201
|
|
202
|
Meisdalen K, Dajani OF, Christoffersen T, Sandnes D. Prostaglandins enhance epidermal growth factor-induced DNA synthesis in hepatocytes by stimulation of E prostanoid 3 and F prostanoid receptors. J Pharmacol Exp Ther 2007; 322:1044-50. [PMID: 17567965 DOI: 10.1124/jpet.107.121277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandins stimulate hepatocyte proliferation in vivo and in vitro. We have examined the role of E prostanoid (EP) and F prostanoid receptors (FP) in enhancing the growth-stimulatory effect of epidermal growth factor (EGF) in cultured hepatocytes. The EP2 receptor agonist butaprost had no significant effect on EGF-induced DNA synthesis. EP1 receptor-selective antagonists did not affect the enhancement by prostaglandin E(2) of EGF-stimulated DNA synthesis. Sulprostone, misoprostol, and fluprostenol strongly enhanced DNA synthesis and inhibited glucagon-stimulated cAMP accumulation, indicating that they all activated EP3 receptors. Sulprostone and fluprostenol, and to a lesser extent misoprostol, stimulated accumulation of inositol phosphates. The effects of fluprostenol and sulprostone on phospholipase C (PLC) were inhibited by the FP receptor antagonist AL-8810 [9 alpha, 15R-dihydroxy-11 beta-fluoro-15-(2,3-dihydro-1H-inden-2-yl)-16,17,18,19,20-pentanor-prosta-5Z, 13E-dien-1-oic acid], indicating that this effect was mediated by FP receptors. Inhibition of protein kinase C with GF109203X [2-[1-(3-dimetylaminopropyl)-1H-indol-3-yl]-maleimide] resulted in a partial reduction of the growth stimulation induced by fluprostenol, indicating a minor role of FP receptors. Combining fluprostenol with misoprostol, but not with sulprostone, resulted in partially additive effects on DNA synthesis, suggesting that both EP3 and FP receptors are involved. Combining sulprostone with misoprostol did not result in additive effects on DNA synthesis, suggesting that EP4 receptors were not involved. We conclude that, although a minor effect is exerted by FP receptors, the growth-stimulatory effects of prostaglandins in rat hepatocytes are mediated mainly by EP3 receptors. We have found no evidence of EP1 receptor involvement.
Collapse
Affiliation(s)
- Kristin Meisdalen
- Department of Pharmacology, Faculty of Medicine, University of Oslo, P.O. Box 1057 Blindern, N-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
203
|
Kuwano K, Hashino A, Asaki T, Hamamoto T, Yamada T, Okubo K, Kuwabara K. 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug. J Pharmacol Exp Ther 2007; 322:1181-8. [PMID: 17545310 DOI: 10.1124/jpet.107.124248] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prostacyclin (PGI(2)) and its analogs are useful for the treatment of various vascular disorders, but their half-lives are too short for widespread clinical application. To overcome this drawback, we have synthesized a novel diphenylpyrazine derivative, 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), a prodrug of the active form [4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]acetic acid (MRE-269). NS-304 is an orally available and potent agonist for the PGI(2) receptor (IP receptor). The inhibition constant (K(i)) of MRE-269 for the human IP receptor was 20 nM; in contrast, the K(i) values for other prostanoid receptors were >2.6 microM. MRE-269 was therefore a highly selective agonist for the IP receptor. The plasma concentrations of MRE-269 remained near peak levels for more than 8 h after oral administration of NS-304 to rats and dogs, and NS-304 increased femoral skin blood flow in rats in a long-lasting manner without affecting the hemodynamics. These findings indicate that NS-304 acts as a long-acting IP receptor agonist in vivo. The continuous vasodilation evoked by NS-304 was not attenuated by repeated treatment, indicating that NS-304 is unlikely to cause severe desensitization of the IP receptor in rats. Moreover, a microdose pharmacokinetic study in which NS-304 was orally administered to healthy male volunteers showed conversion of NS-304 to MRE-269 and a long plasma elimination half-life for MRE-269 (7.9 h). In conclusion, NS-304 is an orally available and long-acting IP receptor agonist prodrug, and its active form, MRE-269, is highly selective for the IP receptor. Therefore, NS-304 is a promising drug candidate for various vascular diseases, especially pulmonary arterial hypertension and arteriosclerosis obliterans.
Collapse
Affiliation(s)
- Keiichi Kuwano
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., 14 Nishinosho-Monguchi-Cho, Kisshoin, Minami-Ku, Kyoto 601-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|
204
|
Elberg G, Elberg D, Lewis TV, Guruswamy S, Chen L, Logan CJ, Chan MD, Turman MA. EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells. Am J Physiol Renal Physiol 2007; 293:F1622-32. [PMID: 17728378 DOI: 10.1152/ajprenal.00036.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by formation of cysts from tubular epithelial cells. Previous studies indicate that secretion of prostaglandin E2 (PGE2) into cyst fluid and production of cAMP underlie cyst expansion. However, the mechanism by which PGE2 directly stimulates cAMP formation and modulates cystogenesis is still unclear, because the particular E-prostanoid (EP) receptor mediating the PGE2 effect has not been characterized. Our goal is to define the PGE2 receptor subtype involved in ADPKD. We used a three-dimensional cell-culture system of human epithelial cells from normal and ADPKD kidneys in primary cultures to demonstrate that PGE2 induces cyst formation. Biochemical evidence gathered by using real-time RT-PCR mRNA analysis and immunodetection indicate the presence of EP2 receptor in cystic epithelial cells in ADPKD kidney. Pharmacological evidence obtained by using PGE2-selective analogs further demonstrates that EP2 mediates cAMP formation and cystogenesis. Functional evidence for a role of EP2 receptor in mediating cAMP signaling was also provided by inhibiting EP2 receptor expression with transfection of small interfering RNA in cystic epithelial cells. Our results indicate that PGE2 produced in cyst fluid binds to adjacent EP2 receptors located on the apical side of cysts and stimulates EP2 receptor expression. PGE2 binding to EP2 receptor leads to cAMP signaling and cystogenesis by a mechanism that involves protection of cystic epithelial cells from apoptosis. The role of EP2 receptor in mediating the PGE2 effect on stimulating cyst formation may have direct pharmacological implications for the treatment of polycystic kidney disease.
