201
|
Multifaceted Analysis of IL-23A- and/or EBI3-Including Cytokines Produced by Psoriatic Keratinocytes. Int J Mol Sci 2021; 22:ijms222312659. [PMID: 34884474 PMCID: PMC8657699 DOI: 10.3390/ijms222312659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Interleukin (IL) 23 (p19/p40) plays a critical role in the pathogenesis of psoriasis and is upregulated in psoriasis skin lesions. In clinical practice, anti-IL-23Ap19 antibodies are highly effective against psoriasis. IL-39 (p19/ Epstein-Barr virus-induced (EBI) 3), a newly discovered cytokine in 2015, shares the p19 subunit with IL-23. Anti-IL-23Ap19 antibodies may bind to IL-39; also, the cytokine may contribute to the pathogenesis of psoriasis. To investigate IL23Ap19- and/or EBI3-including cytokines in psoriatic keratinocytes, we analyzed IL-23Ap19 and EBI3 expressions in psoriasis skin lesions, using immunohistochemistry and normal human epidermal keratinocytes (NHEKs) stimulated with inflammatory cytokines, using quantitative real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and liquid chromatography-electrospray tandem mass spectrometry (LC-Ms/Ms). Immunohistochemical analysis showed that IL-23Ap19 and EBI3 expressions were upregulated in the psoriasis skin lesions. In vitro, these expressions were synergistically induced by the triple combination of tumor necrosis factor (TNF)-α, IL-17A, and interferon (IFN)-γ, and suppressed by dexamethasone, vitamin D3, and acitretin. In ELISA and LC-Ms/Ms analyses, keratinocyte-derived IL-23Ap19 and EBI3, but not heterodimeric forms, were detected with humanized anti-IL-23Ap19 monoclonal antibodies, tildrakizumab, and anti-EBI3 antibodies, respectively. Psoriatic keratinocytes may express IL-23Ap19 and EBI3 proteins in a monomer or homopolymer, such as homodimer or homotrimer.
Collapse
|
202
|
Ye C, Yano H, Workman CJ, Vignali DAA. Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. J Interferon Cytokine Res 2021; 41:391-406. [PMID: 34788131 DOI: 10.1089/jir.2021.0147] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The balance between inflammatory and anti-inflammatory immune responses is maintained through immunoregulatory cell populations and immunosuppressive cytokines. Interleukin-35 (IL-35), an inhibitory cytokine that belongs to the IL-12 family, is capable of potently suppressing T cell proliferation and inducing IL-35-producing induced regulatory T cells (iTr35) to limit inflammatory responses. Over the past decade, a growing number of studies have indicated that IL-35 plays an important role in controlling immune-related disorders, including autoimmune diseases, infectious diseases, and cancer. In this review, we summarize the current knowledge about the biology of IL-35 and its contribution in different diseases, and we discuss the potential of and barriers to harnessing IL-35 as a clinical biomarker or immunotherapy.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
203
|
Lee SY, Moon SJ, Moon YM, Seo HB, Ryu JG, Lee AR, Lee CR, Kim DS, Her YM, Choi JW, Kwok SK, Park SH, Cho ML. A novel cytokine consisting of the p40 and EBI3 subunits suppresses experimental autoimmune arthritis via reciprocal regulation of Th17 and Treg cells. Cell Mol Immunol 2021; 19:79-91. [PMID: 34782759 PMCID: PMC8752814 DOI: 10.1038/s41423-021-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The interleukin (IL)-12 cytokine family is closely related to the development of T helper cells, which are responsible for autoimmune disease enhancement or suppression. IL-12 family members are generally heterodimers and share three α-subunits (p35, p19, and p28) and two β-subunits (p40 and EBI3). However, a β-sheet p40 homodimer has been shown to exist and antagonize IL-12 and IL-23 signaling 1. Therefore, we assumed the existence of a p40-EBI3 heterodimer in nature and sought to investigate its role in immune regulation. METHODS The presence of the p40-EBI3 heterodimer was confirmed by ELISA, immunoprecipitation, and western blotting. A p40-EBI3 vector and p40-EBI3-Fc protein were synthesized to confirm the immunological role of this protein in mice with collagen-induced arthritis (CIA). The anti-inflammatory effects of p40-EBI3 were analyzed with regard to clinical, histological, and immune cell-regulating features in mice with CIA. RESULTS Clinical arthritis scores and the expression levels of proinflammatory cytokines (e.g., IL-17, IL-1β, IL-6, and TNF-α) were significantly attenuated in p40-EBI3-overexpressing and p40-EBI3-Fc-treated mice with CIA compared to vehicle-treated mice with CIA. Structural joint damage and vessel formation-related gene expression were also reduced by p40-EBI3 heterodimer treatment. In vitro, the p40-EBI3-Fc protein significantly suppressed the differentiation of Th17 cells and reciprocally induced CD4+CD25+Foxp3+ (regulatory T) cells. p40-EBI3 also inhibited osteoclast formation in a concentration-dependent manner. CONCLUSION In this study, p40-EBI3 ameliorated proinflammatory conditions both in vivo and in vitro. We propose that p40-EBI3 is a novel anti-inflammatory cytokine involved in suppressing the immune response through the expansion of Treg cells and suppression of Th17 cells and osteoclastogenesis.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Hyeon-Beom Seo
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jun-Geol Ryu
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chae Rim Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Da-Som Kim
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Yang-Mi Her
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
204
|
Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Semin Immunol 2021; 54:101518. [PMID: 34763973 DOI: 10.1016/j.smim.2021.101518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sequentially redefined during the past decades. Originally described as a hematopoietic growth factor for myelopoiesis, GM-CSF was recognized as a central mediator of inflammation bridging the innate and adaptive arms of the immune system. Phagocytes sensing GM-CSF adapt an inflammatory phenotype and facilitate pathogen clearance. However, in the context of chronic tissue inflammation, GM-CSF secreted by tissue-invading lymphocytes has detrimental effects by licensing tissue damage and hyperinflammation. Accordingly, therapeutic intervention at the T cell-phagocyte interface represents an attractive target to ameliorate disease progression and immunopathology. Although GM-CSF is largely dispensable for steady state myelopoiesis, dysregulation, as seen in chronic inflammatory diseases, may however lead to disrupted haematopoiesis and long-term effects on bone marrow output. Here, we will survey the role of GM-CSF during inflammation, discuss the extent to which GM-CSF-secreting T cells, debate their introduction as a separate T cell lineage and explore current and future clinical implications of GM-CSF in human disease settings.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
205
|
Bastian D, Sui X, Nguyen HD, Wu Y, Schutt S, Tian L, Sofi MH, Liu Y, Martin P, Bartee E, Yu XZ. Interleukin-23 receptor signaling by interleukin-39 potentiates T cell pathogenicity in acute graft-versus-host disease. Am J Transplant 2021; 21:3538-3549. [PMID: 33934505 DOI: 10.1111/ajt.16624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/25/2023]
Abstract
IL-12 (p35/p40) and IL-23 (p19/p40) signal through IL-12R (IL-12Rβ2/β1) and IL-23R (IL-23Rα/IL-12Rβ1), respectively, which can promote pathogenic T lymphocyte activation, differentiation, and function in graft-versus-host disease (GVHD). With the use of murine models of allogeneic hematopoietic cell transplantation (HCT), we found that IL-12Rβ1 on donor T cells was dispensable to induce acute GVHD development in certain circumstances, while IL-23Rα was commonly required. This observation challenges the current paradigm regarding IL-12Rβ1 as a prerequisite to transmit IL-23 signaling. We hypothesized that p19/EBI3 (IL-39) may have an important role during acute GVHD. With the use of gene transfection and immunoprecipitation approaches, we verified that p19 and EBI3 can form biological heterodimers. We found that IL-39 levels in recipient serum positively correlated with development of acute GVHD in experimental models and in clinical settings, thereby implicating IL-39 in the pathogenesis of acute GVHD. Furthermore, we observed that human T cells can signal in response to IL-39. In chronic GVHD, IL-23Rα and IL-12Rβ1 were similarly required for donor T cell pathogenicity, and IL-39 levels were not significantly different from controls without GVHD. Collectively, we identify a novel cytokine, IL-39, as a pathogenic factor in acute GVHD, which represents a novel potential therapeutic target to control GVHD and other inflammatory disorders.
Collapse
Affiliation(s)
- David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xiaohui Sui
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hung Dang Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Linlu Tian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mohammed Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yuejun Liu
- Department of Hematology, Institute of Blood and Marrow Transplantation, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Paul Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
206
|
Ritter K, Behrends J, Erdmann H, Rousseau J, Hölscher A, Volz J, Prinz I, Lindenstrøm T, Hölscher C. Interleukin-23 instructs protective multifunctional CD4 T cell responses after immunization with the Mycobacterium tuberculosis subunit vaccine H1 DDA/TDB independently of interleukin-17A. J Mol Med (Berl) 2021; 99:1585-1602. [PMID: 34351501 PMCID: PMC8541990 DOI: 10.1007/s00109-021-02100-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-17A-producing T helper (Th)17 cells are increasingly being acknowledged to be associated with protective immunity to Mycobacterium tuberculosis (Mtb). Subunit vaccines potently promote protective immune responses against Mtb infection that correlate with an expansion of IL-23-dependent Th17 cells. Previous studies revealed that after vaccination, IL-23 is required for protection against challenge with Mtb but the underlying IL-23-dependent-and possibly IL-17A-mediated-mechanisms remain elusive. Therefore, we here analyzed the early outcome of Mtb infection in C57BL/6, IL-23p19-deficient (-/-), and IL-17A-/- mice after vaccination with the subunit vaccine H1-DDA/TDB to investigate the role of the IL-23-Th17 immune axis for the instruction of vaccine-induced protection. While in IL-23p19-/- mice the protective effect was reduced, protection after vaccination was maintained in IL-17A-/- animals for the course of infection of 6 weeks, indicating that after vaccination with H1-DDA/TDB early protection against Mtb is-although dependent on IL-23-not mediated by IL-17A. In contrast, IL-17A deficiency appears to have an impact on maintaining long-term protection. In fact, IL-23 instructed the vaccine-induced memory immunity in the lung, in particular the sustained expansion of tumor necrosis factor (TNF)+IL-2+ multifunctional T cells, independently of IL-17A. Altogether, a targeted induction of IL-23 during vaccination against Mtb might improve the magnitude and quality of vaccine-induced memory immune responses. KEY MESSAGES: After subunit Mtb vaccination with H1-DDA/TDB, IL-23 but not IL-17A contributes to vaccine-induced early protection against infection with Mtb. IL-17F does not compensate for IL-17A deficiency in terms of H1-DDA/TDB-induced protection against Mtb infection. IL 23 promotes the H1-DDA/TDB-induced accumulation of effector memory T cells independently of IL 17A. IL-23 arbitrates the induction of H1-specific IFN-γ-TNF+IL-2+ double-positive multifunctional CD4 T cells after subunit Mtb vaccination in an IL-17A-independent manner.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Jochen Behrends
- Fluorescence Cytometry Core Unit, Research Center Borstel, Borstel, Germany
| | - Hanna Erdmann
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Jasmin Rousseau
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | | | - Johanna Volz
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Center for Molecular Neurobiology Hamburg, Eppendorf University Medical Center, Hamburg, Germany
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
207
|
Abstract
Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor β1 (TGF-β1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A-IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.
