral brain regions. The HNPCs differentiated predominantly into astrocytes after transplantation into the striatum or substantia nigra regions, and thus no behavioral improvement was observed.
Conclusions
Understanding the regional differences in HNPC properties is prerequisite to their application for PD cell restoration strategies.
Collapse
Affiliation(s)
- Karim Mukhida
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Behnam A. Baghbaderani
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Murray Hong
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Matthew Lewington
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Timothy Phillips
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Marcus McLeod
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Arindom Sen
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Leo A. Behie
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Ivar Mendez
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| |
Collapse
|
209
|
Bantubungi K, Blum D, Cuvelier L, Wislet-Gendebien S, Rogister B, Brouillet E, Schiffmann SN. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci 2008; 37:454-70. [DOI: 10.1016/j.mcn.2007.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 10/23/2007] [Accepted: 11/02/2007] [Indexed: 01/19/2023] Open
|
210
|
Seyfried NT, Huysentruyt LC, Atwood JA, Xia Q, Seyfried TN, Orlando R. Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. Cancer Lett 2008; 263:243-52. [PMID: 18281150 DOI: 10.1016/j.canlet.2008.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/19/2007] [Accepted: 01/03/2008] [Indexed: 12/17/2022]
Abstract
Although brain tumors are classified as if their lineage were well understood, the relationship between the molecular events that specify neural cell lineage and brain tumors remains enigmatic. Traditionally, cell surface membrane antigens have served as biomarkers that distinguish brain tumor origin and malignancy. In this study, membrane proteins were identified from a terminally differentiated mouse astrocyte (AC) and CT-2A astrocytoma (CT-2A) cell line using liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS). A total of 321 and 297 protein groups with at least one unique peptide were identified in the AC and CT-2A cells. Using a label-free quantitative MS approach, 25 plasma membrane proteins in CT-2A were found significantly up- or down-regulated compared with those in AC. Three of the up-regulated proteins, chondroitin sulfate proteoglycan-4 (Cspg4), interferon-induced transmembrane protein-2 (IFITM2) and -3 (IFITM3) were further validated by semi-quantitative RT-PCR analysis. In addition, a third member of the IFITM family, interferon-induced transmembrane protein-1 (IFITM1) was also analyzed. Expression of Cspg4, IFITM1 and IFITM3 was significantly greater in the CT-2A cells than that in the AC cells. Interestingly, Cspg4, also known as neuronal/glial 2 (NG2) proteoglycan in human, is an oligodendrocyte progenitor marker. Therefore, our data suggest that the CT-2A tumor may be derived from NG2 glia rather than from fully differentiated astrocytes. Moreover, the CT-2A cells also express a series of interferon-induced signature proteins that may be specific to this tumor. These data highlight the utility of LC-MS/MS for the identification of brain tumor membrane biomarkers.
Collapse
Affiliation(s)
- Nicholas T Seyfried
- Complex Carbohydrate Research Center, University of Georgia, 330 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
211
|
Schwob AE, Nguyen LJ, Meiri KF. Immortalization of neural precursors when telomerase is overexpressed in embryonal carcinomas and stem cells. Mol Biol Cell 2008; 19:1548-60. [PMID: 18256293 DOI: 10.1091/mbc.e06-11-1013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The DNA repair enzyme telomerase maintains chromosome stability by ensuring that telomeres regenerate each time the cell divides, protecting chromosome ends. During onset of neuroectodermal differentiation in P19 embryonal carcinoma (EC) cells three independent techniques (Southern blotting, Q-FISH, and Q-PCR) revealed a catastrophic reduction in telomere length in nestin-expressing neuronal precursors even though telomerase activity remained high. Overexpressing telomerase protein (mTERT) prevented telomere collapse and the neuroepithelial precursors produced continued to divide, but deaggregated and died. Addition of FGF-2 prevented deaggregation, protected the precursors from the apoptotic event that normally accompanies onset of terminal neuronal differentiation, allowed them to evade senescence, and enabled completion of morphological differentiation. Similarly, primary embryonic stem (ES) cells overexpressing mTERT also initiated neuroectodermal differentiation efficiently, acquiring markers of neuronal precursors and mature neurons. ES precursors are normally cultured with FGF-2, and overexpression of mTERT alone was sufficient to allow them to evade senescence. However, when FGF-2 was removed in order for differentiation to be completed most neural precursors underwent apoptosis indicating that in ES cells mTERT is not sufficient allow terminal differentiation of ES neural precursors in vitro. The results demonstrate that telomerase can potentiate the transition between pluripotent stem cell and committed neuron in both EC and ES cells.
Collapse
Affiliation(s)
- Anneke E Schwob
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston MA 02111, USA
| | | | | |
Collapse
|
212
|
Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 2008; 108:132-8. [PMID: 18173322 DOI: 10.3171/jns/2008/108/01/0132] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To examine the influence of deep brain stimulation on hippocampal neurogenesis in an adult rodent model. METHODS Rats were anesthetized and treated for 1 hour with electrical stimulation of the anterior nucleus of the thalamus (AN) or sham surgery. The animals were injected with 5'-bromo-2'-deoxyuridine (BrdU) 1-7 days after surgery and killed 24 hours or 28 days later. The authors counted the BrdU-positive cells in the dentate gyrus (DG) of the hippocampus. To investigate the fate of these cells, they also stained sections for doublecortin, NeuN, and GFAP and analyzed the results with confocal microscopy. In a second set of experiments they assessed the number of DG BrdU-positive cells in animals treated with corticosterone (a known suppressor of hippocampal neurogenesis) and sham surgery, corticosterone and AN stimulation, or vehicle and sham surgery. RESULTS Animals receiving AN high-frequency stimulation (2.5 V, 90 musec, 130 Hz) had a 2- to 3-fold increase in the number of DG BrdU-positive cells compared with nonstimulated controls. This increase was not seen with stimulation at 10 Hz. Most BrdU-positive cells assumed a neuronal cell fate. As expected, treatment with corticosterone significantly reduced the number of DG BrdU-positive cells. This steroid-induced reduction of neurogenesis was reversed by AN stimulation. CONCLUSIONS High-frequency stimulation of the AN increases the hippocampal neurogenesis and restores experimentally suppressed neurogenesis. Interventions that increase hippocampal neurogenesis have been associated with enhanced behavioral performance. In this context, it may be possible to use electrical stimulation to treat conditions associated with impairment of hippocampal function.
Collapse
Affiliation(s)
- Hiroki Toda
- Division of Neurosurgery, Toronto Western Hospital, Ontario, Canada
| | | | | | | | | |
Collapse
|
213
|
Spulber S, Oprica M, Bartfai T, Winblad B, Schultzberg M. Blunted neurogenesis and gliosis due to transgenic overexpression of human soluble IL-1ra in the mouse. Eur J Neurosci 2008; 27:549-58. [DOI: 10.1111/j.1460-9568.2008.06050.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
214
|
Williams IM, Carletti B, Leto K, Magrassi L, Rossi F. Cerebellar granule cells transplanted in vivo can follow physiological and unusual migratory routes to integrate into the recipient cortex. Neurobiol Dis 2008; 30:139-49. [PMID: 18308579 DOI: 10.1016/j.nbd.2008.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 11/30/2022] Open
Abstract
CNS repair by cell transplantation requires new neurons to integrate into complex recipient networks. We assessed how the migratory route of transplanted granule neurons and the developmental stage of the host rat cerebellum influence engraftment. In both embryonic and postnatal hosts, granule cells can enter the cerebellar cortex and achieve correct placement along their natural migratory pathway. Donor neurons can also reach the internal granular layer from the white matter and integrate following an unusual developmental pattern. Although the frequency of correct positioning declines in parallel with cortical development, in mature recipients correct homing is more frequent through the unusual path. Following depletion of granule cell precursors in the host, more granule neurons engraft, but their ability for achieving correct placement is unchanged. Therefore, while the cerebellar environment remains receptive for granule cells even after the end of development, their full integration is partially hindered by the mature cortical architecture.