Collapse
MESH Headings
- Apoptosis
- Cyclic AMP/biosynthesis
- Cyclic AMP/metabolism
- Dinoprostone/metabolism
- Epithelial Cells/metabolism
- Humans
- Kidney/metabolism
- Polycystic Kidney, Autosomal Dominant/etiology
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
- Polycystic Kidney, Autosomal Dominant/physiopathology
- Protein Isoforms/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Signal Transduction
- Spheroids, Cellular
- Transfection
Collapse
Affiliation(s)
- Gerard Elberg
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, 940 N. E. 13th St., 2B2309, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Seto V, Hirota C, Hirota S, Janssen LJ. E-Ring Isoprostanes Stimulate a Cl Conductance in Airway Epithelium via Prostaglandin E2-Selective Prostanoid Receptors. Am J Respir Cell Mol Biol 2007; 38:88-94. [PMID: 17673688 DOI: 10.1165/rcmb.2007-0117oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Isoprostanes comprise a class of membrane lipid metabolites produced during oxidative stress, including asthma, chronic obstructive pulmonary disease, and cystic fibrosis. They are widely recognized to evoke a variety of biological responses in airway and pulmonary vascular smooth muscle, lymphatics, and innervation. However, their effects on airway epithelium are largely unstudied. We examined the electrophysiological responses evoked by several different isoprostane species in bovine airway epithelium using the Ussing chamber technique. The E-ring isoprostanes 15-E(1t)-IsoP and 15-E(2t)-IsoP evoked a substantial increase in short-circuit current (I(SC)), whereas four different F-ring isomers were ineffective. 15-E(2t)-IsoP-evoked I(SC) was mimicked by the prostaglandin E(2)-selective prostanoid receptor (EP)-agonist prostaglandin E(2) but not by agonists of EP(1)/EP(3)-, FP-, or TP receptors (sulprostone, fluprostenol, and U46619, respectively). This response was significantly reduced by the EP(4)-receptor blocker GW627386 but not by blockers of other prostanoid receptors (ICI 192,605 [TP-selective], SC19220 [EP(1)-selective], AH6809 [DP/EP(1)/EP(2)-selective], and AL8810 [FP-selective]). 15-E(2t)-IsoP-evoked I(SC) was reduced by blockers of Cl(-) channels (niflumic acid and 5-nitro-2-(3-phenylpropylamino)-benzoic acid), of Na(+)/K(+)/2Cl(-) co-transport (furosemide and bumetanide), of adenylate cyclase (MDL 12,330A), or of guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) but not by blockers of Na(+) conductances (amiloride). We conclude that 15-E(2t)-IsoP activates a transepithelial Cl(-) conductance in bovine airway epithelium through an EP(4) receptor coupled to adenylate cyclase and soluble guanylate cyclase.
Collapse
MESH Headings
- Animals
- Cattle
- Chloride Channel Agonists
- Chloride Channels/metabolism
- Electric Conductivity
- Evoked Potentials/drug effects
- Ion Transport/drug effects
- Isoprostanes/chemical synthesis
- Isoprostanes/chemistry
- Isoprostanes/pharmacology
- Membrane Lipids/metabolism
- Muscle, Smooth, Vascular/innervation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Oxidative Stress/drug effects
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP4 Subtype
- Respiratory Mucosa/innervation
- Respiratory Mucosa/metabolism
- Respiratory Mucosa/pathology
- Tissue Culture Techniques
- Trachea/innervation
- Trachea/metabolism
- Trachea/pathology
Collapse
Affiliation(s)
- Victoria Seto
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
206
|
Sheibanie AF, Yen JH, Khayrullina T, Emig F, Zhang M, Tuma R, Ganea D. The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23-->IL-17 axis. THE JOURNAL OF IMMUNOLOGY 2007; 178:8138-47. [PMID: 17548652 DOI: 10.4049/jimmunol.178.12.8138] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although Crohn's disease has been traditionally considered to be Th1-mediated, the newly identified Th17 cells emerged recently as crucial participants. Th1/Th17 differentiation is controlled primarily by the IL-12 family of cytokines secreted by activated dendritic cells (DCs) and macrophages. IL-23 and IL-12/IL-27 have opposite effects, supporting the Th17 and Th1 phenotypes, respectively. We found that PGE(2), a major lipid mediator released in inflammatory conditions, shifts the IL-12/IL-23 balance in DCs in favor of IL-23, and propose that high levels of PGE(2) exacerbate the inflammatory process in inflammatory bowel disease through the IL-23-->IL-17 axis. We assessed the effects of PGE(2) on IL-12, IL-27, and IL-23 and found that PGE(2) promotes IL-23, inhibits IL-12 and IL-27 expression and release from stimulated DCs, and subsequently induces IL-17 production in activated T cells. The effects of PGE(2) are mediated through the EP2/EP4 receptors on DCs. In vivo, we assessed the effects of PGE analogs in an experimental model for inflammatory bowel disease and found that the exacerbation of clinical symptoms and histopathology correlated with an increase in IL-23 and IL-17, a decrease in IL-12p35 expression in colon and mesenteric lymph nodes, and a substantial increase in the number of infiltrating neutrophils and of CD4(+)IL-17(+) T cells in the colonic tissue. These studies suggest that high levels of PGE(2) exacerbate the inflammatory process through the preferential expression and release of DC-derived IL-23 and the subsequent support of the autoreactive/inflammatory Th17 phenotype.
Collapse
Affiliation(s)
- Amir F Sheibanie
- Department of Physiology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Hristovska AM, Rasmussen LE, Hansen PBL, Nielsen SS, Nüsing RM, Narumiya S, Vanhoutte P, Skøtt O, Jensen BL. Prostaglandin E2 induces vascular relaxation by E-prostanoid 4 receptor-mediated activation of endothelial nitric oxide synthase. Hypertension 2007; 50:525-30. [PMID: 17635857 DOI: 10.1161/hypertensionaha.107.088948] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present experiments were designed to test the hypothesis that prostaglandin (PG) E(2) causes vasodilatation through activation of endothelial NO synthase (eNOS). Aortic rings from mice with targeted deletion of eNOS and E-prostanoid (EP) receptors were used for contraction studies. Blood pressure changes in response to PGE(2) were measured in conscious mice. Single doses of PGE(2) caused concentration-dependent relaxations during contractions to phenylephrine (EC(50)=5*10(-8) mol/L). Relaxation after PGE(2) was absent in rings without endothelium and in rings from eNOS(-/-) mice and was abolished by N(G)-nitro-l-arginine methyl ester and the soluble guanylate cyclase inhibitor 1H(1,2,4)-oxadiazolo-[4,3-a]quinoxalin-1-one. In PGE(2)-relaxed aortic rings, the cGMP content increased significantly. PGE(2)-induced relaxations were abolished by the EP4 receptor antagonist AE3-208 (10(-8) mol/L) and mimicked by an EP4 agonist (AE1-329, 10(-7) mol/L) in the presence of endothelium and eNOS only. Relaxations were attenuated significantly in rings from EP4(-/-) mice but normal in EP2(-/-). Inhibitors of the cAMP-protein kinase A pathway attenuated, whereas the inhibitor of protein phosphatase 1C, calyculin (10(-8) mol/L), abolished the PGE(2)-mediated relaxation. In aortic rings, PGE(2) dephosphorylated eNOS at Thr(495). Chronically catheterized eNOS(-/-) mice were hypertensive (137+/-3.6 mm Hg, n=13, versus 101+/-3.9 mm Hg, n=9) and exhibited a lower sensitivity of blood pressure reduction in response to PGE(2) compared with wild-type mice. There was no difference in the blood pressure response to nifedipine. These findings show that PGE(2) elicits EP4 receptor-mediated, endothelium-dependent stimulation of eNOS activity by dephosphorylation at Thr(495) resulting in guanylyl cyclase-dependent vasorelaxation and accumulation of cGMP in aortic rings.