Collapse
Affiliation(s)
- Na Li
- Shanghai University of Medicine & Health Sciences, Shanghai, P.R. China.,Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Gen Yamamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Hiroaki Fuji
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
208
|
Brightling CE, Nair P, Cousins DJ, Louis R, Singh D. Risankizumab in Severe Asthma - A Phase 2a, Placebo-Controlled Trial. N Engl J Med 2021; 385:1669-1679. [PMID: 34706172 DOI: 10.1056/nejmoa2030880] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Interleukin-23 has been implicated in airway inflammation that is mediated by type 2 and type 17 cytokines. Whether targeting interleukin-23 in the treatment of asthma improves disease control and reduces airway inflammation is unclear. METHODS We conducted a phase 2a, multicenter, randomized, double-blind, placebo-controlled, 24-week, parallel-group trial to assess the efficacy and safety of risankizumab, an anti-interleukin-23p19 monoclonal antibody, in adults with severe asthma. Patients were assigned to receive 90 mg of risankizumab or placebo, administered subcutaneously once every 4 weeks. The primary end point was the time to the first asthma worsening. Asthma worsening was defined as deterioration from baseline on 2 or more consecutive days; deterioration was considered to be a decrease of at least 30% in the morning peak expiratory flow or an increase from baseline of at least 50% in the number of puffs of rescue medication in a 24-hour period (equating to at least four additional puffs), a severe asthma exacerbation, or an increase of 0.75 or more points on the 5-item Asthma Control Questionnaire (ACQ-5; scores range from 0 to 6, with higher scores indicating less control). Secondary end points were the annualized rate of asthma worsening, the annualized rate of severe exacerbations, the ACQ-5 score, and the forced expiratory volume in 1 second. Exploratory end points were assessed with the use of sputum cytologic analysis and gene expression analysis, and safety was assessed. RESULTS A total of 105 patients received risankizumab and 109 received placebo. The clinical characteristics of the patients were similar in the two groups. The time to the first asthma worsening was shorter with risankizumab than with placebo (median, 40 days vs. 86 days; hazard ratio, 1.46; 95% confidence interval [CI], 1.05 to 2.04; P = 0.03). The rate ratio for annualized asthma worsening with risankizumab as compared with placebo was 1.49 (95% CI, 1.12 to 1.99), and the rate ratio for severe exacerbations was 1.13 (95% CI, 0.75 to 1.70). Sputum transcriptomic pathway analysis showed that genes involved in the activation of natural killer cells and cytotoxic T cells and the activation of the type 1 helper T and type 17 helper T transcription factors were down-regulated by risankizumab. No safety concerns were associated with risankizumab therapy. CONCLUSIONS Risankizumab treatment was not beneficial in severe asthma. The time to the first asthma worsening was shorter and the annualized rate of asthma worsening was higher with risankizumab than with placebo. (Funded by AbbVie and Boehringer Ingelheim; ClinicalTrials.gov number, NCT02443298.).
Collapse
Affiliation(s)
- Christopher E Brightling
- From the Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester (C.E.B., D.J.C.), and the University of Manchester, Manchester University NHS Foundation Trust, Manchester (D.S.) - both in the United Kingdom; the Firestone Institute for Respiratory Health, McMaster University and St. Joseph's Healthcare, Hamilton, ON, Canada (P.N.); and the GIGA-I3 Research Unit, University of Liege, Department of Pneumology, Centre Hospitalier Universitaire Liège, Liege, Belgium (R.L.)
| | - Parameswaran Nair
- From the Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester (C.E.B., D.J.C.), and the University of Manchester, Manchester University NHS Foundation Trust, Manchester (D.S.) - both in the United Kingdom; the Firestone Institute for Respiratory Health, McMaster University and St. Joseph's Healthcare, Hamilton, ON, Canada (P.N.); and the GIGA-I3 Research Unit, University of Liege, Department of Pneumology, Centre Hospitalier Universitaire Liège, Liege, Belgium (R.L.)
| | - David J Cousins
- From the Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester (C.E.B., D.J.C.), and the University of Manchester, Manchester University NHS Foundation Trust, Manchester (D.S.) - both in the United Kingdom; the Firestone Institute for Respiratory Health, McMaster University and St. Joseph's Healthcare, Hamilton, ON, Canada (P.N.); and the GIGA-I3 Research Unit, University of Liege, Department of Pneumology, Centre Hospitalier Universitaire Liège, Liege, Belgium (R.L.)
| | - Renaud Louis
- From the Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester (C.E.B., D.J.C.), and the University of Manchester, Manchester University NHS Foundation Trust, Manchester (D.S.) - both in the United Kingdom; the Firestone Institute for Respiratory Health, McMaster University and St. Joseph's Healthcare, Hamilton, ON, Canada (P.N.); and the GIGA-I3 Research Unit, University of Liege, Department of Pneumology, Centre Hospitalier Universitaire Liège, Liege, Belgium (R.L.)
| | - Dave Singh
- From the Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester (C.E.B., D.J.C.), and the University of Manchester, Manchester University NHS Foundation Trust, Manchester (D.S.) - both in the United Kingdom; the Firestone Institute for Respiratory Health, McMaster University and St. Joseph's Healthcare, Hamilton, ON, Canada (P.N.); and the GIGA-I3 Research Unit, University of Liege, Department of Pneumology, Centre Hospitalier Universitaire Liège, Liege, Belgium (R.L.)
| |
Collapse
|
209
|
Zwicky P, Ingelfinger F, Silva de Melo BM, Ruchti F, Schärli S, Puertas N, Lutz M, Phan TS, Kündig TM, Levesque MP, Maul JT, Schlapbach C, LeibundGut-Landmann S, Mundt S, Becher B. IL-12 regulates type 3 immunity through interfollicular keratinocytes in psoriasiform inflammation. Sci Immunol 2021; 6:eabg9012. [PMID: 34678045 DOI: 10.1126/sciimmunol.abg9012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Bruno Marcel Silva de Melo
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.,Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto Sao Paulo, Brazil
| | - Fiorella Ruchti
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.,Section of Immunology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Stefanie Schärli
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nicole Puertas
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Truong San Phan
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Salomé LeibundGut-Landmann
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.,Section of Immunology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
210
|
Sherlock JP, Cua DJ. Interleukin-23 in perspective. Rheumatology (Oxford) 2021; 60:iv1-iv3. [PMID: 34668016 PMCID: PMC8527240 DOI: 10.1093/rheumatology/keab461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jonathan P Sherlock
- Janssen Research & Development, Spring House, PA, USA.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Daniel J Cua
- Janssen Research & Development, Spring House, PA, USA
| |
Collapse
|
211
|
Najm A, McInnes IB. IL-23 orchestrating immune cell activation in arthritis. Rheumatology (Oxford) 2021; 60:iv4-iv15. [PMID: 34668017 PMCID: PMC8527242 DOI: 10.1093/rheumatology/keab266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
IL-23 is a cytokine member of the IL-12 superfamily. These heterodimeric cytokines offer broad immune regulatory activity with potential effector function in inflammatory arthritis. IL-23 is a pro-inflammatory cytokine secreted by dendritic cells and macrophages. It plays a key role in both innate and adaptive immunity. By promoting and maintaining T cell differentiation into Th17 T cells, IL-23 is a key player in the pathogenesis of rheumatic diseases. Data from pre-clinical IL-23 knockout models show the major importance of IL-23 in development of arthritis. The induction and maintenance of type 17 cells, which secrete IL-17A and other pro-inflammatory cytokines, contributes to local synovial inflammation and skin inflammation in PsA, and perhaps in RA. Commensurate with this, therapeutic strategies targeting IL-23 have proven efficient in PsA in several studies, albeit not yet in RA.
Collapse
Affiliation(s)
- Aurélie Najm
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
212
|
Georgy J, Arlt Y, Moll JM, Ouzin M, Weitz HT, Gremer L, Willbold D, Grötzinger J, Thives-Kurenbach F, Scheller J, Floss DM. Tryptophan (W) at position 37 of murine IL-12/IL-23 p40 is mandatory for binding to IL-12Rβ1 and subsequent signal transduction. J Biol Chem 2021; 297:101295. [PMID: 34637790 PMCID: PMC8571081 DOI: 10.1016/j.jbc.2021.101295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Interleukin (IL)-12 and IL-23 are composite cytokines consisting of p35/p40 and p19/p40, respectively, which signal via the common IL-12 receptor β1 (IL-12Rβ1) and the cytokine-specific receptors IL-12Rβ2 and IL-23R. Previous data showed that the p40 component interacts with IL-12Rβ1, whereas p19 and p35 subunits solely bind to IL-23R and IL-12Rβ2, resulting in tetrameric signaling complexes. In the absence of p19 and p35, p40 forms homodimers and may induce signaling via IL-12Rβ1 homodimers. The critical amino acids of p19 and p35 required for binding to IL-23R and IL-12Rβ2 are known, and two regions of p40 critical for binding to IL-12Rβ1 have recently been identified. In order to characterize the involvement of the N-terminal region of p40 in binding to IL-12Rβ1, we generated deletion variants of the p40-p19 fusion cytokine. We found that an N-terminal deletion variant missing amino acids M23 to P39 failed to induce IL-23-dependent signaling and did not bind to IL-12Rβ1, whereas binding to IL-23R was maintained. Amino acid replacements showed that p40W37K largely abolished IL-23-induced signal transduction and binding to IL-12Rβ1, but not binding to IL-23R. Combining p40W37K with D36K and T38K mutations eliminated the biological activity of IL-23. Finally, homodimeric p40D36K/W37K/T38K did not interact with IL-12Rβ1, indicating binding of homodimeric p40 to IL-12Rβ1 is comparable to the interaction of IL-23/IL-12 and IL-12Rβ1. In summary, we have defined D36, W37, and T38 as hotspot amino acids for the interaction of IL-12/IL-23 p40 with IL-12Rβ1. Structural insights into cytokine–cytokine receptor binding are important to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Jacqueline Georgy
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yvonne Arlt
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Meryem Ouzin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Felix Thives-Kurenbach
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
213
|
Gerber AN, Abdi K, Singh NJ. The subunits of IL-12, originating from two distinct cells, can functionally synergize to protect against pathogen dissemination in vivo. Cell Rep 2021; 37:109816. [PMID: 34644571 PMCID: PMC8569637 DOI: 10.1016/j.celrep.2021.109816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/04/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cytokines are typically single gene products, except for the heterodimeric interleukin (IL)-12 family. The two subunits (IL-12p40 and IL-12p35) of the prototype IL-12 are known to be simultaneously co-expressed in activated myeloid cells, which secrete the fully active heterodimer to promote interferon (IFN)γ production in innate and adaptive cells. We find that chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, generate functional IL-12. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism is sufficient to propel local T cell differentiation in sites distal to the initial infection and helps control systemic dissemination of a pathogen, although not parasite burden, at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival.
