201
|
Nhu LNT, Chambers M, Chantratita N, Cheah PY, Day NP, Dejnirattisai W, Dunachie SJ, Grifoni A, Hamers RL, Hill J, Jones EY, Klenerman P, Mongkolsapaya J, Screaton G, Sette A, Stuart DI, Tan CW, Thwaites G, Thanh VD, Wang LF, Tan LV. Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium. Wellcome Open Res 2024; 9:181. [PMID: 39022321 PMCID: PMC11252647 DOI: 10.12688/wellcomeopenres.20742.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 07/20/2024] Open
Abstract
A strong and effective COVID-19 and future pandemic responses rely on global efforts to carry out surveillance of infections and emerging SARS-CoV-2 variants and to act accordingly in real time. Many countries in Southeast Asia lack capacity to determine the potential threat of new variants, or other emerging infections. Funded by Wellcome, the Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium aims to develop and apply a multidisciplinary research platform in Southeast Asia (SEA) for rapid assessment of the biological significance of SARS-CoV-2 variants, thereby informing coordinated local, regional and global responses to the COVID-19 pandemic. Our proposal is delivered by the Vietnam and Thailand Wellcome Africa Asia Programmes, bringing together a multidisciplinary team in Indonesia, Thailand and Vietnam with partners in Singapore, the UK and the USA. Herein we outline five work packages to deliver strengthened regional scientific capacity that can be rapidly deployed for future outbreak responses.
Collapse
Affiliation(s)
| | - Mary Chambers
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phaik Yeong Cheah
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P.J. Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanwisa Dejnirattisai
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Susanna J. Dunachie
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Alba Grifoni
- La Jolla Institute for Immunology, San Diego, California, USA
| | - Raph L. Hamers
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Jennifer Hill
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Paul Klenerman
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Juthathip Mongkolsapaya
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Gavin Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | | | - David I. Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Vu Duy Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - SEACOVARIANTS Consortium
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- La Jolla Institute for Immunology, San Diego, California, USA
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
202
|
Urschel R, Bronder S, Klemis V, Marx S, Hielscher F, Abu-Omar A, Guckelmus C, Schneitler S, Baum C, Becker SL, Gärtner BC, Sester U, Martinez L, Widera M, Schmidt T, Sester M. SARS-CoV-2-specific cellular and humoral immunity after bivalent BA.4/5 COVID-19-vaccination in previously infected and non-infected individuals. Nat Commun 2024; 15:3077. [PMID: 38594497 PMCID: PMC11004149 DOI: 10.1038/s41467-024-47429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Knowledge is limited as to how prior SARS-CoV-2 infection influences cellular and humoral immunity after booster-vaccination with bivalent BA.4/5-adapted mRNA-vaccines, and whether vaccine-induced immunity may indicate subsequent infection. In this observational study, individuals with prior infection (n = 64) showed higher vaccine-induced anti-spike IgG-antibodies and neutralizing titers, but the relative increase was significantly higher in non-infected individuals (n = 63). In general, both groups showed higher neutralizing activity towards the parental strain than towards Omicron-subvariants BA.1, BA.2 and BA.5. In contrast, CD4 or CD8 T cell levels towards spike from the parental strain and the Omicron-subvariants, and cytokine expression profiles were similar irrespective of prior infection. Breakthrough infections occurred more frequently among previously non-infected individuals, who had significantly lower vaccine-induced spike-specific neutralizing activity and CD4 T cell levels. In summary, we show that immunogenicity after BA.4/5-bivalent vaccination differs between individuals with and without prior infection. Moreover, our results may help to improve prediction of breakthrough infections.
Collapse
Affiliation(s)
- Rebecca Urschel
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Saskia Bronder
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Verena Klemis
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Franziska Hielscher
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Amina Abu-Omar
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Candida Guckelmus
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Sophie Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Christina Baum
- Occupational Health Care Center, Saarland University, 66421, Homburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Barbara C Gärtner
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Urban Sester
- Department of Nephrology, SHG-Klinikum Völklingen, 66333, Völklingen, Germany
| | - Leonardo Martinez
- Boston University, School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Tina Schmidt
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
203
|
Tortorici MA, Addetia A, Seo AJ, Brown J, Sprouse K, Logue J, Clark E, Franko N, Chu H, Veesler D. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 2024; 57:904-911.e4. [PMID: 38490197 DOI: 10.1016/j.immuni.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Immune imprinting describes how the first exposure to a virus shapes immunological outcomes of subsequent exposures to antigenically related strains. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron breakthrough infections and bivalent COVID-19 vaccination primarily recall cross-reactive memory B cells induced by prior Wuhan-Hu-1 spike mRNA vaccination rather than priming Omicron-specific naive B cells. These findings indicate that immune imprinting occurs after repeated Wuhan-Hu-1 spike exposures, but whether it can be overcome remains unclear. To understand the persistence of immune imprinting, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID-19 mRNA vaccine booster. We showed that the XBB.1.5 booster elicited neutralizing antibody responses against current variants that were dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. Therefore, immune imprinting persists after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 booster vaccination, which will need to be considered to guide future vaccination.
Collapse
Affiliation(s)
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaiti Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Erica Clark
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
204
|
Ferrari L, Ruggiero A, Stefani C, Benedetti L, Piermatteo L, Andreassi E, Caldara F, Zace D, Pagliari M, Ceccherini-Silberstein F, Jones C, Iannetta M, Geretti AM. Utility of accessible SARS-CoV-2 specific immunoassays in vaccinated adults with a history of advanced HIV infection. Sci Rep 2024; 14:8337. [PMID: 38594459 PMCID: PMC11003986 DOI: 10.1038/s41598-024-58597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Accessible SARS-CoV-2-specific immunoassays may inform clinical management in people with HIV, particularly in case of persisting immunodysfunction. We prospectively studied their application in vaccine recipients with HIV, purposely including participants with a history of advanced HIV infection. Participants received one (n = 250), two (n = 249) or three (n = 42) doses of the BNT162b2 vaccine. Adverse events were documented through questionnaires. Sample collection occurred pre-vaccination and a median of 4 weeks post-second dose and 14 weeks post-third dose. Anti-spike and anti-nucleocapsid antibodies were measured with the Roche Elecsys chemiluminescence immunoassays. Neutralising activity was evaluated using the GenScript cPass surrogate virus neutralisation test, following validation against a Plaque Reduction Neutralization Test. T-cell reactivity was assessed with the Roche SARS-CoV-2 IFNγ release assay. Primary vaccination (2 doses) was well tolerated and elicited measurable anti-spike antibodies in 202/206 (98.0%) participants. Anti-spike titres varied widely, influenced by previous SARS-CoV-2 exposure, ethnicity, intravenous drug use, CD4 counts and HIV viremia as independent predictors. A third vaccine dose significantly boosted anti-spike and neutralising responses, reducing variability. Anti-spike titres > 15 U/mL correlated with neutralising activity in 136/144 paired samples (94.4%). Three participants with detectable anti-S antibodies did not develop cPass neutralising responses post-third dose, yet displayed SARS-CoV-2 specific IFNγ responses. SARS-CoV-2 vaccination is well-tolerated and immunogenic in adults with HIV, with responses improving post-third dose. Anti-spike antibodies serve as a reliable indicator of neutralising activity. Discordances between anti-spike and neutralising responses were accompanied by detectable IFN-γ responses, underlining the complexity of the immune response in this population.
Collapse
Affiliation(s)
- Ludovica Ferrari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Alessandra Ruggiero
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Verona, Italy
| | - Chiara Stefani
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Verona, Italy
| | - Livia Benedetti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Eleonora Andreassi
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Caldara
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Drieda Zace
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Matteo Pagliari
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | | | - Christopher Jones
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, Falmer, UK
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Anna Maria Geretti
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
- Department of Infection, North Middlesex University Hospital, London, UK.
- School of Immunity & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
205
|
Dery Y, Yechezkel M, Ben-Gal I, Yamin D. Utilizing direct and indirect information to improve the COVID-19 vaccination booster scheduling. Sci Rep 2024; 14:8089. [PMID: 38582940 PMCID: PMC10998875 DOI: 10.1038/s41598-024-58690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Current global COVID-19 booster scheduling strategies mainly focus on vaccinating high-risk populations at predetermined intervals. However, these strategies overlook key data: the direct insights into individual immunity levels from active serological testing and the indirect information available either through sample-based sero-surveillance, or vital demographic, location, and epidemiological factors. Our research, employing an age-, risk-, and region-structured mathematical model of disease transmission-based on COVID-19 incidence and vaccination data from Israel between 15 May 2020 and 25 October 2021-reveals that a more comprehensive strategy integrating these elements can significantly reduce COVID-19 hospitalizations without increasing existing booster coverage. Notably, the effective use of indirect information alone can considerably decrease COVID-19 cases and hospitalizations, without the need for additional vaccine doses. This approach may also be applicable in optimizing vaccination strategies for other infectious diseases, including influenza.
Collapse
Affiliation(s)
- Yotam Dery
- Laboratory for Epidemic Modeling and Analysis, Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
- Laboratory for AI, Machine Learning and Business Data Analytics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Matan Yechezkel
- Laboratory for Epidemic Modeling and Analysis, Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Irad Ben-Gal
- Laboratory for Epidemic Modeling and Analysis, Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
- Laboratory for AI, Machine Learning and Business Data Analytics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Dan Yamin
- Laboratory for Epidemic Modeling and Analysis, Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel.
- Centre for Combatting Pandemics, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
206
|
Wang W, Bhushan GL, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Mitre E, Pollett SD, Katzelnick LC, Weiss CD. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588359. [PMID: 38712124 PMCID: PMC11071293 DOI: 10.1101/2024.04.05.588359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali L. Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhu Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Tony T. Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
207
|
Chen Y, Zha J, Xu S, Shao J, Liu X, Li D, Zhang X. Structure-Based Optimization of One Neutralizing Antibody against SARS-CoV-2 Variants Bearing the L452R Mutation. Viruses 2024; 16:566. [PMID: 38675908 PMCID: PMC11053997 DOI: 10.3390/v16040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Neutralizing antibodies (nAbs) play an important role against SARS-CoV-2 infections. Previously, we have reported one potent receptor binding domain (RBD)-binding nAb Ab08 against the SARS-CoV-2 prototype and a panel of variants, but Ab08 showed much less efficacy against the variants harboring the L452R mutation. To overcome the antibody escape caused by the L452R mutation, we generated several structure-based Ab08 derivatives. One derivative, Ab08-K99E, displayed the mostly enhanced neutralizing potency against the Delta pseudovirus bearing the L452R mutation compared to the Ab08 and other derivatives. Ab08-K99E also showed improved neutralizing effects against the prototype, Omicron BA.1, and Omicron BA.4/5 pseudoviruses. In addition, compared to the original Ab08, Ab08-K99E exhibited high binding properties and affinities to the RBDs of the prototype, Delta, and Omicron BA.4/5 variants. Altogether, our findings report an optimized nAb, Ab08-K99E, against SARS-CoV-2 variants and demonstrate structure-based optimization as an effective way for antibody development against pathogens.
Collapse
Affiliation(s)
- Yamin Chen
- Suzhou Medical College, Soochow University, Suzhou 215123, China; (Y.C.); (X.L.)
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
| | - Jialu Zha
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Shiqi Xu
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
- The CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiang Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
| | - Xiaoshan Liu
- Suzhou Medical College, Soochow University, Suzhou 215123, China; (Y.C.); (X.L.)
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Xiaoming Zhang
- Suzhou Medical College, Soochow University, Suzhou 215123, China; (Y.C.); (X.L.)
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai 200052, China
| |
Collapse
|
208
|
Gilbert PB, Fong Y, Hejazi NS, Kenny A, Huang Y, Carone M, Benkeser D, Follmann D. Four statistical frameworks for assessing an immune correlate of protection (surrogate endpoint) from a randomized, controlled, vaccine efficacy trial. Vaccine 2024; 42:2181-2190. [PMID: 38458870 PMCID: PMC10999339 DOI: 10.1016/j.vaccine.2024.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
A central goal of vaccine research is to characterize and validate immune correlates of protection (CoPs). In addition to helping elucidate immunological mechanisms, a CoP can serve as a valid surrogate endpoint for an infectious disease clinical outcome and thus qualifies as a primary endpoint for vaccine authorization or approval without requiring resource-intensive randomized, controlled phase 3 trials. Yet, it is challenging to persuasively validate a CoP, because a prognostic immune marker can fail as a reliable basis for predicting/inferring the level of vaccine efficacy against a clinical outcome, and because the statistical analysis of phase 3 trials only has limited capacity to disentangle association from cause. Moreover, the multitude of statistical methods garnered for CoP evaluation in phase 3 trials renders the comparison, interpretation, and synthesis of CoP results challenging. Toward promoting broader harmonization and standardization of CoP evaluation, this article summarizes four complementary statistical frameworks for evaluating CoPs in a phase 3 trial, focusing on the frameworks' distinct scientific objectives as measured and communicated by distinct causal vaccine efficacy parameters. Advantages and disadvantages of the frameworks are considered, dependent on phase 3 trial context, and perspectives are offered on how the frameworks can be applied and their results synthesized.