Collapse
Affiliation(s)
- Ana-Marija Hristovska
- Department of Physiology and Pharmacology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Paredes C, Tazzeo T, Janssen LJ. E-ring isoprostane augments cholinergic neurotransmission in bovine trachealis via FP prostanoid receptors. Am J Respir Cell Mol Biol 2007; 37:739-47. [PMID: 17630320 DOI: 10.1165/rcmb.2007-0022oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Isoprostanes are prostaglandin-like molecules that accumulate in oxidative stress and also exert powerful biological effects on a wide variety of tissues. We investigated the effects of several different isoprostanes on contractions evoked by electrical field stimulation (EFS) in bovine trachealis, finding only 15-E2t-IsoP to augment those responses. Many others have shown that isoprostanes act on prostanoid receptors, usually those of the thromboxane-selective prostanoid receptor (TP) subtype, although some describe actions through prostaglandin E2-selective prostanoid receptor (EP) or less frequently through prostaglandin F2alpha-selective prostanoid receptors (FP). We used an extensive panel of highly selective agonists and antagonists of prostanoid receptors to characterize the ones through which 15-E2t-IsoP was acting here. Pretreatment with the FP-selective AL-8810 significantly inhibited the augmentation, whereas TP- and EP-selective blockers did not. On the other hand, the augmentation exerted by 15-E2t-IsoP was mimicked by submicromolar concentrations of the FP-selective agonists PGF2alpha and fluprostenol, as well as by micromolar concentrations of the TP-selective agonist U46619. The concentration-response relationship for exogenously added acetylcholine was not significantly affected by 15-E2t-IsoP, confirming that the effect of the latter on EFS-evoked responses was exerted prejunctionally (i.e., to enhance release of Ach from nerve endings), rather than a direct postjunctional effect via a receptor on the smooth muscle. Finally, we investigated whether the inhibitory (adrenergic) innervation was also modulated by 15-E2t-IsoP, finding EFS-evoked relaxations to be unaffected by the isoprostane. We conclude that 15-E2t-IsoP acts upon an FP receptor on the cholinergic nerve endings, leading to enhanced neurotransmission.
Collapse
Affiliation(s)
- Christine Paredes
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
209
|
Wu L, Wang Q, Liang X, Andreasson K. Divergent effects of prostaglandin receptor signaling on neuronal survival. Neurosci Lett 2007; 421:253-8. [PMID: 17574754 PMCID: PMC2680717 DOI: 10.1016/j.neulet.2007.05.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/22/2007] [Accepted: 05/30/2007] [Indexed: 11/19/2022]
Abstract
Induction of cyclooxygenase-2 (COX-2) with production of prostaglandins occurs in a wide spectrum of acute and chronic neurodegenerative diseases and is associated with neuronal death. Inhibition of the COX-2 pathway and downstream production of prostaglandins protect neurons in rodent models of cerebral ischemia and neurodegeneration. Recent studies investigating the functions of selected prostaglandin receptor pathways in mediating COX-2 neurotoxicity have demonstrated both toxic and paradoxically neuroprotective effects of several receptors in models of excitotoxicity. In this study, we investigate the functions of additional prostaglandin receptors not previously characterized in organotypic models of glutamate excitotoxicity. We find that PGD(2), PGI(2), and PGF(2alpha) receptors protect motor neurons in an organotypic spinal cord model of amyotrophic lateral sclerosis (ALS). In addition, PGI(2) and TXA(2) receptors rescue CA1 neurons in an organotypic hippocampal model of N-methyl-d-aspartate excitotoxicity. However, in a model of inflammation induced by lipopolysaccharide, prostaglandin receptors previously found to be protective in excitotoxicity now cause CA1 neuronal death. Taken together, these studies identify novel eicosanoid receptor signaling pathways that mediate neuronal protection in excitotoxic paradigms; these data also support the emerging hypothesis that the toxic/protective effects of eicosanoid signaling on neuronal viability diverge significantly depending on whether excitotoxicity or inflammation predominates as the underlying toxic stimulus.