Collapse
Affiliation(s)
- Allison N Gerber
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Room 380, Baltimore, MD 21201, USA.
| | - Kaveh Abdi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20850, USA.
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Room 380, Baltimore, MD 21201, USA.
| |
Collapse
|
214
|
Hosaka Y, Itoh K, Matsutani S, Kawate S, Miura A, Mizoura Y, Yamada S, Konno H, Grave E, Nagata K, Wakui H, Itoh H. Fermented food Tempeh induces interleukin 12 and enhances macrophage phagocytosis. J Food Biochem 2021; 45:e13958. [PMID: 34611901 DOI: 10.1111/jfbc.13958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 01/20/2023]
Abstract
It is known that lactic acid bacteria induce the IL-12. The IL-12 activates NK cells and promotes the production of IFN-γ. The IFN-γ activates macrophages resulting in enhanced phagocytosis and bactericidal activity. We have been investigating fermented foods that activate the immune function. In this study, we investigated the IL-12 inducibility of fermented foods using the specific antibody. Fermented soybean foods such as Tempeh and Natto are attracting attention in terms of nutrition, functionality, and food problems. In this study, Tempeh induced 1,080 µg/ml of IL-12, and IFN-γ associated with the induction of IL-12 was also induced at 682 µg/ml. This was more than twice the induced intensity of PBS. On the contrary, Natto hardly induced IL-12 and IFN-γ. Tempeh also accelerated phagocytosis of the macrophage THP-1 cells. In this study, it was found that the fermented soybean-derived food, Tempeh, has a function of activating the immune function. This is the first report that Tempeh activates innate immunity. PRACTICAL APPLICATIONS: Tempeh, a fermented soybean food induced the IL-12 and IFN-γ production and the increase of macrophage phagocytosis in this study suggested a new function to enhance immunity. Tempeh is also expected to be effective in preventing lifestyle diseases. Fermented soybean products of Tempeh was considered to be a very useful health food for the problems of modern society such as maintaining health by eating, improving immunity, and ingesting vegetable protein due to diversifying food.
Collapse
Affiliation(s)
- Yoshihito Hosaka
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan.,Akita Konno Co., Ltd., Akita, Japan
| | - Kei Itoh
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Shun Matsutani
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Shinya Kawate
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Atsuko Miura
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Yukaze Mizoura
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Sayumi Yamada
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | | | - Ewa Grave
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Wakui
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
215
|
Watanabe A, Mizoguchi I, Hasegawa H, Katahira Y, Inoue S, Sakamoto E, Furusaka Y, Sekine A, Miyakawa S, Murakami F, Xu M, Yoneto T, Yoshimoto T. A Chaperone-Like Role for EBI3 in Collaboration With Calnexin Under Inflammatory Conditions. Front Immunol 2021; 12:757669. [PMID: 34603342 PMCID: PMC8484754 DOI: 10.3389/fimmu.2021.757669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and β-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another β-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.
Collapse
Affiliation(s)
- Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
216
|
Preclinical development of a bispecific TNFα/IL-23 neutralising domain antibody as a novel oral treatment for inflammatory bowel disease. Sci Rep 2021; 11:19422. [PMID: 34593832 PMCID: PMC8484351 DOI: 10.1038/s41598-021-97236-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
Anti-TNFα and anti-IL-23 antibodies are highly effective therapies for Crohn’s disease or ulcerative colitis in a proportion of patients. V56B2 is a novel bispecific domain antibody in which a llama-derived IL-23p19-specific domain antibody, humanised and engineered for intestinal protease resistance, V900, was combined with a previously-described TNFα-specific domain antibody, V565. V56B2 contains a central protease-labile linker to create a single molecule for oral administration. Incubation of V56B2 with trypsin or human faecal supernatant resulted in a complete separation of the V565 and V900 monomers without loss of neutralising potency. Following oral administration of V900 and V565 in mice, high levels of each domain antibody were detected in the faeces, demonstrating stability in the intestinal milieu. In ex vivo cultures of colonic biopsies from IBD patients, treatment with V565 or V900 inhibited tissue phosphoprotein levels and with a combination of the two, inhibition was even greater. These results support further development of V56B2 as an oral therapy for IBD with improved safety and efficacy in a greater proportion of patients as well as greater convenience for patients compared with traditional monoclonal antibody therapies.
Collapse
|
217
|
Miyoshi J, Matsuura M, Hisamatsu T. Safety evaluation of ustekinumab for moderate-to-severe ulcerative colitis. Expert Opin Drug Saf 2021; 21:1-8. [PMID: 34511011 DOI: 10.1080/14740338.2021.1980536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Ustekinumab is a human IgG1 kappa monoclonal antibody that targets the p40 subunit of interleukin (IL)-12 and IL-23 and blocks the binding of these cytokines to the IL-12Rβ1 chain of their receptors. Ustekinumab is approved for treating moderate-to-severe ulcerative colitis (UC). AREAS COVERED We reviewed the mechanism of action, pharmacokinetics, efficacy, and safety of ustekinumab. Future challenges for optimizing UC treatment with ustekinumab are discussed. EXPERT OPINION Ustekinumab has favorable clinical efficacy and safety profiles for moderately-to-severely active UC. Ustekinumab is the first biologic for targeting IL-12/IL-23 pathways. Therefore, ustekinumab can be a therapeutic option following the failure of other biologics, including anti-tumor necrosis factor-α antagonists and anti-α4ß7 integrin antagonists. However, the positioning of ustekinumab in the therapeutic strategy for UC remains unclear. The efficacy of combinations of ustekinumab and immunomodulators over ustekinumab monotherapy has not been supported in studies. Ustekinumab is a human immunoglobulin G monoclonal antibody with low immunogenicity. Therefore, ustekinumab monotherapy, which should be safe, could be sufficient for treating UC. Further studies are required to understand the efficacy and safety of ustekinumab in patients with UC, particularly in special situations, and to optimize UC treatment with ustekinumab.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan 181-8611
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan 181-8611
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan 181-8611
| |
Collapse
|
218
|
Reuveni D, Brezis MR, Brazowski E, Vinestock P, Leung PSC, Thakker P, Gershwin ME, Zigmond E. Interleukin 23 Produced by Hepatic Monocyte-Derived Macrophages Is Essential for the Development of Murine Primary Biliary Cholangitis. Front Immunol 2021; 12:718841. [PMID: 34484224 PMCID: PMC8414574 DOI: 10.3389/fimmu.2021.718841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Aims Primary Biliary Cholangitis (PBC) is an organ-specific autoimmune liver disease. Mononuclear phagocytes (MNPs), comprise of monocyte, dendritic cells and monocyte-derived macrophages, constitute major arm of the innate immune system known to be involved in the pathogenesis of autoimmune disorders. MNPs were shown to accumulate around intra-hepatic bile ducts in livers of PBC patients. Interleukin 23 (IL-23) is a pro-inflammatory cytokine. IL-23-positive cells were detected in livers of patients with advanced stage PBC and IL-23 serum levels found to be in correlation with PBC disease severity. Our overall goal was to assess the importance of IL-23 derived from MNPs in PBC pathogenesis. Methods We utilized an inducible murine model of PBC and took advantage of transgenic mice targeting expression of IL-23 by specific MNP populations. Analysis included liver histology assessment, flow cytometry of hepatic immune cells and hepatic cytokine profile evaluation. Specific MNPs sub-populations were sorted and assessed for IL-23 expression levels. Results Flow cytometry analysis of non-parenchymal liver cells in autoimmune cholangitis revealed massive infiltration of the liver by MNPs and neutrophils and a decrease in Kupffer cells numbers. In addition, a 4-fold increase in the incidence of hepatic IL-17A producing CD4+ T cells was found to be associated with an increase in hepatic IL23-p19 and IL17A expression levels. Disease severity was significantly ameliorated in both CD11ccreP19flox/flox and CX3CR1creP19 flox/flox mice as assessed by reduced portal inflammation and decreased hepatic expression of various inflammatory cytokines. Amelioration of disease severity was associated with reduction in IL-17A producing CD4+ T cells percentages and decreased hepatic IL23-p19 and IL17A expression levels. qRT-PCR analysis of sorted hepatic MNPs demonstrated high expression levels of IL-23 mRNA specifically by CX3CR1hiCD11c+ monocyte-derived macrophages. Conclusion Our results indicate a major role for IL-23 produced by hepatic monocyte-derived macrophages in the pathogenesis of PBC. These results may pave the road for the development of new immune-based and cell specific therapeutic modalities for PBC patients not responding to current therapies.
Collapse
Affiliation(s)
- Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miriam R Brezis
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Brazowski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Philip Vinestock
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Paresh Thakker
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Center for Autoimmune Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
219
|
Howlader DR, Das S, Lu T, Hu G, Varisco DJ, Dietz ZK, Walton SP, Ratnakaram SSK, Gardner FM, Ernst RK, Picking WD, Picking WL. Effect of Two Unique Nanoparticle Formulations on the Efficacy of a Broadly Protective Vaccine Against Pseudomonas Aeruginosa. Front Pharmacol 2021; 12:706157. [PMID: 34483911 PMCID: PMC8416447 DOI: 10.3389/fphar.2021.706157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for a wide range of infections in humans. In addition to its innate antibiotic resistance, P. aeruginosa is very effective in acquiring resistance resulting in the emergence of multi-drug resistance strains and a licensed vaccine is not yet available. We have previously demonstrated the protective efficacy of a novel antigen PaF (Pa Fusion), a fusion of the type III secretion system (T3SS) needle tip protein, PcrV, and the first of two translocator proteins, PopB. PaF was modified to provide a self-adjuvanting activity by fusing the A1 subunit of the heat-labile enterotoxin from Enterotoxigenic E. coli to its N-terminus to give L-PaF. In addition to providing protection against 04 and 06 serotypes of P. aeruginosa, L-PaF elicited opsonophagocytic killing and stimulated IL-17A secretion, which have been predicted to be required for a successful vaccine. While monomeric recombinant subunit vaccines can be protective in mice, this protection often does not transfer to humans where multimeric formulations perform better. Here, we use two unique formulations, an oil-in-water (o/w) emulsion and a chitosan particle, as well as the addition of a unique TLR4 agonist, BECC438 (a detoxified lipid A analogue designated Bacterial Enzymatic Combinatorial Chemistry 438), as an initial step in optimizing L-PaF for use in humans. The o/w emulsion together with BECC438 provided the best protective efficacy, which correlated with high levels of opsonophagocytic killing and IL-17A secretion, thereby reducing the lung burden among all the vaccinated groups tested.