Collapse
Affiliation(s)
- Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Nima S Hejazi
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Avi Kenny
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Marco Carone
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - David Benkeser
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
209
|
Trabelsi K, Ben Khalaf N, Ramadan AR, Elsharkawy A, Ashoor D, Chlif S, Boussoffara T, Ben-Ahmed M, Kumar M, Fathallah MD. A novel approach to designing viral precision vaccines applied to SARS-CoV-2. Front Cell Infect Microbiol 2024; 14:1346349. [PMID: 38628551 PMCID: PMC11018900 DOI: 10.3389/fcimb.2024.1346349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
Efficient precision vaccines against several highly pathogenic zoonotic viruses are currently lacking. Proteolytic activation is instrumental for a number of these viruses to gain host-cell entry and develop infectivity. For SARS-CoV-2, this process is enhanced by the insertion of a furin cleavage site at the junction of the spike protein S1/S2 subunits upstream of the metalloprotease TMPRSS2 common proteolytic site. Here, we describe a new approach based on specific epitopes selection from the region involved in proteolytic activation and infectivity for the engineering of precision candidate vaccinating antigens. This approach was developed through its application to the design of SARS-CoV-2 cross-variant candidates vaccinating antigens. It includes an in silico structural analysis of the viral region involved in infectivity, the identification of conserved immunogenic epitopes and the selection of those eliciting specific immune responses in infected people. The following step consists of engineering vaccinating antigens that carry the selected epitopes and mimic their 3D native structure. Using this approach, we demonstrated through a Covid-19 patient-centered study of a 500 patients' cohort, that the epitopes selected from SARS-CoV-2 protein S1/S2 junction elicited a neutralizing antibody response significantly associated with mild and asymptomatic COVID-19 (p<0.001), which strongly suggests protective immunity. Engineered antigens containing the SARS-CoV-2 selected epitopes and mimicking the native epitopes 3D structure generated neutralizing antibody response in mice. Our data show the potential of this combined computational and experimental approach for designing precision vaccines against viruses whose pathogenicity is contingent upon proteolytic activation.
Collapse
Affiliation(s)
- Khaled Trabelsi
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Noureddin Ben Khalaf
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Ahmed R. Ramadan
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Amany Elsharkawy
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Dana Ashoor
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Sadok Chlif
- Department of Family and Community Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Thouraya Boussoffara
- Transmission, Control and Immunobiology of Infections Laboratory, Institute Pasteur of Tunis, Tunis, Tunisia
| | - Melika Ben-Ahmed
- Transmission, Control and Immunobiology of Infections Laboratory, Institute Pasteur of Tunis, Tunis, Tunisia
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - M-Dahmani Fathallah
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
210
|
Fumagalli V, Ravà M, Marotta D, Di Lucia P, Bono EB, Giustini L, De Leo F, Casalgrandi M, Monteleone E, Mouro V, Malpighi C, Perucchini C, Grillo M, De Palma S, Donnici L, Marchese S, Conti M, Muramatsu H, Perlman S, Pardi N, Kuka M, De Francesco R, Bianchi ME, Guidotti LG, Iannacone M. Antibody-independent protection against heterologous SARS-CoV-2 challenge conferred by prior infection or vaccination. Nat Immunol 2024; 25:633-643. [PMID: 38486021 PMCID: PMC11003867 DOI: 10.1038/s41590-024-01787-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Marotta
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica De Leo
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Violette Mouro
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Malpighi
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sara De Palma
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Charles River Laboratories, Calco, Italy
| | - Lorena Donnici
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Conti
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mirela Kuka
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco E Bianchi
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Luca G Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
211
|
Liu PC, Zhang M, Li JB, Peng YL, Yu SJ, Wu R. Factors affecting different COVID-19 outcomes in patients with systemic lupus erythematosus during the second pandemic wave of COVID-19 in China. Lupus 2024; 33:357-364. [PMID: 38314781 DOI: 10.1177/09612033241230736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
OBJECTIVE To investigate characteristics associated with different COVID-19 outcomes of people with systemic lupus erythematosus (SLE) and COVID-19 during the second pandemic wave of COVID-19 in China. METHODS In this retrospective study, people with SLE and COVID-19 who visited the First Affiliated Hospital of Nanchang University from December 2022 and February 2023 were subjected to this study. The three possible outcomes were listed in order of ordinal severity: (1) not hospitalized, (2) hospitalized but not receiving oxygenation, and (3) hospitalized with any ventilation or oxygenation. A multivariable ordinal logistic regression model was built to examine the association between COVID-19 severity and demographic traits, medications, comorbidities, and disease activity. Furthermore, among the 301 SLE patients included in our study, only two patients experienced mortality. In order to maintain statistical rigor, we have included these two deceased patients in the outcome measure of hospitalized with any ventilation or oxygenation. RESULTS A total of 301 patients with SLE were enrolled in this study. The multivariate ordinal logistic regression analyses indicated that high SLE disease activity (vs remission; OR 39.04, 95% CI 3.08 to 494.44, p = .005) was associated with more severe outcomes. Three doses of COVID-19 vaccination (OR 0.19, 95% CI 0.07 to 0.51, p = .001), glucocorticoids dose (1-5 mg/day 0.14, 0.03 to 0.73, p = .020, and 6-9 mg/day 0.12, 0.02 to 0.61, p = .010), and more intensive immunosuppression drugs (0.34, 0.12 to 0.97, p = .044) were associated with better outcomes. In age-adjusted and sex-adjusted models, telitacicept (6.66, 1.35 to 32.86, p = .020) and rituximab (7.81, 1.87 to 32.66, p = .005) were associated with more severe outcomes. Hydroxychloroquine (0.47, 0.25 to 0.88, p = .018) was associated with favorable outcomes. CONCLUSION Different COVID-19 outcomes in people with SLE are mostly driven by COVID-19 vaccination, medications, and activity SLE. More importantly, three doses of COVID-19 vaccination may be associated with better outcomes.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhang
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jian-Bin Li
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi-Lin Peng
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shu-Jiao Yu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
212
|
Rosa Duque JS, Cheng SMS, Cohen CA, Leung D, Wang X, Mu X, Chung Y, Lau TM, Wang M, Zhang W, Zhang Y, Wong HHW, Tsang LCH, Chaothai S, Kwan TC, Li JKC, Chan KCK, Luk LLH, Ho JCH, Li WY, Lee AMT, Lam JHY, Chan SM, Wong WHS, Tam IYS, Mori M, Valkenburg SA, Peiris M, Tu W, Lau YL. Superior antibody and membrane protein-specific T-cell responses to CoronaVac by intradermal versus intramuscular routes in adolescents. World J Pediatr 2024; 20:353-370. [PMID: 38085470 PMCID: PMC11052846 DOI: 10.1007/s12519-023-00764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 04/29/2024]
Abstract
BACKGROUND Optimising the immunogenicity of COVID-19 vaccines to improve their protection against disease is necessary. Fractional dosing by intradermal (ID) administration has been shown to be equally immunogenic as intramuscular (IM) administration for several vaccines, but the immunogenicity of ID inactivated whole severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the full dose is unknown. This study (NCT04800133) investigated the superiority of antibody and T-cell responses of full-dose CoronaVac by ID over IM administration in adolescents. METHODS Participants aged 11-17 years received two doses of IM or ID vaccine, followed by the 3rd dose 13-42 days later. Humoral and cellular immunogenicity outcomes were measured post-dose 2 (IM-CC versus ID-CC) and post-dose 3 (IM-CCC versus ID-CCC). Doses 2 and 3 were administered to 173 and 104 adolescents, respectively. RESULTS Spike protein (S) immunoglobulin G (IgG), S-receptor-binding domain (RBD) IgG, S IgG Fcγ receptor IIIa (FcγRIIIa)-binding, SNM [sum of individual (S), nucleocapsid protein (N), and membrane protein (M) peptide pool]-specific interleukin-2 (IL-2)+CD4+, SNM-specific IL-2+CD8+, S-specific IL-2+CD8+, N-specific IL-2+CD4+, N-specific IL-2+CD8+ and M-specific IL-2+CD4+ responses fulfilled the superior and non-inferior criteria for ID-CC compared to IM-CC, whereas IgG avidity was inferior. For ID-CCC, S-RBD IgG, surrogate virus neutralisation test, 90% plaque reduction neutralisation titre (PRNT90), PRNT50, S IgG avidity, S IgG FcγRIIIa-binding, M-specific IL-2+CD4+, interferon-γ+CD8+ and IL-2+CD8+ responses were superior and non-inferior to IM-CCC. The estimated vaccine efficacies were 49%, 52%, 66% and 79% for IM-CC, ID-CC, IM-CCC and ID-CCC, respectively. The ID groups reported more local, mild adverse reactions. CONCLUSION This is the first study to demonstrate superior antibody and M-specific T-cell responses by ID inactivated SARS-CoV-2 vaccination and serves as the basis for future research to improve the immunogenicity of inactivated vaccines.
Collapse
Affiliation(s)
- Jaime S Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Samuel M S Cheng
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Carolyn A Cohen
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuet Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsun Ming Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Manni Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenyue Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Howard H W Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo C H Tsang
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Tsz Chun Kwan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - John K C Li
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Karl C K Chan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Leo L H Luk
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Jenson C H Ho
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wing Yan Li
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Amos M T Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Jennifer H Y Lam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sau Man Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wilfred H S Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Issan Y S Tam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Sophie A Valkenburg
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection, and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Center for Immunology and Infection C2i, Hong Kong, China.
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
213
|
Wang W, Meng X, Cui H, Zhang C, Wang S, Feng N, Zhao Y, Wang T, Yan F, Xia X. Self-assembled ferritin-based nanoparticles elicit a robust broad-spectrum protective immune response against SARS-CoV-2 variants. Int J Biol Macromol 2024; 264:130820. [PMID: 38484812 DOI: 10.1016/j.ijbiomac.2024.130820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants has resulted in global economic losses and posed a threat to human health. The pandemic highlights the urgent need for an efficient, easily producible, and broad-spectrum vaccine. Here, we present a potentially universal strategy for the rapid and general design of vaccines, focusing on the design and testing of omicron BA.5 RBD-conjugated self-assembling ferritin nanoparticles (NPs). The covalent bonding of RBD-Fc to protein A-ferritin was easily accomplished through incubation, resulting in fully multivalent RBD-conjugated NPs that exhibited high structural uniformity, stability, and efficient assembly. The ferritin nanoparticle vaccine synergistically stimulated the innate immune response, Tfh-GCB-plasma cell-mediated activation of humoral immunity and IFN-γ-driven cellular immunity. This nanoparticle vaccine induced a high level of cross-neutralizing responses and protected golden hamsters challenged with multiple mutant strains from infection-induced clinical disease, providing a promising strategy for broad-spectrum vaccine development for SARS-CoV-2 prophylaxis. In conclusion, the nanoparticle conjugation platform holds promise for its potential universality and competitive immunization efficacy and is expected to facilitate the rapid manufacturing and broad application of next-generation vaccines.