Collapse
Affiliation(s)
- Liejun Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | | | | | | |
Collapse
|
210
|
Das S, Chandrasekhar S, Yadav JS, Grée R. Recent developments in the synthesis of prostaglandins and analogues. Chem Rev 2007; 107:3286-337. [PMID: 17590055 DOI: 10.1021/cr068365a] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saibal Das
- Université de Rennes I, Laboratoire de Synthèse et Electrosynthèse Organiques, CNRS UMR 6510, Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | | | | | | |
Collapse
|
211
|
Hawcroft G, Ko CWS, Hull MA. Prostaglandin E2-EP4 receptor signalling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells. Oncogene 2007; 26:3006-19. [PMID: 17130837 DOI: 10.1038/sj.onc.1210113] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 10/02/2006] [Accepted: 10/06/2006] [Indexed: 11/09/2022]
Abstract
The predominant product of cyclooxygenase (COX) activity in the colon, prostaglandin (PG) E2 promotes intestinal tumorigenesis. Expression of the PGE2 receptor EP4 is upregulated during colorectal carcinogenesis. Therefore, we investigated the role of elevated PGE2-EP4 receptor signalling in the protumorigenic activity of PGE2 by increasing EP4 receptor expression in HT-29 human colorectal cancer (CRC) cells (HT-29-EP4) by stable transfection. Elevated PGE2-induced EP4 receptor activity in HT-29 cells increased resistance to spontaneous apoptosis and promoted anchorage-independent growth, but had no effect on proliferation of HT-29-EP4 cells. EP4 receptor activation by PGE2 in HT-29-EP4 cells also led to development of fluid-filled cysts, which was associated with increased tight junction protein (occludin and zonula occludens-1) expression. Overexpression of the EP4 receptor in HT-29 cells led to basal EP4 receptor signalling in the absence of exogenous PGE2, which was explained by autocrine activity of endogenous, COX-2-derived PGE2 and constitutive, ligand-independent EP4 receptor activity. The predominant signalling pathway mediating antiapoptotic activity downstream of PGE2-EP4 receptor activation in HT-29-EP4 cells was elevation of cyclic adenosine monophosphate (cAMP) levels, which was associated with phosphorylation of cAMP-response element binding protein. EP4 receptor activation led to a small increase in phosphorylated extracellular signal-regulated kinase (ERK) 2 protein levels but inhibition of ERK phosphorylation did not abrogate the antiapoptotic activity of PGE2. However, PGE2-EP4 receptor signalling did not lead to trans-activation of the epidermal growth factor receptor in HT-29 cells. Inhibition of protumorigenic PGE2-EP4 receptor signalling represents a potential strategy for anti-CRC therapy that may avoid the toxicity associated with systemic COX inhibition.
Collapse
Affiliation(s)
- G Hawcroft
- Section of Molecular Gastroenterology, Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK.
| | | | | |
Collapse
|
212
|
Abstract
In Westernized societies, average consumption of n-6 polyunsaturated fatty acids (PUFAs) far exceeds nutritional requirements. The ratio of n-6 to n-3 PUFAs is generally >10:1 whereas on a primitive human diet it was closer to 1:1. Diets fed to intensively farmed livestock have followed a similar trend. Both n-6 and n-3 PUFAs can influence reproductive processes through a variety of mechanisms. They provide the precursors for prostaglandin synthesis and can modulate the expression patterns of many key enzymes involved in both prostaglandin and steroid metabolism. They are essential components of all cell membranes. The proportions of different PUFAs in tissues of the reproductive tract reflect dietary consumption. PUFA supplements (particularly n-3 PUFAs in fish oil) are promoted for general health reasons. Fish oils may also benefit fertility in cattle and reduce the risk of preterm labor in women, but in both cases current evidence to support this is inconclusive. Gamma-linolenic acid containing oils can alter the types of prostaglandins produced by cells in vitro, but published data to support claims relating to effects on reproductive health are lacking. Spermatozoa require a high PUFA content to provide the plasma membrane with the fluidity essential at fertilization. However, this makes spermatozoa particularly vulnerable to attack by reactive oxygen species, and lifestyle factors promoting oxidative stress have clear associations with reduced fertility. Adequately powered trials that control for the ratios of different PUFAs consumed are required to determine the extent to which this aspect of our diets does influence our fertility.
Collapse
Affiliation(s)
- D Claire Wathes
- Department of Veterinary Basic Sciences, Royal Veterinary College, North Mymms, Hatfield, Herts, AL9 7TA, United Kingdom.
| | | | | |
Collapse
|
213
|
Matlhagela K, Taub M. Prostaglandins regulate transcription by means of prostaglandin response elements located in the promoters of mammalian Na,K-ATPase beta 1 subunit genes. Ann N Y Acad Sci 2007; 1091:233-43. [PMID: 17341618 DOI: 10.1196/annals.1378.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Prostaglandins are potent products of arachidonic acid metabolism that play significant roles in regulating ion transport in the kidney. In the Madin Darby canine kidney (MDCK) cell line prostaglandin E(1) (PGE(1)) stimulates the activity of the Na,K-ATPase and regulates transcription. Transient transfection studies conducted in MDCK cells with a human Na,K-ATPase beta1 subunit promoter/luciferase construct, pHbeta1-1141 Luc, showed a PGE(1) stimulation. The PGE(1) stimulation was inhibited by the PGE receptor antagonists SC19220 and AH6809, indicating the involvement of EP1 receptors (coupled to phospholipase C) and EP2 receptors (coupled to adenylate cyclase), respectively. A prostaglandin-regulatory element (PGRE) within the beta1 subunit promoter (-110 to -92, AGTCCCTGC) is sufficient to elicit a PGE(1) stimulation in a heterologous promoter (in pLUC-MCS). Studies with promoter mutants indicated that in addition to the PGRE, an adjacent Sp1 site was also essential for regulation by PGE(1). Consistent with the involvement of Sp1 are the results of DNA affinity precipitation studies, which indicate that Sp1 as well as CREB, and Sp3 all bind to the PGRE. The involvement of this PGRE in transcriptional regulation of the Na,K-ATPase beta1 gene was examined in a number of species. Only human and chimpanzee promoters possessed an identical PGRE site, unlike dog, rat, and mouse, which possessed Sp1 sites in similar locations. Two alternative PGREs were subsequently identified. The sequence of the one of these PGREs (TGACCTTC, -445 to -438) was conserved throughout all species examined, suggesting its physiologic significance.
Collapse
Affiliation(s)
- Keikantse Matlhagela
- Biochemistry Department, 140 Farber Hall, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | |
Collapse
|
214
|
Kamio K, Liu X, Sugiura H, Togo S, Kobayashi T, Kawasaki S, Wang X, Mao L, Ahn Y, Hogaboam C, Toews ML, Rennard SI. Prostacyclin analogs inhibit fibroblast contraction of collagen gels through the cAMP-PKA pathway. Am J Respir Cell Mol Biol 2007; 37:113-20. [PMID: 17363776 PMCID: PMC1899347 DOI: 10.1165/rcmb.2007-0009oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prostacyclin is an arachidonic acid metabolite that modulates vascular tone within the lung. The current study evaluated the hypothesis that prostacyclin can also modulate tissue remodeling by affecting fibroblast-mediated contraction of extracellular matrix. To accomplish this, fibroblasts were cultured in three-dimensional native type I collagen gels in the presence of prostacyclin analogs: carbaprostacyclin, iloprost, and beraprost. All three analogs significantly inhibited contraction of the three-dimensional collagen gels mediated by three different fibroblasts. All three analogs significantly inhibited fibronectin release and reduced fibroblast fibronectin mRNA expression. Addition of exogenous fibronectin restored the contractile activity to fibroblasts incubated in the presence of all three analogs. Iloprost and beraprost significantly activated cAMP-dependent protein kinase-A (PKA), and an action through this pathway was confirmed by blockade of the inhibitory effect on contraction and fibronectin release with the PKA inhibitor KT-5720. In contrast, carbaprostacyclin, which is not as selective for the prostacyclin (IP) receptor, did not activate PKA, and its effects on contraction and fibronectin release were not fully blocked by KT-5720. Finally, the cAMP analogs N(6)-Benzoyl- (6-Bnz-) cAMP and dibutyryl-cAMP inhibited contraction, and this contrasted with the activity of an Epac selective agonist 8-pCPT-2'-O-Me-cAMP, which had no effect. Taken together, these results indicate that prostacyclin, acting through the IP receptor and by activating PKA, can lead to inhibition of fibronectin release and can subsequently inhibit fibroblast-mediated collagen gel contraction. The ability of prostacyclin to modulate fibroblast function suggests that prostacyclin can contribute to tissue remodeling.