Collapse
Affiliation(s)
- Debaki R Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Sayan Das
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - David J Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Zackary K Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Sierra P Walton
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Francesca M Gardner
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
220
|
Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol 2021; 32:484-492. [PMID: 34918137 DOI: 10.1093/mr/roab057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
Despite increasing availability of treatments for spondyloarthritis (SpA) including tumour necrosis factor (TNF) and interleukin-17 (IL-17) inhibitors, there is no established treatment that abates new bone formation (NBF) in ankylosing spondylitis (AS), a subset of SpA. Recent research on TNF has revealed the increased level of transmembrane TNF in the joint tissue of SpA patients compared to that of rheumatoid arthritis patients, which appears to facilitate TNF-driven osteo-proliferative changes in AS. In addition, there is considerable interest in the central role of IL-23/IL-17 axis in type 3 immunity and the therapeutic potential of blocking this axis to ameliorate enthesitis and NBF in AS. AS immunopathology involves a variety of immune cells, including both innate and adoptive immune cells, to orchestrate the immune response driving type 3 immunity. In response to external stimuli of inflammatory cytokines, local osteo-chondral progenitor cells activate intra-cellular anabolic molecules and signals involving hedgehog, bone morphogenetic proteins, receptor activator of nuclear factor kappa-B ligand, and Wnt pathways to promote NBF in AS. Here, we provide an overview of the current immunopathology and future directions for the treatment of enthesitis and NBF associated with AS.
Collapse
Affiliation(s)
- Masaki Kusuda
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
221
|
Ghazawi FM, Mahmood F, Kircik L, Poulin Y, Bourcier M, Vender R, Wiseman MC, Lynde C, Litvinov IV. A Review of the Efficacy and Safety for Biologic Agents Targeting IL-23 in Treating Psoriasis With the Focus on Tildrakizumab. Front Med (Lausanne) 2021; 8:702776. [PMID: 34447766 PMCID: PMC8383205 DOI: 10.3389/fmed.2021.702776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic and debilitating inflammatory immune-mediated skin disorder. Several cytokines including interleukin (IL)-23 were demonstrated to play a central role in the pathogenesis of this disease. Treatment options for psoriasis range from topical to systemic modalities, depending on the extent, anatomical locations involved and functional impairment level. Targeting cytokines or their cognate receptors that are involved in disease pathogenesis such as IL-12/23 (i.e., targeting the IL-12p40 subunit shared by these cytokines), IL-17A, IL-17F, IL-17RA, and TNF-α using biologic agents emerged in recent years as a highly effective therapeutic option for patients with moderate-to-severe disease. This review provides an overview of the important role of IL-23 signaling in the pathogenesis of psoriasis. We describe in detail the available IL-23 inhibitors for chronic plaque psoriasis. The efficacy, pharmacokinetic properties, and the safety profile of one of the most recent IL-23 biologic agents (tildrakizumab) are evaluated and reviewed in depth.
Collapse
Affiliation(s)
- Feras M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, ON, Canada
| | - Farhan Mahmood
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Leon Kircik
- Department of Dermatology, Mount Sinai Hospital, New York City, NY, United States
| | - Yves Poulin
- Division of Dermatology, Laval University, Quebec City, QC, Canada
| | - Marc Bourcier
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Ronald Vender
- Division of Dermatology, McMaster University, Hamilton, ON, Canada
| | - Marni C Wiseman
- Section of Dermatology, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Charles Lynde
- Division of Dermatology, University of Toronto, Toronto, ON, Canada
| | - Ivan V Litvinov
- Division of Dermatology, McGill University, Montréal, QC, Canada
| |
Collapse
|
222
|
Zampogiannis A, Piperi C, Baka M, Zoi I, Papavassiliou AG, Moschovi M. Low IL-23 levels in peripheral blood and bone marrow at diagnosis of acute leukemia in children increased with the elimination of leukemic burden. J Cell Mol Med 2021; 25:7426-7435. [PMID: 34235838 PMCID: PMC8335666 DOI: 10.1111/jcmm.16772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
IL-23 is an IL-12 cytokine family member with pleiotropic functions that regulates tumour growth in various cancer types, exhibiting both anti-tumorigenic and pro-tumorigenic properties. Preclinical studies have shown a potential anti-leukemic action on childhood B-ALL cells. The study involved 65 children with acute leukemia [59 patients with acute lymphoblastic leukemia (ALL) and 6 patients with acute myeloid leukemia (AML)] and 27 healthy controls. Using an enzyme-linked immunosorbent assay, we aimed to determine the IL-23 levels in the peripheral blood (PB) and bone marrow (BM) of patients at diagnosis and at the end of the induction therapy (EIT). PB IL-23 levels were lower in leukemia patients compared to the healthy controls. In all acute leukemia patients, IL-23 levels were significantly lower at diagnosis both in PB (P = .015) and in BM (P = .037) compared to the PB and BM concentrations at the EIT. The same pattern was present in both subgroups of ALL and AML patients. The high leukemic burden at diagnosis was related with lower IL-23 levels, which were increased with the disease remission. Considering the anti-leukemic potential of this cytokine, the elevation of the IL-23 concentration at the disease remission indicates a beneficial role of IL-23 in paediatric acute leukemia.
Collapse
Affiliation(s)
- Archontis Zampogiannis
- Pediatric Hematology‐Oncology UnitMedical School"Agia Sophia" Children's HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Christina Piperi
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Margarita Baka
- Department of Pediatric Hematology‐Oncology"P&A Kyriakou" Children's HospitalAthensGreece
| | - Iliana Zoi
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | | - Maria Moschovi
- Pediatric Hematology‐Oncology UnitMedical School"Agia Sophia" Children's HospitalNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
223
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
224
|
Zhang Z, Miao L, Ren Z, Tang F, Li Y. Gene-Edited Interleukin CAR-T Cells Therapy in the Treatment of Malignancies: Present and Future. Front Immunol 2021; 12:718686. [PMID: 34386015 PMCID: PMC8353254 DOI: 10.3389/fimmu.2021.718686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, chimeric antigen receptor T cells (CAR-T cells) have been faced with the problems of weak proliferation and poor persistence in the treatment of some malignancies. Researchers have been trying to perfect the function of CAR-T by genetically modifying its structure. In addition to the participation of T cell receptor (TCR) and costimulatory signals, immune cytokines also exert a decisive role in the activation and proliferation of T cells. Therefore, genetic engineering strategies were used to generate cytokines to enhance tumor killing function of CAR-T cells. When CAR-T cells are in contact with target tumor tissue, the proliferation ability and persistence of T cells can be improved by structurally or inductively releasing immunoregulatory molecules to the tumor region. There are a large number of CAR-T cells studies on gene-edited cytokines, and the most common cytokines involved are interleukins (IL-7, IL-12, IL-15, IL-18, IL-21, IL-23). Methods for the construction of gene-edited interleukin CAR-T cells include co-expression of single interleukin, two interleukin, interleukin combined with other cytokines, interleukin receptors, interleukin subunits, and fusion inverted cytokine receptors (ICR). Preclinical and clinical trials have yielded positive results, and many more are under way. By reading a large number of literatures, we summarized the functional characteristics of some members of the interleukin family related to tumor immunotherapy, and described the research status of gene-edited interleukin CAR-T cells in the treatment of malignant tumors. The objective is to explore the optimized strategy of gene edited interleukin-CAR-T cell function.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Futian Tang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
225
|
Wiles KN, Alioto CM, Hodge NB, Clevenger MH, Tsikretsis LE, Lin FT, Tétreault MP. IκB Kinase-β Regulates Neutrophil Recruitment Through Activation of STAT3 Signaling in the Esophagus. Cell Mol Gastroenterol Hepatol 2021; 12:1743-1759. [PMID: 34311141 PMCID: PMC8551782 DOI: 10.1016/j.jcmgh.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The epithelial barrier is the host's first line of defense against damage to the underlying tissue. Upon injury, the epithelium plays a critical role in inflammation. The IκB kinase β (IKKβ)/nuclear factor-κB pathway was shown to be active in the esophageal epithelium of patients with esophageal disease. However, the complex mechanisms by which IKKβ signaling regulates esophageal disease pathogenesis remain unknown. Our prior work has shown that expression of a constitutively active form of IKKβ specifically in esophageal epithelia of mice (IkkβcaEsophageal Epithelial Cell-Knockin (EEC-KI)) is sufficient to cause esophagitis. METHODS We generated ED-L2/Cre;Rosa26-Ikkβca+/L;Stat3L/L (IkkβcaEEC-KI;Stat3Esophageal Epithelial Cell Knockout (EEC-KO)) mice, in which the ED-L2 promoter activates Cre recombinase in the esophageal epithelium, leading to constitutive activation of IKKβ and loss of Stat3. Esophageal epithelial tissues were collected and analyzed by immunostaining, RNA sequencing, quantitative real-time polymerase chain reaction assays, flow cytometry, and Western blot. IkkβcaEEC-KI mice were treated with neutralizing antibodies against interleukin (IL)23p19 and IL12p40. RESULTS Here, we report that IkkβcaEEC-KI mice have increased activation of epithelial Janus kinase 2/STAT3 signaling. Stat3 deletion in IkkβcaEEC-KI mice attenuated the neutrophil infiltration observed in IkkβcaEEC-KI mice and resulted in decreased expression of genes related to immune cell recruitment and activity. Blocking experiments in IkkβcaEEC-KI mice showed that STAT3 activation and subsequent neutrophil recruitment are dependent on IL23 secretion. CONCLUSIONS Our study establishes a novel interplay between IKKβ and STAT3 signaling in epithelial cells of the esophagus, where IKKβ/IL23/STAT3 signaling controls neutrophil recruitment during the onset of inflammation. GEO accession number: GSE154129.
