201
|
Xu M, Lantz MJ, Nichols RA, Li QX. Anti-Neuroinflammatory Effects of a Semi-Synthetic Isoorientin-Based Glycogen Synthase Kinase-3β Inhibitor in Lipopolysaccharide-Activated Microglial Cells. ACS Chem Neurosci 2022; 13:43-52. [PMID: 34913695 DOI: 10.1021/acschemneuro.1c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neuroinflammation contributes to the pathogenesis of several neurodegenerative disorders. Glycogen synthase kinase-3β (GSK-3β) regulates the release of proinflammatory cytokines and promotes inflammatory responses in immune cells. Microglia are the resident mononuclear immune cells of the central nervous system. Here, we investigated the anti-neuroinflammatory effects of (2S,3S,4R,5R,6S)-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-3,4,5-trihydroxy-N-((S)-1,1,1-trifluoropropan-2-yl)tetrahydro-2H-pyran-2-carboxamide (TFGF-18), a semisynthetic GSK-3β inhibitor, in lipopolysaccharide (LPS) activation of spontaneously immortalized SIM-A9 microglial cells and of mouse cortical microglia. TFGF-18 at 2.5 μM concentration inhibited LPS-induced production of nitric oxide by 56.3% and the proinflammatory cytokines TNF-α and IL-1β by 28.3 and 59.2% in SIM-A9 cells, respectively, relative to the LPS treatment control group. Pretreatment of mouse primary microglial cells with TFGF-18 at 2.5 μM concentration led to a reduction of 58.7% in TNF-α+ microglial cells at 24 h post-LPS stimulation. The migration of LPS-activated SIM-A9 cells was also reduced by 26.7% with pretreatment of TFGF-18 in a scratch assay. Analyses of signaling pathways demonstrated that TFGF-18 led to the suppression of LPS-induced GSK-3β activation and p65/NF-κB activity. Furthermore, the co-culture of SIM-A9 with SH-SY5Y neuroblastoma cells showed the suppression of TFGF-18 to microglia-mediated neurotoxicity in vitro. The findings indicate strong inhibitory effects of TFGF-18 on LPS-induced microglia activation via regulation of GSK-3β and downstream p65/NF-κB signaling. The results suggest a potential role of TFGF-18 in neuroprotection via its anti-neuroinflammatory effect.
Collapse
Affiliation(s)
- Meng Xu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Megan J. Lantz
- Department of Cell & Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, United States
| | - Robert A. Nichols
- Department of Cell & Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, United States
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| |
Collapse
|
202
|
Abdelhamid M, Zhou C, Ohno K, Kuhara T, Taslima F, Abdullah M, Jung CG, Michikawa M. Probiotic Bifidobacterium breve Prevents Memory Impairment Through the Reduction of Both Amyloid-β Production and Microglia Activation in APP Knock-In Mouse. J Alzheimers Dis 2022; 85:1555-1571. [PMID: 34958017 PMCID: PMC8925106 DOI: 10.3233/jad-215025] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Probiotic supplementation reestablishes microbiome diversity and improves brain function in Alzheimer's disease (AD); their molecular mechanisms, however, have not yet been fully illustrated. OBJECTIVE We investigated the effects of orally supplemented Bifidobacterium breve MCC1274 on cognitive function and AD-like pathologies in AppNL-G-F mice. METHODS Three-month-old AppNL-G-F mice were orally supplemented with B. breve MCC1274 for four months. The short-term memory function was evaluated using a novel object recognition test. Amyloid plaques, amyloid-β (Aβ) levels, Aβ fibril, amyloid-β protein precursor and its processing enzymes, its metabolic products, glial activity, and cell proliferation in the subgranular zone of the dentate gyrus were evaluated by immunohistochemistry, Aβ ELISA, western blotting, and immunofluorescence staining. The mRNA expression levels of pro- and anti-inflammatory cytokines were determined by qRT-PCR analysis. RESULTS We found that the oral B. breve MCC1 274 supplementation prevented memory impairment in AppNL-G-F mice and decreased hippocampal Aβ levels through the enhancement of the a-disintegrin and metalloproteinase 10 (ADAM10) level. Moreover, administration of the probiotic activated the ERK/HIF-1α signaling pathway responsible for increasing the ADAM10 level and also attenuated microglial activation, which in turn led to reduction in the mRNA expression levels of pro-inflammatory cytokines in the brain. In addition, B. breve MCC1274 supplementation increased the level of synaptic proteins in the hippocampus. CONCLUSION Our findings support the possibility that oral B. breve MCC1274 supplementation might be used as a potential preventive therapy for AD progression.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuya Ohno
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Tetsuya Kuhara
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Ferdous Taslima
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mohammad Abdullah
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Cha-Gyun Jung
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
203
|
McAlpin BR, Mahalingam R, Singh AK, Dharmaraj S, Chrisikos TT, Boukelmoune N, Kavelaars A, Heijnen CJ. HDAC6 inhibition reverses long-term doxorubicin-induced cognitive dysfunction by restoring microglia homeostasis and synaptic integrity. Theranostics 2022; 12:603-619. [PMID: 34976203 PMCID: PMC8692908 DOI: 10.7150/thno.67410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common female malignancy in both the developed and developing world. Doxorubicin is one of the most commonly used chemotherapies for breast cancer. Unfortunately, up to 60% of survivors report long-term chemotherapy-induced cognitive dysfunction (CICD) characterized by deficits in working memory, processing speed and executive function. Currently, no therapeutic standard for treating CICD exists. Here, we hypothesized that treatment with a blood-brain barrier permeable histone deacetylase 6 (HDAC6) inhibitor can successfully reverse long-term doxorubicin-induced cognitive dysfunction. Methods: The puzzle box test and novel object/place recognition test were used to assess cognitive function following a therapeutic doxorubicin dosing schedule in female mice. Mitochondrial function and morphology in neuronal synaptosomes were evaluated using the Seahorse XF24 extracellular flux analyzer and transmission electron microscopy, respectively. Hippocampal postsynaptic integrity was evaluated using immunofluorescence. Hippocampal microglia phenotype was determined using advanced imaging techniques and single-nucleus RNA sequencing. Results: A 14-day treatment with a blood-brain barrier permeable HDAC6 inhibitor successfully reversed long-term CICD in the domains of executive function, working and spatial memory. No significant changes in mitochondrial function or morphology in neuronal synaptosomes were detected. Long-term CICD was associated with a decreased expression of postsynaptic PSD95 in the hippocampus. These changes were associated with decreased microglial ramification and alterations in the microglia transcriptome that suggest a stage 1 disease-associated microglia (DAM) phenotype. HDAC6 inhibition completely reversed these doxorubicin-induced alterations, indicating a restoration of microglial homeostasis. Conclusion: Our results show that decreased postsynaptic integrity and a neurodegenerative microglia phenotype closely resembling stage 1 DAM microglia contribute to long-term CICD. Moreover, HDAC6 inhibition shows promise as an efficacious pharmaceutical intervention to alleviate CICD and improve quality of life of breast cancer survivors.
Collapse
Affiliation(s)
- Blake R McAlpin
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rajasekaran Mahalingam
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anand K Singh
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shruti Dharmaraj
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- ✉ Corresponding author: Cobi J. Heijnen, Ph.D., 6565 MD Anderson Blvd., Zayed Building Z8.5034, Houston, Texas 77030, Phone 713-563-0162,
| |
Collapse
|
204
|
Li H, Chen W, Gou M, Li W, Tong J, Zhou Y, Xie T, Yu T, Feng W, Li Y, Chen S, Tian B, Tan S, Wang Z, Pan S, Li N, Luo X, Zhang P, Huang J, Tian L, Li CSR, Tan Y. The relationship between TLR4/NF-κB/IL-1β signaling, cognitive impairment, and white-matter integrity in patients with stable chronic schizophrenia. Front Psychiatry 2022; 13:966657. [PMID: 36051545 PMCID: PMC9424630 DOI: 10.3389/fpsyt.2022.966657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Previous studies have implicated intricate interactions between innate immunity and the brain in schizophrenia. Monocytic Toll-like receptor (TLR) 4 signaling, a crucial "sensor" of innate immunity, was reported to be over-activated in link with cognitive impairment in schizophrenia. As TLR4 is predominantly expressed on gliocytes prior to expression in neurons, we hypothesized that higher TLR4 levels may contribute to cognitive deterioration by affecting white matter microstructure. METHODS Forty-four patients with stable chronic schizophrenia (SCS) and 59 healthy controls (HCs) were recruited in this study. The monocytic function was detected with lipopolysaccharide (LPS) stimulation to simulate bacterial infection. Basal and LPS- stimulated levels of TLR4, nuclear factor-kappa B (NF-κB), and interleukin (IL)-1β were quantified with flow cytometry. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB) and psychopathological symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). We employed diffusion tensor imaging with a 3-T scanner and evaluated white-matter integrity with fractional anisotropy (FA). Subcortical volume and cortical thickness were also assessed. RESULTS The TLR4/NF-κB/IL-1β signaling pathway was activated in patients with SCS, but responded sluggishly to LPS stimulation when compared with HCs. Furthermore, monocytic TLR4 expressions were inversely correlated with cognitive function and white matter FA, but not with cortical thickness or subcortical gray matter volume in schizophrenia. CONCLUSION Our findings support altered TLR4 signaling pathway activity in association with deficits in cognition and white matter integrity in schizophrenia.