Collapse
Affiliation(s)
- Weiqi Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Xianyong Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| |
Collapse
|
214
|
Nantel S, Sheikh-Mohamed S, Chao GYC, Kurtesi A, Hu Q, Wood H, Colwill K, Li Z, Liu Y, Seifried L, Bourdin B, McGeer A, Hardy WR, Rojas OL, Al-Aubodah TA, Liu Z, Ostrowski MA, Brockman MA, Piccirillo CA, Quach C, Rini JM, Gingras AC, Decaluwe H, Gommerman JL. Comparison of Omicron breakthrough infection versus monovalent SARS-CoV-2 intramuscular booster reveals differences in mucosal and systemic humoral immunity. Mucosal Immunol 2024; 17:201-210. [PMID: 38278415 DOI: 10.1016/j.mucimm.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Our understanding of the quality of cellular and humoral immunity conferred by COVID-19 vaccination alone versus vaccination plus SARS-CoV-2 breakthrough (BT) infection remains incomplete. While the current (2023) SARS-CoV-2 immune landscape of Canadians is complex, in late 2021 most Canadians had either just received a third dose of COVID-19 vaccine, or had received their two-dose primary series and then experienced an Omicron BT. Herein we took advantage of this coincident timing to contrast cellular and humoral immunity conferred by three doses of vaccine versus two doses plus BT. Our results show thatBT infection induces cell-mediated immune responses to variants comparable to an intramuscular vaccine booster dose. In contrast, BT subjects had higher salivary immunoglobulin (Ig)G and IgA levels against the Omicron spike and enhanced reactivity to the ancestral spike for the IgA isotype, which also reacted with SARS-CoV-1. Serumneutralizing antibody levels against the ancestral strain and the variants were also higher after BT infection. Our results support the need for the development of intranasal vaccines that could emulate the enhanced mucosal and humoral immunity induced by Omicron BT without exposing individuals to the risks associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sabryna Nantel
- Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada; Microbiology, Infectiology and Immunology Department, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| | | | - Gary Y C Chao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Kurtesi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Heidi Wood
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ying Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Seifried
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Benoîte Bourdin
- Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada
| | - Allison McGeer
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - William R Hardy
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mario A Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Caroline Quach
- Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada; Microbiology, Infectiology and Immunology Department, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hélène Decaluwe
- Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada; Microbiology, Infectiology and Immunology Department, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada; Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
215
|
Erdogan MA, Gurbuz O, Bozkurt MF, Erbas O. Prenatal Exposure to COVID-19 mRNA Vaccine BNT162b2 Induces Autism-Like Behaviors in Male Neonatal Rats: Insights into WNT and BDNF Signaling Perturbations. Neurochem Res 2024; 49:1034-1048. [PMID: 38198049 PMCID: PMC10902102 DOI: 10.1007/s11064-023-04089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
The COVID-19 pandemic catalyzed the swift development and distribution of mRNA vaccines, including BNT162b2, to address the disease. Concerns have arisen about the potential neurodevelopmental implications of these vaccines, especially in susceptible groups such as pregnant women and their offspring. This study aimed to investigate the gene expression of WNT, brain-derived neurotrophic factor (BDNF) levels, specific cytokines, m-TOR expression, neuropathology, and autism-related neurobehavioral outcomes in a rat model. Pregnant rats received the COVID-19 mRNA BNT162b2 vaccine during gestation. Subsequent evaluations on male and female offspring included autism-like behaviors, neuronal counts, and motor performance. Molecular techniques were applied to quantify WNT and m-TOR gene expressions, BDNF levels, and specific cytokines in brain tissue samples. The findings were then contextualized within the extant literature to identify potential mechanisms. Our findings reveal that the mRNA BNT162b2 vaccine significantly alters WNT gene expression and BDNF levels in both male and female rats, suggesting a profound impact on key neurodevelopmental pathways. Notably, male rats exhibited pronounced autism-like behaviors, characterized by a marked reduction in social interaction and repetitive patterns of behavior. Furthermore, there was a substantial decrease in neuronal counts in critical brain regions, indicating potential neurodegeneration or altered neurodevelopment. Male rats also demonstrated impaired motor performance, evidenced by reduced coordination and agility. Our research provides insights into the effects of the COVID-19 mRNA BNT162b2 vaccine on WNT gene expression, BDNF levels, and certain neurodevelopmental markers in a rat model. More extensive studies are needed to confirm these observations in humans and to explore the exact mechanisms. A comprehensive understanding of the risks and rewards of COVID-19 vaccination, especially during pregnancy, remains essential.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Orkun Gurbuz
- Department of Radiotherapy Programme, Istinye University, Istanbul, Turkey
| | - Mehmet Fatih Bozkurt
- Faculty of Veterinary Medicine, Department of Pathology, Afyon Kocatepe University, Afyon, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
216
|
Zhang X, Guan L, Li N, Wang Y, Li L, Liu M, He Q, Lu J, Zeng H, Yu S, Guo X, Gong J, Li J, Gao F, Wu X, Chen S, Wang Q, Wang Z, Huang W, Mao Q, Liang Z, Xu M. Establishment of the First National Standard for Neutralizing Antibodies against SARS-CoV-2 XBB Variants. Viruses 2024; 16:554. [PMID: 38675896 PMCID: PMC11053542 DOI: 10.3390/v16040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Neutralizing antibodies (NtAbs) against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are indicators of vaccine efficacy that enable immunity surveillance. However, the rapid mutation of SARS-CoV-2 variants prevents the timely establishment of standards required for effective XBB vaccine evaluation. Therefore, we prepared four candidate standards (No. 11, No. 44, No. 22, and No. 33) using plasma, purified immunoglobulin, and a broad-spectrum neutralizing monoclonal antibody. Collaborative calibration was conducted across nine Chinese laboratories using neutralization methods against 11 strains containing the XBB and BA.2.86 sublineages. This study demonstrated the reduced neutralization potency of the first International Standard antibodies to SARS-CoV-2 variants of concern against XBB variants. No. 44 displayed broad-spectrum neutralizing activity against XBB sublineages, effectively reduced interlaboratory variability for nearly all XBB variants, and effectively minimized the geometric mean titer (GMT) difference between the live and pseudotyped virus. No. 22 showed a broader spectrum and higher neutralizing activity against all strains but failed to reduce interlaboratory variability. Thus, No. 44 was approved as a National Standard for NtAbs against XBB variants, providing a unified NtAb measurement standard for XBB variants for the first time. Moreover, No. 22 was approved as a national reference reagent for NtAbs against SARS-CoV-2, offering a broad-spectrum activity reference for current and potentially emerging variants.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Lidong Guan
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Na Li
- Beijing Minhai Biotechnology Co., Ltd., Beijing 102600, China;
| | - Ying Wang
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Lu Li
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Mingchen Liu
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Qian He
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Jiansheng Lu
- Yunnan Institute for Food and Drug Control, Kunming 650106, China; (J.L.); (H.Z.)
| | - Haiyuan Zeng
- Yunnan Institute for Food and Drug Control, Kunming 650106, China; (J.L.); (H.Z.)
| | - Shan Yu
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, China;
| | - Xinyi Guo
- Hualan Biological Engineering Chongqing Co., Ltd., Chongqing 408107, China;
| | - Jiali Gong
- China Resources Boya Bio-Pharmaceutical Group Co., Ltd., Fuzhou 344000, China;
| | - Jing Li
- Beijing Kexing Zhongwei Biotechnology Co., Ltd., Beijing 102600, China;
| | - Fan Gao
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Xing Wu
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Si Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou 510535, China; (S.C.); (Q.W.); (Z.W.)
| | - Qian Wang
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou 510535, China; (S.C.); (Q.W.); (Z.W.)
| | - Zhongfang Wang
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou 510535, China; (S.C.); (Q.W.); (Z.W.)
| | - Weijin Huang
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Qunying Mao
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Zhenglun Liang
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| | - Miao Xu
- Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (X.Z.); (L.G.); (Y.W.); (L.L.); (M.L.); (Q.H.); (F.G.); (X.W.); (W.H.)
| |
Collapse
|
217
|
Piyaphanee N, Charuvanij S, Thepveera S, Toh ZQ, Licciardi PV, Pattaragarn A, Wongprompitak P, Boonnak K, Pheerapanyawaranun C, Chokephaibulkit K. Immunogenicity and safety of BNT162b2 vaccination in adolescents with systemic lupus erythematosus. Lupus 2024; 33:450-461. [PMID: 38335115 DOI: 10.1177/09612033241232576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
OBJECTIVES We evaluated the immunogenicity and safety of BNT162b2 vaccination in adolescents with systemic lupus erythematosus (adoSLE) receiving either high- or low-dose immunosuppressant (High-IS and Low-IS). METHODS Patients aged 12-18 years diagnosed with SLE were enrolled. High-IS was defined as >7.5 mg/day prednisolone or with other immunosuppressant, while Low-IS was defined as only ≤7.5 mg/day of prednisolone and no immunosuppressant. Two doses of BNT162b2 vaccination were given 4 weeks apart, followed by a booster (third) dose at 4-6 months later. Anti-spike receptor binding domain (anti-RBD) IgG against Wuhan, neutralising antibody (NT) against Wuhan and Omicron variants, and cellular immune response by IFN-γ-ELISpot assay were evaluated following vaccination. Adverse events (AEs) and SLE flare were monitored. RESULTS A total of 73 participants were enrolled, 40 and 33 in the High-IS and Low-IS group, respectively. At 4 weeks following the 2nd dose, overall anti-RBD IgG seropositivity was 97.3%, with no difference between the groups (p = .498). AdoSLE on High-IS had lower anti-RBD IgG (p < .001), Wuhan NT (p < .001), and IFN-γ-ELISpot (p = .022) than those on Low-IS. A 3rd dose induced significantly higher antibody responses than after the 2nd dose (p < .001) in both groups and established seroconversion against Omicron variants, with persistent lower antibody levels in High-IS group. SELENA-SLEDAI scores within 12 weeks after 2-dose vaccination was higher than before vaccination (3.1 vs 2.5; p < .036); however, the occurrence of disease flare by SELENA-SLEDAI flare index was not different after vaccination compared to before vaccination, consistent across groups. Non-severe AEs occurred similarly in both groups. CONCLUSION AdoSLE on High-IS induced lower SARS-CoV-2 vaccine immune responses than Low-IS. Vaccination can increase disease activity and requires close monitoring for disease flare.
Collapse
Affiliation(s)
- Nuntawan Piyaphanee
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Charuvanij
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutheera Thepveera
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zheng Quan Toh
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Paul V Licciardi
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Anirut Pattaragarn
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patimaporn Wongprompitak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatkamol Pheerapanyawaranun
- Siriraj Institute of Clinical Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Institute of Clinical Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
218
|
Boston RH, Guan R, Kalmar L, Beier S, Horner EC, Beristain-Covarrubias N, Yam-Puc JC, Pereyra Gerber P, Faria L, Kuroshchenkova A, Lindell AE, Blasche S, Correa-Noguera A, Elmer A, Saunders C, Bermperi A, Jose S, Kingston N, Grigoriadou S, Staples E, Buckland MS, Lear S, Matheson NJ, Benes V, Parkinson C, Thaventhiran JE, Patil KR. Stability of gut microbiome after COVID-19 vaccination in healthy and immuno-compromised individuals. Life Sci Alliance 2024; 7:e202302529. [PMID: 38316462 PMCID: PMC10844540 DOI: 10.26508/lsa.202302529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Bidirectional interactions between the immune system and the gut microbiota are key contributors to various physiological functions. Immune-associated diseases such as cancer and autoimmunity, and efficacy of immunomodulatory therapies, have been linked to microbiome variation. Although COVID-19 infection has been shown to cause microbial dysbiosis, it remains understudied whether the inflammatory response associated with vaccination also impacts the microbiota. Here, we investigate the temporal impact of COVID-19 vaccination on the gut microbiome in healthy and immuno-compromised individuals; the latter included patients with primary immunodeficiency and cancer patients on immunomodulating therapies. We find that the gut microbiome remained remarkably stable post-vaccination irrespective of diverse immune status, vaccine response, and microbial composition spanned by the cohort. The stability is evident at all evaluated levels including diversity, phylum, species, and functional capacity. Our results indicate the resilience of the gut microbiome to host immune changes triggered by COVID-19 vaccination and suggest minimal, if any, impact on microbiome-mediated processes. These findings encourage vaccine acceptance, particularly when contrasted with the significant microbiome shifts observed during COVID-19 infection.
Collapse
Affiliation(s)
- Rebecca H Boston
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rui Guan
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sina Beier
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Juan Carlos Yam-Puc
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra Gerber
- https://ror.org/013meh722 Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- https://ror.org/013meh722 Department of Medicine, University of Cambridge, Cambridge, UK
| | - Luisa Faria
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Kuroshchenkova
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna E Lindell
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sonja Blasche
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Andrea Correa-Noguera
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Anne Elmer
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | | | - Areti Bermperi
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Sherly Jose
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Emily Staples
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Matthew S Buckland
- Department of Clinical Immunology, Barts Health, London, UK
- UCL GOSH Institute of Child Health Division of Infection and Immunity, Section of Cellular and Molecular Immunology, London, UK
| | - Sara Lear
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Nicholas J Matheson
- https://ror.org/013meh722 Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- https://ror.org/013meh722 Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christine Parkinson
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - James Ed Thaventhiran
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Kiran R Patil
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
219
|
Shakinah S, Aini MH, Sekartini R, Soedjatmiko, Medise BE, Gunardi H, Yuniar I, Indawati W, Koesnoe S, Harimurti K, Maria S, Wirahmadi A, Sari RM, Setyaningsih L, Surachman F. Immunogenicity Assessment of the SARS-CoV-2 Protein Subunit Recombinant Vaccine (CoV2-IB 0322) in a Substudy of a Phase 3 Trial in Indonesia. Vaccines (Basel) 2024; 12:371. [PMID: 38675753 PMCID: PMC11053672 DOI: 10.3390/vaccines12040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND COVID-19 is one of the most devastating pandemics of the 21st century. Vaccination is one of the most effective prevention methods in combating COVID-19, and one type of vaccine being developed was the protein subunit recombinant vaccine. We evaluated the efficacy of the CoV2-IB 0322 vaccine in Depok, Indonesia. METHODS This study aimed to assess the humoral and cellular immune response of the CoV2-IB 0322 vaccine compared to an active control vaccine (COVOVAX™ Vaccine). A total of 120 subjects were enrolled and randomized into two groups, with 60 subjects in each group. Participants received either two doses of the CoV2-IB 0322 vaccine or two doses of the control vaccine with a 28-day interval between doses. Safety assessments were conducted through onsite monitoring and participant-reported adverse events. Immunogenicity was evaluated by measuring IgG anti-RBD SARS-CoV-2 and IgG-neutralizing antibodies. Cellular immunity was assessed by specific T-cell responses. Whole blood samples were collected at baseline, 14 days, 6 months, and 12 months after the second dose for cellular immunity evaluation. RESULTS Both vaccines showed high seropositive rates, with neutralizing antibody and IgG titers peaking 14 days after the second dose and declining by 12 months. The seroconversion rate of anti-S IgG was 100% in both groups, but the rate of neutralizing antibody seroconversion was lower in the CoV2-IB 0322 vaccine group at 14 days after the second dose (p = 0.004). The CoV2-IB 0322 vaccine showed higher IgG GMT levels 6 and 12 months after the second dose (p < 0.001 and p = 0.01). T-cell responses, evaluated by IFN-γ, IL-2, and IL-4 production by CD4+ and CD8+ T-cells, showed similar results without significant differences between both groups, except for %IL-2/CD4+ cells 6 months after the second dose (p = 0.038). CONCLUSION Both vaccines showed comparable B- and T-cell immunological response that diminish over time.