Collapse
Affiliation(s)
- Kelsey Nicole Wiles
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cara Maria Alioto
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Correspondence Address correspondence to: Marie-Pier Tétreault, PhD, Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, 15-753 Tarry Building, 300 East Superior Street, Chicago, Illinois 60611-3010. fax: (312) 908-9032.
| | - Nathan Bruce Hodge
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Margarette Helen Clevenger
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lia Elyse Tsikretsis
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Frederick T.J. Lin
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marie-Pier Tétreault
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
226
|
Chan TC, Lee MS, Huang WC, Chang WY, Krueger JG, Tsai TF. Capsaicin attenuates imiquimod-induced epidermal hyperplasia and cutaneous inflammation in a murine model of psoriasis. Biomed Pharmacother 2021; 141:111950. [PMID: 34328106 DOI: 10.1016/j.biopha.2021.111950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is one of the most common chronic inflammatory diseases that is characterized by well-defined erythematous plaques, with typical histopathological findings of lymphocytic infiltration and epidermal hyperplasia. Topical treatments of psoriasis are either associated with limited response or with side effects. Up to date, topicals targeting neuroimmune axis in psoriasis or psoriasiform dermatitis have not been explored. Here, we investigated whether percutaneous delivery of capsaicin could attenuate the pathological change of psoriasiform inflammation. Imiquimod-induced psoriasis-like murine model was used to evaluate therapeutic effects from topical application of capsaicin. An additional model of psoriasiform dermatitis induced by direct IL-23 injection was used to identify the level of action from capsaicin in this neuroimmune axis. Cutaneous inflammation was assessed by erythema level and ear thickness change. Key cytokines, infiltrating cells in the skin, and draining lymph node cells were investigated. The results showed that capsaicin administration obstructed the activation of IL-23/IL-17 pathway induced by imiquimod, presenting with significantly reduced psoriasiform dermatitis both in gross appearance and microscopic features. Tissue gene expression of psoriatic core cytokines induced by imiquimod (including IL-23, IL-17A, IL-22, TNF-α, and IL-6) were greatly decreased by capsaicin application. This protective effect from capsaicin could be hampered by direct intradermal injection of IL-23. CONCLUSION: Epicutaneous delivery of capsaicin on imiquimod-treated murine skin could significantly decrease expression of multiple inflammatory cytokines and the severity of prototypic change of psoriasiform inflammation. The beneficial effect imposed by capsaicin reinforces the neuroimmune contribution towards psoriasiform inflammation and provides a potential non-steroidal therapeutic alternative for topical treatment of psoriasiform dermatitis.
Collapse
Affiliation(s)
- Tom C Chan
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Sui Lee
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan; Department of Dermatology, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Chih Huang
- Department of Anatomic Pathology, Far Eastern Memorial Hospital, New Taipei, Taiwan; Department of Anatomical Pathology, Taipei Institute of Pathology, Taipei, Taiwan
| | - Wen-Yu Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Dermatology, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
227
|
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Interleukin 27 as an inducer of antiviral response against chikungunya virus infection in human macrophages. Cell Immunol 2021; 367:104411. [PMID: 34325085 DOI: 10.1016/j.cellimm.2021.104411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 01/31/2023]
Abstract
Chikungunya virus (CHIKV) is known to have a wide range of tropism in human cell types throughout infection, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. We reported that human monocytes-derived macrophages (MDMs) are permissive to CHIKV infection in vitro. We found that the peak of CHIKV replication was at 24 hpi; however, at 48 hpi, a significant reduction in viral titer was observed that correlated with high expression levels of genes encoding antiviral proteins (AVPs) in an IFN-independent manner. To explore the molecular mechanisms involved in the induction of antiviral response in CHIKV-infected MDMs, we performed transcriptomic analysis by RNA-sequencing. Differential expression of genes at 24 hpi showed that CHIKV infection abrogated the expression of all types of IFNs in MDMs. However, we observed that CHIKV-infected MDMs activated the JAK-STAT signaling and induced a robust antiviral response associated with control of CHIKV replication. We identified that the IL27 pathway is activated in CHIKV-infected MDMs and that kinetics of IL27p28 mRNA expression and IL27 protein production correlated with the expression of AVPs in CHIKV-infected MDMs. Furthermore, we showed that stimulation of THP-1-derived macrophages with recombinant-human IL27 induced the activation of the JAK-STAT signaling and induced a robust pro-inflammatory and antiviral response, comparable to CHIKV-infected MDMs. Furthermore, pre-treatment of MDMs with recombinant-human IL27 inhibits CHIKV replication in a dose-dependently manner (IC50 = 1.83 ng/mL). Altogether, results show that IL27 is highly expressed in CHIKV-infected MDMs, leading to activation of JAK-STAT signaling and stimulation of pro-inflammatory and antiviral response to control CHIKV replication in an IFN-independent manner.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Geysson J Fernandez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
228
|
Visser MJE, Tarr G, Pretorius E. Thrombosis in Psoriasis: Cutaneous Cytokine Production as a Potential Driving Force of Haemostatic Dysregulation and Subsequent Cardiovascular Risk. Front Immunol 2021; 12:688861. [PMID: 34335591 PMCID: PMC8324086 DOI: 10.3389/fimmu.2021.688861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis (PsO) is a common T cell-mediated inflammatory disorder of the skin with an estimated prevalence of 2%. The condition manifests most commonly as erythematous plaques covered with scales. The aetiology of PsO is multifactorial and disease initiation involves interactions between environmental factors, susceptibility genes, and innate and adaptive immune responses. The underlying pathology is mainly driven by interleukin-17. In addition, various inflammatory mediators from specific T helper (TH) cell subsets, namely TH1, TH17, and TH22, are overexpressed in cutaneous lesions and may also be detected in the peripheral blood of psoriatic patients. Moreover, these individuals are also at greater risk, compared to the general population, of developing multiple comorbid conditions. Cardiovascular disease (CVD) has been recognised as a prominent comorbidity of PsO. A potential mechanism contributing to this association may be the presence of a hypercoagulable state in these individuals. Inflammation and coagulation are closely related. The presence of chronic, low-grade systemic inflammation may promote thrombosis – one of the major determinants of CVD. A pro-inflammatory milieu may induce the expression of tissue factor, augment platelet activity, and perturb the vascular endothelium. Altogether, these changes will result in a prothrombotic state. In this review, we describe the aetiology of PsO, as well as the pathophysiology of the condition. We also consider its relationship to CVD. Given the systemic inflammatory nature of PsO, we evaluate the potential contribution of prominent inflammatory mediators (implicated in PsO pathogenesis) to establishing a prothrombotic state in psoriatic patients.
Collapse
Affiliation(s)
- Maria J E Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Gareth Tarr
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Division of Rheumatology, Institute of Orthopaedics and Rheumatology, Winelands Mediclinic Orthopaedic Hospital, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
229
|
Miklavcic JJ, Li Q, Skolnick J, Thomson ABR, Mazurak VC, Clandinin MT. Ganglioside Alters Phospholipase Trafficking, Inhibits NF-κB Assembly, and Protects Tight Junction Integrity. Front Nutr 2021; 8:705172. [PMID: 34291075 PMCID: PMC8286996 DOI: 10.3389/fnut.2021.705172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: Dietary gangliosides are present in human milk and consumed in low amounts from organ meats. Clinical and animal studies indicate that dietary gangliosides attenuate signaling processes that are a hallmark of inflammatory bowel disease (IBD). Gangliosides decrease pro-inflammatory markers, improve intestinal permeability, and reduce symptoms characteristic in patients with IBD. The objective of this study was to examine mechanisms by which dietary gangliosides exert beneficial effects on intestinal health. Methods: Studies were conducted in vitro using CaCo-2 intestinal epithelial cells. Gangliosides were extracted from milk powder and incubated with differentiated CaCo-2 cells after exposure to pro-inflammatory stimuli. Gut barrier integrity was assessed by electron microscopy, epithelial barrier function was examined by measuring transepithelial electric resistance, and content of HBD-2, IL-23, NF-κB, and sPLA2 was assessed by ELISA. Results: Ganglioside attenuated the decrease in integrity of tight junctions induced by pro-inflammatory stimuli and improved epithelial barrier function (P < 0.05). Ganglioside decreased the basolateral secretion of sPLA2 (P ≤ 0.05), lowered HBD-2 and IL-23 levels (P ≤ 0.05), and inhibited NF-κB activation (P ≤ 0.05). Conclusions: In summary, the present study indicates that ganglioside GD3 improves intestinal integrity by altering sPLA2 trafficking, and the production of pro-inflammatory mediators is mitigated by decreasing assembly of the NF-κB complex. Dietary gangliosides may have promising potential beneficial effects in IBD as decreased inflammatory signaling, improved intestinal integrity, and maintenance of epithelial barrier function have been demonstrated in vitro.
Collapse
Affiliation(s)
- John J Miklavcic
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States.,School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Qun Li
- Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jordan Skolnick
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Alan B R Thomson
- Division of Gastroenterology, Western University, London, ON, Canada
| | - Vera C Mazurak
- Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Micheal Tom Clandinin
- Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
230
|
Reactivation of latent tuberculosis with TNF inhibitors: critical role of the beta 2 chain of the IL-12 receptor. Cell Mol Immunol 2021; 18:1644-1651. [PMID: 34021269 PMCID: PMC8245521 DOI: 10.1038/s41423-021-00694-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor (TNF) inhibitors have improved a lot the treatment of numerous diseases, with the well-known example of rheumatoid arthritis (RA). In the early 2000s, postmarketing data quickly revealed an alarming number of severe tuberculosis (TB) under such treatment. These findings were consistent with previous results in mice where TNF is essential for lymph node formation and granuloma organization. The effects of TNF inhibition on RA synovium structure are very similar to those on granuloma, with changes in cellular interactions, cytokine, and chemokine production. In addition to the role of TNF in granuloma, the interleukin (IL)-12/interferon (IFN)-γ pathway is required for an efficient host defense against TB. Primary and secondary immunodeficiencies affecting this pathway lead to severe bacillus Calmette-Guérin (BCG) reaction or full TB. Any chronic inflammation as in RA induces a systemic Th1 defect that predisposes to TB through specific downregulation of the IL-12Rß2 chain. When TNF inhibitors are initiated, this transiently increases this risk of TB, through effects on cellular interactions in a latent TB granuloma. At a later stage, when a better control disease activity is obtained, the risk of TB is reduced but not abrogated. Given the clear benefit from TNF inhibition, latent TB infection screening at baseline is essential for an optimal safety.