Collapse
Affiliation(s)
- Hongna Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Xie
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Na Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
205
|
WANG F, CHO BO, SHIN JY, HAO S, JANG SI. Anti-neuroinflammatory activity of Humulus japonicus extract and its active compound luteolin on lipopolysaccharide-induced inflammatory response in SIM-A9 microglia via NF-κB and MAPK signaling pathways. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.78621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Feng WANG
- Jeonju University, Republic of Korea; Yuncheng University, PR, China
| | - Byoung Ok CHO
- Jeonju University, Republic of Korea; Ato Q&A Co., LTD, Republic of Korea
| | - Jae Young SHIN
- Jeonju University, Republic of Korea; Ato Q&A Co., LTD, Republic of Korea
| | | | - Seon Il JANG
- Jeonju University, Republic of Korea; Jeonju University, Republic of Korea; Ato Q&A Co., LTD, Republic of Korea
| |
Collapse
|
206
|
Brumberg J, Varrone A. New PET radiopharmaceuticals for imaging CNS diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
207
|
Berdowski WM, van der Linde HC, Breur M, Oosterhof N, Beerepoot S, Sanderson L, Wijnands LI, de Jong P, Tsai-Meu-Chong E, de Valk W, de Witte M, van IJcken WFJ, Demmers J, van der Knaap MS, Bugiani M, Wolf NI, van Ham TJ. Dominant-acting CSF1R variants cause microglial depletion and altered astrocytic phenotype in zebrafish and adult-onset leukodystrophy. Acta Neuropathol 2022; 144:211-239. [PMID: 35713703 PMCID: PMC9288387 DOI: 10.1007/s00401-022-02440-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Tissue-resident macrophages of the brain, including microglia, are implicated in the pathogenesis of various CNS disorders and are possible therapeutic targets by their chemical depletion or replenishment by hematopoietic stem cell therapy. Nevertheless, a comprehensive understanding of microglial function and the consequences of microglial depletion in the human brain is lacking. In human disease, heterozygous variants in CSF1R, encoding the Colony-stimulating factor 1 receptor, can lead to adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) possibly caused by microglial depletion. Here, we investigate the effects of ALSP-causing CSF1R variants on microglia and explore the consequences of microglial depletion in the brain. In intermediate- and late-stage ALSP post-mortem brain, we establish that there is an overall loss of homeostatic microglia and that this is predominantly seen in the white matter. By introducing ALSP-causing missense variants into the zebrafish genomic csf1ra locus, we show that these variants act dominant negatively on the number of microglia in vertebrate brain development. Transcriptomics and proteomics on relatively spared ALSP brain tissue validated a downregulation of microglia-associated genes and revealed elevated astrocytic proteins, possibly suggesting involvement of astrocytes in early pathogenesis. Indeed, neuropathological analysis and in vivo imaging of csf1r zebrafish models showed an astrocytic phenotype associated with enhanced, possibly compensatory, endocytosis. Together, our findings indicate that microglial depletion in zebrafish and human disease, likely as a consequence of dominant-acting pathogenic CSF1R variants, correlates with altered astrocytes. These findings underscore the unique opportunity CSF1R variants provide to gain insight into the roles of microglia in the human brain, and the need to further investigate how microglia, astrocytes, and their interactions contribute to white matter homeostasis.
Collapse
Affiliation(s)
- Woutje M. Berdowski
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Herma C. van der Linde
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marjolein Breur
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Nynke Oosterhof
- grid.4494.d0000 0000 9558 4598European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shanice Beerepoot
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Leslie Sanderson
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lieve I. Wijnands
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Patrick de Jong
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Elisa Tsai-Meu-Chong
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Walter de Valk
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Moniek de Witte
- grid.7692.a0000000090126352Hematology Department, University Medical Center, Utrecht, The Netherlands
| | - Wilfred F. J. van IJcken
- grid.5645.2000000040459992XCenter for Biomics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Demmers
- grid.5645.2000000040459992XProteomics Center, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Marjo S. van der Knaap
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marianna Bugiani
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Nicole I. Wolf
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tjakko J. van Ham
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
208
|
Fragas MG, Oliveira DMD, Hiyane MI, Braga TT, Camara NOS. The dual effect of acetate on microglial TNF-α production. Clinics (Sao Paulo) 2022; 77:100062. [PMID: 35779458 PMCID: PMC9254000 DOI: 10.1016/j.clinsp.2022.100062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Short-Chain Fatty Acids (SCFA) are products of intestinal microbial metabolism that can reach the brain and alter microglia in health and disease contexts. However, data are conflicting on the effect of acetate, the most abundant SCFA in the blood, in these cells. OBJECTIVE The authors aimed to investigate acetate as a modulator of the inflammatory response in microglia stimulated with LPS. METHOD The authors used an immortalized cell line, C8-B4, and primary cells for in vitro treatments with acetate and LPS. Cell viability was analyzed by MTT, cytokine by RT-PCR, ELISA, and flow cytometry. The authors also performed in vivo and in silico analyses to study the role of acetate and the TNF-α contribution to the development of Experimental Autoimmune Encephalomyelitis (EAE). RESULTS Acetate co-administered with LPS was able to exacerbate the production of pro-inflammatory cytokines at gene and protein levels in cell lines and primary culture of microglia. However, the same effects were not observed when acetate was administered alone or as pretreatment, prior to the LPS stimulus. Additionally, pharmacological inhibition of histone deacetylase concomitantly with acetate and LPS led to decreased TNF-α production. In silico analysis showed a crucial role of the TNF-α pathway in EAE development. Moreover, acetate administration in vivo during the initial phase of EAE led to a better disease outcome and reduced TNF-α production. CONCLUSION Treatment with acetate was able to promote the production of TNF-α in a concomitant LPS stimulus of microglia. However, the immune modulation of microglia by acetate pretreatment may be a component in the generation of future therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Matheus Garcia Fragas
- Department of Immunology, Instituto de Ciências Biomédicas (ICB IV), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniel May de Oliveira
- Department of Immunology, Instituto de Ciências Biomédicas (ICB IV), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Meire Ioshie Hiyane
- Department of Immunology, Instituto de Ciências Biomédicas (ICB IV), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tarcio Teodoro Braga
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba, PR, Brazil; Biosciences and Biotechnology Graduation Program, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba, PR, Brazil.
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Instituto de Ciências Biomédicas (ICB IV), Universidade de São Paulo, São Paulo, SP, Brazil; Nephrology Division, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
209
|
He Q, Ma Y, Liu J, Zhang D, Ren J, Zhao R, Chang J, Guo ZN, Yang Y. Biological Functions and Regulatory Mechanisms of Hypoxia-Inducible Factor-1α in Ischemic Stroke. Front Immunol 2021; 12:801985. [PMID: 34966392 PMCID: PMC8710457 DOI: 10.3389/fimmu.2021.801985] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is caused by insufficient cerebrovascular blood and oxygen supply. It is a major contributor to death or disability worldwide and has become a heavy societal and clinical burden. To date, effective treatments for ischemic stroke are limited, and innovative therapeutic methods are urgently needed. Hypoxia inducible factor-1α (HIF-1α) is a sensitive regulator of oxygen homeostasis, and its expression is rapidly induced after hypoxia/ischemia. It plays an extensive role in the pathophysiology of stroke, including neuronal survival, neuroinflammation, angiogenesis, glucose metabolism, and blood brain barrier regulation. In addition, the spatiotemporal expression profile of HIF-1α in the brain shifts with the progression of ischemic stroke; this has led to contradictory findings regarding its function in previous studies. Therefore, unveiling the Janus face of HIF-1α and its target genes in different type of cells and exploring the role of HIF-1α in inflammatory responses after ischemia is of great importance for revealing the pathogenesis and identifying new therapeutic targets for ischemic stroke. Herein, we provide a succinct overview of the current approaches targeting HIF-1α and summarize novel findings concerning HIF-1α regulation in different types of cells within neurovascular units, including neurons, endothelial cells, astrocytes, and microglia, during the different stages of ischemic stroke. The current representative translational approaches focused on neuroprotection by targeting HIF-1α are also discussed.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yinzhong Ma
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dianhui Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jiaxin Ren
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ruoyu Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - JunLei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
210
|
Ganguli S, Chavali PL. Corrigendum: Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:817697. [PMID: 34955742 PMCID: PMC8707729 DOI: 10.3389/fnins.2021.817697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fnins.2021.771557.].