Collapse
Affiliation(s)
- Sharifah Shakinah
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Muhammad Hafiz Aini
- Department of Internal Medicine, Universitas Indonesia Hospital, Jl. Prof. DR. Bahder Djohan, Depok 16424, Indonesia
| | - Rini Sekartini
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Soedjatmiko
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Bernie Endyarni Medise
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Hartono Gunardi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Irene Yuniar
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Wahyuni Indawati
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Sukamto Koesnoe
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Suzy Maria
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Angga Wirahmadi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Rini Mulia Sari
- PT Bio Farma, Jalan Pasteur No. 28, Bandung 40161, Indonesia (L.S.); (F.S.)
| | - Lilis Setyaningsih
- PT Bio Farma, Jalan Pasteur No. 28, Bandung 40161, Indonesia (L.S.); (F.S.)
| | | |
Collapse
|
220
|
Sanchez J, Martinez ES, Loveless B, Sees JP, Zammuto J, Szurmant H, Fuchs S, Crone P, Hostoffer R. Augmentation of immune response to vaccinations through osteopathic manipulative treatment: a study of procedure. J Osteopath Med 2024; 124:163-170. [PMID: 38011280 DOI: 10.1515/jom-2023-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
CONTEXT Anecdotal evidence suggested that osteopathic manipulative treatment (OMT) may have imparted survivability to patients in osteopathic hospitals during the 1918 influenza pandemic. In addition, previous OMT research publications throughout the past century have shown evidence of increased lymphatic movement, resulting in improved immunologic function qualitatively and quantitatively. OBJECTIVES The following is a description of a proposed protocol to evaluate OMT effects on antibody generation in the peripheral circulation in response to a vaccine and its possible use in the augmentation of various vaccines. This protocol will serve as a template for OMT vaccination studies, and by adhering to the gold standard of randomized controlled trials (RCTs), future studies utilizing this outline may contribute to the much-needed advancement of the scientific literature in this field. METHODS This manuscript intends to describe a protocol that will demonstrate increased antibody titers to a vaccine through OMT utilized in previous historical studies. Confirmation data will follow this manuscript validating the protocol. Study participants will be divided into groups with and without OMT with lymphatic pumps. Each group will receive the corresponding vaccine and have antibody titers measured against the specific vaccine pathogen drawn at determined intervals. RESULTS These results will be statistically evaluated. Our demonstration of a rational scientific OMT vaccine antibody augmentation will serve as the standard for such investigation that will be reported in the future. These vaccines could include COVID-19 mRNA, influenza, shingles, rabies, and various others. The antibody response to vaccines is the resulting conclusion of its administration. Osteopathic manipulative medicine (OMM) lymphatic pumps have, in the past through anecdotal reports and smaller pilot studies, shown effectiveness on peripheral immune augmentation to vaccines. CONCLUSIONS This described protocol will be the template for more extensive scientific studies supporting osteopathic medicine's benefit on vaccine response. The initial vaccine studies will include the COVID-19 mRNA, influenza, shingles, and rabies vaccines.
Collapse
Affiliation(s)
- Jesus Sanchez
- Department of Neuromusculoskeletal Medicine/Osteopathic Manipulative Medicine, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Eric S Martinez
- Department of Neuromusculoskeletal Medicine/Osteopathic Manipulative Medicine, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Brian Loveless
- Department of Neuromusculoskeletal Medicine/Osteopathic Manipulative Medicine, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Julieanne P Sees
- Fellow Osteopathic Medicine, National Academy of Medicine, Washington, DC, USA
| | - Joseph Zammuto
- Associate Professor of Family Medicine, Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, CA, USA
| | - Hendrik Szurmant
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Sebastien Fuchs
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Paula Crone
- Western University of Health Sciences, Pomona, CA, USA
| | - Robert Hostoffer
- University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
221
|
Lintala A, Vapalahti O, Nousiainen A, Kantele A, Hepojoki J. Whole Blood as a Sample Matrix in Homogeneous Time-Resolved Assay-Förster Resonance Energy Transfer-Based Antibody Detection. Diagnostics (Basel) 2024; 14:720. [PMID: 38611633 PMCID: PMC11011549 DOI: 10.3390/diagnostics14070720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The protein-L-utilizing Förster resonance energy transfer (LFRET) assay enables mix-and-read antibody detection, as demonstrated for sera from patients with, e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus, and orthohantavirus infections. In this study, we compared paired serum and whole blood (WB) samples of COVID-19 patients and SARS-CoV-2 vaccine recipients. We found that LFRET also detects specific antibodies in WB samples. In 44 serum-WB pairs from patients with laboratory-confirmed COVID-19, LFRET showed a strong correlation between the sample materials. By analyzing 89 additional WB samples, totaling 133 WB samples, we found that LFRET results were moderately correlated with enzyme-linked immunosorbent assay results for samples collected 2 to 14 months after receiving COVID-19 diagnosis. However, the correlation decreased for samples >14 months after receiving a diagnosis. When comparing the WB LFRET results to neutralizing antibody titers, a strong correlation emerged for samples collected 1 to 14 months after receiving a diagnosis. This study also highlights the versatility of LFRET in detecting antibodies directly from WB samples and suggests that it could be employed for rapidly assessing antibody responses to infectious agents or vaccines.
Collapse
Affiliation(s)
- Annika Lintala
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Hospital Diagnostic Center, 00029 Helsinki, Finland
| | - Arttu Nousiainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Anu Kantele
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
222
|
Menghini GM, Thurnheer R, Kahlert CR, Kohler P, Grässli F, Stocker R, Battegay M, Vuichard-Gysin D. Impact of shift work and other work-related factors on anti-SARS-CoV-2 spike-protein serum concentrations in healthcare workers after primary mRNA vaccination - a retrospective cohort study. Swiss Med Wkly 2024; 154:3708. [PMID: 38639178 DOI: 10.57187/s.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Knowing whether shift work negatively affects the immune system's response to COVID-19 vaccinations could be valuable for planning future vaccination campaigns for healthcare workers. We aimed to determine the impact of working late or night shifts on serum anti-SARS-CoV-2 spike protein immunoglobulin G (anti-S) antibody levels after primary SARS-CoV-2-mRNA vaccination. METHODS To obtain detailed information on shift work, we sent a separate online questionnaire to 1475 eligible healthcare workers who participated in a prospective longitudinal study conducted in 15 healthcare institutions in Switzerland. We asked all vaccinated healthcare workers with available anti-S antibody levels after vaccination to complete a brief online survey on their working schedules within one week before and after primary mRNA vaccination. We used multivariate regression to evaluate the association between work shifts around primary vaccination and anti-S antibody levels. We adjusted for confounders already known to influence vaccine efficacy (e.g. age, sex, immunosuppression, and obesity) and for variables significant at the 0.05 alpha level in the univariate analyses. RESULTS The survey response rate was 43% (n = 638). Ninety-eight responders were excluded due to unknown vaccination dates, different vaccines, or administration of the second dose shortly (within 14 days) after or before serologic follow-up. Of the 540 healthcare workers included in our analysis, 175 (32.4%) had worked at least one late or night shift within seven days before and/or after primary vaccination. In the univariate analyses, working late or night shifts was associated with a nonsignificant -15.1% decrease in serum anti-S antibody levels (p = 0.090). In the multivariate analysis, prior infection (197.2% increase; p <0.001) and immunisation with the mRNA-1273 vaccine (63.7% increase compared to the BNT162b2 vaccine; p <0.001) were the strongest independent factors associated with increased anti-S antibody levels. However, the impact of shift work remained statistically nonsignificant (-13.5%, p = 0.108). CONCLUSION Working late or night shifts shortly before or after mRNA vaccination against COVID-19 does not appear to significantly impact serum anti-S antibody levels. This result merits consideration since it supports flexible vaccination appointments for healthcare workers, including those working late or night shifts.
Collapse
Affiliation(s)
- Gianluca Mauro Menghini
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
| | - Robert Thurnheer
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerlandh
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
- Children's Hospital of Eastern Switzerland, Department of Infectious Diseases and Hospital Epidemiology, St Gallen, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Fabian Grässli
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | | | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Danielle Vuichard-Gysin
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Thurgau Hospital Group, Muensterlingen and Frauenfeld, Switzerland
- Swiss National Center for Infection Prevention (Swissnoso), Bern, Switzerland
| |
Collapse
|
223
|
Ny Mioramalala DJ, Ratovoson R, Tagnouokam-Ngoupo PA, Abessolo Abessolo H, Mindimi Nkodo JM, Bouting Mayaka G, Tsoungui Atangana PC, Randrianarisaona F, Pélembi P, Nzoumbou-Boko R, Coti-Reckoundji CSG, Manirakiza A, Rahantamalala A, Randremanana RV, Tejiokem MC, Schoenhals M. SARS-CoV-2 Neutralizing Antibodies in Three African Countries Following Multiple Distinct Immune Challenges. Vaccines (Basel) 2024; 12:363. [PMID: 38675745 PMCID: PMC11054809 DOI: 10.3390/vaccines12040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has affected Madagascar, Cameroon, and the Central African Republic (CAR), with each experiencing multiple waves by mid-2022. This study aimed to evaluate immunity against SARS-CoV-2 strains Wuhan (W) and BA.2 (BA.2) among healthcare workers (HCWs) in these countries, focusing on vaccination and natural infection effects. METHODS HCWs' serum samples were analyzed for neutralizing antibodies (nAbs) against W and BA.2 variants, with statistical analyses comparing responses between countries and vaccination statuses. RESULTS Madagascar showed significantly higher nAb titers against both strains compared to CAR and Cameroon. Vaccination notably increased nAb levels against W by 2.6-fold in CAR and 1.8-fold in Madagascar, and against BA.2 by 1.6-fold in Madagascar and 1.5-fold in CAR. However, in Cameroon, there was no significant difference in nAb levels between vaccinated and unvaccinated groups. CONCLUSION This study highlights the complex relationship between natural and vaccine-induced immunity, emphasizing the importance of assessing immunity in regions with varied epidemic experiences and low vaccination rates.
Collapse
Affiliation(s)
- Diary Juliannie Ny Mioramalala
- Institut Pasteur of Madagascar, Immunology of Infectious Diseases, Antananarivo 101, Madagascar; (D.J.N.M.); (F.R.); (A.R.)
| | - Rila Ratovoson
- Institut Pasteur of Madagascar, Epidemiology and Clinical Research, Antananarivo 101, Madagascar; (R.R.); (R.V.R.)
| | - Paul Alain Tagnouokam-Ngoupo
- Centre Pasteur du Cameroon, Epidemiology and Public Health, Yaoundé P.O. Box 1274, Cameroon; (P.A.T.-N.); (M.C.T.)
| | | | | | | | | | - Fanirisoa Randrianarisaona
- Institut Pasteur of Madagascar, Immunology of Infectious Diseases, Antananarivo 101, Madagascar; (D.J.N.M.); (F.R.); (A.R.)
| | - Pulchérie Pélembi
- Institut Pasteur of Bangui, Epidemiology, Bangui P.O. Box 923, Central African Republic; (P.P.); (R.N.-B.); (C.S.G.C.-R.); (A.M.)
| | - Romaric Nzoumbou-Boko
- Institut Pasteur of Bangui, Epidemiology, Bangui P.O. Box 923, Central African Republic; (P.P.); (R.N.-B.); (C.S.G.C.-R.); (A.M.)
| | | | - Alexandre Manirakiza
- Institut Pasteur of Bangui, Epidemiology, Bangui P.O. Box 923, Central African Republic; (P.P.); (R.N.-B.); (C.S.G.C.-R.); (A.M.)
| | - Anjanirina Rahantamalala
- Institut Pasteur of Madagascar, Immunology of Infectious Diseases, Antananarivo 101, Madagascar; (D.J.N.M.); (F.R.); (A.R.)
| | - Rindra Vatosoa Randremanana
- Institut Pasteur of Madagascar, Epidemiology and Clinical Research, Antananarivo 101, Madagascar; (R.R.); (R.V.R.)
| | - Mathurin Cyrille Tejiokem
- Centre Pasteur du Cameroon, Epidemiology and Public Health, Yaoundé P.O. Box 1274, Cameroon; (P.A.T.-N.); (M.C.T.)
| | - Matthieu Schoenhals
- Institut Pasteur of Madagascar, Immunology of Infectious Diseases, Antananarivo 101, Madagascar; (D.J.N.M.); (F.R.); (A.R.)
| |
Collapse
|
224
|
Roberts MG, Hickson RI, McCaw JM. How immune dynamics shape multi-season epidemics: a continuous-discrete model in one dimensional antigenic space. J Math Biol 2024; 88:48. [PMID: 38538962 PMCID: PMC10973021 DOI: 10.1007/s00285-024-02076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024]
Abstract
We extend a previously published model for the dynamics of a single strain of an influenza-like infection. The model incorporates a waning acquired immunity to infection and punctuated antigenic drift of the virus, employing a set of coupled integral equations within a season and a discrete map between seasons. The long term behaviour of the model is demonstrated by examples where immunity to infection depends on the time since a host was last infected, and where immunity depends on the number of times that a host has been infected. The first scenario leads to complicated dynamics in some regions of parameter space, and to regions of parameter space with more than one attractor. The second scenario leads to a stable fixed point, corresponding to an identical epidemic each season. We also examine the model with both paradigms in combination, almost always but not exclusively observing a stable fixed point or periodic solution. Adding stochastic perturbations to the between season map fails to destroy the model's qualitative dynamics. Our results suggest that if the level of host immunity depends on the elapsed time since the last infection then the epidemiological dynamics may be unpredictable.