Collapse
|
231
|
Panagioti E, Kurokawa C, Viker K, Ammayappan A, Anderson SK, Sotiriou S, Chatzopoulos K, Ayasoufi K, Johnson AJ, Iankov ID, Galanis E. Immunostimulatory bacterial antigen-armed oncolytic measles virotherapy significantly increases the potency of anti-PD1 checkpoint therapy. J Clin Invest 2021; 131:e141614. [PMID: 34196308 DOI: 10.1172/jci141614] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Clinical immunotherapy approaches are lacking efficacy in the treatment of glioblastoma (GBM). In this study, we sought to reverse local and systemic GBM-induced immunosuppression using the Helicobacter pylori neutrophil-activating protein (NAP), a potent TLR2 agonist, as an immunostimulatory transgene expressed in an oncolytic measles virus (MV) platform, retargeted to allow viral entry through the urokinase-type plasminogen activator receptor (uPAR). While single-agent murine anti-PD1 treatment or repeat in situ immunization with MV-s-NAP-uPA provided modest survival benefit in MV-resistant syngeneic GBM models, the combination treatment led to synergy with a cure rate of 80% in mice bearing intracranial GL261 tumors and 72% in mice with CT-2A tumors. Combination NAP-immunovirotherapy induced massive influx of lymphoid cells in mouse brain, with CD8+ T cell predominance; therapeutic efficacy was CD8+ T cell dependent. Inhibition of the IFN response pathway using the JAK1/JAK2 inhibitor ruxolitinib decreased PD-L1 expression on myeloid-derived suppressor cells in the brain and further potentiated the therapeutic effect of MV-s-NAP-uPA and anti-PD1. Our findings support the notion that MV strains armed with bacterial immunostimulatory antigens represent an effective strategy to overcome the limited efficacy of immune checkpoint inhibitor-based therapies in GBM, creating a promising translational strategy for this lethal brain tumor.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.,Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Cheyne Kurokawa
- Department of Molecular Medicine and.,Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kimberly Viker
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Arun Ammayappan
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ianko D Iankov
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Evanthia Galanis
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
232
|
Chung SW. Vasculitis: From Target Molecules to Novel Therapeutic Approaches. Biomedicines 2021; 9:757. [PMID: 34209028 PMCID: PMC8301353 DOI: 10.3390/biomedicines9070757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic vasculitis is a group of diverse diseases characterized by immune-mediated inflammation of blood vessels. Current treatments for vasculitis, such as glucocorticoids and alkylating agents, are associated with significant side effects. In addition, the management of both small and large vessel vasculitis is challenging due to a lack of robust markers of disease activity. Recent research has advanced our understanding of the pathogenesis of both small and large vessel vasculitis, and this has led to the development of novel biologic therapies capable of targeting key cytokine and cellular effectors of the inflammatory cascade. It is anticipated that these novel treatments will lead to more effective and less toxic treatment regimens for patients with systemic vasculitis.
Collapse
Affiliation(s)
- Sang-Wan Chung
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
233
|
Charitidis FT, Damlund DSM, Koch J. Psoriasis-like Inflammation Induced in an Air-pouch Mouse Model. In Vivo 2021; 35:1985-1997. [PMID: 34182473 DOI: 10.21873/invivo.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIM The pathway of initiation of psoriasis comprises the differentiation and infiltration of T-helper 17 (Th17) cells into the skin, characterized by the production of interleukin 17A and 17F (IL-17A/IL-17F) among other cytokines, resulting in a downstream cascade of events. Due to the lack of simplicity in psoriasis models, we aimed to develop an easily and rapidly inducible mouse model for the IL-23/IL-17 pathway with quick readouts from a straightforward lavaging process and with detectable cytokine levels. MATERIALS AND METHODS We utilized the 6-day air-pouch mouse model, injected with a combination of anti-CD3, IL-23 and IL-1β. At 24, 48 and 72 h, intra-pouch secretion of IL-17A, IL-17F and C-X-C motif chemokine ligand 1 were measured. Skin biopsies were collected and immune cell infiltration evaluated, and intra-pouch immune cells were isolated and analyzed. RESULTS The combination of anti-CD3, IL-23 with and without IL-1β significantly increased intra-pouch levels of IL-17A/IL-17F at 24 and 72 h, triggering a downstream production of C-X-C motif chemokine ligand 1. The cytokines were detectable even 72 h post-induction. T-cell receptor beta was down-regulated on CD4+ and CD8+ T-cells, indicating intra-pouch T-cell activation. Αnti-CD3 induced CD3+ cell migration into the subcutis and the lining tissue surrounding the cavity of the air pouch, where in the latter, a similar distribution pattern of Il17a mRNA-expressing cells was also observed. However, no Th17 cell differentiation nor changes in IL-17A+ granulocytes were observed. CONCLUSION The induced air-pouch mouse model induced with a cocktail of anti-CD3, IL-23 with or without IL-1β is able to mirror the IL-23/IL-17 axis of psoriasis-like inflammation characterized by immune cell infiltration and cytokine secretion.
Collapse
Affiliation(s)
| | - Dina S M Damlund
- Department of In Vivo Biology & Safety, LEO Pharma A/S, Ballerup, Denmark
| | - Janne Koch
- Department of In Vivo Biology & Safety, LEO Pharma A/S, Ballerup, Denmark
| |
Collapse
|
234
|
Mandour M, Chen S, van de Sande MGH. The Role of the IL-23/IL-17 Axis in Disease Initiation in Spondyloarthritis: Lessons Learned From Animal Models. Front Immunol 2021; 12:618581. [PMID: 34267743 PMCID: PMC8276000 DOI: 10.3389/fimmu.2021.618581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Spondyloarthritis (SpA) is a spectrum of chronic inflammatory joint diseases that frequently presents with inflammation of the axial skeleton, peripheral joints, entheses, skin, and gut. Understanding SpA pathogenesis has been proven challenging due to the limited availability of human target tissues. In recent years, the interleukin (IL)-23/IL-17 pathway has been implicated in the pathogenesis of SpA, in addition to the Tumor Necrosis Factor Alpha (TNF-α) cytokine. The underlying molecular mechanisms by which the IL-23/IL-17 pathway triggers disease initiation, both in the joints as well as at extra-musculoskeletal sites, are not precisely known. Animal models that resemble pathological features of human SpA have provided possibilities for in-depth molecular analyses of target tissues during various phases of the disease, including the pre-clinical initiation phase of the disease before arthritis and spondylitis are clinically present. Herein, we summarize recent insights gained in SpA animal models on the role of the IL-23/IL-17 pathway in immune activation across affected sites in SpA, which include the joint, entheses, gut and skin. We discuss how local activation of the IL-23/IL-17 axis may contribute to the development of tissue inflammation and the onset of clinically manifest SpA. The overall aim is to provide the reader with an overview of how the IL-23/IL-17 axis could contribute to the onset of SpA pathogenesis. We discuss how insights from animal studies into the initiation phase of disease could instruct validation studies in at-risk individuals and thereby provide a perspective for potential future preventive treatment.
Collapse
Affiliation(s)
- Mohamed Mandour
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sijia Chen
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Marleen G. H. van de Sande
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
235
|
Vidal S, Puig L, Carrascosa-Carrillo JM, González-Cantero Á, Ruiz-Carrascosa JC, Velasco-Pastor AM. From Messengers to Receptors in Psoriasis: The Role of IL-17RA in Disease and Treatment. Int J Mol Sci 2021; 22:6740. [PMID: 34201664 PMCID: PMC8268646 DOI: 10.3390/ijms22136740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
The paradigm of psoriasis as a Th17-driven disease has evolved in the last years towards a much deeper knowledge of the complex pathways, mechanisms, cells, and messengers involved, highlighting the crucial role played by the IL-17 family of cytokines. All IL-17 isoforms signal through IL-17R. Five subunits of IL-17R have been described to date, which couple to form a homo- or hetero-receptor complex. Characteristically, IL-17RA is a common subunit in all hetero-receptors. IL-17RA has unique structural-containing a SEFIR/TILL domain-and functional-requiring ACT-1 for signaling-properties, enabling Th17 cells to act as a bridge between innate and adaptive immune cells. In psoriasis, IL-17RA plays a key role in pathogenesis based on: (a) IL-17A, IL-17F, and other IL-17 isoforms are involved in disease development; and (b) IL-17RA is essential for signaling of all IL-17 cytokines but IL-17D, whose receptor has not been identified to date. This article reviews current evidence on the biology and role of the IL-17 family of cytokines and receptors, with focus on IL-17RA, in psoriasis and some related comorbidities, and puts them in context with current and upcoming treatments.
Collapse
Affiliation(s)
- Silvia Vidal
- Institute of Research, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Lluís Puig
- Institute of Research, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | | | - Álvaro González-Cantero
- Department of Dermatology, Hospital Universitario Ramón y Cajal, M-607, km. 9, 100, 28034 Madrid, Spain;
- Facultad de Medicina, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda KM 1.800, 28223 Pozuelo de Alarcón, Spain
| | | | | |
Collapse
|
236
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
237
|
Nigam GB, Limdi JK. An update on the role of anti-IL-12/IL23 agents in the management of inflammatory bowel disease. Br Med Bull 2021; 138:29-40. [PMID: 33884410 DOI: 10.1093/bmb/ldab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The aim of treatment in inflammatory bowel disease (IBD) is to control symptoms and suppress gut inflammation with minimal systemic side effects. A large proportion of patients are either primary non-responders or lose response to currently licensed therapies. The development of monoclonal antibodies, blocking interleukin (IL)-12 and IL-23 pathways are a promising therapeutic advance. We review the data on IL12/23 inhibitors and emerging data on IL-23 inhibition in IBD treatment. SOURCES OF DATA This review is based on data published in peer-reviewed journals and clinical trials registry. AREAS OF AGREEMENT Ustekinumab is currently approved for managing corticosteroid and biologic refractory IBD patients with a favourable safety profile. AREAS OF CONTROVERSY Despite a growing therapeutic armamentarium and convergence on the role of biological therapies in patients with greater disease severity, there remains considerable uncertainty with selection and positioning of treatment. GROWING POINTS Efficacy data from clinical trials and a growing body of real-world data have established a role for IL12/23 inhibitor Ustekinumab in IBD. There is resurgent interest in IL-23 specificity and the potential for incremental benefit. The potential for IL-22 to act as a biomarker for IL-23 inhibitors has exciting implications for personalized medicine. AREAS TIMELY FOR DEVELOPING RESEARCH Head-to-head trials exploring efficacy and combination with other biologics with the potential for synergistic benefit are under investigation. Results of phase 3 trials with IL-23 inhibitors incorporating clinical, biochemical and endoscopic parameters and also exploring biomarkers as predictors of response are urgently needed.
Collapse
Affiliation(s)
- Gaurav B Nigam
- Milton Keynes University Hospital, Milton Keynes MK6 5LD, UK.,OUCAGS, University of Oxford, Oxford OX3 9DU, UK
| | - Jimmy K Limdi
- Section of Inflammatory Bowel Diseases, The Pennine Acute Hospitals NHS Trust, Manchester BL9 7TD, UK.,Manchester Academic Health Sciences, University of Manchester, Manchester M13 9NQ, UK
| |
Collapse
|
238
|
Svensson A, Jiwakanon J, Fossum C, Dalin AM. Expression of IL-23 in gilt endometrium and oviduct after insemination with seminal plasma, spermatozoa or semen extender. BMC Res Notes 2021; 14:221. [PMID: 34082830 PMCID: PMC8173867 DOI: 10.1186/s13104-021-05630-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/22/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Insemination with spermatozoa, seminal plasma and extender, cause a rapid inflammatory response in pig endometrium, characterized by an influx of neutrophils into the uterus. The transient inflammatory response to semen involves cytokine induction. Potential functions for Interleukin-23 (IL-23) in the inflammatory response to different insemination treatments were examined by studying mRNA expression and immunostaining in gilt oviduct and endometrium 35-40 h after insemination. Insemination was performed with seminal plasma (SP), spermatozoa (SPZ) without SP in the extender Beltsville thawing solution (BTS), or BTS alone. In control gilts an insemination catheter was inserted without anything being inseminated. RESULTS Results showed that IL-23 mRNA was expressed in oviduct and endometrium after insemination regardless of treatment. There was an approximate two- to fourfold increase in expression of IL-23 mRNA in catheter-insertion control compared with SPZ, SP and BTS treatment groups. IL-23 immunolabelling was detected in a small number of separate cells and in the sub-epithelial connective tissue of the endometrium, the endosalpinx of isthmus and infundibulum. CONCLUSION In conclusion, insemination with SP, SPZ in BTS, and BTS alone decreased the expression of IL-23 mRNA in the endometrium compared to catheter-insertion control, indicating a possible role for IL-23 in the inflammatory response after insemination in gilts.