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
211
|
Timmerman R, Zuiderwijk-Sick EA, Oosterhof N, 't Jong AEJ, Veth J, Burm SM, van Ham TJ, Bajramovic JJ. Transcriptome analysis reveals the contribution of oligodendrocyte and radial glia-derived cues for maintenance of microglia identity. Glia 2021; 70:728-747. [PMID: 34961968 DOI: 10.1002/glia.24136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-β as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-β has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke E J 't Jong
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Saskia M Burm
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
212
|
Li J, Wu GR, Li B, Fan F, Zhao X, Meng Y, Zhong P, Yang S, Biswal BB, Chen H, Liao W. Transcriptomic and macroscopic architectures of intersubject functional variability in human brain white-matter. Commun Biol 2021; 4:1417. [PMID: 34931033 PMCID: PMC8688465 DOI: 10.1038/s42003-021-02952-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Intersubject variability is a fundamental characteristic of brain organizations, and not just "noise". Although intrinsic functional connectivity (FC) is unique to each individual and varies across brain gray-matter, the underlying mechanisms of intersubject functional variability in white-matter (WM) remain unknown. This study identified WMFC variabilities and determined the genetic basis and macroscale imaging in 45 healthy subjects. The functional localization pattern of intersubject variability across WM is heterogeneous, with most variability observed in the heteromodal cortex. The variabilities of heteromodal regions in expression profiles of genes are related to neuronal cells, involved in synapse-related and glutamic pathways, and associated with psychiatric disorders. In contrast, genes overexpressed in unimodal regions are mostly expressed in glial cells and were related to neurological diseases. Macroscopic variability recapitulates the functional and structural specializations and behavioral phenotypes. Together, our results provide clues to intersubject variabilities of the WMFC with convergent transcriptomic and cellular signatures, which relate to macroscale brain specialization.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, 400715, P.R. China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Feiyang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Xiaopeng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Peng Zhong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07103, USA
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| |
Collapse
|
213
|
TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat Neurosci 2021; 25:26-38. [PMID: 34916658 PMCID: PMC8741737 DOI: 10.1038/s41593-021-00975-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Triggering receptor expressed on myeloid cell 2 (TREM2) is linked to neurodegenerative disease risk. However, the function of TREM2 in neurodegeneration is still not fully understood. Here we investigated the role of microglial TREM2 in TAR-DNA binding protein 43 kDa (TDP-43)-related neurodegeneration using viral-mediated and transgenic mouse models. We found that TREM2 deficiency impaired phagocytic clearance of pathological TDP-43 by microglia, and enhanced neuronal damage and motor impairments. Mass cytometry analysis revealed that hTDP-43 induced a TREM2-dependent subpopulation of microglia with high CD11c expression and phagocytic ability. Using mass spectrometry and surface plasmon resonance analysis, we further demonstrated an interaction between TDP-43 and TREM2 in vitro and in vivo as well as in ALS patient tissues. We computationally identified regions within hTDP-43 that interact with TREM2. Our data highlights that TDP-43 is a possible ligand for microglial TREM2 and that this interaction mediates neuroprotection of microglia in TDP-43-related neurodegeneration.
Collapse
|
214
|
Zou J, Huang GF, Xia Q, Li X, Shi J, Sun N. Electroacupuncture promotes microglial M2 polarization in ischemic stroke via annexin A1. Acupunct Med 2021; 40:258-267. [PMID: 34894768 DOI: 10.1177/09645284211057570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neuroinflammation is the leading cause of neurological sequelae in ischemic stroke. Recently, we reported that the anti-inflammatory mediator annexin A1 (ANXA1) favored microglial M2 polarization in brain injury. The purpose of this study was to investigate electroacupuncture (EA) treatment and its potentially ANXA1-mediated anti-inflammatory effects in the middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model of stroke. METHODS Treatment with EA consisted of dense-sparse frequencies (alternating 4 Hz sparse waves for 1.5 s and 16 Hz dense waves for 1.5 s) at CV24 and GV26. Intracerebroventricular (ICV) injection of Boc-2 (5 µM) or short hairpin RNA (sh)ANXA1 (2 µL) 3 days before EA was performed to block the effects of ANXA1. RESULTS EA pretreatment enhanced expression of ANXA1 and its receptor, formyl peptide receptor (FPR), when compared to MCAO/R alone. EA treatment also rescued MCAO/R-induced deficits in neurological performance, and learning and memory, and reduced infarct volume. Double immunofluorescent labeling showed that EA prevented MCAO/R-induced changes in microglial activation and morphology. EA also reduced the release of pro-inflammatory cytokines, such as interleukin (IL)-1β, inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α, while increasing the release of anti-inflammatory cytokines, such as arginase-1 (Arg-1) and brain-derived neurotrophic factor (BDNF). All EA-induced effects were either partially or completely prevented by prior administration of FPR antagonist Boc-2 or shANXA1. CONCLUSION The current study provides strong evidence that EA treatment has protective effects against ischemic stroke in the MCAO/R mouse model and that the mechanism likely involves the promotion of M2 polarization in microglia via ANXA1.
Collapse
Affiliation(s)
- Jing Zou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Fu Huang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Sun
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
215
|
Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, Paula-Lima AC, Díaz-Zúñiga J. Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis With Neurodegenerative Diseases. FRONTIERS IN AGING 2021; 2:781582. [PMID: 35822001 PMCID: PMC9261337 DOI: 10.3389/fragi.2021.781582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Periodontitis is considered a non-communicable chronic disease caused by a dysbiotic microbiota, which generates a low-grade systemic inflammation that chronically damages the organism. Several studies have associated periodontitis with other chronic non-communicable diseases, such as cardiovascular or neurodegenerative diseases. Besides, the oral bacteria considered a keystone pathogen, Porphyromonas gingivalis, has been detected in the hippocampus and brain cortex. Likewise, gut microbiota dysbiosis triggers a low-grade systemic inflammation, which also favors the risk for both cardiovascular and neurodegenerative diseases. Recently, the existence of an axis of Oral-Gut communication has been proposed, whose possible involvement in the development of neurodegenerative diseases has not been uncovered yet. The present review aims to compile evidence that the dysbiosis of the oral microbiota triggers changes in the gut microbiota, which creates a higher predisposition for the development of neuroinflammatory or neurodegenerative diseases.The Oral-Gut-Brain axis could be defined based on anatomical communications, where the mouth and the intestine are in constant communication. The oral-brain axis is mainly established from the trigeminal nerve and the gut-brain axis from the vagus nerve. The oral-gut communication is defined from an anatomical relation and the constant swallowing of oral bacteria. The gut-brain communication is more complex and due to bacteria-cells, immune and nervous system interactions. Thus, the gut-brain and oral-brain axis are in a bi-directional relationship. Through the qualitative analysis of the selected papers, we conclude that experimental periodontitis could produce both neurodegenerative pathologies and intestinal dysbiosis, and that periodontitis is likely to induce both conditions simultaneously. The severity of the neurodegenerative disease could depend, at least in part, on the effects of periodontitis in the gut microbiota, which could strengthen the immune response and create an injurious inflammatory and dysbiotic cycle. Thus, dementias would have their onset in dysbiotic phenomena that affect the oral cavity or the intestine. The selected studies allow us to speculate that oral-gut-brain communication exists, and bacteria probably get to the brain via trigeminal and vagus nerves.
Collapse
Affiliation(s)
- Luis Daniel Sansores-España
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Faculty of Dentistry, Autonomous University of Yucatán, Mérida, México
| | | | | | - Emilio A. Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica Del Sur, Lima, Perú
| | | | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Medicine, Faculty of Medicine, University of Atacama, Copiapó, Chile
- *Correspondence: Jaime Díaz-Zúñiga, ,
| |
Collapse
|
216
|
Hudson N, Campbell M. Tight Junctions of the Neurovascular Unit. Front Mol Neurosci 2021; 14:752781. [PMID: 34867185 PMCID: PMC8640090 DOI: 10.3389/fnmol.2021.752781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The homeostatic balance of the brain and retina is maintained by the presence of the blood-brain and inner blood-retinal barrier (BBB/iBRB, respectively) which are highly specialized barriers. Endothelial cells forming the lining of these blood vessels are interconnected by the presence of tight junctions which form the BBB and iBRB. These tight junctions, formed of numerous interacting proteins, enable the entry of molecules into neural tissues while restricting the entry of harmful material such as anaphylatoxins, bacteria and viruses. If the tight junction complex becomes dysregulated due to changes in expression levels of one or more of the components, this can have detrimental effects leading to brain and retinal pathology.