Collapse
Affiliation(s)
- Koichiro Kamio
- University of Nebraska Medical Center, 985885 Nebraska Medical Center, Omaha, NE 68198-5885, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Ahmad M, Ahmad AS, Zhuang H, Maruyama T, Narumiya S, Doré S. Stimulation of prostaglandin E2-EP3 receptors exacerbates stroke and excitotoxic injury. J Neuroimmunol 2007; 184:172-9. [PMID: 17275922 PMCID: PMC1914218 DOI: 10.1016/j.jneuroim.2006.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/22/2006] [Accepted: 12/15/2006] [Indexed: 11/26/2022]
Abstract
The effect of PGE(2) EP3 receptors on injury size was investigated following cerebral ischemia and induced excitotoxicity in mice. Treatment with the selective EP3 agonist ONO-AE-248 significantly and dose-dependently increased infarct size in the middle cerebral artery occlusion model. In a separate experiment, pretreatment with ONO-AE-248 exacerbated the lesion caused by N-methyl-d-aspartic acid-induced acute excitotoxicity. Conversely, genetic deletion of EP3 provided protection against N-methyl-d-aspartic acid-induced toxicity. The results suggest that PGE(2), by stimulating EP3 receptors, can contribute to the toxicity associated with cyclooxygenase and that antagonizing this receptor could be used therapeutically to protect against stroke- and excitotoxicity-induced brain damage.
Collapse
MESH Headings
- Animals
- Body Temperature/drug effects
- Brain Infarction/etiology
- Brain Infarction/pathology
- Brain Injuries/chemically induced
- Brain Injuries/pathology
- Brain Injuries/physiopathology
- Cerebrovascular Circulation/drug effects
- Dinoprostone/adverse effects
- Dinoprostone/analogs & derivatives
- Dose-Response Relationship, Drug
- Drug Synergism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- N-Methylaspartate
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/deficiency
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP3 Subtype
Collapse
Affiliation(s)
- Muzamil Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Abdullah Shafique Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Hean Zhuang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Takayuki Maruyama
- Discovery Research Institute I, Ono Pharmaceutical Co. Ltd., Mishima-gun, Osaka, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | - Sylvain Doré
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
216
|
Abstract
Prostaglandin (PG) E(2) exerts its actions by acting on a group of G-protein-coupled receptors (GPCRs). There are four GPCRs responding to PGE(2) designated subtypes EP1, EP2, EP3, and EP4 and multiple splicing isoforms of the subtype EP3. The EP subtypes exhibit differences in signal transduction, tissue localization, and regulation of expression. This molecular and biochemical heterogeneity of PGE receptors leads to PGE(2) being the most versatile prostanoid. Studies on knock-out mice deficient in each EP subtype have defined PGE(2) actions mediated by each subtype and identified the role each EP subtype plays in various physiological and pathophysiological responses. Here we review recent advances in PGE receptor research.
Collapse
Affiliation(s)
- Yukihiko Sugimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
217
|
Kassuya CAL, Ferreira J, Claudino RF, Calixto JB. Intraplantar PGE2 causes nociceptive behaviour and mechanical allodynia: the role of prostanoid E receptors and protein kinases. Br J Pharmacol 2007; 150:727-37. [PMID: 17310141 PMCID: PMC2013868 DOI: 10.1038/sj.bjp.0707149] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Receptor subtypes involved in PGE(2)-induced nociception are still controversial. The present study investigated the prostanoid E receptor (EP) subtypes and the protein kinase (PK) pathways involved in the nociception induced by PGE(2) injection in the mouse paw. EXPERIMENTAL APPROACH Paw-licking and mechanical allodynia were measured in vivo and protein kinase activation ex vivo by Western blots of extracts of paw skin. KEY RESULTS Intraplantar (i.pl.) injection of PGE(2) into the mouse paw caused nociceptive behaviour of short duration with mean ED(50) of 1.43 nmol. PGE(2) produced a longer-lasting mechanical allodynia, with an ED(50) of 0.05 nmol. Intraplantar injection of antagonists at EP(3) or EP(4), but not at EP(1) or EP(2) receptors inhibited PGE(2)-induced paw-licking. Paw-licking caused by PGE(2) was blocked by an inhibitor of PKA but only partially decreased by inhibition of the extracellular-regulated kinase (ERK). Selective inhibitors of PKC, c-Jun N-terminal kinase (JNK) or p38, all failed to affect PGE(2)-induced paw-licking. An EP(3) antagonist inhibited PGE(2)-induced mechanical allodynia. However, inhibitors of PKA, PKC or ERK, but not p38 or JNK, also partially inhibited PGE(2)-induced mechanical allodynia. Western blot analyses confirmed that i.pl. injection of PGE(2) activated PKA, PKCalpha, and mitogen activated kinases (MAPKs) in the paw. Co-treatment with EP(3) or EP(4) receptor antagonists reduced PGE(2)-induced PKA and ERK, but not PKCalpha activation. CONCLUSIONS AND IMPLICATIONS The present results indicate that the nociceptive behaviour and mechanical allodynia caused by i.pl. PGE(2) are mediated through activation of distinct EP receptors and PK-dependent mechanisms.