Collapse
Affiliation(s)
- Anna Svensson
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | - Jatesada Jiwakanon
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.,Research Group for Animal Health Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Caroline Fossum
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Anne-Marie Dalin
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
239
|
Tiwari RK, Moin A, Rizvi SMD, Shahid SMA, Bajpai P. Modulating neuroinflammation in neurodegeneration-related dementia: can microglial toll-like receptors pull the plug? Metab Brain Dis 2021; 36:829-847. [PMID: 33704660 DOI: 10.1007/s11011-021-00696-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 01/13/2023]
Abstract
Neurodegeneration-associated dementia disorders (NADDs), namely Alzheimer and Parkinson diseases, are developed by a significant portion of the elderly population globally. Extensive research has provided critical insights into the molecular basis of the pathological advancements of these diseases, but an efficient curative therapy seems elusive. A common attribute of NADDs is neuroinflammation due to a chronic inflammatory response within the central nervous system (CNS), which is primarily modulated by microglia. This response within the CNS is positively regulated by cytokines, chemokines, secondary messengers or cyclic nucleotides, and free radicals. Microglia mediated immune activation is regulated by a positive feedback loop in NADDs. The present review focuses on evaluating the crosstalk between inflammatory mediators and microglia, which aggravates both the clinical progression and extent of NADDs by forming a persistent chronic inflammatory milieu within the CNS. We also discuss the role of the human gut microbiota and its effect on NADDs as well as the suitability of targeting toll-like receptors for an immunotherapeutic intervention targeting the deflation of an inflamed milieu within the CNS.
Collapse
Affiliation(s)
- Rohit Kumar Tiwari
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Syed Monowar Alam Shahid
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Preeti Bajpai
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
240
|
Razawy W, Alves CH, Koedam M, Asmawidjaja PS, Mus AMC, Oukka M, Leenen PJM, Visser JA, van der Eerden BCJ, Lubberts E. IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation. Sci Rep 2021; 11:10244. [PMID: 33986359 PMCID: PMC8119722 DOI: 10.1038/s41598-021-89625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
The IL-23 receptor (IL-23R) signaling pathway has pleiotropic effects on the differentiation of osteoclasts and osteoblasts, since it can inhibit or stimulate these processes via different pathways. However, the potential role of this pathway in the regulation of bone homeostasis remains elusive. Therefore, we studied the role of IL-23R signaling in physiological bone remodeling using IL-23R deficient mice. Using µCT, we demonstrate that 7-week-old IL-23R−/− mice have similar bone mass as age matched littermate control mice. In contrast, 12-week-old IL-23R−/− mice have significantly lower trabecular and cortical bone mass, shorter femurs and more fragile bones. At the age of 26 weeks, there were no differences in trabecular bone mass and femur length, but most of cortical bone mass parameters remain significantly lower in IL-23R−/− mice. In vitro osteoclast differentiation and resorption capacity of 7- and 12-week-old IL-23R−/− mice are similar to WT. However, serum levels of the bone formation marker, PINP, are significantly lower in 12-week-old IL-23R−/− mice, but similar to WT at 7 and 26 weeks. Interestingly, Il23r gene expression was not detected in in vitro cultured osteoblasts, suggesting an indirect effect of IL-23R. In conclusion, IL-23R deficiency results in temporal and long-term changes in bone growth via regulation of bone formation.
Collapse
Affiliation(s)
- Wida Razawy
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Celso H Alves
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research On Light and Image (AIBILI), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Patrick S Asmawidjaja
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Adriana M C Mus
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mohamed Oukka
- Department of Pediatrics, Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, USA.,Department of Immunology, University of Washington, Seattle, USA
| | - Pieter J M Leenen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands. .,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
241
|
Paiva IA, Badolato-Corrêa J, Familiar-Macedo D, de-Oliveira-Pinto LM. Th17 Cells in Viral Infections-Friend or Foe? Cells 2021; 10:cells10051159. [PMID: 34064728 PMCID: PMC8151546 DOI: 10.3390/cells10051159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Th17 cells are recognized as indispensable in inducing protective immunity against bacteria and fungi, as they promote the integrity of mucosal epithelial barriers. It is believed that Th17 cells also play a central role in the induction of autoimmune diseases. Recent advances have evaluated Th17 effector functions during viral infections, including their critical role in the production and induction of pro-inflammatory cytokines and in the recruitment and activation of other immune cells. Thus, Th17 is involved in the induction both of pathogenicity and immunoprotective mechanisms seen in the host's immune response against viruses. However, certain Th17 cells can also modulate immune responses, since they can secrete immunosuppressive factors, such as IL-10; these cells are called non-pathogenic Th17 cells. Here, we present a brief review of Th17 cells and highlight their involvement in some virus infections. We cover these notions by highlighting the role of Th17 cells in regulating the protective and pathogenic immune response in the context of viral infections. In addition, we will be describing myocarditis and multiple sclerosis as examples of immune diseases triggered by viral infections, in which we will discuss further the roles of Th17 cells in the induction of tissue damage.
Collapse
|
242
|
Łukasik Z, Gracey E, Venken K, Ritchlin C, Elewaut D. Crossing the boundaries: IL-23 and its role in linking inflammation of the skin, gut and joints. Rheumatology (Oxford) 2021; 60:iv16-iv27. [PMID: 33961030 PMCID: PMC8527243 DOI: 10.1093/rheumatology/keab385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Several lines of evidence point towards the central role of IL-23 as a crucial inflammatory mediator in the pathogenesis of SpA—a group of inflammatory arthritic diseases whose symptoms span the skin, gastrointestinal tract and joints. While therapeutic blockade of IL-23 proved successful in the treatment of IBD, psoriatic skin disease and peripheral SpA, it failed in patients suffering from SpA with predominantly axial involvement. Here we review state-of-the-art discoveries on IL-23 signalling pathways across target tissues involved in SpA. We discuss the discrepancies in resident IL-23–responding cells and their downstream activities across skin, gut and joint that shape the unique immunological landscape of SpA.
Collapse
Affiliation(s)
- Zuzanna Łukasik
- Department of Internal Medicine and Pediatrics, UZ Ghent, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent University, Belgium
| | - Eric Gracey
- Department of Internal Medicine and Pediatrics, UZ Ghent, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent University, Belgium
| | - Koen Venken
- Department of Internal Medicine and Pediatrics, UZ Ghent, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent University, Belgium
| | - Christopher Ritchlin
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Dirk Elewaut
- Department of Internal Medicine and Pediatrics, UZ Ghent, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent University, Belgium.,Ghent Gut Inflammation Group, Ghent University, Ghent, Belgium
| |
Collapse
|
243
|
Nitsch L, Petzinna S, Zimmermann J, Schneider L, Krauthausen M, Heneka MT, Getts DR, Becker A, Müller M. Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model. J Neuroinflammation 2021; 18:101. [PMID: 33906683 PMCID: PMC8080359 DOI: 10.1186/s12974-021-02140-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interleukin 23 is a critical cytokine in the pathogenesis of multiple sclerosis. But the local impact of interleukin 23 on the course of neuroinflammation is still not well defined. To further characterize the effect of interleukin 23 on CNS inflammation, we recently described a transgenic mouse model with astrocyte-specific expression of interleukin 23 (GF-IL23 mice). The GF-IL23 mice spontaneously develop a progressive ataxic phenotype with cerebellar tissue destruction and inflammatory infiltrates with high amounts of B cells most prominent in the subarachnoid and perivascular space. METHODS To further elucidate the local impact of the CNS-specific interleukin 23 synthesis in autoimmune neuroinflammation, we induced a MOG35-55 experimental autoimmune encephalomyelitis (EAE) in GF-IL23 mice and WT mice and analyzed the mice by histology, flow cytometry, and transcriptome analysis. RESULTS We were able to demonstrate that local interleukin 23 production in the CNS leads to aggravation and chronification of the EAE course with a severe paraparesis and an ataxic phenotype. Moreover, enhanced multilocular neuroinflammation was present not only in the spinal cord, but also in the forebrain, brainstem, and predominantly in the cerebellum accompanied by persisting demyelination. Thereby, interleukin 23 creates a pronounced proinflammatory response with accumulation of leukocytes, in particular B cells, CD4+ cells, but also γδ T cells and activated microglia/macrophages. Furthermore, transcriptome analysis revealed an enhanced proinflammatory cytokine milieu with upregulation of lymphocyte activation markers, co-stimulatory markers, chemokines, and components of the complement system. CONCLUSION Taken together, the GF-IL23 model allowed a further breakdown of the different mechanisms how IL-23 drives neuroinflammation in the EAE model and proved to be a useful tool to further dissect the impact of interleukin 23 on neuroinflammatory models.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.
| | - Simon Petzinna
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Julian Zimmermann
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Linda Schneider
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.,Department of Surgery, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Marius Krauthausen
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Albert Becker
- Department of Neuropathology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Marcus Müller
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.,School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
244
|
Abstract
PURPOSE OF REVIEW To give an overview of the recently published trials relating to IL-23/IL-17 pathway in spondyloarthritis (SpA). RECENT FINDINGS Recent studies in psoriasis confirmed the efficacy of targeting the IL-23/IL-17 pathway, with emerging evidence from head-to-head studies suggesting functional hierarchy of these inhibitors. In psoriatic arthritis (PsA), recent studies have indicated the efficacy of inhibiting IL-23p19, in addition to IL-23p40 and IL-17A, albeit all with lower hurdle results than those seen in psoriasis. The first head-to-head study of an IL-17A and tumour necrosis factor inhibitor in PsA has also recently been published. Recent studies have demonstrated the efficacy of the IL-17A inhibitor, ixekizumab, across the axial SpA spectrum. In contrast, inhibition of IL-12/IL-23p40 and IL-23p19 both failed in axial SpA. In inflammatory bowel disease (IBD), recent studies indicate efficacy of IL-23p40 and IL-23p19 inhibition, in contrast to the previous failed studies of IL-17 inhibition. SUMMARY Clinical trials of IL-23/IL-17 inhibition have been transformative in psoriasis, with more mixed results in PsA and differential responses in axial SpA and IBD. These results pose challenges to our fundamental understanding of SpA pathogenesis and further head-to-head studies and more subtle evaluation of the local tissue-specific aspects will be required.