Collapse
Affiliation(s)
- Natalie Hudson
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, Ireland
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, Ireland
| |
Collapse
|
217
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
218
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
219
|
Fomina AF, Nguyen HM, Wulff H. Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling. Channels (Austin) 2021; 15:67-78. [PMID: 33356832 PMCID: PMC7781540 DOI: 10.1080/19336950.2020.1853943] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023] Open
Abstract
In the last 5 years inhibitors of the potassium channel KV1.3 have been shown to reduce neuroinflammation in rodent models of ischemic stroke, Alzheimer's disease, Parkinson's disease and traumatic brain injury. At the systemic level these beneficial actions are mediated by a reduction in microglia activation and a suppression of pro-inflammatory cytokine and nitric oxide production. However, the molecular mechanisms for the suppressive action of KV1.3 blockers on pro-inflammatory microglia functions was not known until our group recently demonstrated that KV1.3 channels not only regulate membrane potential, as would be expected of a voltage-gated potassium channel, but also play a crucial role in enabling microglia to resist depolarizations produced by the danger signal ATP thus regulating calcium influx through P2X4 receptors. We here review the role of KV1.3 in microglial signaling and show that, similarly to their role in T cells, KV1.3 channels also regulated store-operated calcium influx in microglia.
Collapse
Affiliation(s)
- Alla F. Fomina
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Hai M. Nguyen
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
220
|
Dyne E, Cawood M, Suzelis M, Russell R, Kim MH. Ultrastructural analysis of the morphological phenotypes of microglia associated with neuroinflammatory cues. J Comp Neurol 2021; 530:1263-1275. [PMID: 34773250 DOI: 10.1002/cne.25274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
Microglia are the primary resident immune cells of the central nervous system that are responsible for the maintenance of brain homeostasis. There is a plethora of evidence to suggest that microglia display distinct phenotypes that are associated with the alteration of cell morphology under varying environmental cues. However, it has not been fully explored how the varying states of microglial activation are linked to the alteration of microglia morphology, especially in the microdomain. The objective of this study was to quantitatively characterize the ultrastructural morphology of human microglia under neuroinflammatory cues. To address this, a human cell line of microglia was stimulated by antiinflammatory (IL-4), proinflammatory (TNF-α), and Alzheimer's disease (AD)-associated cues (Aβ, Aβ + TNF-α). The resulting effects on microglia morphology associated with changes in microdomain were analyzed using a high-resolution scanning electron microscopy. Our findings demonstrated that microglial activation under proinflammatory and AD-cues were closely linked to changes not only in cell shape but also in cell surface topography and higher-order branching of processes. Furthermore, our results revealed that microglia under proinflammatory cues exhibited unique morphological features involving cell-to-cell contact and the formation of vesicle-like structures. Our study provides insight into the fine details of microglia morphology associated with varying status of microglial activation.
Collapse
Affiliation(s)
- Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Meghan Cawood
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Matthew Suzelis
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Reagan Russell
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
221
|
Shafiei-Irannejad V, Abbaszadeh S, Janssen PML, Soraya H. Memantine and its benefits for cancer, cardiovascular and neurological disorders. Eur J Pharmacol 2021; 910:174455. [PMID: 34461125 DOI: 10.1016/j.ejphar.2021.174455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that was initially indicated for the treatment of moderate to severe Alzheimer's disease. It is now also considered for a variety of other pathologies in which activation of NMDA receptors apparently contributes to the pathogenesis and progression of disease. In addition to the central nervous system (CNS), NMDA receptors can be found in non-neuronal cells and tissues that recently have become an interesting research focus. Some studies have shown that glutamate signaling plays a role in cell transformation and cancer progression. In addition, these receptors may play a role in cardiovascular disorders. In this review, we focus on the most recent findings for memantine with respect to its pharmacological effects in a range of diseases, including inflammatory disorders, cardiovascular diseases, cancer, neuropathy, as well as retinopathy.
Collapse
Affiliation(s)
- Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Hamid Soraya
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
222
|
Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer's disease: a valuable target to stimulate or suppress? Cell Stress Chaperones 2021; 26:871-887. [PMID: 34386944 PMCID: PMC8578535 DOI: 10.1007/s12192-021-01231-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Among the long list of age-related complications, Alzheimer's disease (AD) has the most dreadful impact on the quality of life due to its devastating effects on memory and cognitive abilities. Although a plausible correlation between the phosphatidylinositol 3-kinase (PI3K) signaling and different processes involved in neurodegeneration has been evidenced, few articles reviewed the task. The current review aims to unravel the mechanisms by which the PI3K pathway plays pro-survival roles in normal conditions, and also to discuss the original data obtained from international research laboratories on this topic. Responses to questions on how alterations of the PI3K/Akt signaling pathway affect Tau phosphorylation and the amyloid cascade are given. In addition, we provide a general overview of the association between oxidative stress, neuroinflammation, alterations of insulin signaling, and altered autophagy with aberrant activation of this axis in the AD brain. The last section provides a special focus on the therapeutic possibility of the PI3K/Akt/mTOR modulators, either categorized as chemicals or herbals, in AD. In conclusion, determining the correct timing for the administration of the drugs seems to be one of the most important factors in the success of these agents. Also, the role of the PI3K/Akt signaling axis in the progression or repression of AD widely depends on the context of the cells; generally speaking, while PI3K/Akt activation in neurons and neural stem cells is favorable, its activation in microglia cells may be harmful.
Collapse
Affiliation(s)
- Elham Razani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Zoghi
- Department of Neurology, School of Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Shanaki-Bavarsad
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
223
|
Bohnert S, Georgiades K, Monoranu CM, Bohnert M, Büttner A, Ondruschka B. Quantitative evidence of suppressed TMEM119 microglial immunohistochemistry in fatal morphine intoxications. Int J Legal Med 2021; 135:2315-2322. [PMID: 34553260 PMCID: PMC8523458 DOI: 10.1007/s00414-021-02699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
The aim of this pilot study was to investigate the diagnostic potential of TMEM119 as a useful microglia-specific marker in combination with immunostainings for phagocytic function and infiltrating capacity of monocytes in cases of lethal monosubstance intoxications by morphine (MOR), methamphetamine (METH), and of ethanol-associated death (ETH) respectively. Human brain tissue samples were obtained from forensic autopsies of cases with single substance abuse (MOR, n = 8; ETH, n = 10; METH, n = 9) and then compared to a cohort of cardiovascular fatalities as controls (n = 9). Brain tissue samples of cortex, white matter, and hippocampus were collected and stained immunohistochemically with antibodies against TMEM119, CD68KiM1P, and CCR2. We could document the lowest density of TMEM119-positive cells in MOR deaths with highly significant differences to the control densities in all three regions investigated. In ETH and METH deaths, the expression of TMEM119 was comparable to cell densities in controls. The results indicate that the immunoreaction in brain tissue is different in these groups depending on the drug type used for abuse.
Collapse
Affiliation(s)
- Simone Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany.
| | - Kosmas Georgiades
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Wuerzburg, Josef-Schneider Str. 2, 97080, Wuerzburg, Germany
| | - Michael Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| | - Andreas Büttner
- Institute of Legal Medicine, Rostock University Medical Center, St.-Georg-Strasse 108, 18055, Rostock, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| |
Collapse
|
224
|
Komleva YK, Potapenko IV, Lopatina OL, Gorina YV, Chernykh A, Khilazheva ED, Salmina AB, Shuvaev AN. NLRP3 Inflammasome Blocking as a Potential Treatment of Central Insulin Resistance in Early-Stage Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111588. [PMID: 34769018 PMCID: PMC8583950 DOI: 10.3390/ijms222111588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disorder. In recent years, attention of researchers has increasingly been focused on studying the role of brain insulin resistance (BIR) in the AD pathogenesis. Neuroinflammation makes a significant contribution to the BIR due to the activation of NLRP3 inflammasome. This study was devoted to the understanding of the potential therapeutic roles of the NLRP3 inflammasome in neurodegeneration occurring concomitant with BIR and its contribution to the progression of emotional disorders. METHODS To test the impact of innate immune signaling on the changes induced by Aβ1-42 injection, we analyzed animals carrying a genetic deletion of the Nlrp3 gene. Thus, we studied the role of NLRP3 inflammasomes in health and neurodegeneration in maintaining brain insulin signaling using behavioral, electrophysiological approaches, immunohistochemistry, ELISA and real-time PCR. RESULTS We revealed that NLRP3 inflammasomes are required for insulin-dependent glucose transport in the brain and memory consolidation. Conclusions NLRP3 knockout protects mice against the development of BIR: Taken together, our data reveal the protective role of Nlrp3 deletion in the regulation of fear memory and the development of Aβ-induced insulin resistance, providing a novel target for the clinical treatment of this disorder.