Collapse
Affiliation(s)
- C A L Kassuya
- Department of Pharmacology, Universidade Federal de Santa Catarina Florianópolis, Santa Catarina, Brazil
| | - J Ferreira
- Department of Chemistry, Universidade Federal de Santa Maria Santa Maria, Rio Grande do Sul, Brazil
| | - R F Claudino
- Department of Pharmacology, Universidade Federal de Santa Catarina Florianópolis, Santa Catarina, Brazil
| | - J B Calixto
- Department of Pharmacology, Universidade Federal de Santa Catarina Florianópolis, Santa Catarina, Brazil
- Author for correspondence:
| |
Collapse
|
218
|
Schermuly RT, Pullamsetti SS, Breitenbach SC, Weissmann N, Ghofrani HA, Grimminger F, Nilius SM, Schrör K, Meger-Kirchrath J, Seeger W, Rose F. Iloprost-induced desensitization of the prostacyclin receptor in isolated rabbit lungs. Respir Res 2007; 8:4. [PMID: 17257398 PMCID: PMC1802745 DOI: 10.1186/1465-9921-8-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 01/26/2007] [Indexed: 01/08/2023] Open
Abstract
Background The rapid desensitization of the human prostacyclin (IP) in response to agonist binding has been shown in cell culture. Phosphorylation of the IP receptor by protein kinase C (PKC) has been suggested to be involved in this process. Methods and results In this study we investigated the vasodilatory effects of iloprost, a stable prostacyclin analogue, in perfused rabbit lungs. Continuous infusion of the thromboxane mimetic U46619 was employed to establish stable pulmonary hypertension. A complete loss of the vasodilatory response to iloprost was observed in experiments with continuous iloprost perfusion, maintaining the intravascular concentration of this prostanoid over a 180 min period. When lungs under chronic iloprost infusion were acutely challenged with inhaled iloprost, a corresponding complete loss of vasoreactivity was observed. This desensitization was not dependent on upregulation of cAMP-specific phosphodiesterases or changes in adenylate cyclase activity, as suggested by unaltered dose-response curves to agents directly affecting these enzymes. Application of a prostaglandin E1 receptor antagonist 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH 6809) or the PKC inhibitor bisindolylmaleimide I (BIM) enhanced the vasodilatory response to infused iloprost and partially prevented tachyphylaxis. Conclusion A three-hour infusion of iloprost in pulmonary hypertensive rabbit lungs results in complete loss of the lung vasodilatory response to this prostanoid. This rapid desensitization is apparently not linked to changes in adenylate cyclase and phosphodiesterase activation, but may involve PKC function and co-stimulation of the EP1 receptor in addition to the IP receptor by this prostacyclin analogue.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
- Administration, Inhalation
- Animals
- Cell Culture Techniques
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Tolerance
- Female
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/drug therapy
- Iloprost/pharmacology
- Infusions, Parenteral
- Lung/cytology
- Lung/drug effects
- Male
- Myocytes, Smooth Muscle/metabolism
- Rabbits
- Receptors, Epoprostenol/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Ralph T Schermuly
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Soni S Pullamsetti
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Susanne C Breitenbach
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Norbert Weissmann
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Hossein A Ghofrani
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Friedrich Grimminger
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Sigrid M Nilius
- Institut fuer Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Karsten Schrör
- Institut fuer Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Jutta Meger-Kirchrath
- Institut fuer Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Werner Seeger
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Frank Rose
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| |
Collapse
|
219
|
Prostaglandin E2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated alpha-synuclein. J Neuroinflammation 2007; 4:2. [PMID: 17204153 PMCID: PMC1766347 DOI: 10.1186/1742-2094-4-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 01/04/2007] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The pathogenesis of idiopathic Parkinson's disease (PD) remains elusive, although evidence has suggested that neuroinflammation characterized by activation of resident microglia in the brain may contribute significantly to neurodegeneration in PD. It has been demonstrated that aggregated alpha-synuclein potently activates microglia and causes neurotoxicity. However, the mechanisms by which aggregated alpha-synuclein activates microglia are not understood fully. METHODS We investigated the role of prostaglandin E2 receptor subtype 2 (EP2) in alpha-synuclein aggregation-induced microglial activation using ex vivo, in vivo and in vitro experimental systems. RESULTS Results demonstrated that ablation of EP2(EP2-/-) significantly enhanced microglia-mediated ex vivo clearance of alpha-synuclein aggregates (from mesocortex of Lewy body disease patients) while significantly attenuating neurotoxicity and extent of alpha-synuclein aggregation in mice treated with a parkinsonian toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Furthermore, we report that reduced neurotoxicity by EP2-/- microglia could be attributed to suppressed translocation of a critical cytoplasmic subunit (p47-phox) of NADPH oxidase (PHOX) to the membranous compartment after exposure to aggregated alpha-synuclein. CONCLUSION Thus, it appears that microglial EP2 plays a critical role in alpha-synuclein-mediated neurotoxicity.
Collapse
|
220
|
George RJ, Sturmoski MA, Anant S, Houchen CW. EP4 mediates PGE2 dependent cell survival through the PI3 kinase/AKT pathway. Prostaglandins Other Lipid Mediat 2007; 83:112-20. [PMID: 17259077 PMCID: PMC1886004 DOI: 10.1016/j.prostaglandins.2006.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 09/12/2006] [Accepted: 10/24/2006] [Indexed: 12/13/2022]
Abstract
The anti-apoptotic effect of PGE(2) was examined in Jurkat cells (human T-cell leukemia) by incubation with PGE(2) (5 nM) prior to treatment with the cancer chemotherapeutic agent camptothecin. Apoptosis was evaluated by caspase-3 activity in cell extracts and flow cytometry of propidium iodide-labeled cells. Pre-incubation with PGE(2) reduced camptothecin-induced caspase activity by 30% and apoptosis by 35%, respectively. Pharmacological data demonstrate that the EP4 receptor is responsible for mediating the protection from camptothecin-induced apoptosis. Pre-treatment of the cells with the EP4 antagonist (EP4A) prior to PGE(2) and camptothecin abolished the increased survival effect of PGE(2). Specific inhibition of the downstream of PI3 kinase or AKT/protein kinase but not protein kinase A prevents the observed increase in cell survival elicited by PGE(2). These findings have critical implications regarding the mechanism and potential application of PGE(2) receptor specific inhibition in cancer therapy.