Collapse
|
245
|
Arora S, Cooper PR, Friedlander LT, Rizwan S, Seo B, Rich AM, Hussaini HM. Potential application of immunotherapy for modulation of pulp inflammation: opportunities for vital pulp treatment. Int Endod J 2021; 54:1263-1274. [PMID: 33797765 DOI: 10.1111/iej.13524] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Caries results in the demineralization and destruction of enamel and dentine, and as the disease progresses, irreversible pulpitis can occur. Vital pulp therapy (VPT) is directed towards pulp preservation and the prevention of the progression of inflammation. The outcomes of VPT are not always predictable, and there is often a poor correlation between clinical signs and symptoms, and the events occurring at a molecular level. The inflamed pulp expresses increased levels of cytokines, including tumour necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-8, IL-17 and IL-23, which recruit and drive a complex cellular immune response. Chronic inflammation and sustained cytokine release can result in irreversible pulp damage and a decreased capacity for tissue healing. Other chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases and rheumatoid arthritis, are also characterized by an dysregulated immune response composed of relatively high cytokine levels and increased numbers of immune cells along with microbial and hard-soft tissue destructive pathologies. Whilst anti-cytokine therapies have been successfully applied in the treatment of these diseases, this approach is yet to be attempted in cases of pulp inflammation. This review therefore focuses on the similarities in the aetiology between chronic inflammatory diseases and pulpitis, and explores how anti-cytokine therapies could be applied to manage an inflamed pulp and facilitate healing. Further proof-of-concept studies and clinical trials are justified to determine the effectiveness of these treatments to enable more predictable outcomes in VPT.
Collapse
Affiliation(s)
- S Arora
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - P R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - L T Friedlander
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - S Rizwan
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - B Seo
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - A M Rich
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - H M Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
246
|
Tong X, Zheng Y, Li Y, Xiong Y, Chen D. Soluble ligands as drug targets for treatment of inflammatory bowel disease. Pharmacol Ther 2021; 226:107859. [PMID: 33895184 DOI: 10.1016/j.pharmthera.2021.107859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is characterized by persistent inflammation in a hereditarily susceptible host. In addition to gastrointestinal symptoms, patients with IBD frequently suffer from extra-intestinal complications such as fibrosis, stenosis or cancer. Mounting evidence supports the targeting of cytokines for effective treatment of IBD. Cytokines can be included in a newly proposed classification "soluble ligands" that has become the third major target of human protein therapeutic drugs after enzymes and receptors. Soluble ligands have potential significance for research and development of anti-IBD drugs. Compared with traditional drug targets for IBD treatment, such as receptors, at least three factors contribute to the increasing importance of soluble ligands as drug targets. Firstly, cytokines are the main soluble ligands and targeting of them has demonstrated efficacy in patients with IBD. Secondly, soluble ligands are more accessible than receptors, which are embedded in the cell membrane and have complex tertiary membrane structures. Lastly, certain potential target proteins that are present in membrane-bound forms can become soluble following cleavage, providing further opportunities for intervention in the treatment of IBD. In this review, 49 drugs targeting 25 distinct ligands have been evaluated, including consideration of the characteristics of the ligands and drugs in respect of IBD treatment. In addition to approved drugs targeting soluble ligands, we have also assessed drugs that are in preclinical research and drugs inhibiting ligand-receptor binding. Some new types of targetable soluble ligands/proteins, such as epoxide hydrolase and p-selectin glycoprotein ligand-1, are also introduced. Targeting soluble ligands not only opens a new field of anti-IBD drug development, but the circulating soluble ligands also provide diagnostic insights for early prediction of treatment response. In conclusion, soluble ligands serve as the third-largest protein target class in medicine, with much potential for the drugs targeting them.
Collapse
Affiliation(s)
- Xuhui Tong
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yuanyuan Zheng
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yu Li
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yongjian Xiong
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dapeng Chen
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China.
| |
Collapse
|
247
|
Correlations between alterations of T-helper 17 cells and treatment efficacy after concurrent radiochemotherapy in locally advanced cervical cancer (stage IIB-IIIB): a 3-year prospective study. Chin Med J (Engl) 2021; 134:954-962. [PMID: 33840740 PMCID: PMC8078340 DOI: 10.1097/cm9.0000000000001475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Recently, T-helper 17 (Th17) cells have been proved to play an important role in promoting cervical cancer. But, till now, few study has been carried out to understand the involvement of these cells in efficacy of anti-tumor treatments. This study aimed to investigate the alterations in the percentage of circulating Th17 cells and related cytokines in locally advanced cervical cancer (LACC) patients before and after concurrent chemoradiotherapy (cCRT) and to analyze the correlations between the alterations in Th17 cells and treatment efficacy. METHODS A prospective study with 49 LACC (International federation of gynecology and obstetrics [FIGO] stage IIB-IIIB) patients and 23 controls was conducted. Patients received the same cCRT schedule and were followed up for 3 years. Circulating Th17 cells (CD3+CD8- interleukin [IL]-17+ T cells) and related cytokines IL-17, transforming growth factor-β (TGF-β), IL-10, IL-23, IL-6, and IL-22 were detected before and after cCRT. Correlations between alterations of circulating Th17 cells and treatment efficacy were analyzed. Kaplan-Meier analysis was used for overall survival (OS) and progression-free survival (PFS). RESULTS We found that 40 patients finished the entire cCRT schedule and met the endpoint of this study. The percentage of circulating Th17 cells in the LACC patients was higher than that in the controls, and it significantly decreased after cCRT (P < 0.05). After cCRT, patients were divided into two groups based on the average of the Th17 cells declined. The subgroup of patients with a prominent decrease in circulating Th17 cells after cCRT had a higher treatment efficacy and longer PFS and OS times. Compared with the control patients, LACC patients had higher IL-6, IL-10, IL-22, TGF-β levels and a lower IL-23 level (P < 0.05). After cCRT, IL-6, IL-10, IL-17, IL-23 level significantly increased and TGF-β level significantly decreased compared with the levels before cCRT (P < 0.05). CONCLUSION Circulating Th17 cells in the LACC patients (FIGO stage IIB-IIIB) were higher than those in the controls, but they generally decreased after cCRT. A more pronounced decrease in circulating Th17 cells after cCRT was correlated with better therapeutic effect and longer PFS and OS times.
Collapse
|
248
|
Ultraviolet Radiation and Chronic Inflammation-Molecules and Mechanisms Involved in Skin Carcinogenesis: A Narrative Review. Life (Basel) 2021; 11:life11040326. [PMID: 33917793 PMCID: PMC8068112 DOI: 10.3390/life11040326] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
The process of skin carcinogenesis is still not fully understood. Both experimental and epidemiological evidence indicate that chronic inflammation is one of the hallmarks of microenvironmental-agent-mediated skin cancers and contributes to its development. Maintaining an inflammatory microenvironment is a condition leading to tumor formation. Multiple studies focus on the molecular pathways activating tumorigenesis by inflammation and indicate several biomarkers and factors that can improve diagnostic and prognostic processes in oncology and dermatology. Reactive oxygen species produced by ultraviolet radiation, oxidizers, or metabolic processes can damage cells and initiate pro-inflammatory cascades. Considering the potential role of inflammation in cancer development and metastasis, the identification of early mechanisms involved in carcinogenesis is crucial for clinical practice and scientific research. Moreover, it could lead to the progress of advanced skin cancer therapies. We focus on a comprehensive analysis of available evidence and on understanding how chronic inflammation and ultraviolet radiation can result in skin carcinogenesis. We present the inflammatory environment as complex molecular networks triggering tumorigenesis and constituting therapeutic targets.
Collapse
|
249
|
Nitsch L, Schneider L, Zimmermann J, Müller M. Microglia-Derived Interleukin 23: A Crucial Cytokine in Alzheimer's Disease? Front Neurol 2021; 12:639353. [PMID: 33897596 PMCID: PMC8058463 DOI: 10.3389/fneur.2021.639353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal cell death, amyloid β plaque formation and development of neurofibrillary tangles are among the characteristics of Alzheimer's disease (AD). In addition to neurodegeneration, inflammatory processes such as activation of microglia and astrocytes are crucial in the pathogenesis and progression of AD. Cytokines are essential immune mediators of the immune response in AD. Recent data suggest a role of interleukin 23 (IL-23) and its p40 subunit in the pathogenesis of AD and corresponding animal models, in particular concerning microglia activation and amyloid β plaque formation. Moreover, in animal models, the injection of anti-p40 antibodies resulted in reduced amyloid β plaque formation and improved cognitive performance. Here, we discuss the pathomechanism of IL-23 mediated inflammation and its role in AD.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Marcus Müller
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
250
|
Schmitt H, Neurath MF, Atreya R. Role of the IL23/IL17 Pathway in Crohn's Disease. Front Immunol 2021; 12:622934. [PMID: 33859636 PMCID: PMC8042267 DOI: 10.3389/fimmu.2021.622934] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) is a chronic relapsing disorder of the gastrointestinal tract and represents one of the main entities of inflammatory bowel disease (IBD). CD affects genetically susceptible patients that are influenced by environmental factors and the intestinal microbiome, which results in excessive activation of the mucosal immune system and aberrant cytokine responses. Various studies have implicated the pro-inflammatory cytokines IL17 and IL23 in the pathogenesis of CD. IL23 is a member of the IL12 family of cytokines and is able to enhance and affect the expansion of pathogenic T helper type 17 (Th17) cells through various mechanisms, including maintenance of Th17 signature genes, upregulation of effector genes or suppression of repressive factors. Moreover, IL17 and IL23 signaling is able to induce a cascade of pro-inflammatory molecules like TNF, IFNγ, IL22, lymphotoxin, IL1β and lipopolysaccharide (LPS). Here, IL17A and TNF are known to mediate signaling synergistically to drive expression of inflammatory genes. Recent advances in understanding the immunopathogenetic mechanisms underlying CD have led to the development of new biological therapies that selectively intervene and inhibit inflammatory processes caused by pro-inflammatory mediators like IL17 and IL23. Recently published data demonstrate that treatment with selective IL23 inhibitors lead to markedly high response rates in the cohort of CD patients that failed previous anti-TNF therapy. Macrophages are considered as a main source of IL23 in the intestine and are supposed to play a key role in the molecular crosstalk with T cell subsets and innate lymphoid cells in the gut. The following review focuses on mechanisms, pathways and specific therapies in Crohn's disease underlying the IL23/IL17 pathway.
Collapse
Affiliation(s)
- Heike Schmitt
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Markus F. Neurath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Raja Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|