Collapse
Affiliation(s)
- Yulia K. Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
- Correspondence:
| | - Ilia V. Potapenko
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Olga L. Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Shared Research Center for Molecular and Cellular Technologies, 660022 Krasnoyarsk, Russia
| | - Yana V. Gorina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Anatoly Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Elena D. Khilazheva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Alla B. Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
- Laboratory of Experimental Brain Cytology, Division of Brain Sciences, Research Center of Neurology, 125367 Moscow, Russia
| | - Anton N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| |
Collapse
|
225
|
Yang P, Chen L, Shi Y, Zhou F, Tian H, Li J, Gao L. Progesterone alters the activation and typing of the microglia in the optic nerve crush model. Exp Eye Res 2021; 212:108805. [PMID: 34699875 DOI: 10.1016/j.exer.2021.108805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Microglia have a protective effect on the central nervous system (CNS), but their over-proliferation can cause secondary injury to the retina following optic nerve crush (ONC). Progesterone as a steroid gonadal hormone has been used in some experimental animal models for its neuroprotective effect. However, there is limited attention on the interactions between progesterone and microglia in retinal diseases. This study investigated the proliferation, morphology changes, and cell types of microglia at 3 days and 7 days after ONC. We found that progesterone treatment in unilateral optic nerve injury mice significantly reduced densities and morphological change of microglia at 7 days in the ganglion cell layer (GCL), especially in the retinal central. Inhibition of the microglia proliferation and transformation of ramified microglia into ameboid macrophages also appeared in the inner plexiform layer (IPL). Moreover, progesterone also regulated the TNF signal pathway, which was similar to the specific elimination of the M1 phenotype. M1 marks such as tumor necrosis factor alpha (TNF-α), inducible NOS(iNOS), interleukin-6 (IL-6), and Fc receptor (CD16 and CD32) significantly downregulated by progesterone treatment whether at 3 days or 7 days after ONC. On the other hand, progesterone continuously increased the expression of the M2 marks, including interleukin-4 (IL-4), arginase 1 (Arg1), and mannose receptor (CD206) since the third day, while the expression levels of transforming growth factor (TGF-β) only increased at 7 days. In general, this study elucidated the mechanism that progesterone prevented further damage on the retina by inhibiting proliferation, activation, and changing the type of microglia.
Collapse
Affiliation(s)
- Pengfei Yang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Linchi Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fangfang Zhou
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huanbing Tian
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiande Li
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
226
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
227
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
228
|
Zhang P, Ohkawa Y, Yamamoto S, Momota H, Kato A, Kaneko K, Natsume A, Farhana Y, Ohmi Y, Okajima T, Bhuiyan RH, Wakabayashi T, Furukawa K, Furukawa K. St8sia1-deficiency in mice alters tumor environments of gliomas, leading to reduced disease severity. NAGOYA JOURNAL OF MEDICAL SCIENCE 2021; 83:535-549. [PMID: 34552288 PMCID: PMC8438004 DOI: 10.18999/nagjms.83.3.535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
Ganglioside GD3/GD2 are over-expressed in various neuroectoderm-derived tumors. Previous studies indicated that GD3 is involved in the enhancement of cancer properties such as rapid growth and increased invasiveness. However, little is known about the functions of GD3/GD2 in glioma cells and glioma microenvironments. To clarify the functions of GD3/GD2 in gliomas, we used a mouse glioma model based on the RCAS/Gtv-a system. At first, we compared the gliomas size between wild-type (WT) and GD3 synthase (GD3S) knockout (KO) mice, showing a less malignant histology and slower tumor growth in GD3S-KO mice than in WT mice. Immunohistochemistry of glioma sections from WT and GD3S-KO mice revealed that reactive microglia/macrophages showed different localization patterns between the two genetic types of mice. CD68+ cells were more frequently stained inside glioma tissues of GD3S-KO mice, while they were stained mainly around glioma tissues in WT mice. The number of CD68+ cells markedly increased in tumor tissues of GD3S-KO mice at 2 weeks after injection of transfectant DF-1 cells. Furthermore, CD68+ cells in GD3S(-/-) glioma tissues expressed higher levels of inducible nitric oxide synthase. We observed higher expression levels of pro-inflammatory cytokine genes in primary-cultured glioma cells of WT mice than in GD3S-KO mice. DNA microarray data also revealed differential expression levels of various cytokines and chemokines in glioma tissues between WT and GD3S-KO mice. These results suggest that expression of GD3S allows glioma cells to promote polarization of microglia/macrophages towards M2-like phenotypes by modulating the expression levels of chemokines and cytokines.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute
| | - Satoko Yamamoto
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Hiroyuki Momota
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Kaneko
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yesmin Farhana
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Tetsuya Okajima
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
229
|
Brunialti E, Villa A, Mekhaeil M, Mornata F, Vegeto E, Maggi A, Di Monte DA, Ciana P. Inhibition of microglial β-glucocerebrosidase hampers the microglia-mediated antioxidant and protective response in neurons. J Neuroinflammation 2021; 18:220. [PMID: 34551802 PMCID: PMC8459568 DOI: 10.1186/s12974-021-02272-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Homozygotic mutations in the GBA gene cause Gaucher's disease; moreover, both patients and heterozygotic carriers have been associated with 20- to 30-fold increased risk of developing Parkinson's disease. In homozygosis, these mutations impair the activity of β-glucocerebrosidase, the enzyme encoded by GBA, and generate a lysosomal disorder in macrophages, which changes morphology towards an engorged phenotype, considered the hallmark of Gaucher's disease. Notwithstanding the key role of macrophages in this disease, most of the effects in the brain have been attributed to the β-glucocerebrosidase deficit in neurons, while a microglial phenotype for these mutations has never been reported. METHODS We applied the bioluminescence imaging technology, immunohistochemistry and gene expression analysis to investigate the consequences of microglial β-glucocerebrosidase inhibition in the brain of reporter mice, in primary neuron/microglia cocultures and in cell lines. The use of primary cells from reporter mice allowed for the first time, to discriminate in cocultures neuronal from microglial responses consequent to the β-glucocerebrosidase inhibition; results were finally confirmed by pharmacological depletion of microglia from the brain of mice. RESULTS Our data demonstrate the existence of a novel neuroprotective mechanism mediated by a direct microglia-to-neuron contact supported by functional actin structures. This cellular contact stimulates the nuclear factor erythroid 2-related factor 2 activity in neurons, a key signal involved in drug detoxification, redox balance, metabolism, autophagy, lysosomal biogenesis, mitochondrial dysfunctions, and neuroinflammation. The central role played by microglia in this neuronal response in vivo was proven by depletion of the lineage in the brain of reporter mice. Pharmacological inhibition of microglial β-glucocerebrosidase was proven to induce morphological changes, to turn on an anti-inflammatory/repairing pathway, and to hinder the microglia ability to activate the nuclear factor erythroid 2-related factor 2 response, thus increasing the neuronal susceptibility to neurotoxins. CONCLUSION This mechanism provides a possible explanation for the increased risk of neurodegeneration observed in carriers of GBA mutations and suggest novel therapeutic strategies designed to revert the microglial phenotype associated with β-glucocerebrosidase inhibition, aimed at resetting the protective microglia-to-neuron communication.