Collapse
Affiliation(s)
- M G Roberts
- New Zealand Institute for Advanced Study and the Infectious Disease Research Centre, Massey University, Auckland, New Zealand.
| | - R I Hickson
- Health and Biosecurity, CSIRO, Townsville, QLD, 4814, Australia
- Australian Institute of Tropical Medicine and Hygiene, and College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4814, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - J M McCaw
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
225
|
Bian S, Shang M, Tao Y, Wang P, Xu Y, Wang Y, Shen Z, Sawan M. Dynamic Profiling and Prediction of Antibody Response to SARS-CoV-2 Booster-Inactivated Vaccines by Microsample-Driven Biosensor and Machine Learning. Vaccines (Basel) 2024; 12:352. [PMID: 38675735 PMCID: PMC11054503 DOI: 10.3390/vaccines12040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Knowledge of the antibody response to the third dose of inactivated SARS-CoV-2 vaccines is crucial because it is the subject of one of the largest global vaccination programs. This study integrated microsampling with optical biosensors to profile neutralizing antibodies (NAbs) in fifteen vaccinated healthy donors, followed by the application of machine learning to predict antibody response at given timepoints. Over a nine-month duration, microsampling and venipuncture were conducted at seven individual timepoints. A refined iteration of a fiber optic biolayer interferometry (FO-BLI) biosensor was designed, enabling rapid multiplexed biosensing of the NAbs of both wild-type and Omicron SARS-CoV-2 variants in minutes. Findings revealed a strong correlation (Pearson r of 0.919, specificity of 100%) between wild-type variant NAb levels in microsamples and sera. Following the third dose, sera NAb levels of the wild-type variant increased 2.9-fold after seven days and 3.3-fold within a month, subsequently waning and becoming undetectable after three months. Considerable but incomplete evasion of the latest Omicron subvariants from booster vaccine-elicited NAbs was confirmed, although a higher number of binding antibodies (BAbs) was identified by another rapid FO-BLI biosensor in minutes. Significantly, FO-BLI highly correlated with a pseudovirus neutralization assay in identifying neutralizing capacities (Pearson r of 0.983). Additionally, machine learning demonstrated exceptional accuracy in predicting antibody levels, with an error level of <5% for both NAbs and BAbs across multiple timepoints. Microsample-driven biosensing enables individuals to access their results within hours of self-collection, while precise models could guide personalized vaccination strategies. The technology's innate adaptability means it has the potential for effective translation in disease prevention and vaccine development.
Collapse
Affiliation(s)
- Sumin Bian
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310024, China; (S.B.)
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou 310058, China
| | - Ying Tao
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310024, China; (S.B.)
| | - Pengbo Wang
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310024, China; (S.B.)
| | - Yankun Xu
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310024, China; (S.B.)
| | - Yao Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou 310058, China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou 310058, China
| | - Mahamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310024, China; (S.B.)
| |
Collapse
|
226
|
Monteiro MES, Lechuga GC, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Morel CM, Provance DW, De-Simone SG. Humoral Immune Response to SARS-CoV-2 Spike Protein Receptor-Binding Motif Linear Epitopes. Vaccines (Basel) 2024; 12:342. [PMID: 38675725 PMCID: PMC11055068 DOI: 10.3390/vaccines12040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD's crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.
Collapse
Affiliation(s)
- Maria E. S. Monteiro
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| |
Collapse
|
227
|
Cheng SMS, Mok CKP, Li JKC, Chan KKP, Luk KS, Lee BHW, Gu H, Chan KCK, Tsang LCH, Yiu KYS, Ling KKC, Tang YS, Luk LLH, Yu JKM, Pekosz A, Webby RJ, Cowling BJ, Hui DSC, Peiris M. Cross-neutralizing antibody against emerging Omicron subvariants of SARS-CoV-2 in infection-naïve individuals with homologous BNT162b2 or BNT162b2(WT + BA.4/5) bivalent booster vaccination. Virol J 2024; 21:70. [PMID: 38515117 PMCID: PMC10956325 DOI: 10.1186/s12985-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.
Collapse
Affiliation(s)
- Samuel M S Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris K P Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Research Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John K C Li
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ken K P Chan
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kristine S Luk
- Princess Margaret Hospital, Hospital Authority, Hong Kong SAR, China
| | - Ben H W Lee
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karl C K Chan
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo C H Tsang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karen Y S Yiu
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ken K C Ling
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Sang Tang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Leo L H Luk
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer K M Yu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Cowling
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David S C Hui
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Research Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
228
|
Gardner BJ, Kilpatrick AM. Predicting Vaccine Effectiveness for Hospitalization and Symptomatic Disease for Novel SARS-CoV-2 Variants Using Neutralizing Antibody Titers. Viruses 2024; 16:479. [PMID: 38543844 PMCID: PMC10975673 DOI: 10.3390/v16030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The emergence of new virus variants, including the Omicron variant (B.1.1.529) of SARS-CoV-2, can lead to reduced vaccine effectiveness (VE) and the need for new vaccines or vaccine doses if the extent of immune evasion is severe. Neutralizing antibody titers have been shown to be a correlate of protection for SARS-CoV-2 and other pathogens, and could be used to quickly estimate vaccine effectiveness for new variants. However, no model currently exists to provide precise VE estimates for a new variant against severe disease for SARS-CoV-2 using robust datasets from several populations. We developed predictive models for VE against COVID-19 symptomatic disease and hospitalization across a 54-fold range of mean neutralizing antibody titers. For two mRNA vaccines (mRNA-1273, BNT162b2), models fit without Omicron data predicted that infection with the BA.1 Omicron variant increased the risk of hospitalization 2.8-4.4-fold and increased the risk of symptomatic disease 1.7-4.2-fold compared to the Delta variant. Out-of-sample validation showed that model predictions were accurate; all predictions were within 10% of observed VE estimates and fell within the model prediction intervals. Predictive models using neutralizing antibody titers can provide rapid VE estimates, which can inform vaccine booster timing, vaccine design, and vaccine selection for new virus variants.
Collapse
Affiliation(s)
- Billy J. Gardner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
229
|
Underwood AP, Sølund C, Jacobsen K, Binderup A, Fernandez-Antunez C, Mikkelsen LS, Inekci D, Villadsen SL, Castruita JAS, Pinholt M, Fahnøe U, Ramirez S, Brix L, Weis N, Bukh J. Neutralizing antibody and CD8 + T cell responses following BA.4/5 bivalent COVID-19 booster vaccination in adults with and without prior exposure to SARS-CoV-2. Front Immunol 2024; 15:1353353. [PMID: 38571939 PMCID: PMC10987722 DOI: 10.3389/fimmu.2024.1353353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/08/2024] [Indexed: 04/05/2024] Open
Abstract
As severe acute respiratory coronavirus 2 (SARS-CoV-2) variants continue to emerge, it is important to characterize immune responses against variants which can inform on protection efficacies following booster vaccination. In this study, neutralizing breadth and antigen-specific CD8+ T cell responses were analyzed in both infection-naïve and infection-experienced individuals following administration of a booster bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine. Significantly higher neutralizing titers were found after this vaccination compared to the pre-third booster vaccination time point. Further, neutralizing breadth to omicron variants, including BA.1, BA.2, BA.5, BQ.1 and XBB.1, was found to be boosted following bivalent vaccination. SARS-CoV-2-specific CD8+ T cells were identified, but with no evidence that frequencies were increased following booster vaccinations. Spike protein-specific CD8+ T cells were the only responses detected after vaccination and non-spike-specific CD8+ T cells were only detected after infection. Both spike-specific and non-spike-specific CD8+ T cells were found at much lower frequencies than CD8+ T cells specific to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza (Flu). Taken together, these results show that the bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine boosted the breadth of neutralization to newer SARS-CoV-2 variants and that vaccination is able to induce spike protein-specific CD8+ T cell responses, which are maintained longitudinally.
Collapse
Affiliation(s)
- Alexander P. Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lotte S. Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Signe Lysemose Villadsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jose A. S. Castruita
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
230
|
Goguet E, Olsen CH, Meyer WA, Ansari S, Powers JH, Conner TL, Coggins SA, Wang W, Wang R, Illinik L, Sanchez Edwards M, Jackson-Thompson BM, Hollis-Perry M, Wang G, Alcorta Y, Wong MA, Saunders D, Mohammed R, Balogun B, Kobi P, Kosh L, Bishop-Lilly K, Cer RZ, Arnold CE, Voegtly LJ, Fitzpatrick M, Luquette AE, Malagon F, Ortega O, Parmelee E, Davies J, Lindrose AR, Haines-Hull H, Moser MS, Samuels EC, Rekedal MS, Graydon EK, Malloy AMW, Tribble D, Burgess TH, Campbell W, Robinson S, Broder CC, O’Connell RJ, Weiss CD, Pollett S, Laing E, Mitre E. Immune and behavioral correlates of protection against symptomatic post-vaccination SARS-CoV-2 infection. Front Immunol 2024; 15:1287504. [PMID: 38566991 PMCID: PMC10985347 DOI: 10.3389/fimmu.2024.1287504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction We sought to determine pre-infection correlates of protection against SARS-CoV-2 post-vaccine inzfections (PVI) acquired during the first Omicron wave in the United States. Methods Serum and saliva samples from 176 vaccinated adults were collected from October to December of 2021, immediately before the Omicron wave, and assessed for SARS-CoV-2 Spike-specific IgG and IgA binding antibodies (bAb). Sera were also assessed for bAb using commercial assays, and for neutralization activity against several SARS-CoV-2 variants. PVI duration and severity, as well as risk and precautionary behaviors, were assessed by questionnaires. Results Serum anti-Spike IgG levels assessed by research assay, neutralization titers against Omicron subvariants, and low home risk scores correlated with protection against PVIs after multivariable regression analysis. Commercial assays did not perform as well as research assay, likely due to their lower dynamic range. Discussion In the 32 participants that developed PVI, anti-Spike IgG bAbs correlated with lower disease severity and shorter duration of illness.
Collapse
Affiliation(s)
- Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Cara H. Olsen
- Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Sara Ansari
- Quest Diagnostics, Secaucus, NJ, United States
| | - John H. Powers
- Clinical Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tonia L. Conner
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Si’Ana A. Coggins
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Wei Wang
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Richard Wang
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Luca Illinik
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Margaret Sanchez Edwards
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Belinda M. Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Monique Hollis-Perry
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory Wang
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Yolanda Alcorta
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Mimi A. Wong
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - David Saunders
- Translational Medicine Unit, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roshila Mohammed
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bolatito Balogun
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Priscilla Kobi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lakeesha Kosh
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
| | - Regina Z. Cer
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
| | - Catherine E. Arnold
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Logan J. Voegtly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Maren Fitzpatrick
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Andrea E. Luquette
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Francisco Malagon
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Orlando Ortega
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edward Parmelee
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Julian Davies
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alyssa R. Lindrose
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Hannah Haines-Hull
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matthew S. Moser
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Emily C. Samuels
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Marana S. Rekedal
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Elizabeth K. Graydon
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Wesley Campbell
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Sara Robinson
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Robert J. O’Connell
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Carol D. Weiss
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Simon Pollett
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
231
|
Mai F, Kordt M, Bergmann-Ewert W, Reisinger EC, Müller-Hilke B. NVX-CoV2373 induces humoral and cellular immune responses that are functionally comparable to vector and mRNA-based vaccines. Front Immunol 2024; 15:1359475. [PMID: 38562927 PMCID: PMC10982398 DOI: 10.3389/fimmu.2024.1359475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background After licensing of the protein-based vaccine NVX-CoV2373, three technically different vaccines against the SARS-CoV-2 became available for application to the human population - and for comparison of efficacies. Methods We here recruited 42 study participants who had obtained one initial dose of NVX-CoV2373 and analyzed their immune responses in contrast to 37 study participants who had obtained either the vector vaccine AZD1222 or the mRNA vaccine BNT162b2 a year earlier. 32 participants also donated blood before first vaccination to serve as a vaccine-naive control. In detail, we investigated and quantified at day 21 and approximately six months after primary immunization the amounts of vaccine-specific antibodies produced, their neutralization capacity, their quality in terms of binding different epitopes and their efficiency in inducing various isotypes. Cellular immunity and intracellular cytokine production following in vitro re-stimulation with BNT162b2 vaccine was analyzed via ELISpot or via flow cytometry. Results Our results show that even though vaccination including the mRNA vaccine yielded best results in almost any aspect of antibody levels and binding efficiency, the neutralization capacities against the wild-type Wuhan strain and the Omicron BA.1 variant early and at six months were comparable among all three vaccination groups. As for the T cells, we observed a prevailing CD8 response at three weeks which turned into a predominant CD4 memory at six months which has not yet been observed for AZD1222 and BNT162b2. While additional infection with SARS-CoV-2 resulted in a boost for the humoral response, T cell memory appeared rather unaffected. Conclusion Whether any of these differences translate into real world protection from infection, mitigation of severe disease courses and prevention of long/post COVID will need to be investigated in the future.