Collapse
Affiliation(s)
- Ian Martin Williams
- Department of Neuroscience and "Rita Levi Montalcini Centre for Brain Repair", National Institute of Neuroscience, University of Turin, Italy
| | | | | | | | | |
Collapse
|
215
|
Golmohammadi MG, Blackmore DG, Large B, Azari H, Esfandiary E, Paxinos G, Franklin KBJ, Reynolds BA, Rietze RL. Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain. Stem Cells 2008; 26:979-87. [PMID: 18203672 DOI: 10.1634/stemcells.2007-0919] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The neurosphere assay can detect and expand neural stem cells (NSCs) and progenitor cells, but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall, we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 mum coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay, the neural colony forming cell assay (N-CFCA), and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis, with the number of neurosphere-forming cells detected in individual 400 mum sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover, the greatest variability occurred in the rostral portion of the lateral ventricles, thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 +/- 276) or colonies (4275 +/- 124) we detected along the neuraxis did not differ significantly, LRC numbers were significantly reduced (1186 +/- 188, 7 month chase) in comparison to both total colonies and neurospheres. Moreover, approximately two orders of magnitude fewer NSC-derived colonies (50 +/- 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU+/Ki-67+) or competent to divide (BrdU+/Mcm-2+), and proliferate upon transfer to culture, it is unclear whether this technique selectively detects endogenous NSCs. Overall, caution should be taken with the interpretation and employment of all these techniques.
Collapse
|
216
|
Kaslin J, Ganz J, Brand M. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2008; 363:101-22. [PMID: 17282988 PMCID: PMC2605489 DOI: 10.1098/rstb.2006.2015] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiated in vitro from several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.
Collapse
Affiliation(s)
| | | | - Michael Brand
- Biotechnology Centre and Centre for Regenerative Therapies Dresden, Dresden University of TechnologyTatzberg 47-51, 01307 Dresden, Germany
| |
Collapse
|
217
|
Kokoeva MV, Yin H, Flier JS. Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 2008; 505:209-20. [PMID: 17853440 DOI: 10.1002/cne.21492] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Compelling evidence suggests that the mammalian brain is capable of generating new neurons throughout adult life. While neurogenesis can be induced at various brain sites by exogenous cues, constitutive birth of new neurons has been unambiguously demonstrated within the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus. The lack of strong evidence that constitutive neurogenesis occurs elsewhere in the adult brain could be due to its exclusive restriction to the SVZ and SGZ or, for instance, to the inadequacy of the methods used to reveal new-born neurons at other brain sites. By using intracerebroventricular (icv) delivery of the mitotic marker bromodeoxyuridine (BrdU) we demonstrate that new cells are born continuously and in substantial numbers in the adult murine hypothalamus and that many of these cells appear to differentiate into neurons as assessed by the expression of doublecortin (Dcx) and other neuronal fate markers. As compared to intraperitoneal (ip) BrdU injections, central BrdU infusion also uncovers a higher-fold induction of hypothalamic cell proliferation by ciliary neurotrophic factor (CNTF). It appears that new cells are born throughout the hypothalamic parenchyma without an apparent restriction to a specific neurogenic layer, as seen in the SVZ. Thus, we provide evidence that the adult hypothalamus is constitutively neurogenic and that hypothalamic cell proliferation is highly responsive to mitogen action.
Collapse
Affiliation(s)
- Maia V Kokoeva
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
218
|
Beutel ME, Huber M. Functional Neuroimaging—Can It Contribute to Our Understanding of Processes of Change? ACTA ACUST UNITED AC 2008. [DOI: 10.1080/15294145.2008.10773563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
219
|
Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J, Kortesmaa J, Mercer A, Nielsen E, Rönnholm H, Wikström L. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson's disease. J Neurosci Res 2008; 86:326-38. [PMID: 17803225 DOI: 10.1002/jnr.21483] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We investigated the effects of exendin-4 on neural stem/progenitor cells in the subventricular zone of the adult rodent brain and its functional effects in an animal model of Parkinson's disease. Our results showed expression of GLP-1 receptor mRNA or protein in the subventricular zone and cultured neural stem/progenitor cells isolated from this region. In vitro, exendin-4 increased the number of neural stem/progenitor cells, and the number of cells expressing the neuronal markers microtubule-associated protein 2, beta-III-tubulin, and neuron-specific enolase. When exendin-4 was given intraperitoneally to naïve rodents together with bromodeoxyuridine, a marker for DNA synthesis, both the number of bromodeoxyuridine-positive cells and the number of neuronal precursor cells expressing doublecortin were increased. Exendin-4 was tested in the 6-hydroxydopamine model of Parkinson's disease to investigate its possible functional effects in an animal model with neuronal loss. After unilateral lesion and a 5-week stabilization period, the rats were treated for 3 weeks with exendin-4. We found a reduction of amphetamine-induced rotations in animals receiving exendin-4 that persisted for several weeks after drug administration had been terminated. Histological analysis showed that exendin-4 significantly increased the number of both tyrosine hydroxylase- and vesicular monoamine transporter 2-positive neurons in the substantia nigra. In conclusion, our results show that exendin-4 is able to promote adult neurogenesis in vitro and in vivo, normalize dopamine imbalance, and increase the number of cells positive for markers of dopaminergic neurons in the substantia nigra in a model of Parkinson's disease.