Collapse
Affiliation(s)
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy.
| | | | - Federica Mornata
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Adriana Maggi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Paolo Ciana
- Department of Health Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
230
|
Jian C, Wei L, Mo R, Li R, Liang L, Chen L, Zou C, Meng Y, Liu Y, Zou D. Microglia Mediate the Occurrence and Development of Alzheimer's Disease Through Ligand-Receptor Axis Communication. Front Aging Neurosci 2021; 13:731180. [PMID: 34616287 PMCID: PMC8488208 DOI: 10.3389/fnagi.2021.731180] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Its onset is insidious and its progression is slow, making diagnosis difficult. In addition, its underlying molecular and cellular mechanisms remain unclear. In this study, clustering analysis was performed on single-cell RNA sequencing (scRNA-seq) data from the prefrontal cortex of 48 AD patients. Each sample module was identified to be a specific AD cell type, eight main brain cell types were identified, and the dysfunctional evolution of each cell type was further explored by pseudo-time analysis. Correlation analysis was then used to explore the relationship between AD cell types and pathological characteristics. In particular, intercellular communication between neurons and glial cells in AD patients was investigated by cell communication analysis. In patients, neuronal cells and glial cells significantly correlated with pathological features, and glial cells appear to play a key role in the development of AD through ligand-receptor axis communication. Marker genes involved in communication between these two cell types were identified using five types of modeling: logistic regression, multivariate logistic regression, least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM). LASSO modeling identified CXCR4, EGFR, MAP4K4, and IGF1R as key genes in this communication. Our results support the idea that microglia play a role in the occurrence and development of AD through ligand-receptor axis communication. In particular, our analyses identify CXCR4, EGFR, MAP4K4, and IGF1R as potential biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruikang Mo
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongjie Li
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lucong Liang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Youshi Meng
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Liu
- Department of General Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Geriatrics, The First People’s Hospital of Nanning, Nanning, China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
231
|
Abstract
Microglia are the resident immune cells of the central nervous system. Microglial progenitors are generated in the yolk sac during the early embryonic stage. Once microglia enter the brain primordium, these cells colonize the structure through migration and proliferation during brain development. Microglia account for a minor population among the total cells that constitute the developing cortex, but they can associate with many surrounding neural lineage cells by extending their filopodia and through their broad migration capacity. Of note, microglia change their distribution in a stage-dependent manner in the developing brain: microglia are homogenously distributed in the pallium in the early and late embryonic stages, whereas these cells are transiently absent from the cortical plate (CP) from embryonic day (E) 15 to E16 and colonize the ventricular zone (VZ), subventricular zone (SVZ), and intermediate zone (IZ). Previous studies have reported that microglia positioned in the VZ/SVZ/IZ play multiple roles in neural lineage cells, such as regulating neurogenesis, cell survival and neuronal circuit formation. In addition to microglial functions in the zones in which microglia are replenished, these cells indirectly contribute to the proper maturation of post-migratory neurons by exiting the CP during the mid-embryonic stage. Overall, microglial time-dependent distributional changes are necessary to provide particular functions that are required in specific regions. This review summarizes recent advances in the understanding of microglial colonization and multifaceted functions in the developing brain, especially focusing on the embryonic stage, and discuss the molecular mechanisms underlying microglial behaviors.
Collapse
|
232
|
Sahu R, Upadhayay S, Mehan S. Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions. Eur J Cell Biol 2021; 100:151179. [PMID: 34560374 DOI: 10.1016/j.ejcb.2021.151179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Cell signal transduction pathways are essential modulators of several physiological and pathological processes in the brain. During overactivation, these signaling processes may lead to disease progression. Abnormal protein kinase activation is associated with several biological dysfunctions that facilitate neurodegeneration under different biological conditions. As a result, these signaling pathways are essential in understanding brain disorders' development or progression. Recent research findings indicate the crucial role of extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling during the neuronal development process. ERK-1/2 is a key component of its mitogen-activated protein kinase (MAPK) group, controlling certain neurological activities by regulating metabolic pathways, cell proliferation, differentiation, and apoptosis. ERK-1/2 also influences neuronal elastic properties, nerve growth, and neurological and cognitive processing during brain injuries. The primary goal of this review is to elucidate the activation of ERK1/2 signaling, which is involved in the development of several ALS-related neuropathological dysfunctions. ALS is a rare neurological disorder category that mainly affects the nerve cells responsible for regulating voluntary muscle activity. ALS is progressive, which means that the symptoms are getting worse over time, and there is no cure for ALS and no effective treatment to avoid or reverse. Genetic abnormalities, oligodendrocyte degradation, glial overactivation, and immune deregulation are associated with ALS progression. Furthermore, the current review also identifies ERK-1/2 signaling inhibitors that can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of ALS. As a result, in the future, the potential ERK-1/2 signaling inhibitors could be used in the treatment of ALS and related neurocomplications.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
233
|
Neelamegam M, Zgibor J, Chen H, O’rourke K, Bakour C, Rajaram L, Anstey KJ. The effect of opioids on the cognitive function of older adults: results from the Personality and Total Health through life study. Age Ageing 2021; 50:1699-1708. [PMID: 33755047 PMCID: PMC8437064 DOI: 10.1093/ageing/afab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND chronic pain, a common complaint among older adults, affects physical and mental well-being. While opioid use for pain management has increased over the years, pain management in older adults remains challenging, due to potential severe adverse effects of opioids in this population. OBJECTIVE we examined the association between opioid use, and changes in cognitive function of older adults. DESIGN prospective study. SETTING community dwelling older adults. SUBJECTS study population consisted of 2,222 individuals aged 65-69 years at baseline from the Personality and Total Health Through Life Study in Australia. METHODS medication data were obtained from the Pharmaceutical Benefits Scheme. Cognitive measures were obtained from neuropsychological battery assessment. Opioid exposure was quantified as Total Morphine Equivalent Dose (MED). The association between change in cognitive function between Wave 2 and Wave 3, and cumulative opioid use was assessed through generalized linear models. RESULTS cumulative opioid exposure exceeding total MED of 2,940 was significantly associated with poorer performance in the Mini Mental State Examination (MMSE). Compared with those not on opioids, individuals exposed to opioids resulting in cumulative total MED of greater than 2,940 had significantly lower scores in the MMSE (Model 1: β = -0.34, Model 2: β = -0.35 and Model 3: β = -0.39, P < 0.01). Performance in other cognitive assessments was not associated with opioid use. CONCLUSION prolonged opioid use in older adults can affect cognitive function, further encouraging the need for alternative pain management strategies in this population. Pain management options should not adversely affect healthy ageing trajectories and cognitive health.
Collapse
Affiliation(s)
- Malinee Neelamegam
- Yale School of Public Health, Yale University, New Haven, CT, USA
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Janice Zgibor
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Henian Chen
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Kathleen O’rourke
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chighaf Bakour
- College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia
- School of Psychology, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
234
|
Unique molecular characteristics and microglial origin of Kv1.3 channel-positive brain myeloid cells in Alzheimer's disease. Proc Natl Acad Sci U S A 2021; 118:2013545118. [PMID: 33649184 DOI: 10.1073/pnas.2013545118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kv1.3 potassium channels, expressed by proinflammatory central nervous system mononuclear phagocytes (CNS-MPs), are promising therapeutic targets for modulating neuroinflammation in Alzheimer's disease (AD). The molecular characteristics of Kv1.3-high CNS-MPs and their cellular origin from microglia or CNS-infiltrating monocytes are unclear. While Kv1.3 blockade reduces amyloid beta (Aβ) burden in mouse models, the downstream immune effects on molecular profiles of CNS-MPs remain unknown. We show that functional Kv1.3 channels are selectively expressed by a subset of CD11b+CD45+ CNS-MPs acutely isolated from an Aβ mouse model (5xFAD) as well as fresh postmortem human AD brain. Transcriptomic profiling of purified CD11b+Kv1.3+ CNS-MPs, CD11b+CD45int Kv1.3neg microglia, and peripheral monocytes from 5xFAD mice revealed that Kv1.3-high CNS-MPs highly express canonical microglial markers (Tmem119, P2ry12) and are distinct from peripheral Ly6chigh/Ly6clow monocytes. Unlike homeostatic microglia, Kv1.3-high CNS-MPs express relatively lower levels of homeostatic genes, higher levels of CD11c, and increased levels of glutamatergic transcripts, potentially representing phagocytic uptake of neuronal elements. Using irradiation bone marrow CD45.1/CD45.2 chimerism in 5xFAD mice, we show that Kv1.3+ CNS-MPs originate from microglia and not blood-derived monocytes. We show that Kv1.3 channels regulate membrane potential and early signaling events in microglia. Finally, in vivo blockade of Kv1.3 channels in 5xFAD mice by ShK-223 reduced Aβ burden, increased CD11c+ CNS-MPs, and expression of phagocytic genes while suppressing proinflammatory genes (IL1b). Our results confirm the microglial origin and identify unique molecular features of Kv1.3-expressing CNS-MPs. In addition, we provide evidence for CNS immunomodulation by Kv1.3 blockers in AD mouse models resulting in a prophagocytic phenotype.
Collapse
|
235
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|
236
|
Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:2505-2525. [PMID: 34460037 DOI: 10.1007/s10571-021-01145-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.