Collapse
Affiliation(s)
- Franz Mai
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Marcel Kordt
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
232
|
Karim F, Riou C, Bernstein M, Jule Z, Lustig G, van Graan S, Keeton RS, Upton JL, Ganga Y, Khan K, Reedoy K, Mazibuko M, Govender K, Thambu K, Ngcobo N, Venter E, Makhado Z, Hanekom W, von Gottberg A, Hoque M, Karim QA, Abdool Karim SS, Manickchund N, Magula N, Gosnell BI, Lessells RJ, Moore PL, Burgers WA, de Oliveira T, Moosa MYS, Sigal A. Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation. Nat Commun 2024; 15:2360. [PMID: 38491050 PMCID: PMC10943233 DOI: 10.1038/s41467-024-46673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
SARS-CoV-2 clearance requires adaptive immunity but the contribution of neutralizing antibodies and T cells in different immune states is unclear. Here we ask which adaptive immune responses associate with clearance of long-term SARS-CoV-2 infection in HIV-mediated immunosuppression after suppressive antiretroviral therapy (ART) initiation. We assembled a cohort of SARS-CoV-2 infected people in South Africa (n = 994) including participants with advanced HIV disease characterized by immunosuppression due to T cell depletion. Fifty-four percent of participants with advanced HIV disease had prolonged SARS-CoV-2 infection (>1 month). In the five vaccinated participants with advanced HIV disease tested, SARS-CoV-2 clearance associates with emergence of neutralizing antibodies but not SARS-CoV-2 specific CD8 T cells, while CD4 T cell responses were not determined due to low cell numbers. Further, complete HIV suppression is not required for clearance, although it is necessary for an effective vaccine response. Persistent SARS-CoV-2 infection led to SARS-CoV-2 evolution, including virus with extensive neutralization escape in a Delta variant infected participant. The results provide evidence that neutralizing antibodies are required for SARS-CoV-2 clearance in HIV-mediated immunosuppression recovery, and that suppressive ART is necessary to curtail evolution of co-infecting pathogens to reduce individual health consequences as well as public health risk linked with generation of escape mutants.
Collapse
Affiliation(s)
- Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | | | - Zesuliwe Jule
- Africa Health Research Institute, Durban, South Africa
| | - Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Strauss van Graan
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | | | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kajal Reedoy
- Africa Health Research Institute, Durban, South Africa
| | | | | | | | | | - Elizabeth Venter
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zanele Makhado
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Monjurul Hoque
- KwaDabeka Community Health Centre, KwaDabeka, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nithendra Manickchund
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nombulelo Magula
- Department of Internal Medicine, Nelson R. Mandela School of Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - Bernadett I Gosnell
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Richard J Lessells
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | - Penny L Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Tulio de Oliveira
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
- Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| |
Collapse
|
233
|
Magaret CA, Li L, deCamp AC, Rolland M, Juraska M, Williamson BD, Ludwig J, Molitor C, Benkeser D, Luedtke A, Simpkins B, Heng F, Sun Y, Carpp LN, Bai H, Dearlove BL, Giorgi EE, Jongeneelen M, Brandenburg B, McCallum M, Bowen JE, Veesler D, Sadoff J, Gray GE, Roels S, Vandebosch A, Stieh DJ, Le Gars M, Vingerhoets J, Grinsztejn B, Goepfert PA, de Sousa LP, Silva MST, Casapia M, Losso MH, Little SJ, Gaur A, Bekker LG, Garrett N, Truyers C, Van Dromme I, Swann E, Marovich MA, Follmann D, Neuzil KM, Corey L, Greninger AL, Roychoudhury P, Hyrien O, Gilbert PB. Quantifying how single dose Ad26.COV2.S vaccine efficacy depends on Spike sequence features. Nat Commun 2024; 15:2175. [PMID: 38467646 PMCID: PMC10928100 DOI: 10.1038/s41467-024-46536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.
Collapse
Affiliation(s)
- Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Li Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian D Williamson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - James Ludwig
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cindy Molitor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Benkeser
- Departments of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alex Luedtke
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Brian Simpkins
- Department of Computer Science, Pitzer College, Claremont, CA, USA
| | - Fei Heng
- University of North Florida, Jacksonville, FL, USA
| | - Yanqing Sun
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hongjun Bai
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Bethany L Dearlove
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Elena E Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mandy Jongeneelen
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Boerries Brandenburg
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Jerald Sadoff
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | - Sanne Roels
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - An Vandebosch
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel J Stieh
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Mathieu Le Gars
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Johan Vingerhoets
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leonardo Paiva de Sousa
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Mayara Secco Torres Silva
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Martin Casapia
- Facultad de Medicina Humana, Universidad Nacional de la Amazonia Peru, Iquitos, Peru
| | - Marcelo H Losso
- Hospital General de Agudos José María Ramos Mejia, Buenos Aires, Argentina
| | - Susan J Little
- Division of Infectious Diseases, University of California San Diego, La Jolla, CA, USA
| | - Aditya Gaur
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Observatory, Cape Town, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Carla Truyers
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ilse Van Dromme
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Edith Swann
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary A Marovich
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA.
| |
Collapse
|
234
|
Latifi T, Kachooei A, Jalilvand S, Zafarian S, Roohvand F, Shoja Z. Correlates of immune protection against human rotaviruses: natural infection and vaccination. Arch Virol 2024; 169:72. [PMID: 38459213 DOI: 10.1007/s00705-024-05975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Integrating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our knowledge in this area are discussed.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Zafarian
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
235
|
Lambach P, Orenstein W, Silal S, Sbarra AN, Koh M, Aggarwal R, Hasan Farooqui H, Flasche S, Hogan A, Kim SY, Leask J, Luz PM, Lyimo DC, Moss WJ, Pitzer VE, Wang XY, Wu J. Report from the World Health Organization's immunization and vaccines related implementation research advisory committee (IVIR-AC) meeting, Geneva, 11-13 September 2023. Vaccine 2024; 42:1424-1434. [PMID: 38326131 PMCID: PMC10953699 DOI: 10.1016/j.vaccine.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Evaluating vaccine-related research is critical to maximize the potential of vaccination programmes. The WHO Immunization and Vaccine-related Implementation Research Advisory Committee (IVIR-AC) provides an independent review of research that estimates the performance, impact and value of vaccines, with a particular focus on transmission and economic modelling. On 11-13 September 2023, IVIR-AC was convened for a bi-annual meeting where the committee reviewed research and presentations across eight different sessions. This report summarizes the background information, proceedings and recommendations from that meeting. Sessions ranged in topic from timing of measles supplementary immunization activities, analyses of conditions necessary to meet measles elimination in the South-East Asia region, translating modelled evidence into policy, a risk-benefit analysis of dengue vaccine, COVID-19 scenario modelling in the African region, therapeutic vaccination against human papilloma virus, the Vaccine Impact Modelling Consortium, and the Immunization Agenda 2030 vaccine impact estimates.
Collapse
Affiliation(s)
- Philipp Lambach
- Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | | | - Sheetal Silal
- Modelling and Simulation Hub, Africa, University of Cape Town, Cape Town, South Africa; Centre for Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Alyssa N Sbarra
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Mitsuki Koh
- Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Rakesh Aggarwal
- Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | | | - Stefan Flasche
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Julie Leask
- School of Public Health, University of Sydney Sydney, Australia
| | - Paula M Luz
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - William J Moss
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Xian-Yi Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Joseph Wu
- School of Public Health, The University of Hong Kong, Hong Kong
| |
Collapse
|
236
|
Marcos-Villar L, Perdiguero B, Anthiya S, Borrajo ML, Lou G, Franceschini L, Esteban I, Sánchez-Cordón PJ, Zamora C, Sorzano CÓS, Jordá L, Codó L, Gelpí JL, Sisteré-Oró M, Meyerhans A, Thielemans K, Martínez-Jiménez F, López-Bigas N, García F, Alonso MJ, Plana M, Esteban M, Gómez CE. Modulating the immune response to SARS-CoV-2 by different nanocarriers delivering an mRNA expressing trimeric RBD of the spike protein: COVARNA Consortium. NPJ Vaccines 2024; 9:53. [PMID: 38448450 PMCID: PMC10918104 DOI: 10.1038/s41541-024-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 03/08/2024] Open
Abstract
Vaccines based on mRNA technology have revolutionized the field. In fact, lipid nanoparticles (LNP) formulated with mRNA are the preferential vaccine platform used in the fight against SARS-CoV-2 infection, with wider application against other diseases. The high demand and property right protection of the most potent cationic/ionizable lipids used for LNP formulation of COVID-19 mRNA vaccines have promoted the design of alternative nanocarriers for nucleic acid delivery. In this study we have evaluated the immunogenicity and efficacy of different rationally designed lipid and polymeric-based nanoparticle prototypes against SARS-CoV-2 infection. An mRNA coding for a trimeric soluble form of the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 was encapsulated using different components to form nanoemulsions (NE), nanocapsules (NC) and lipid nanoparticles (LNP). The toxicity and biological activity of these prototypes were evaluated in cultured cells after transfection and in mice following homologous prime/boost immunization. Our findings reveal good levels of RBD protein expression with most of the formulations. In C57BL/6 mice immunized intramuscularly with two doses of formulated RBD-mRNA, the modified lipid nanoparticle (mLNP) and the classical lipid nanoparticle (LNP-1) were the most effective delivery nanocarriers at inducing binding and neutralizing antibodies against SARS-CoV-2. Both prototypes fully protected susceptible K18-hACE2 transgenic mice from morbidity and mortality following a SARS-CoV-2 challenge. These results highlight that modulation of mRNAs immunogenicity can be achieved by using alternative nanocarriers and support further assessment of mLNP and LNP-1 prototypes as delivery vehicles for mRNA vaccines.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gustavo Lou
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ignasi Esteban
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Pedro J Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Luis Jordá
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Laia Codó
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Josep L Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria López-Bigas
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - María J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montserrat Plana
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
237
|
Zhao J, Zhang H, Jiang L, Cheng F, Li W, Wang Z, Liu H, Li S, Jiang Y, Li M, Li Y, Liu S, Fang M, Zhou X, Ye X, Zhao S, Zheng Y, Meng S. Increased antibody titers but induced T cell AICD and apoptosis response in COVID-19 convalescents by inactivated vaccine booster. Microbiol Spectr 2024; 12:e0243523. [PMID: 38319108 PMCID: PMC10913726 DOI: 10.1128/spectrum.02435-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
It is urgently needed to evaluate the necessity and benefits of booster vaccination against the coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) Omicron to facilitate clinical decision-making for 2019 coronavirus disease (COVID-19) convalescents. We conducted a multicenter, prospective clinical trial (registration number: ChiCTR2100045810) in the first patients with COVID-19 from 28 January 2020 to 20 February 2020 to assess the long-term durability of neutralizing antibodies against live Omicron BA.5 and further assess the efficiency and safety of CoronaVac in the convalescent group. A total of 96 COVID-19 convalescents were enrolled in this study. Neutralizing antibody titers in convalescents were significantly reduced in 9-10 months. A dose-refreshing vaccination in 28 convalescents with an antibody titer below 96 significantly induced neutralizing antibodies against live Omicron by 4.84-fold. Meanwhile, the abundance of naive T cells increased dramatically, and TEMRA and TEM cells gradually decreased after vaccination. Activation-induced cell death and apoptosis-related genes were significantly elevated after vaccination in all T-cell subtypes. One-dose booster vaccination was effective in inducing a robust antibody response against SARS-CoV-2 Omicron in COVID-19 convalescents with low antibody titers. However, vaccine-mediated T-cell consumption and regeneration patterns may be detrimental to the antiviral response.IMPORTANCEThe globally dominant coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) Omicron variant raises the possibility of repeat infections among 2019 coronavirus disease (COVID-19) convalescents with low neutralizing antibody titers. The importance of this multicenter study lies in its evaluation of the long-term durability of neutralizing antibodies in COVID-19 convalescents and the efficacy of a booster vaccination against the live Omicron. The findings suggest that a one-dose booster vaccination is effective in inducing a robust antibody response against SARS-CoV-2 Omicron in convalescents with low antibody titers. However, the study also highlights the potential detrimental effects on the antiviral response due to vaccine-mediated T-cell consumption and regeneration patterns. These results are crucial for facilitating clinical decision-making for COVID-19 convalescents and informing public health policies regarding booster vaccinations.