Collapse
|
220
|
Gao X, Arlotta P, Macklis JD, Chen J. Conditional knock-out of beta-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci 2007; 27:14317-25. [PMID: 18160639 PMCID: PMC6673436 DOI: 10.1523/jneurosci.3206-07.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 11/02/2007] [Accepted: 11/03/2007] [Indexed: 11/21/2022] Open
Abstract
Neurons are continuously added to the brain throughout life, and these neurons must develop dendritic arbors and functional connections with existing neurons to be integrated into neuronal circuitry. The molecular mechanisms that regulate dendritic development of newborn neurons in the hippocampal dentate gyrus are still unclear. Here, we show that beta-catenin is expressed in newborn granule neurons and in neural progenitor cells in the hippocampal dentate gyrus. Specific knock-out of beta-catenin in newborn neurons, without affecting beta-catenin expression in neural progenitor cells, led to defects in dendritic morphology of these newborn neurons in vivo. Majority of newborn neurons that cannot extend dendrites survive <1 month after they were born. Our results indicate that beta-catenin plays an important role in dendritic development of postnatal-born neurons in vivo, and is therefore essential for the neurogenesis in the postnatal brain.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Center and
| | - Paola Arlotta
- Departments of Neurosurgery and Neurology and Program in Neuroscience, Massachusetts General Hospital-Harvard Medical School Center for Nervous System Repair, Harvard Medical School, Boston, Massachusetts 02114
| | - Jeffrey D. Macklis
- Departments of Neurosurgery and Neurology and Program in Neuroscience, Massachusetts General Hospital-Harvard Medical School Center for Nervous System Repair, Harvard Medical School, Boston, Massachusetts 02114
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Center and
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536, and
| |
Collapse
|
221
|
Klintsova AY, Helfer JL, Calizo LH, Dong WK, Goodlett CR, Greenough WT. Persistent Impairment of Hippocampal Neurogenesis in Young Adult Rats Following Early Postnatal Alcohol Exposure. Alcohol Clin Exp Res 2007; 31:2073-82. [DOI: 10.1111/j.1530-0277.2007.00528.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
222
|
Zhang P, Liu Y, Li J, Kang Q, Tian Y, Chen X, Zhao J, Shi Q, Song T. Decreased neuronal nitric oxide synthase expression and cell migration in the peri-infarction after focal cerebral ischemia in rats. Neuropathology 2007; 27:347-54. [PMID: 17899688 DOI: 10.1111/j.1440-1789.2007.00791.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) regulates neurogenesis in the normal developing brain, but the role of nNOS in neurogenesis of the adult ischemic brain remains unclear. The aim of this study was to investigate the temporal and spatial relationship between cell migration from the ependymal/subventricular zone (SVZ) to periinfarction and nNOS expression in the rat. Ependymal/subventricular zone cells were prelabeled with fluorescence dye DiI. Focal cerebral ischemia was induced by occlusion of the left middle cerebral artery. At 1, 3, 7, 14 and 21 days after ischemia, the rats were killed in order to determine the number of migrating cells, the colocalization of DiI and nNOS as well as nNOS quantity in specific regions. Compared to non-ischemic control and 1 day post-ischemia, the number of DiI-labeled cells in the selected regions increased at 3 days and peaked 14 days following ischemia. During 3-7 days post-ischemia, none of the migrating cells expressed nNOS and decreased nNOS expression was observed in the regions where migrating cells passed through. These results suggest the possible association between ependymal/SVZ cell migration and decreased nNOS expression within the areas including the migrating routes towards the peri-infarction.
Collapse
Affiliation(s)
- Pengbo Zhang
- Institute of Neurobiology, Environment and Genes Related to Diseases, Key Laboratory of Education Ministry, Xi'an Jiaotong University School of Medicine, Shanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Trejo JL, Llorens-Martín MV, Torres-Alemán I. The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci 2007; 37:402-11. [PMID: 18086533 DOI: 10.1016/j.mcn.2007.10.016] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 01/17/2023] Open
Abstract
Knowledge about the effects of physical exercise on brain is accumulating although the mechanisms through which exercise exerts these actions remain largely unknown. A possible involvement of adult hippocampal neurogenesis (AHN) in the effects of exercise is debated while the physiological and pathological significance of AHN is under intense scrutiny. Recently, both neurogenesis-dependent and independent mechanisms have been shown to mediate the effects of physical exercise on spatial learning and anxiety-like behaviors. Taking advantage that the stimulating effects of exercise on AHN depend among others, on serum insulin-like growth factor I (IGF-I), we now examined whether the behavioral effects of running exercise are related to variations in hippocampal neurogenesis, by either increasing or decreasing it according to serum IGF-I levels. Mutant mice with low levels of serum IGF-I (LID mice) had reduced AHN together with impaired spatial learning. These deficits were not improved by running. However, administration of exogenous IGF-I ameliorated the cognitive deficit and restored AHN in LID mice. We also examined the effect of exercise in LID mice in the novelty-suppressed feeding test, a measure of anxiety-like behavior in laboratory animals. Normal mice, but not LID mice, showed reduced anxiety after exercise in this test. However, after exercise, LID mice did show improvement in the forced swim test, a measure of behavioral despair. Thus, many, but not all of the beneficial effects of exercise on brain function depend on circulating levels of IGF-I and are associated to increased hippocampal neurogenesis, including improved cognition and reduced anxiety.
Collapse
Affiliation(s)
- J L Trejo
- Cajal Institute, CSIC, Doctor Arce 37, 28002 Madrid, Spain.
| | | | | |
Collapse
|
224
|
Mulder M, Koopmans G, Wassink G, Al Mansouri G, Simard ML, Havekes LM, Prickaerts J, Blokland A. LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci Res 2007; 59:251-6. [PMID: 17720268 DOI: 10.1016/j.neures.2007.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/22/2007] [Accepted: 07/03/2007] [Indexed: 11/26/2022]
Abstract
An aberrant cholesterol metabolism in the brain may contribute to the pathogenesis of Alzheimer's disease (AD). The LDL receptor (LDLR) regulates plasma cholesterol levels and recently we and others obtained evidence that it is also involved in regulating brain cholesterol homeostasis. Moreover, we found that LDLR-deficient mice display impaired spatial memory. Because cholesterol, in part derived from cellular uptake via LDLR, is required for peripheral cell proliferation and growth, we examined the effect of absence of the LDLR on hippocampal proliferation and the density of synaptic connections. Mice deficient for the LDLR displayed a reduced number of proliferating (BrdU-labeled) cells in the hippocampus as compared to wild type control mice. In addition, the number of synaptophysin-immunoreactive presynaptic boutons in the hippocampal CA1 and the dentate gyrus (DG) areas, but not in cortical areas, was lower in the LDLR-knockout mice than in the control mice. In vitro experiments showed that LDLR activity is increased when cell growth is enhanced by the addition of N2 supplement. This further supports a role for the LDLR in the outgrowth of neurites. These findings support the notion that, similar to its role in the periphery, the LDLR is important for the cellular uptake of cholesterol in the brain and that disturbance of this process affects neuronal plasticity.
Collapse
Affiliation(s)
- Monique Mulder
- Department of Molecular Cell Biology, University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. PROGRESS IN BRAIN RESEARCH 2007; 161:367-83. [PMID: 17618991 DOI: 10.1016/s0079-6123(06)61026-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular magnetic resonance (MR) imaging is a rapidly growing field that aims to visualize and track cells in living organisms. Superparamagnetic iron oxide (SPIO) nanoparticles offer a sufficient signal for T2 weighted MR images. We followed the fate of embryonic stem cells (ESCs) and bone marrow mesenchymal stem cells (MSCs) labeled with iron oxide nanoparticles (Endorem) and human CD34+ cells labeled with magnetic MicroBeads (Miltenyi) in rats with a cortical or spinal cord lesion, models of stroke and spinal cord injury (SCI), respectively. Cells were either grafted intracerebrally, contralaterally to a cortical photochemical lesion, or injected intravenously. During the first post-transplantation week, grafted MSCs or ESCs migrated to the lesion site in the cortex as well as in the spinal cord and were visible in the lesion on MR images as a hypointensive signal, persisting for more than 30 days. In rats with an SCI, we found an increase in functional recovery after the implantation of MSCs or a freshly prepared mononuclear fraction of bone marrow cells (BMCs) or after an injection of granulocyte colony stimulating factor (G-CSF). Morphometric measurements in the center of the lesions showed an increase in white matter volume in cell-treated animals. Prussian blue staining confirmed a large number of iron-positive cells, and the lesions were considerably smaller than in control animals. Additionally, we implanted hydrogels based on poly-hydroxypropylmethacrylamide (HPMA) seeded with nanoparticle-labeled MSCs into hemisected rat spinal cords. Hydrogels seeded with MSCs were visible on MR images as hypointense areas, and subsequent Prussian blue histological staining confirmed positively stained cells within the hydrogels. To obtain better results with cell labeling, new polycation-bound iron oxide superparamagnetic nanoparticles (PC-SPIO) were developed. In comparison with Endorem, PC-SPIO demonstrated a more efficient intracellular uptake into MSCs, with no decrease in cell viability. Our studies demonstrate that magnetic resonance imaging (MRI) of grafted adult as well as ESCs labeled with iron oxide nanoparticles is a useful method for evaluating cellular migration toward a lesion site.