Collapse
|
237
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
238
|
Prasad S, Sheng WS, Hu S, Chauhan P, Lokensgard JR. Dysregulated Microglial Cell Activation and Proliferation Following Repeated Antigen Stimulation. Front Cell Neurosci 2021; 15:686340. [PMID: 34447297 PMCID: PMC8383069 DOI: 10.3389/fncel.2021.686340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Upon reactivation of quiescent neurotropic viruses antigen (Ag)-specific brain resident-memory CD8+ T-cells (bTRM) may respond to de novo-produced viral Ag through the rapid release of IFN-γ, which drives subsequent interferon-stimulated gene expression in surrounding microglia. Through this mechanism, a small number of adaptive bTRM may amplify responses to viral reactivation leading to an organ-wide innate protective state. Over time, this brain-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences. We have previously shown that HIV-1 p24 Ag-specific bTRM persist within the murine brain using a heterologous prime-CNS boost strategy. In response to Ag restimulation, these bTRM display rapid and robust recall responses, which subsequently activate glial cells. In this study, we hypothesized that repeated challenges to viral antigen (Ag) (modeling repeated episodes of viral reactivation) culminate in prolonged reactive gliosis and exacerbated neurotoxicity. To address this question, mice were first immunized with adenovirus vectors expressing the HIV p24 capsid protein, followed by a CNS-boost using Pr55Gag/Env virus-like particles (HIV-VLPs). Following the establishment of the bTRM population [>30 days (d)], prime-CNS boost animals were then subjected to in vivo challenge, as well as re-challenge (at 14 d post-challenge), using the immunodominant HIV-1 AI9 CD8+ T-cell epitope peptide. In these studies, Ag re-challenge resulted in prolonged expression of microglial activation markers and an increased proliferative response, longer than the challenge group. This continued expression of MHCII and PD-L1 (activation markers), as well as Ki67 (proliferative marker), was observed at 7, 14, and 30 days post-AI9 re-challenge. Additionally, in vivo re-challenge resulted in continued production of inducible nitric oxide synthase (iNOS) with elevated levels observed at 7, 14 and 30 days post re-challenge. Interestingly, iNOS expression was significantly lower among challenged animals when compared to re-challenged groups. Furthermore, in vivo specific Ag re-challenge produced lower levels of arginase (Arg)-1 when compared with the challenged group. Taken together, these results indicate that repeated Ag-specific stimulation of adaptive immune responses leads to cumulative dysregulated microglial cell activation.
Collapse
Affiliation(s)
- Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Wen S Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
239
|
Callizot N, Estrella C, Burlet S, Henriques A, Brantis C, Barrier M, Campanari ML, Verwaerde P. AZP2006, a new promising treatment for Alzheimer's and related diseases. Sci Rep 2021; 11:16806. [PMID: 34413330 PMCID: PMC8376949 DOI: 10.1038/s41598-021-94708-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Progranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1-42 and in two different pathological animal models of Alzheimer's disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.
Collapse
Affiliation(s)
- N Callizot
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France.
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France.
| | - C Estrella
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - S Burlet
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - A Henriques
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France
| | - C Brantis
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - M Barrier
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - M L Campanari
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France
| | - P Verwaerde
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| |
Collapse
|
240
|
Seweryn E, Ziała A, Gamian A. Health-Promoting of Polysaccharides Extracted from Ganoderma lucidum. Nutrients 2021; 13:2725. [PMID: 34444885 PMCID: PMC8400705 DOI: 10.3390/nu13082725] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Medicinal mushrooms are rich sources of pharmacologically active compounds. One of the mushrooms commonly used in traditional Chinese medicine is Ganoderma lucidum (Leyss. Ex Fr.) Karst. In Asian countries it is treated as a nutraceutical, whose regular consumption provides vitality and improves health. Ganoderma lucidum is an important source of biologically active compounds. The pharmacologically active fraction of polysaccharides has antioxidant, immunomodulatory, antineurodegenerative and antidiabetic activities. In this review, we summarize the activity of Ganoderma lucidum polysaccharides (GLP).
Collapse
Affiliation(s)
- Ewa Seweryn
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland;
| | - Anna Ziała
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|
241
|
Berdowski WM, Sanderson LE, van Ham TJ. The multicellular interplay of microglia in health and disease: lessons from leukodystrophy. Dis Model Mech 2021; 14:dmm048925. [PMID: 34282843 PMCID: PMC8319551 DOI: 10.1242/dmm.048925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microglia are highly dynamic cells crucial for developing and maintaining lifelong brain function and health through their many interactions with essentially all cellular components of the central nervous system. The frequent connection of microglia to leukodystrophies, genetic disorders of the white matter, has highlighted their involvement in the maintenance of white matter integrity. However, the mechanisms that underlie their putative roles in these processes remain largely uncharacterized. Microglia have also been gaining attention as possible therapeutic targets for many neurological conditions, increasing the demand to understand their broad spectrum of functions and the impact of their dysregulation. In this Review, we compare the pathological features of two groups of genetic leukodystrophies: those in which microglial dysfunction holds a central role, termed 'microgliopathies', and those in which lysosomal or peroxisomal defects are considered to be the primary driver. The latter are suspected to have notable microglia involvement, as some affected individuals benefit from microglia-replenishing therapy. Based on overlapping pathology, we discuss multiple ways through which aberrant microglia could lead to white matter defects and brain dysfunction. We propose that the study of leukodystrophies, and their extensively multicellular pathology, will benefit from complementing analyses of human patient material with the examination of cellular dynamics in vivo using animal models, such as zebrafish. Together, this will yield important insight into the cell biological mechanisms of microglial impact in the central nervous system, particularly in the development and maintenance of myelin, that will facilitate the development of new, and refinement of existing, therapeutic options for a range of brain diseases.
Collapse
Affiliation(s)
| | | | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
242
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
243
|
Dominguini D, Steckert AV, Michels M, Spies MB, Ritter C, Barichello T, Thompson J, Dal-Pizzol F. The effects of anaesthetics and sedatives on brain inflammation. Neurosci Biobehav Rev 2021; 127:504-513. [PMID: 33992694 DOI: 10.1016/j.neubiorev.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Microglia are involved in many dynamic processes in the central nervous system (CNS) including the development of inflammatory processes and neuromodulation. Several sedative, analgesic or anaesthetic drugs, such as opioids, ∝2-adrenergic agonists, ketamine, benzodiazepines and propofol can cause both neuroprotective and harmful effects on the brain. The purpose of this review is to present the main findings on the use of these drugs and the mechanisms involved in microglial activation. Alpha 2-adrenergic agonists, propofol and benzodiazepines have several pro- or anti-inflammatory effects on microglia. Long-term use of benzodiazepines and propofol causes neuroapoptotic effects and α2-adrenergic agonists may attenuate these effects. Conversely, morphine and fentanyl may have proinflammatory effects, causing behavioural changes in patients and changes in cell viability in vitro. Conversely, chronic administration of morphine induces CCL5 chemokine expression in microglial cells that promotes their survival.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda V Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariana B Spies
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jonathan Thompson
- Department of Cardiovascular Sciences, Anaesthesia Critical Care and Pain Management Group, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
244
|
Rather MA, Khan A, Alshahrani S, Rashid H, Qadri M, Rashid S, Alsaffar RM, Kamal MA, Rehman MU. Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators Inflamm 2021; 2021:9982954. [PMID: 34381308 PMCID: PMC8352708 DOI: 10.1155/2021/9982954] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no clear causative event making the disease difficult to diagnose and treat. The pathological hallmarks of AD include amyloid plaques, neurofibrillary tangles, and widespread neuronal loss. Amyloid-beta has been extensively studied and targeted to develop an effective disease-modifying therapy, but the success rate in clinical practice is minimal. Recently, neuroinflammation has been focused on as the event in AD progression to be targeted for therapies. Various mechanistic pathways including cytokines and chemokines, complement system, oxidative stress, and cyclooxygenase pathways are linked to neuroinflammation in the AD brain. Many cells including microglia, astrocytes, and oligodendrocytes work together to protect the brain from injury. This review is focused to better understand the AD inflammatory and immunoregulatory processes to develop novel anti-inflammatory drugs to slow down the progression of AD.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
245
|
Alipoor SD, Mortaz E, Varahram M, Garssen J, Adcock IM. The Immunopathogenesis of Neuroinvasive Lesions of SARS-CoV-2 Infection in COVID-19 Patients. Front Neurol 2021; 12:697079. [PMID: 34393976 PMCID: PMC8363128 DOI: 10.3389/fneur.2021.697079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The new coronavirus disease COVID-19 was identified in December 2019. It subsequently spread across the world with over 125 M reported cases and 2.75 M deaths in 190 countries. COVID-19 causes severe respiratory distress; however, recent studies have reported neurological consequences of infection by the COVID-19 virus SARS-CoV-2 even in subjects with mild infection and no initial neurological effects. It is likely that the virus uses the olfactory nerve to reach the CNS and that this transport mechanism enables virus access to areas of the brain stem that regulates respiratory rhythm and may even trigger cell death by alteration of these neuronal nuclei. In addition, the long-term neuronal effects of COVID-19 suggest a role for SARS-CoV-2 in the development or progression of neurodegerative disease as a result of inflammation and/or hypercoagulation. In this review recent findings on the mechanism(s) by which SARS-CoV-2 accesses the CNS and induces neurological dysregulation are summarized.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health Research Imperial Biomedical Research Centre, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
246
|
Saba ES, Karout M, Nasrallah L, Kobeissy F, Darwish H, Khoury SJ. Long-term cognitive deficits after traumatic brain injury associated with microglia activation. Clin Immunol 2021; 230:108815. [PMID: 34339843 DOI: 10.1016/j.clim.2021.108815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Traumatic Brain Injury (TBI) is the most prevalent of all head injuries. Microglia play an essential role in homeostasis and diseases of the central nervous system. We hypothesize that microglia may play a beneficial or detrimental role in TBI depending on their state of activation and duration. In this study, we evaluated whether TBI results in a spatiotemporal change in microglia phenotype and whether it affects sensory-motor or learning and memory functions in male C57BL/6 mice. We used a panel of neurological and behavioral tests and a multi-color flow cytometry-based data analysis followed by unsupervised clustering to evaluate isolated microglia from injured brain tissue. We characterized several microglial phenotypes and their association with cognitive deficits. TBI results in a spatiotemporal increase in activated microglia that correlated negatively with spatial learning and memory at 35 days post-injury. These observations could define therapeutic windows and accelerate translational research to improve patient outcomes.