Collapse
Affiliation(s)
- Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fang Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyang Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shaohua Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yiyun Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Meiling Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Min Fang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Ye
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shousong Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuxuan Zheng
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
238
|
Manak M, Gagnon L, Phay-Tran S, Levesque-Damphousse P, Fabie A, Daugan M, Khan ST, Proud P, Hussey B, Knott D, Charlton S, Hallis B, Medigeshi GR, Garg N, Anantharaj A, Raqib R, Sarker P, Alam MM, Rahman M, Murreddu M, Balgobind A, Hofman R, Grappi S, Coluccio R, Calandro P, Montomoli E, Mattiuzzo G, Prior S, Le Duff Y, Page M, Mitchell J, Schwartz LM, Bartsch YC, Azizi A, Bernasconi V. Standardised quantitative assays for anti-SARS-CoV-2 immune response used in vaccine clinical trials by the CEPI Centralized Laboratory Network: a qualification analysis. THE LANCET. MICROBE 2024; 5:e216-e225. [PMID: 38278167 DOI: 10.1016/s2666-5247(23)00324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Accurate quantitation of immune markers is crucial for ensuring reliable assessment of vaccine efficacy against infectious diseases. This study was designed to confirm standardised performance of SARS-CoV-2 assays used to evaluate COVID-19 vaccine candidates at the initial seven laboratories (in North America, Europe, and Asia) of the Coalition for Epidemic Preparedness Innovations (CEPI) Centralized Laboratory Network (CLN). METHODS Three ELISAs (pre-spike protein, receptor binding domain, and nucleocapsid), a microneutralisation assay (MNA), a pseudotyped virus-based neutralisation assay (PNA), and an IFN-γ T-cell ELISpot assay were developed, validated or qualified, and transferred to participating laboratories. Immune responses were measured in ELISA laboratory units (ELU) for ELISA, 50% neuralisation dilution (ND50) for MNA, 50% neutralisation titre (NT50) for PNA, and spot-forming units for the ELISpot assay. Replicate assay results of well characterised panels and controls of blood samples from individuals with or without SARS-CoV-2 infection were evaluated by geometric mean ratios, standard deviation, linear regression, and Spearman correlation analysis for consistency, accuracy, and linearity of quantitative measurements across all laboratories. FINDINGS High reproducibility of results across all laboratories was demonstrated, with interlaboratory precision of 4·1-7·7% coefficient of variation for all three ELISAs, 3·8-19·5% for PNA, and 17·1-24·1% for MNA, over a linear range of 11-30 760 ELU per mL for the three ELISAs, 14-7876 NT50 per mL for PNA, and 21-25 587 ND50 per mL for MNA. The MNA was also adapted for detection of neutralising antibodies against the major SARS-CoV-2 variants of concern. The results of PNA and MNA (r=0·864) and of ELISA and PNA (r=0·928) were highly correlated. The IFN-γ ELISpot interlaboratory variability was 15·9-49·9% coefficient of variation. Sensitivity and specificity were close to 100% for all assays. INTERPRETATION The CEPI CLN provides accurate quantitation of anti-SARS-CoV-2 immune response across laboratories to allow direct comparisons of different vaccine formulations in different geographical areas. Lessons learned from this programme will serve as a model for faster responses to future pandemic threats and roll-out of effective vaccines. FUNDING CEPI.
Collapse
Affiliation(s)
- Mark Manak
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway.
| | - Luc Gagnon
- Nexelis, Q2 Solutions, Laval, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | - Neha Garg
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | | | - Rubhana Raqib
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Dhaka, Bangladesh
| | - Protim Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Dhaka, Bangladesh
| | - Mohammad Mamun Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Dhaka, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Dhaka, Bangladesh
| | | | | | | | | | | | | | | | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Sandra Prior
- Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Yann Le Duff
- Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Mark Page
- Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Jane Mitchell
- Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | | | | | - Ali Azizi
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | |
Collapse
|
239
|
Bouchnita A, Bi K, Fox SJ, Meyers LA. Projecting Omicron scenarios in the US while tracking population-level immunity. Epidemics 2024; 46:100746. [PMID: 38367285 DOI: 10.1016/j.epidem.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Throughout the COVID-19 pandemic, changes in policy, shifts in behavior, and the emergence of new SARS-CoV-2 variants spurred multiple waves of transmission. Accurate assessments of the changing risks were vital for ensuring adequate healthcare capacity, designing mitigation strategies, and communicating effectively with the public. Here, we introduce a model of COVID-19 transmission and vaccination that provided rapid and reliable projections as the BA.1, BA.4 and BA.5 variants emerged and spread across the US. For example, our three-week ahead national projection of the early 2021 peak in COVID-19 hospitalizations was only one day later and 11.6-13.3% higher than the actual peak, while our projected peak in mortality was two days earlier and 0.22-4.7% higher than reported. We track population-level immunity from prior infections and vaccination in terms of the percent reduction in overall susceptibility relative to a completely naive population. As of October 1, 2022, we estimate that the US population had a 36.52% reduction in overall susceptibility to the BA.4/BA.5 variants, with 61.8%, 15.06%, and 23.54% of immunity attributable to infections, primary series vaccination, and booster vaccination, respectively. We retrospectively projected the potential impact of expanding booster coverage starting on July 15, 2022, and found that a five-fold increase in weekly boosting rates would have resulted in 70% of people over 65 vaccinated by Oct 10, 2022 and averted 25,000 (95% CI: 14,400-35,700) deaths during the BA.4/BA.5 surge. Our model provides coherent variables for tracking population-level immunity in the increasingly complex landscape of variants and vaccines and enables robust simulations of plausible scenarios for the emergence and mitigation of novel COVID variants.
Collapse
Affiliation(s)
- Anass Bouchnita
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Kaiming Bi
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Spencer J Fox
- Department of Epidemiology & Biostatistics, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Lauren Ancel Meyers
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
240
|
Mungmunpuntipantip R, Wiwanitkit V. Neutralization antibody titer and change in 50% protection after the third dose of the COVID-19 vaccine. Indian J Pharmacol 2024; 56:80-83. [PMID: 38687310 PMCID: PMC11161003 DOI: 10.4103/ijp.ijp_162_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/26/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The new COVID-19 variant outbreak is the present global public health problem. The omicron variant of SARS-CoV-2 has several subvariants and causes outbreaks worldwide. Because of the increasing genetic heterogeneity of SARS-CoV-2, it is expected that using COVID-19 immunization to prevent and control disease will be problematic. AIM The aim of the study was to study neutralization of antibody titer and change in 50% protection after the third dose of the COVID-19 vaccine. MATERIALS AND METHODS In this report, the authors determine the expected neutralization antibody titer against omicron subvariants and the change in 50% protection against infection after the third dose of the immunization. RESULTS The change due to subvariant B.4 or B.5 is substantially higher than that due to the other subvariants. The efficacy of using viral vector vaccine boosters is questionable since viral vector COVID-19 boosters fail to generate enough antibodies to achieve the mean convalescent plasma level. CONCLUSION Higher antibody levels than the typical convalescent level and that needed for half protective property are still possible with the mRNA vaccine booster shot. In addition, compared to the half-dose regimen, the full-dose regimen produces a higher antibody level. As a booster shot, the mRNA COVID-19 vaccine is recommended.
Collapse
Affiliation(s)
| | - Viroj Wiwanitkit
- Joseph Ayo Babalola University, Ikeji-Arakeji, Osun, Nigeria
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
241
|
Ying B, Darling TL, Desai P, Liang CY, Dmitriev IP, Soudani N, Bricker T, Kashentseva EA, Harastani H, Raju S, Liu M, Schmidt AG, Curiel DT, Boon ACM, Diamond MS. Mucosal vaccine-induced cross-reactive CD8 + T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nat Immunol 2024; 25:537-551. [PMID: 38337035 PMCID: PMC10907304 DOI: 10.1038/s41590-024-01743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Houda Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
242
|
Giles ML, Flanagan KL. COVID-19 vaccination: are more jabs needed or are we now immune? Intern Med J 2024; 54:368-373. [PMID: 38414215 DOI: 10.1111/imj.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
As the COVID-19 pandemic has progressed, it has become apparent that COVID-19 vaccination has limited impact on SAR-CoV-2 transmission and provides only short-term protection against acquiring infection, but more robust protection against severe disease and death. As a result, vaccinated people remain susceptible to SARS-CoV-2 infection but are less likely to experience severe outcomes. Studies show that immunity derived from the combination of vaccination and natural infection, so-called hybrid immunity, is superior to that provided by vaccination or natural infection alone. Since most Australian adults have received three or more doses of COVID-19 vaccines and >70% have also been infected with SARS-CoV-2, we now have a population with high levels of hybrid immunity. This was mostly achieved by receiving original Wuhan strain vaccines and then experiencing Omicron strain infections. The original Wuhan strain of SARS-CoV-2 has now disappeared and been replaced with Omicron-lineage variants globally. The predominance of the Omicron strain initially led to the development of bivalent vaccines containing both the Wuhan strain and Omicron variants. Currently, vaccines containing the original Wuhan strain of spike protein are being phased out, and new COVID-19 vaccines based exclusively on the Omicron strain XBB have become available in Australia. This article explores the question of whether further doses will be required from 2024 onwards and, if so, who should receive them?
Collapse
Affiliation(s)
- Michelle L Giles
- Department of Infectious Diseases, University of Melbourne, Melbourne, Victoria, Australia
- Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katie L Flanagan
- Department of Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, Tasmania, Australia
- School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
243
|
Tai CG, Haviland MJ, Kissler SM, Lucia RM, Merson M, Maragakis LL, Ho DD, Anderson DJ, DiFiori J, Grubaugh ND, Grad YH, Mack CD. Low antibody levels associated with significantly increased rate of SARS-CoV-2 infection in a highly vaccinated population from the US National Basketball Association. J Med Virol 2024; 96:e29505. [PMID: 38465748 DOI: 10.1002/jmv.29505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
SARS-CoV-2 antibody levels may serve as a correlate for immunity and could inform optimal booster timing. The relationship between antibody levels and protection from infection was evaluated in vaccinated individuals from the US National Basketball Association who had antibody levels measured at a single time point from September 12, 2021, to December 31, 2021. Cox proportional hazards models were used to estimate the risk of infection within 90 days of serologic testing by antibody level (<250, 250-800, and >800 AU/mL1 ), adjusting for age, time since last vaccine dose, and history of SARS-CoV-2 infection. Individuals were censored on date of booster receipt. The analytic cohort comprised 2323 individuals and was 78.2% male, 68.1% aged ≤40 years, and 56.4% vaccinated (primary series) with the Pfizer-BioNTech mRNA vaccine. Among the 2248 (96.8%) individuals not yet boosted at antibody testing, 77% completed their primary vaccine series 4-6 months before testing and the median (interquartile range) antibody level was 293.5 (interquartile range: 121.0-740.5) AU/mL. Those with levels <250 AU/mL (adj hazard ratio [HR]: 2.4; 95% confidence interval [CI]: 1.5-3.7) and 250-800 AU/mL (adj HR: 1.5; 95% CI: 0.98-2.4) had greater infection risk compared to those with levels >800 AU/mL. Antibody levels could inform individual COVID-19 risk and booster scheduling.