Collapse
Affiliation(s)
- Eva Sykova
- Institute of Experimental Medicine ASCR, EU Centre of Excellence, Prague, Czech Republic.
| | | |
Collapse
|
226
|
Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729-40. [PMID: 17667954 DOI: 10.1038/nrm2233] [Citation(s) in RCA: 3039] [Impact Index Per Article: 178.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells continually experience stress and damage from exogenous and endogenous sources, and their responses range from complete recovery to cell death. Proliferating cells can initiate an additional response by adopting a state of permanent cell-cycle arrest that is termed cellular senescence. Understanding the causes and consequences of cellular senescence has provided novel insights into how cells react to stress, especially genotoxic stress, and how this cellular response can affect complex organismal processes such as the development of cancer and ageing.
Collapse
Affiliation(s)
- Judith Campisi
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
| | | |
Collapse
|
227
|
Korecka JA, Verhaagen J, Hol EM. Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen Med 2007; 2:425-46. [PMID: 17635050 DOI: 10.2217/17460751.2.4.425] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease and Alzheimer's disease are the most common neurodegenerative diseases in the elderly population. Given that age is the most important risk factor in these diseases, the number of patients is expected to rise dramatically in the coming years. Therefore, an effective therapy for these diseases is highly sought. Current treatment brings only temporary symptomatic relief and does not result in halting the progression of these diseases. The increasing knowledge on the molecular mechanisms that underlie these diseases enables the design of novel therapies, targeted at degenerating neurons by creating an optimal regenerative cellular environment. Here, we review the progress made in the field of cell-replacement and gene-therapy strategies. New developments in the application of embryonic stem cells and adult neuronal progenitors are discussed. We also discuss the use of genetically engineered cells in neuronal rescuing strategies that have recently advanced into the clinic. The first trials for the treatment of Alzheimer's disease and Parkinson's disease with this approach are ongoing.
Collapse
Affiliation(s)
- Joanna A Korecka
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | |
Collapse
|
228
|
Yurco P, Cameron DA. Cellular correlates of proneural and notch-delta gene expression in the regenerating zebrafish retina. Vis Neurosci 2007; 24:437-43. [PMID: 17822581 DOI: 10.1017/s0952523807070496] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 05/08/2007] [Indexed: 11/05/2022]
Abstract
Fish can regenerate retinal neurons following ocular injury. Evidence is mounting that astrocytic glia function as inducible, regenerative stem cells in this process, but the underlying molecular events that enable neuronal regeneration are comparatively unclear. In the current study gene array, quantitative real-time PCR,in situhybridization, and immunohistochemical approaches were used to identify, in the damaged retina of adult zebrafish, correlations between transcriptional events and entry into the cell cycle by Müller cells, a type of astrocytic cell present in all vertebrate retinas that is a candidate ‘stem cell’ of regenerated neurons. A proneural gene (achaete-scute homolog 1a,ash1a) and neurogenic components of the Notch signaling pathway, includingnotch3anddeltaA, were implicated. An injury-induced, enhanced expression ofash1awas observed in Müller cells, which is hypothesized to contribute to the transition of these cells, or their cellular progeny, into anotch3-expressing, regenerative progenitor. A model of vertebrate retinal repair is suggested in which damage-induced expression of proneural genes, plus canonical Notch-Delta signaling, could contribute to retinal stem cell promotion and subsequent regenerative neurogenesis.
Collapse
Affiliation(s)
- Patrick Yurco
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
229
|
Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 2007; 9:1081-8. [PMID: 17704767 DOI: 10.1038/ncb1629] [Citation(s) in RCA: 462] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/16/2007] [Indexed: 12/19/2022]
Abstract
Neurogenesis - the formation of new neurons in the adult brain - is considered to be one of the mechanisms by which the brain maintains its lifelong plasticity in response to extrinsic and intrinsic changes. The mechanisms underlying the regulation of neurogenesis are largely unknown. Here, we show that Toll-like receptors (TLRs), a family of highly conserved pattern-recognizing receptors involved in neural system development in Drosophila and innate immune activity in mammals, regulate adult hippocampal neurogenesis. We show that TLR2 and TLR4 are found on adult neural stem/progenitor cells (NPCs) and have distinct and opposing functions in NPC proliferation and differentiation both in vitro and in vivo. TLR2 deficiency in mice impaired hippocampal neurogenesis, whereas the absence of TLR4 resulted in enhanced proliferation and neuronal differentiation. In vitro studies further indicated that TLR2 and TLR4 directly modulated self-renewal and the cell-fate decision of NPCs. The activation of TLRs on the NPCs was mediated via MyD88 and induced PKCalpha/beta-dependent activation of the NF-kappaB signalling pathway. Thus, our study identified TLRs as players in adult neurogenesis and emphasizes their specified and diverse role in cell renewal.
Collapse
Affiliation(s)
- Asya Rolls
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
The concept of brain plasticity covers all the mechanisms involved in the capacity of the brain to adjust and remodel itself in response to environmental requirements, experience, skill acquisition, and new challenges including brain lesions. Advances in neuroimaging and neurophysiologic techniques have increased our knowledge of task-related changes in cortical representation areas in the intact and injured human brain. The recognition that neuronal progenitor cells proliferate and differentiate in the subventricular zone and dentate gyrus in the adult mammalian brain has raised the hope that regeneration may be possible after brain lesions. Regeneration will require that new cells differentiate, survive, and integrate into existing neural networks and that axons regenerate. To what extent this will be possible is difficult to predict. Current research explores the possibilities to modify endogenous neurogenesis and facilitate axonal regeneration using myelin inhibitory factors. After apoptotic damage in mice new cortical neurons can form long-distance connections. Progenitor cells from the subventricular zone migrate to cortical and subcortical regions after ischemic brain lesions, apparently directed by signals from the damaged region. Postmortem studies on human brains suggest that neurogenesis may be altered in degenerative diseases. Functional and anatomic data indicate that myelin inhibitory factors, cell implantation, and modification of extracellular matrix may be beneficial after spinal cord lesions. Neurophysiologic data demonstrating that new connections are functioning are needed to prove regeneration. Even if not achieving the goal, methods aimed at regeneration can be beneficial by enhancing plasticity in intact brain regions.
Collapse
Affiliation(s)
- Barbro B Johansson
- Wallenberg Neuroscience Center, Department of Clinical Neuroscience, Lund University, Lund, Sweden.
| |
Collapse
|
231
|
Guan YJ, Wang X, Wang HY, Kawagishi K, Ryu H, Huo CF, Shimony EM, Kristal BS, Kuhn HG, Friedlander RM. Increased stem cell proliferation in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice. J Neurochem 2007; 102:1125-38. [PMID: 17472707 DOI: 10.1111/j.1471-4159.2007.04610.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Harnessing the regenerative potential of the central nervous system to repopulate depleted cellular populations from endogenous stem cells would be a novel approach for the treatment of neurological diseases resulting from cell death. Consequently, understanding if and how the central nervous system is capable of such regeneration would determine if such an approach is feasible. In this report, we provide evidence of widespread regenerative response in the spinal cord of amyotrophic lateral sclerosis transgenic mice. However, this regenerative response appears to be largely unproductive. We demonstrate that there is significantly increased gliogenesis, but an absence of convincing neurogenesis. The fact that the neurodegenerative process stimulates a regenerative response suggests that the adult spinal cord has at least limited ability for regeneration. Further studies will determine if this endogenous regenerative process can be enhanced and directed so as to slow or even reverse the natural progression of this devastating disease.