Collapse
Affiliation(s)
- Esber S Saba
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mona Karout
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Hala Darwish
- Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of Medicine, American University of Beirut Medical Center, Lebanon; Hariri School of Nursing, American University of Beirut, Lebanon.
| | - Samia J Khoury
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Lebanon; Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of Medicine, American University of Beirut Medical Center, Lebanon.
| |
Collapse
|
247
|
Li SH, Colson TLL, Abd-Elrahman KS, Ferguson SS. mGluR2/3 Activation Improves Motor Performance and Reduces Pathology in heterozygous zQ175 Huntington's Disease Mice. J Pharmacol Exp Ther 2021; 379:74-84. [PMID: 34330748 DOI: 10.1124/jpet.121.000735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington's Disease (HD) is an autosomal dominant neurodegenerative disease that leads to progressive motor impairment with no available disease-modifying treatments. Current evidence indicates that exacerbated postsynaptic glutamate signaling in the striatum plays a key role in the pathophysiology of HD. However, it remains unclear whether reducing glutamate release can be an effective approach to slow the progression of HD. Here, we show that the activation of metabotropic glutamate receptors 2 and 3 (mGluR2/3), which inhibit presynaptic glutamate release, improves HD symptoms and pathology in heterozygous zQ175 knock-in mice. Treatment of both male and female zQ175 mice with the potent and selective mGluR2/3 agonist LY379268 for either 4 or 8 weeks improves both limb coordination and locomotor function in all mice. LY379268 also reduces mutant huntingtin aggregate formation, neuronal cell death, and microglia activation in the striatum of both male and female zQ175 mice. The reduction in mutant huntingtin protein correlates with the activation of a GSK3β-dependent autophagy pathway in male, but not female, zQ175 mice. Furthermore, LY379268 reduces both Akt and ERK1/2 phosphorylation in male zQ175 mice but increases both Akt and ERK1/2 phosphorylation in female zQ175 mice. Taken together, our results indicate that mGluR2/3 activation mitigates HD neuropathology in both male and female mice but is associated with the differential activation and inactivation of cell signaling pathways in heterozygous male and female zQ175 mice. This further highlights the need to take sex into consideration when developing future HD therapeutics. Significance Statement The mGluR2/3 agonist LY379268 improves motor impairments and reduces pathology in male and female zQ175 Huntington's mice. The beneficial outcomes of LY379268 treatment in Huntington's mice were mediated by divergent cell signalling pathways in both sexes. We provide evidence that mGluR2/3 agonists can be repurposed for the treatment of Huntington's disease and we emphasize the importance of investigating sex as a biological variable in preclinical disease modifying studies.
Collapse
|
248
|
Zhou C, Shang W, Yin SK, Shi H, Ying W. Malate-Aspartate Shuttle Plays an Important Role in LPS-Induced Neuroinflammation of Mice Due to its Effect on STAT3 Phosphorylation. Front Mol Biosci 2021; 8:655687. [PMID: 34381810 PMCID: PMC8350486 DOI: 10.3389/fmolb.2021.655687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation is a key pathological factor in numerous neurological disorders. Cumulating evidence has indicated critical roles of NAD+/NADH metabolism in multiple major diseases, while the role of malate-aspartate shuttle (MAS) - a major NADH shuttle - in inflammation has remained unclear. In this study we investigated the roles of MAS in LPS-induced neuroinflammation both in vivo and in vitro. Immunofluorescence staining, Western blot assay and Real-time PCR assays were conducted to determine the activation of Iba-1, the protein levels of iNOS and COX2 and the mRNA levels of IL-1β, IL-6, and TNF-α in vivo, showing that both pre-treatment and post-treatment of aminooxyacetic acid (AOAA) - an MAS inhibitor - profoundly decreased the LPS-induced neuroinflammation in mice. BV2 microglia was also used as a cellular model to investigate the mechanisms of this finding, in which such assays as Western blot assay and nitrite assay. Our study further indicated that AOAA produced its effects on LPS-induced microglial activation by its effects on MAS: Pyruvate treatment reversed the effects of AOAA on the cytosolic NAD+/NADH ratio, which also restored the LPS-induced activation of the AOAA-treated microglia. Moreover, the lactate dehydrogenase (LDH) inhibitor GSK2837808A blocked the effects of pyruvate on the AOAA-produced decreases in both the cytosolic NAD+/NADH ratio and LPS-induced microglial activation. Our study has further suggested that AOAA produced inhibition of LPS-induced microglial activation at least partially by decreasing STAT3 phosphorylation. Collectively, our findings have indicated AOAA as a new and effective drug for inhibiting LPS-induced neuroinflammation. Our study has also indicated that MAS is a novel mediator of LPS-induced neuroinflammation due to its capacity to modulate LPS-induced STAT3 phosphorylation, which has further highlighted a critical role of NAD+/NADH metabolism in inflammation.
Collapse
Affiliation(s)
- Cuiyan Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wangsong Shang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Weihai Ying
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.,Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
249
|
Central Nervous System Cell-Derived Exosomes in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965564. [PMID: 34336127 PMCID: PMC8294976 DOI: 10.1155/2021/9965564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle "cargo" from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.
Collapse
|
250
|
Mendes MS, Le L, Atlas J, Brehm Z, Ladron-de-Guevara A, Matei E, Lamantia C, McCall MN, Majewska AK. The role of P2Y12 in the kinetics of microglial self-renewal and maturation in the adult visual cortex in vivo. eLife 2021; 10:61173. [PMID: 34250902 PMCID: PMC8341987 DOI: 10.7554/elife.61173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/10/2021] [Indexed: 12/31/2022] Open
Abstract
Microglia are the brain’s resident immune cells with a tremendous capacity to autonomously self-renew. Because microglial self-renewal has largely been studied using static tools, its mechanisms and kinetics are not well understood. Using chronic in vivo two-photon imaging in awake mice, we confirm that cortical microglia show limited turnover and migration under basal conditions. Following depletion, however, microglial repopulation is remarkably rapid and is sustained by the dynamic division of remaining microglia, in a manner that is largely independent of signaling through the P2Y12 receptor. Mathematical modeling of microglial division demonstrates that the observed division rates can account for the rapid repopulation observed in vivo. Additionally, newly born microglia resemble mature microglia within days of repopulation, although morphological maturation is different in newly born microglia in P2Y12 knock out mice. Our work suggests that microglia rapidly locally and that newly born microglia do not recapitulate the slow maturation seen in development but instead take on mature roles in the CNS.
Collapse
Affiliation(s)
- Monique S Mendes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, United States
| | - Linh Le
- Department of Neuroscience, University of Rochester Medical Center, Rochester, United States
| | - Jason Atlas
- Department of Neuroscience, University of Rochester Medical Center, Rochester, United States
| | - Zachary Brehm
- Department of Biostatistics, University of Rochester Medical Center, Rochester, United States
| | - Antonio Ladron-de-Guevara
- Department of Neuroscience, University of Rochester Medical Center, Rochester, United States.,Department of Biomedical Engineering, University of Rochester, Rochester, United States
| | - Evelyn Matei
- Department of Neuroscience, University of Rochester Medical Center, Rochester, United States
| | - Cassandra Lamantia
- Department of Neuroscience, University of Rochester Medical Center, Rochester, United States
| | - Matthew N McCall
- Department of Biostatistics, University of Rochester Medical Center, Rochester, United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, United States.,Center for Visual Science, University of Rochester, Rochester, United States
| |
Collapse
|