Collapse
Affiliation(s)
- Robert J George
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
221
|
Sheibanie AF, Khayrullina T, Safadi FF, Ganea D. Prostaglandin E2 exacerbates collagen-induced arthritis in mice through the inflammatory interleukin-23/interleukin-17 axis. ACTA ACUST UNITED AC 2007; 56:2608-19. [PMID: 17665454 DOI: 10.1002/art.22794] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Recently, Th17 cells, a new subset of CD4+ T cells, emerged as major players in inflammation/autoimmunity. Maintenance of the Th17 phenotype requires interleukin-23 (IL-23), whereas the Th1-promoting cytokine IL-12p70 exerts a negative effect on Th17 cell differentiation. The lipid mediator prostaglandin E(2) (PGE(2)) acts primarily as a proinflammatory agent in autoimmune conditions, through mechanisms that remain to be elucidated. The aim of this study was to investigate whether PGE(2) released in inflammatory foci activates resident dendritic cells (DCs) to express IL-23 (at the expense of IL-12) and IL-6, resulting in a shift toward Th17 cell responses. METHODS The effect of PGE(2) on IL-23 production by DCs and subsequent induction of T cell-derived IL-17 was assessed in vitro and in vivo. The effect of the stable PGE analog misoprostol was evaluated in a murine model of rheumatoid arthritis, in conjunction with IL-23 and IL-17 expression in affected joints and draining lymph nodes. RESULTS In vivo administration of PGE(2) induced IL-23-dependent IL-17 production. Administration of misoprostol exacerbated collagen-induced arthritis (CIA). CIA exacerbation was associated with increased levels of IL-23p19/p40 messenger RNA and reduced expression of IL-12p35, and with increased levels of the proinflammatory cytokines IL-17, IL-1beta, IL-6, and tumor necrosis factor in the affected joint. Following ex vivo restimulation, draining lymph node cells from misoprostol-treated mice secreted higher levels of IL-17 and lower levels of interferon-gamma. CONCLUSION Our results indicate that PGE(2) enhances DC-derived IL-6 production and induces a shift in the IL-23/IL-12 balance in favor of IL-23, resulting in increased IL-17 production, presumably through the amplification of self-reactive Th17 cells.
Collapse
Affiliation(s)
- Amir F Sheibanie
- Department of Physiology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
222
|
Bundey RA, Insel PA. Adenylyl cyclase 6 overexpression decreases the permeability of endothelial monolayers via preferential enhancement of prostacyclin receptor function. Mol Pharmacol 2006; 70:1700-7. [PMID: 16885208 DOI: 10.1124/mol.106.028035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Overexpression of adenylyl cyclase (AC) has been proposed as a potential gene therapy strategy to increase cAMP formation in cardiomyocytes and cardiac function in vivo. The impact of AC overexpression on endothelial cells, which will be traversed by genes delivered in vivo, has not been examined. Hence, the goal of the current study was to determine the consequence of AC overexpression on vascular endothelial cells in terms of G-protein-coupled receptor (GPCR) signaling and endothelial barrier function. We demonstrate that adenoviral-mediated gene transfer of AC6 in human umbilical vein endothelial cells preferentially enhances prostacyclin receptor (versus other GPCR)-stimulated cAMP synthesis and, in parallel, inhibits thrombin-stimulated increases in endothelial cell barrier function. Using multiple strategies, including prostacyclin receptor-targeted small interfering RNA, we identify that the enhancement of endothelial barrier function by AC6 overexpression is dependent on an autocrine/paracrine feedback pathway involving the release of prostacyclin and activation of prostacyclin receptors. AC6 overexpression in endothelial cells may have use as a means to enhance prostacyclin function and reduce endothelial barrier permeability.
Collapse
Affiliation(s)
- Richard A Bundey
- Department of Pharmacology, Basic Sciences Building, Room 3073, 9500 Gilman Drive, University of California, San Diego, La Jolla, 92093-0636, USA.
| | | |
Collapse
|
223
|
Dey I, Lejeune M, Chadee K. Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 2006; 149:611-23. [PMID: 17016496 PMCID: PMC2014644 DOI: 10.1038/sj.bjp.0706923] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/11/2006] [Accepted: 08/29/2006] [Indexed: 12/24/2022] Open
Abstract
Prostaglandin E2 (PGE2) is one of the most important biologically active prostanoids found throughout the gastrointestinal tract. Despite the fact that PGE2 regulates many physiological functions of the gut including mucosal protection, gastrointestinal secretion and motility, it is implicated in the pathophysiology of inflammatory bowel diseases (IBD) and colorectal neoplasia. The varied biological functions exerted by PGE2 are through the pharmacologically distinct, G-protein coupled plasma membrane receptors termed EP receptors. Disruptions of various prostanoid receptor genes have helped in unravelling the physiological functions of these receptors. To date, all four subtypes of EP receptors have been individually knocked out in mice and various phenotypes have been reported for each subtype. Similarly, in vitro and in vivo studies using EP receptor agonists and antagonists have helped in uncoupling the diverse functions of PGE2 signalling involving distinct EP receptors in the gut. In this review, we will summarize and conceptualize the salient features of EP receptor subtypes, their regional functions in the gut and how expressions of EP receptors are altered during disease states.
Collapse
Affiliation(s)
- I Dey
- Department of Microbiology and Infectious Disease, Health Sciences Centre, University of Calgary Calgary, Alberta, Canada
| | - M Lejeune
- Department of Microbiology and Infectious Disease, Health Sciences Centre, University of Calgary Calgary, Alberta, Canada
| | - K Chadee
- Department of Microbiology and Infectious Disease, Health Sciences Centre, University of Calgary Calgary, Alberta, Canada
| |
Collapse
|
224
|
Naganawa A, Matsui T, Saito T, Ima M, Tatsumi T, Yamamoto S, Murota M, Yamamoto H, Maruyama T, Ohuchida S, Nakai H, Kondo K, Toda M. Discovery of heteroaryl sulfonamides as new EP1 receptor selective antagonists. Bioorg Med Chem 2006; 14:6628-39. [PMID: 16784865 DOI: 10.1016/j.bmc.2006.05.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 11/19/2022]
Abstract
4-({2-[Isobutyl(phenylsulfonyl)amino]-5-(trifluoromethyl)phenoxy}methyl)benzoic acid (1) is a functional PGE2 antagonist selective for EP1 receptor subtype. Analogs of 1, in which the phenyl-sulfonyl moiety has been replaced with more hydrophilic heteroarylsulfonyl moieties, exhibited more optimized antagonist activity, while some of them showed in vivo antagonist activity. Structure-activity relationship (SAR) studies are also presented.