Collapse
Affiliation(s)
- Ying-jun Guan
- Neuroapoptosis Laboratory, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Almli LM, Wilczynski W. Regional distribution and migration of proliferating cell populations in the adult brain of Hyla cinerea (Anura, Amphibia). Brain Res 2007; 1159:112-8. [PMID: 17573049 PMCID: PMC2040256 DOI: 10.1016/j.brainres.2007.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 05/09/2007] [Accepted: 05/12/2007] [Indexed: 01/13/2023]
Abstract
We examined the distribution of adult cell proliferation throughout the brain of an anuran amphibian using 5-bromo-2'-deoxyuridine (BrdU). BrdU, a thymidine analog, is a commonly used cellular marker that is incorporated into actively dividing progenitor cells. Adult green treefrogs, Hyla cinerea, received injections of BrdU and were sacrificed 2 h, 2 days, 2 weeks, or 30 days later. Immunohistochemistry revealed BrdU-immunopositive (BrdU+) cells to be distributed in ventricular zones throughout the brain. The heaviest concentrations of cells were located in the telencephalon, primarily in the ventrolateral region of the lateral ventricles, and the ventricles of olfactory bulbs. Numerous BrdU+ cells were located around the preoptic and hypothalamic recesses and few around the third ventricle in the diencephalon. Proceeding caudally towards the midbrain, there was a marked decrease in BrdU labeling and few BrdU+ cells were found in the hindbrain. Consistent with previous studies in ectothermic vertebrates, BrdU+ cells were found predominantly in the ventricular zone (VZ) and immediately adjacent to the VZ; at later time points (i.e., 30 days), the cells appeared to have migrated into parenchymal regions. The extent of cellular proliferation in anurans is similar to that of fishes and reptiles and thus is more widespread compared to mammals.
Collapse
Affiliation(s)
- Lynn M Almli
- The University of Texas at Austin, Institute for Neuroscience, 1 University Station A8000, Austin, TX 78712-0187, USA.
| | | |
Collapse
|
233
|
Chen Y, Sun FY. Age-related decrease of striatal neurogenesis is associated with apoptosis of neural precursors and newborn neurons in rat brain after ischemia. Brain Res 2007; 1166:9-19. [PMID: 17662700 DOI: 10.1016/j.brainres.2007.06.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 06/01/2007] [Accepted: 06/03/2007] [Indexed: 11/26/2022]
Abstract
In this research, we investigated striatal neurogenesis in 3-, 6-, 12-, and 18-month-old rats after cerebral ischemic injury. All rats were subjected to a 20-min middle cerebral artery occlusion (MCAO), given 5'-bromodeoxyuridine (BrdU, 30 mg/kg, i.p.) once daily during days 4-7 and sacrificed 2 weeks after MCAO. Neurogenesis was assessed with double immunohistochemical/immunofluorescence labeling of BrdU and doublecortin (DCX), microtubule-associated protein 2 (MAP-2), or 67-kDa glutamic acid decarboxylase (GAD(67)). In 6-, 12-, and 18-month-old rats, the numbers of nestin(+), BrdU(+)-DCX(+) (a marker of newborn neuronal progenitors/immature neuron), BrdU(+)-MAP-2(+) (a marker of newborn mature neuron), and BrdU(+)-GAD(67)(+) (a marker of newborn GABAergic neuron) cells decreased dramatically in the ipsilateral striatum to MCAO compared with that in 3-month-old rats. The results indicated that stroke-induced striatal neurogenesis still existed in aging rats. However, the capacity of neurogenesis in older rats was considerably lower than that in young adults. Meanwhile, the apoptosis of neural precursors and immature neurons, indicated by double labeling of active caspase-3 and nestin/DCX/Tuj-1(beta-tubulin III)/CRMP-4 (collapsin response-mediated protein-4), increased noticeably in the ipsilateral striatum of older rats. Taken together, the results suggested that aging-related attenuation of ischemia-induced striatal neurogenesis might be related to decrease of neural precursors and increase of apoptosis of newborn neurons.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurobiology and Institute for Biomedical Science, State Key Laboratory of Medical Neurobiology, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | | |
Collapse
|
234
|
Luzzati F, De Marchis S, Fasolo A, Peretto P. Adult Neurogenesis and Local Neuronal Progenitors in the Striatum. NEURODEGENER DIS 2007; 4:322-7. [PMID: 17627136 DOI: 10.1159/000101889] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mechanisms underlying neurogenesis in the subventricular-zone-olfactory-bulb system and dentate gyrus of the hippocampus are beginning to be delineated and show common regulative features. In both regions neurogenesis is attributable to progenitor cells whose progeny progressively matures to functional neurons under genetic and epigenetic influence. Persistence of endogenous neuronal progenitors and integration of new neurons in preexisting circuits provide an appealing model of study to develop therapy strategies for neurodegenerative diseases. Interestingly, comparative analysis in mammals indicates that low neurogenic activity is also present in regions classically considered nonneurogenic in both normal and pathological conditions. Neurogenesis in these regions can be due to progenitors derived from the subventricular germinal zone and/or local parenchymal progenitors. Although, in vivo, the origin, identity and putative function of parenchymal progenitors are still obscure, in vitro studies suggest that many regions of the adult central nervous system potentially contain multipotent parenchymal progenitors. The aim of this review is to delineate the common regulative features underlying adult neurogenesis in the main neurogenic regions and in the striatum focusing on our recent data concerning the existence of local parenchymal progenitors in the caudate nucleus of the adult rabbit.
Collapse
Affiliation(s)
- Federico Luzzati
- Department of Animal and Human Biology, University of Turin, Turin, Italy
| | | | | | | |
Collapse
|
235
|
Nieder C, Andratschke N, Astner ST. Experimental concepts for toxicity prevention and tissue restoration after central nervous system irradiation. Radiat Oncol 2007; 2:23. [PMID: 17603905 PMCID: PMC1933540 DOI: 10.1186/1748-717x-2-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/30/2007] [Indexed: 01/04/2023] Open
Abstract
Several experimental strategies of radiation-induced central nervous system toxicity prevention have recently resulted in encouraging data. The present review summarizes the background for this research and the treatment results. It extends to the perspectives of tissue regeneration strategies, based for example on stem and progenitor cells. Preliminary data suggest a scenario with individually tailored strategies where patients with certain types of comorbidity, resulting in impaired regeneration reserve capacity, might be considered for toxicity prevention, while others might be "salvaged" by delayed interventions that circumvent the problem of normal tissue specificity. Given the complexity of radiation-induced changes, single target interventions might not suffice. Future interventions might vary with patient age, elapsed time from radiotherapy and toxicity type. Potential components include several drugs that interact with neurodegeneration, cell transplantation (into the CNS itself, the blood stream, or both) and creation of reparative signals and a permissive microenvironment, e.g., for cell homing. Without manipulation of the stem cell niche either by cell transfection or addition of appropriate chemokines and growth factors and by providing normal perfusion of the affected region, durable success of such cell-based approaches is hard to imagine.