Collapse
Affiliation(s)
| | | | - Steven M Kissler
- Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Michael Merson
- Duke University Duke Global Health Institute, Durham, North Carolina, USA
| | - Lisa L Maragakis
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Deverick J Anderson
- Duke University Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - John DiFiori
- National Basketball Association, New York, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| | - Nathan D Grubaugh
- Yale University School of Public Health, New Haven, Connecticut, USA
| | - Yonatan H Grad
- Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
244
|
Park JS, Jeon J, Um J, Choi YY, Kim MK, Lee KS, Sung HK, Jang HC, Chin B, Kim CK, Oh MD, Lee CS. Magnitude and Duration of Serum Neutralizing Antibody Titers Induced by a Third mRNA COVID-19 Vaccination against Omicron BA.1 in Older Individuals. Infect Chemother 2024; 56:25-36. [PMID: 38014726 PMCID: PMC10990888 DOI: 10.3947/ic.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) is dominating coronavirus disease 2019 (COVID-19) worldwide. The waning protective effect of available vaccines against the Omicron variant is a critical public health issue. This study aimed to assess the impact of the third COVID-19 vaccination on immunity against the SARS-CoV-2 Omicron BA.1 strain in older individuals. MATERIALS AND METHODS Adults aged ≥60 years who had completed two doses of the homologous COVID-19 vaccine with either BNT162b2 (Pfizer/BioNTech, New York, NY, USA, BNT) or ChAdOx1 nCoV (SK bioscience, Andong-si, Gyeongsangbuk-do, Korea, ChAd) were registered to receive the third vaccination. Participants chose either BNT or mRNA-1273 (Moderna, Norwood, MA, USA, m1273) mRNA vaccine for the third dose and were categorized into four groups: ChAd/ChAd/BNT, ChAd/ChAd/m1273, BNT/BNT/BNT, and BNT/BNT/m1273. Four serum specimens were obtained from each participant at 0, 4, 12, and 24 weeks after the third dose (V1, V2, V3, and V4, respectively). Serum-neutralizing antibody (NAb) activity against BetaCoV/Korea/KCDC03/2020 (NCCP43326, ancestral strain) and B.1.1.529 (NCCP43411, Omicron BA.1 variant) was measured using plaque reduction neutralization tests. A 50% neutralizing dilution (ND50) >10 was considered indicative of protective NAb titers. RESULTS In total, 186 participants were enrolled between November 24, 2021, and June 30, 2022. The respective groups received the third dose at a median (interquartile range [IQR]) of 132 (125 - 191), 123 (122 - 126), 186 (166 - 193), and 182 (175 - 198) days after the second dose. Overall, ND50 was lower at V1 against Omicron BA.1 than against the ancestral strain. NAb titers against the ancestral strain and Omicron BA.1 variant at V2 were increased at least 30-fold (median [IQR], 1235.35 [1021.45 - 2374.65)] and 129.8 [65.3 - 250.7], respectively). ND50 titers against the ancestral strain and Omicron variant did not differ significantly among the four groups (P = 0.57). NAb titers were significantly lower against the Omicron variant than against the ancestral strain at V3 (median [IQR], 36.4 (17.55 - 75.09) vs. 325.9 [276.07 - 686.97]; P = 0.012). NAb titers against Omicron at V4 were 16 times lower than that at V3. Most sera exhibited a protective level (ND50 >10) at V4 (75.0% [24/32], 73.0% [27/37], 73.3% [22/30], and 70.6% [12/17] in the ChAd/ChAd/BNT, ChAd/ChAd/m1273, BNT/BNT/BNT, and BNT/BNT/m1273 groups, respectively), with no significant differences among groups (P = 0.99). CONCLUSION A third COVID-19 mRNA vaccine dose restored waning NAb titers against Omicron BA.1. Our findings support a third-dose vaccination program to prevent the waning of humoral immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Jun-Sun Park
- Research Institute for Public Healthcare, National Medical Center, Seoul, Korea
| | - Jaehyun Jeon
- Department of Infectious Diseases, National Medical Center, Seoul, Korea
| | - Jihye Um
- Research Institute for Public Healthcare, National Medical Center, Seoul, Korea
| | - Youn Young Choi
- Department of Pediatrics, National Medical Center, Seoul, Korea
| | - Min-Kyung Kim
- Department of Infectious Diseases, National Medical Center, Seoul, Korea
| | - Kyung-Shin Lee
- Research Institute for Public Healthcare, National Medical Center, Seoul, Korea
| | - Ho Kyung Sung
- Research Institute for Public Healthcare, National Medical Center, Seoul, Korea
| | - Hee-Chang Jang
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - BumSik Chin
- Department of Infectious Diseases, National Medical Center, Seoul, Korea
| | - Choon Kwan Kim
- Division of Infectious Diseases, VHS Medical Center, Seoul, Korea
| | - Myung-don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chang-Seop Lee
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
245
|
Mazzara C, Bassi J, Silacci-Fregni C, Muoio F, Passini N, Corti D, Simonetti GD, Vanoni F, Kottanattu L, Piccoli L. Increased breadth and neutralization of antibodies against SARS-CoV-2 variants after infection and vaccination: A serosurveillance study in pediatric patients of Southern Switzerland. Eur J Pediatr 2024; 183:1425-1434. [PMID: 38175262 DOI: 10.1007/s00431-023-05400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Little information is available about the nature of the immune response in children after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination. The aim of this study is to define the seroprevalence and the features of the antibody response in children of Southern Switzerland during the different waves of Coronavirus Disease 2019 (COVID-19) pandemic. By analyzing 756 sera collected from children aged 0 to 16 years admitted to the Institute of Pediatrics of Southern Switzerland during the prepandemic period (before March 2020) and the first four pandemic waves (between March 2020 and June 2022), we investigated binding titers, cross-reactivity, and neutralizing properties of the serum antibodies against SARS-CoV-2 variants. Seroprevalence varied from 6% during the first wave to 14% and 17% during the second and third waves, respectively, peaking at 39% during the fourth wave. The 96 seropositive cases were mostly asymptomatic (42.7%) or showed mild (20.8%) to moderate (32.3%) symptoms. Moderate symptoms and close contact with COVID-19-positive individuals were associated with a higher infection risk (P < 0.001). The antibody response was mainly driven by IgG directed to the receptor-binding domain (RBD) of Wuhan-1 SARS-CoV-2 Spike (S). Children infected in the first three waves produced antibodies with up to 11-fold and 5.5-fold reduction in binding and neutralizing titers, respectively, against different SARS-CoV-2 variants, including Beta, Delta, and Omicron BA.1, BA.2, and BA.5. Such reductions were less pronounced in children infected during the fourth wave, who showed the highest frequency and titers of neutralizing antibodies against the same variants. Compared to infection, vaccination with a Wuhan-1-based messenger RNA (mRNA) vaccine induced higher and heterogenous levels of antibodies cross-reacting to the different SARS-CoV-2 variants analyzed. Conclusions: Despite the high burden of COVID-19 in Southern Switzerland, we observed an initial low seroprevalence of SARS-CoV-2 in children, which increased in the later waves. The antibody response was poor in the first three waves and improved in the fourth wave, when children produced higher levels of neutralizing antibodies after vaccination or infection with Delta and/or Omicron variants. What is Known: • Children were marginally affected by the initial SARS-CoV-2 variants. • The number of infected and hospitalized children increased after the appearance of the Omicron variants. What is New: • Seroprevalence of SARS-CoV-2 in children of Southern Switzerland increased overtime. • Children produced higher levels of neutralizing antibodies after vaccination or infection with Delta and/or Omicron variants in the fourth wave compared to children infected in the first three waves.
Collapse
Affiliation(s)
- Calogero Mazzara
- Institute of Pediatrics of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Francesco Muoio
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Nadia Passini
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Giacomo D Simonetti
- Institute of Pediatrics of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Federica Vanoni
- Institute of Pediatrics of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Lisa Kottanattu
- Institute of Pediatrics of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| |
Collapse
|
246
|
Fatly ZA, Betjes MGH, Dik WA, Fouchier RAM, Reinders MEJ, de Weerd AE. Mycophenolate mofetil hampers antibody responses to a broad range of vaccinations in kidney transplant recipients: Results from a randomized controlled study. J Infect 2024; 88:106133. [PMID: 38432583 DOI: 10.1016/j.jinf.2024.106133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES To study the effect of mycophenolate mofetil (MMF) on various vaccination responses in kidney transplant recipients. METHODS In a randomized controlled trial (EudraCT nr.: 2014-001372-66), low immunologically risk kidney transplant recipients were randomized to TAC/MMF or TAC-monotherapy (TACmono), six months post-transplantation. One year after transplantation, in a pre-specified sub-study, recipients were vaccinated against pneumococcus, tetanus and influenza. Blood was sampled before and 21 days after vaccination. Adequate vaccination responses were defined by international criteria. A post-hoc analysis was conducted on SARS-CoV-2 vaccination responses within the same cohort. RESULTS Seventy-one recipients received pneumococcal and tetanus vaccines (TAC/MMF: n = 37, TACmono: n = 34), with 29 also vaccinated against influenza. When vaccinated, recipients were 60 (54-66) years old, with median eGFR of 54 (44-67) ml/min, tacrolimus trough levels 6.1 (5.4-7.0) ug/L in both groups and TAC/MMF daily MMF dose of 1000 (500-2000) mg. Adequate vaccination responses were: pneumococcal (TAC/MMF 43%, TACmono 74%, p = 0.016), tetanus (TAC/MMF 35%, TACmono 82%, p < 0.0001) and influenza (TAC/MMF 20%, TACmono 71%, p = 0.0092). Only 7% of TAC/MMF responded adequately to all three compared to 36% of TACmono (p = 0.080). Additionally, 40% of TAC/MMF responded inadequately to all three, whereas all TACmono patients responded adequately to at least one vaccination (p = 0.041). Lower SARS-CoV-2 vaccination antibody responses correlated with lower pneumococcal antibody vaccination responses (correlation coefficient: 0.41, p = 0.040). CONCLUSIONS MMF on top of tacrolimus severely hampers antibody responses to a broad range of vaccinations.
Collapse
Affiliation(s)
- Z Al Fatly
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - M G H Betjes
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - W A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - R A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - M E J Reinders
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - A E de Weerd
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
247
|
Clark J, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582613. [PMID: 38464151 PMCID: PMC10925278 DOI: 10.1101/2024.02.28.582613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel C. Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iden A. Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jeremy S. Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julia E. Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
248
|
Liu Y, Li D, Han J. COVID-19 vaccines and beyond. Cell Mol Immunol 2024; 21:207-209. [PMID: 38273150 PMCID: PMC10902311 DOI: 10.1038/s41423-024-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/27/2024] Open
Affiliation(s)
- Yiyuan Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Danying Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China.
- Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
249
|
van Eijk LE, Bourgonje AR, Messchendorp AL, Bulthuis MLC, Reinders-Luinge M, Doornbos-van der Meer B, Westra J, den Dunnen WFA, Hillebrands JL, Sanders JSF, van Goor H. Systemic oxidative stress may be associated with reduced IgG antibody titers against SARS-CoV-2 in vaccinated kidney transplant recipients: A post-hoc analysis of the RECOVAC-IR observational study. Free Radic Biol Med 2024; 215:14-24. [PMID: 38395091 DOI: 10.1016/j.freeradbiomed.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) poses an increased risk for severe illness and suboptimal vaccination responses in patients with kidney disease, in which oxidative stress may be involved. Oxidative stress can be reliably measured by determining circulating free thiols (R-SH, sulfhydryl groups), since R-SH are rapidly oxidized by reactive species. In this study, we aimed to examine the association between serum free thiols and the ability to mount a humoral immune response to SARS-CoV-2 vaccination in kidney patients. METHODS Serum free thiol concentrations were measured in patients with chronic kidney disease stages 4/5 (CKD G4/5) (n = 46), on dialysis (n = 43), kidney transplant recipients (KTR) (n = 73), and controls (n = 50). Baseline serum free thiol and interferon-γ-induced protein-10 (IP-10) - a biomarker of the interferon response - were analyzed for associations with seroconversion rates and SARS-CoV-2 spike (S1)-specific IgG concentrations after two doses of the mRNA-1273 vaccine. RESULTS Albumin-adjusted serum free thiol concentrations were significantly lower in patients with CKD G4/5 (P < 0.001), on dialysis (P < 0.001), and KTR (P < 0.001), as compared to controls. Seroconversion rates after full vaccination were markedly reduced in KTR (52.1%) and were significantly associated with albumin-adjusted free thiols (OR = 1.76, P = 0.033). After adjustment for MMF use, hemoglobin, and eGFR, this significance was not sustained (OR = 1.49, P = 0.241). CONCLUSIONS KTR show suboptimal serological responses to SARS-CoV-2 vaccination, which is inversely associated with serum R-SH, reflecting systemic oxidative stress. Albeit this association was not robust to relevant confounding factors, it may at least partially be involved in the inability of KTR to generate a positive serological response after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Larissa E van Eijk
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Arno R Bourgonje
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - A Lianne Messchendorp
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, 9713 GZ, Groningen, the Netherlands.
| | - Marian L C Bulthuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Marjan Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Berber Doornbos-van der Meer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9713 GZ, Groningen, the Netherlands.
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9713 GZ, Groningen, the Netherlands.
| | - Wilfred F A den Dunnen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Jan-Luuk Hillebrands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Jan-Stephan F Sanders
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, 9713 GZ, Groningen, the Netherlands.
| | - Harry van Goor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
250
|
Huang Z, Zhuang X, Liu L, Zhao J, Ma S, Si X, Zhu Z, Wu F, Jin N, Tian M, Song W, Chen X. Modularized viromimetic polymer nanoparticle vaccines (VPNVaxs) to elicit durable and effective humoral immune responses. Natl Sci Rev 2024; 11:nwad310. [PMID: 38312378 PMCID: PMC10833449 DOI: 10.1093/nsr/nwad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/27/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024] Open
Abstract
Virus-like particle (VLP) vaccines had shown great potential during the COVID-19 pandemic, and was thought to be the next generation of antiviral vaccine technology due to viromimetic structures. However, the time-consuming and complicated processes in establishing a current recombinant-protein-based VLP vaccine has limited its quick launch to the out-bursting pandemic. To simplify and optimize VLP vaccine design, we herein report a kind of viromimetic polymer nanoparticle vaccine (VPNVax), with subunit receptor-binding domain (RBD) proteins conjugated to the surface of polyethylene glycol-b-polylactic acid (PEG-b-PLA) nanoparticles for vaccination against SARS-CoV-2. The preparation of VPNVax based on synthetic polymer particle and chemical post-conjugation makes it possible to rapidly replace the antigens and construct matched vaccines at the emergence of different viruses. Using this modular preparation system, we identified that VPNVax with surface protein coverage of 20%-25% had the best immunostimulatory activity, which could keep high levels of specific antibody titers over 5 months and induce virus neutralizing activity when combined with an aluminum adjuvant. Moreover, the polymer nano-vectors could be armed with more immune-adjuvant functions by loading immunostimulant agents or chemical chirality design. This VPNVax platform provides a novel kind of rapidly producing and efficient vaccine against different variants of SARS-CoV-2 as well as other viral pandemics.
Collapse
Affiliation(s)
- Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Liping Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiayu Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhenyi Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|