Collapse
Affiliation(s)
- Carsten Nieder
- Radiation Oncology Unit, Nordlandssykehuset HF, 8092 Bodø, Norway
| | - Nicolaus Andratschke
- Department of Radiation Oncology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sabrina T Astner
- Department of Radiation Oncology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
236
|
Abstract
Certain regions of the adult brain have the ability for partial self-repair after injury through production of new neurons via activation of neural stem/progenitor cells (NSCs). Nonetheless, there is no evidence yet for pervasive spontaneous replacement of dead neurons by newly formed neurons leading to functional recovery in the injured brain. Consequently, there is enormous interest for stimulating endogenous NSCs in the brain to produce new neurons or for grafting of NSCs isolated and expanded from different brain regions or embryonic stem cells into the injured brain. Temporal lobe epilepsy (TLE), characterized by hyperexcitability in the hippocampus and spontaneous seizures, is a possible clinical target for stem cell-based therapies. This is because these approaches have the potential to curb epileptogenesis and prevent chronic epilepsy development and learning and memory dysfunction after hippocampal damage related to status epilepticus or head injury. Grafting of NSCs may also be useful for restraining seizures during chronic epilepsy. The aim of this review is to evaluate current knowledge and outlook pertaining to stem cell-based therapies for TLE. The first section discusses the behavior of endogenous hippocampal NSCs in human TLE and animal models of TLE and evaluates the role of hippocampal neurogenesis in the pathophysiology and treatment of TLE. The second segment considers the prospects for preventing or suppressing seizures in TLE using exogenously applied stem cells. The final part analyzes problems that remain to be resolved before initiating clinical application of stem cell-based therapies for TLE. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ashok K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
237
|
Ourednik V, Ourednik J. Plasticity of the central nervous system and formation of "auxiliary niches" after stem cell grafting: an essay. Cell Transplant 2007; 16:263-71. [PMID: 17503737 DOI: 10.3727/000000007783464696] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is hoped that stem cell biology will play a major role in the treatment of a number of so far incurable diseases via transplantation therapy. Today, we know that neural stem cell grafts not only represent a valuable source of missing cells and molecules for the host nervous system, but they also bring with them biological principles and processes assuring tissue plasticity and homeostasis found in early development and in postnatal neurogenic areas. In this review, we discuss the potential of grafted neural stem/progenitor cells to induce plasticity in the adult diseased brain by mimicking the cellular and molecular processes governing the biology of endogenous stem cell niches. If confirmed, such anlagen of "auxiliary niches" could help us to optimize intercellular communication in donor cell-initiated networks of graft-host interactions and to "rejuvenate" the adult nervous system in its response to disease and injury.
Collapse
Affiliation(s)
- Václav Ourednik
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
238
|
Sgubin D, Aztiria E, Perin A, Longatti P, Leanza G. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. J Neurosci Res 2007; 85:1647-55. [PMID: 17455304 DOI: 10.1002/jnr.21303] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the adult human brain, the presence of neural stem cells has been documented in the subgranular layer of the dentate gyrus of the hippocampus and in the subventricular zone of the lateral ventricles. Neurogenesis has also been reported in rodent models of ischemic stroke, traumatic brain injury, epileptic seizures, and intracerebral or subarachnoid hemorrhage. However, only sparse information is available about the occurrence of neurogenesis in the human brain under similar pathological conditions. In the present report, we describe neural progenitor cell proliferation in the brain of patients suffering from subarachnoid hemorrhage (SAH) resulting from ruptured aneurysm. Ten cerebral samples from both SAH and control patients obtained, respectively, during aneurysm clipping and deep brain tumor removal were analyzed by reverse transcription followed by polymerase chain reaction (RT-PCR) and/or immunohistochemistry (IHC). In tissue specimens from SAH patients, RT-PCR and IHC revealed the expression of a variety of markers consistent with CNS progenitor cells, including nestin, vimentin, SOX-2, and Musashi1 and -2. In the same specimens, double immunohistochemistry followed by confocal analysis revealed that Musashi2 consistently colocalized with the proliferation marker Ki67. By contrast, no such gene or protein expression profiles were detected in any of the control specimens. Thus, activation of neural progenitor cell proliferation may occur in adult human brain following subarachnoid hemorrhage, possibly contributing to the promotion of spontaneous recovery, in this pathological condition.
Collapse
Affiliation(s)
- D Sgubin
- B.R.A.I.N. Centre for Neuroscience, Department of Physiology and Pathology, University of Trieste, and Neurosurgery Unit, Treviso Hospital, Italy
| | | | | | | | | |
Collapse
|
239
|
Zupanc GKH, Zupanc MM. New neurons for the injured brain: mechanisms of neuronal regeneration in adult teleost fish. Regen Med 2007; 1:207-16. [PMID: 17465804 DOI: 10.2217/17460751.1.2.207] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In contrast to mammals, teleost fish exhibit an enormous potential to continuously produce new neurons in many areas of the adult brain, and to regenerate neural tissue after brain injury. The regenerative capability of the teleost fish brain is based upon a series of well-orchestrated individual processes, including: elimination of damaged cells by apoptosis, removal of cellular debris by the action of microglia/macrophages, proliferation of endogenous neural precursor cells, radial glia-mediated migration of their progeny to the site of the lesion, neuronal differentiation, promotion of cellular survival, and integration of the new neurons into existing neural circuits. Combination of a well-defined cerebellar lesion paradigm with differential proteome analysis has demonstrated that identification of the multitude of proteins mediating the regenerative potential of the adult fish brain is feasible in the foreseeable future. A molecular understanding of brain regeneration in fish could help investigators to define novel strategies to stimulate endogenous neural precursor cells in the mammalian brain to undergo neurogenesis, thus forming the basis of a neuronal replacement therapy for brain injury or neurodegenerative diseases.
Collapse
Affiliation(s)
- Günther K H Zupanc
- School of Engineering and Science, International University Bremen, Bremen, Germany.
| | | |
Collapse
|
240
|
Han ME, Park KH, Baek SY, Kim BS, Kim JB, Kim HJ, Oh SO. Inhibitory effects of caffeine on hippocampal neurogenesis and function. Biochem Biophys Res Commun 2007; 356:976-80. [PMID: 17400186 DOI: 10.1016/j.bbrc.2007.03.086] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 03/13/2007] [Indexed: 11/24/2022]
Abstract
Caffeine is one of the most extensively consumed psychostimulants in the world. However, compared to short-term effects of caffeine, the long-term effects of caffeine consumption on learning and memory are poorly characterized. The present study found that long-term consumption of low dose caffeine (0.3 g/L) slowed hippocampus-dependent learning and impaired long-term memory. Caffeine consumption for 4 weeks also significantly reduced hippocampal neurogenesis compared to controls. From these results, we concluded that long-term consumption of caffeine could inhibit hippocampus-dependent learning and memory partially through inhibition of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, 1-10 Ami-Dong, Seo-Gu, Pusan 602-739, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
241
|
Steele AD, Lindquist S, Aguzzi A. The prion protein knockout mouse: a phenotype under challenge. Prion 2007; 1:83-93. [PMID: 19164918 DOI: 10.4161/pri.1.2.4346] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The key pathogenic event in prion disease involves misfolding and aggregation of the cellular prion protein (PrP). Beyond this fundamental observation, the mechanism by which PrP misfolding in neurons leads to injury and death remains enigmatic. Prion toxicity may come about by perverting the normal function of PrP. If so, understanding the normal function of PrP may help to elucidate the molecular mechansim of prion disease. Ablation of the Prnp gene, which encodes PrP, was instrumental for determining that the continuous production of PrP is essential for replicating prion infectivity. Since the structure of PrP has not provided any hints to its possible function, and there is no obvious phenotype in PrP KO mice, studies of PrP function have often relied on intuition and serendipity. Here, we enumerate the multitude of phenotypes described in PrP deficient mice, many of which manifest themselves only upon physiological challenge. We discuss the pleiotropic phenotypes of PrP deficient mice in relation to the possible normal function of PrP. The critical question remains open: which of these phenotypes are primary effects of PrP deletion and what do they tell us about the function of PrP?
Collapse
Affiliation(s)
- Andrew D Steele
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|
242
|
Rieske P, Azizi SA, Augelli B, Gaughan J, Krynska B. A population of human brain parenchymal cells express markers of glial, neuronal and early neural cells and differentiate into cells of neuronal and glial lineages. Eur J Neurosci 2007; 25:31-7. [PMID: 17241264 DOI: 10.1111/j.1460-9568.2006.05254.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glial fibrillary acidic protein (GFAP)-positive cells derived from the neurogenic areas of the brain can be stem/progenitor cells and give rise to new neurons in vitro and in vivo. We report here that a population of GFAP-positive cells derived from fetal human brain parenchyma coexpress markers of early neural and neuronal cells, and have neural progenitor cell characteristics. We used a monolayer culture system to expend and differentiate these cells. During the initial proliferative phase, all cells expressed GFAP, nestin and low levels of betaIII-tubulin. When these cells were cultured in serum and then basic fibroblast growth factor, they generated two distinct progenies: (i) betaIII-tubulin- and nestin-positive cells and (ii) GFAP- and nestin-positive cells. These cells, when subsequently cultured in serum-free media without growth factors, ceased to proliferate and differentiated into two major neural cell classes, neurons and glia. In the cells of neuronal lineage, nestin expression was down-regulated and betaIII-tubulin expression became robust. Cells of glial lineage differentiated by down-regulating nestin expression and up-regulating GFAP expression. These data suggest that populations of parenchymal brain cells, initially expressing both glial and neuronal markers, are capable of differentiating into single neuronal and glial lineages through asymmetric regulation of gene expression in these cells, rather than acquiring markers through differentiation.
Collapse
Affiliation(s)
- Piotr Rieske
- Department of Neurology, Temple University School of Medicine, 3401 N Broad St, Philldelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
243
|
Jarvis K, Assis-Nascimento P, Mudd LM, Montague JR. Beta-amyloid toxicity in embryonic rat astrocytes. Neurochem Res 2007; 32:1476-82. [PMID: 17406977 PMCID: PMC3928788 DOI: 10.1007/s11064-007-9335-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/16/2007] [Indexed: 01/06/2023]
Abstract
The senile plaques of Alzheimer's disease contain a high concentration of beta-amyloid (betaA) protein, which may affect the glial population in the septal nucleus, an area of increased risk in AD. BetaA toxicity was measured in septal glia, via a dose-response experiment, by quantifying the effects of three different doses (0.1, 1, and 10 microM) of betaA on cell survival. Astrocytes from embryonic day-16 rats were grown in serum-free media in a single layer culture. Cells were treated on day in vitro (DIV)1 and survival was determined on DIV3 to ascertain which concentration was most toxic. In a separate set of experiments, an attempt was made to protect glial cells from the degenerative effects of betaA, with treatments of growth factors and estrogen. BetaA (10 microM) treatment was administered on DIV1, on DIV2 the cells were treated with estrogen (EST, 10 nM), insulin-like growth factors (IGF1 and IGF2, each 10 ng/ml), basic fibroblast growth factor (bFGF, 5 ng/ml) or nerve growth factor (NGF, 100 ng/ml), and on DIV3 the cells were visualized and quantified by fluorescence microscopy with DAPI (4,6-diamidino-2-phenylindole). In addition to dose-response and glial protection, experiments were also conducted to determine whether toxic effects were due to apoptosis. Our results suggest that the survival of glial populations is significantly affected in all three concentrations (0.1, 1.0, and 10 microM) of betaA. Glial protection was evident in the presence of NGF, for it showed the significantly highest survival rate relative to the betaA treatment alone. Furthermore, toxic effects of betaA appear to be due primarily to apoptosis. Significant reversal of betaA-induced apoptosis was seen with bFGF and IGF1.
Collapse
Affiliation(s)
| | | | | | - Jeremy R. Montague
- Corresponding author. Tel.: +1 305 899 3218; fax: +1 305 899 3225. (J.R. Montague)
| |
Collapse
|
244
|
Shivraj Sohur U, Emsley JG, Mitchell BD, Macklis JD. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci 2007; 361:1477-97. [PMID: 16939970 PMCID: PMC1664671 DOI: 10.1098/rstb.2006.1887] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.
Collapse
|
245
|
Physical activity and the maintenance of cognition: Learning from animal models. Alzheimers Dement 2007; 3:S30-7. [DOI: 10.1016/j.jalz.2007.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 01/03/2007] [Indexed: 11/27/2022]
|
246
|
Ramos JG, Varayoud J, Monje L, Moreno-Piovano G, Muñoz-de-Toro M, Luque EH. Diethylstilbestrol alters the population dynamic of neural precursor cells in the neonatal male rat dentate gyrus. Brain Res Bull 2007; 71:619-27. [PMID: 17292805 DOI: 10.1016/j.brainresbull.2006.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 11/21/2006] [Accepted: 12/05/2006] [Indexed: 01/17/2023]
Abstract
Little is known about how estrogens influence neurogenesis in the newborn male rodent. Herein, we examined the effects of neonatal diethylstilbestrol (DES) exposure on the proliferation and survival of type-1 and type-2 neural precursor cells (NPC) in the dentate gyrus of male rats. This was achieved by exposing newborn male pups to DES on postnatal day (PND) 1, PND3, PND5, and PND7, sacrificed at PND8 or PND21, followed by double immunohistochemistry and morphometric analysis of hippocampal dentate gyrus. Furthermore, vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) mRNA expression was evaluated in hippocampal tissue blocks by real time RT-PCR. At PND8, the density of total proliferating NPC decreased in DES-treated animals. This reduction was due to a significant decrease in the mitotic rate of type-2 cells only, since type-1 NPCs did not show changes in the proliferation index. Type-2 NPCs expressed the cell-cycle inhibitor p27(kip1) and its expression was clearly augmented in the DES-treated group. Furthermore, the number of apoptotic cells in the dentate gyrus of DES-treated rats decreased. Surprisingly, DES treatment enhanced cell survival and increased NPCs proliferation when animals were examined 14 days after treatment. VEGF mRNA expression showed a positive correlation with NPCs proliferation and BDNF mRNA levels were higher in DES-treated animals at both time points examined. Collectively, these results indicate that hippocampal NPCs proliferation and survival is a critical target of DES exposure during the early postnatal period. VEGF and BDNF are proposed as key mediators of DES-induced NPC mitotic response.
Collapse
Affiliation(s)
- Jorge G Ramos
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Casilla de Correo 242, 3000 Santa Fe, Argentina.
| | | | | | | | | | | |
Collapse
|
247
|
Di Fausto V, Fiore M, Aloe L. Exposure in fetus of methylazoxymethanol in the rat alters brain neurotrophins' levels and brain cells' proliferation. Neurotoxicol Teratol 2007; 29:273-81. [PMID: 17142008 DOI: 10.1016/j.ntt.2006.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 10/12/2006] [Accepted: 10/22/2006] [Indexed: 02/08/2023]
Abstract
Changes during gestation have been shown to induce brain maldevelopment associated with changes in neurotrophins as nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neuropsychiatric disorders in humans. A rat model of altered prenatal brain development resembling the onset of schizophrenia has been obtained by administering in fetus methylazoxymethanol (MAM) at gestational day 12 which impairs the growth of limbic pathways between the entorhinal cortex and the hippocampus. Using the MAM model we studied in young rats the brain levels of both NGF/BDNF and their main receptors, TrkA/TrkB, to investigate whether or not changes in neurotrophins could affect the presence of brain BrdU positive cells. We found increased NGF and BDNF protein levels, associated with elevated TrkA and TrkB expression, in the hippocampus, entorhinal cortex, olfactory lobes and subventricular zone (SVZ), brain areas playing a key role in the production and migration of new dividing cells. We also found higher levels of BrdU positive cells in the SVZ and hippocampus but not a significant potentiation in the entorhinal cortex and olfactory lobes. All together the findings indicate that prenatal MAM exposure in young rats may elicit both neurotrophins' elevation and cell proliferation in limbic brain areas.
Collapse
Affiliation(s)
- Veronica Di Fausto
- Institute of Neurobiology and Molecular Medicine, CNR-EBRI Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | | | | |
Collapse
|
248
|
Sergent-Tanguy S, Véziers J, Bonnamain V, Boudin H, Neveu I, Naveilhan P. Cell surface antigens on rat neural progenitors and characterization of the CD3 (+)/CD3 (-) cell populations. Differentiation 2007; 74:530-41. [PMID: 17177850 DOI: 10.1111/j.1432-0436.2006.00098.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the hematopoietic lineage has been extensively studied using cluster of differentiation (CD) antibodies, very few data are available on the extracellular epitopes expressed by rat neural progenitors (rNPC) and their derivatives. In the present study, we used flow cytometry to screen 47 cell surface antigens, initially known as immune markers. The quantitative analyses were performed on rat neurospheres and compared with primary cultures of astroglial cells or cerebellar neurons. Several antigens such as CD80 or CD86 were clearly undetectable while others, like CD26 or CD161, showed a weak expression. Interestingly, 10% and 15% of the cells were immunopositive for CD172a and CD200, two immunoglobulin superfamily members preferentially expressed by glial or neuronal cells, respectively. Over 40% of the cells were immunopositive for CD3, CD71, or MHCI. The biological significance of the latter markers in rNPC remains to be determined but analyses of the CD3(-)/CD3(+) populations isolated by magnetic cell separation revealed differences in their cell fate. Indeed, CD3(+) cells did not establish neurospheres and differentiated mostly into GFAP(+) cells while CD3(-) cells were able to generate neurospheres upon mitogen treatment and gave rise to GFAP(+), A2B5(+), Tuj-1(+), and RIP(+) cells under differentiating conditions. In contrast, CD71(-)/CD71(+) cells did not show any significant difference in their proliferating and differentiating potentials. Finally, it is worth noting that an subpopulation of cells in rat neurospheres exhibit an immunoreactivity against anti-CD25 (IL2 receptor) and anti-CD62L (L-selectin) antibodies. The results reveal particular surface antigen profiles, giving new perspectives on the properties of rat brain-derived cells.
Collapse
|
249
|
Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, Weiss S, Corbett D. Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 2007; 146:31-40. [PMID: 17320299 DOI: 10.1016/j.neuroscience.2007.01.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 12/19/2006] [Accepted: 01/09/2007] [Indexed: 12/27/2022]
Abstract
Stroke patients suffer from severe impairments and significant effort is under way to develop therapies to improve functional recovery. Stem cells provide a promising form of therapy to replace neuronal circuits lost to injury. Indeed, previous studies have shown that a variety of stem cell types can provide some functional recovery in animal models of stroke. However, it is unlikely that replacement therapy alone will be sufficient to maximize recovery. The aim of the present study was to determine if rodent stem cell transplants combined with rehabilitation resulted in enhanced functional recovery after focal ischemia in rats. Middle cerebral artery occlusion was induced by injection of the vasoconstrictive peptide endothelin-1 adjacent to the middle cerebral artery. Seven days after stroke the rats received adult neural stem cell transplants isolated from mouse subventricular zone or vehicle injection and then subsequently were housed in enriched or standard conditions. The rats in the enriched housing also had access to running wheels once a week. Enriched housing and voluntary running exercise enhanced migration of transplanted stem cells toward the region of injury after stroke and there was a trend toward increased survival of stem cells. Enrichment also increased the number of endogenous progenitor cells in the subventricular zone of transplanted animals. Finally, functional recovery measured in the cylinder test was facilitated only when the stem cell transplants were combined with enrichment and running exercise 7 days after the transplant. These results suggest that the ability of transplanted stem cells in promoting recovery can be augmented by environmental factors such as rehabilitation.
Collapse
Affiliation(s)
- A U Hicks
- Basic Medical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada A1B3V6
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 2007; 500:1007-33. [PMID: 17183554 PMCID: PMC2758702 DOI: 10.1002/cne.21229] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that chemokine receptors are expressed by neural progenitors grown as cultured neurospheres. To examine the significance of these findings for neural progenitor function in vivo, we investigated whether chemokine receptors were expressed by cells having the characteristics of neural progenitors in neurogenic regions of the postnatal brain. Using in situ hybridization we demonstrated the expression of CCR1, CCR2, CCR5, CXCR3, and CXCR4 chemokine receptors by cells in the dentate gyrus (DG), subventricular zone of the lateral ventricle, and olfactory bulb. The pattern of expression for all of these receptors was similar, including regions where neural progenitors normally reside. In addition, we attempted to colocalize chemokine receptors with markers for neural progenitors. In order to do this we used nestin-EGFP and TLX-LacZ transgenic mice, as well as labeling for Ki67, a marker for dividing cells. In all three areas of the brain we demonstrated colocalization of chemokine receptors with these three markers in populations of cells. Expression of chemokine receptors by neural progenitors was further confirmed using CXCR4-EGFP BAC transgenic mice. Expression of CXCR4 in the DG included cells that expressed nestin and GFAP as well as cells that appeared to be immature granule neurons expressing PSA-NCAM, calretinin, and Prox-1. CXCR4-expressing cells in the DG were found in close proximity to immature granule neurons that expressed the chemokine SDF-1/CXCL12. Cells expressing CXCR4 frequently coexpressed CCR2 receptors. These data support the hypothesis that chemokine receptors are important in regulating the migration of progenitor cells in postnatal brain.
Collapse
Affiliation(s)
- Phuong B. Tran
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Ghazal Banisadr
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Dongjun Ren
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Anjen Chenn
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
- Correspondence to: Richard J. Miller, Dept. of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 E Chicago Ave., Chicago IL 60611.
| |
Collapse
|