Collapse
Affiliation(s)
- Atsushi Naganawa
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Shimamoto, Mishima, Osaka 618-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Zhang L, Bastepe M, Jüppner H, Ruan KH. Characterization of the molecular mechanisms of the coupling between intracellular loops of prostacyclin receptor with the C-terminal domain of the Galphas protein in human coronary artery smooth muscle cells. Arch Biochem Biophys 2006; 454:80-8. [PMID: 16942748 DOI: 10.1016/j.abb.2006.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/28/2006] [Accepted: 06/29/2006] [Indexed: 11/30/2022]
Abstract
The C-terminal domain of the Gs protein alpha subunit (Galphas Ct) and the first intracellular loop (iLP1) of prostacyclin receptor (IP) have been predicted to be involved in the receptor signaling mediated through the IP/Gs protein coupling by our previous NMR studies using synthetic peptides. To test whether the results of the peptide studies can be applied to the protein interaction between the IP receptor and the Gs protein in cells, a minigene technique was used to construct cDNAs that encoded either the amino acid residues of the Galphas or that of the individual intracellular loops of the IP receptor. The effects of the minigene-expressed protein fragments on cAMP production mediated by the IP/Gs coupling were evaluated through experiments that co-expressed peptides either through the Galphas Ct or the IP intracellular loops with the IP receptor in HEK293 cells. The first (iLP1) and third (iLP3) IP intracellular loops, as well as the Galphas Ct, which are important to the IP/Gs coupling-mediated signaling, were identified by the significant reduction of cAMP production when the corresponding peptides were expressed in the cells. Furthermore, the cAMP productions were significantly impaired in Galphas-knockout cells co-expressing the IP receptor with the Galphas C-terminal mutants (E392A, L393A and L394A), compared with the Galphas wild type. Blocking of the endogenous IP/Gs coupling by the minigene-expressed peptides of the Galphas CT, iLP1 and iLP3 was further observed in the human coronary artery smooth muscle cells (SMCs). These results indicate that the three residues (E392-L394) of the Galphas protein predicted from NMR peptide studies, and the IP iLP1 and iLP3 play important roles in the Galphas-mediated IP receptor signaling in the cells, which may be a general binding site for the corresponding regions of the other prostanoid receptors that couple to Gs protein.
Collapse
Affiliation(s)
- Lihai Zhang
- Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
226
|
Tober KL, Thomas-Ahner JM, Kusewitt DF, Oberyszyn TM. Effects of UVB on E prostanoid receptor expression in murine skin. J Invest Dermatol 2006; 127:214-21. [PMID: 16917495 DOI: 10.1038/sj.jid.5700502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostaglandin E2 (PGE2) upregulation in response to UV light exposure is a significant factor in the development of non-melanoma skin cancer. It is known that PGE2 signals via the E prostanoid receptors, EP1-4, but the role that each receptor plays in skin carcinogenesis is unclear. Immunohistochemical analysis of EP receptor staining in unirradiated and UVB-exposed SKH-1 mouse skin demonstrated the localization of EP1 and EP2 to the plasma membrane of differentiated epidermal keratinocytes. In contrast, the EP3 receptor localized to the basal layer of the epidermis in unirradiated skin and throughout the epidermis in UVB-exposed skin. In unirradiated skin, cytoplasmic EP4 staining was seen throughout the epidermis, in dermal leukocytes, and in vascular endothelium. However, UVB exposure resulted in relocalization of the EP4 receptor to the plasma membrane of keratinocytes, with no change in the dermal staining pattern. In tumors isolated from UVB-exposed mice, EP1 and EP2 staining was detected in the more differentiated cells surrounding keratin pearls, whereas EP3 and EP4 were detectable throughout the tumors. Differential expression of the EP receptors suggests that each receptor may play a distinct role in skin tumor development.
Collapse
MESH Headings
- Animals
- Female
- Immunohistochemistry
- Mice
- Mice, Hairless
- Neoplasms, Radiation-Induced/chemistry
- Neoplasms, Radiation-Induced/drug therapy
- RNA, Messenger/analysis
- Receptors, Prostaglandin E/analysis
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Skin/chemistry
- Skin/radiation effects
- Skin Neoplasms/chemistry
- Skin Neoplasms/drug therapy
- Ultraviolet Rays
Collapse
Affiliation(s)
- Kathleen L Tober
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
227
|
Naganawa A, Saito T, Nagao Y, Egashira H, Iwahashi M, Kambe T, Koketsu M, Yamamoto H, Kobayashi M, Maruyama T, Ohuchida S, Nakai H, Kondo K, Toda M. Discovery of new chemical leads for selective EP1 receptor antagonists. Bioorg Med Chem 2006; 14:5562-77. [PMID: 16697646 DOI: 10.1016/j.bmc.2006.04.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/14/2006] [Accepted: 04/14/2006] [Indexed: 11/21/2022]
Abstract
A series of 4-([2-[alkyl(phenylsulfonyl)amino]phenoxy]methyl)benzoic acids were identified as functional PGE(2) antagonists with selectivity for the EP1 receptor subtype starting from a chemical lead 1, which was found while screening our in-house compound library. Discovery of the optimized analogs 21-23 is presented here and structure-activity relationships (SAR) are also discussed.
Collapse
Affiliation(s)
- Atsushi Naganawa
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Shimamoto, Mishima, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Naganawa A, Matsui T, Ima M, Saito T, Murota M, Aratani Y, Kijima H, Yamamoto H, Maruyama T, Ohuchida S, Nakai H, Toda M. Further optimization of sulfonamide analogs as EP1 receptor antagonists: synthesis and evaluation of bioisosteres for the carboxylic acid group. Bioorg Med Chem 2006; 14:7121-37. [PMID: 16879970 DOI: 10.1016/j.bmc.2006.06.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 11/24/2022]
Abstract
4-{[2-[(2-Furylsulfonyl)(isobutyl)amino]-5-(trifluoromethyl)phenoxy]methyl}benzoic acid analogs 2a and b and a series of the acid analogs, in which the carboxylic acid residue of 2b was replaced with various kinds of carboxylic acid bioisosteres, were synthesized and evaluated as EP1 receptor antagonists. Compound 2b and its monocyclic acid analogs, in which the carboxylic acid residue of 2b was replaced with monocyclic acid bioisosteres, were found to show potent EP1 receptor antagonist activity. Optimization of the linker Y between the phenyl moiety and the carboxylic acid residue of 2b was also carried out (Table 5). Compounds 2b and 16 and 17 possessing conformationally restricted linker Y were found to show the most optimized potency among the tested compounds. Cytochrome P450 inhibition of optimized compounds was also investigated. Details of the structure-activity relationship study are presented.
Collapse
Affiliation(s)
- Atsushi Naganawa
- Minase Research Institute, Ono Pharmaceutical Co. Ltd, Shimamoto, Mishima, Osaka 618-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Jones RL, Wise H, Clark R, Whiting RL, Bley KR. Investigation of the prostacyclin (IP) receptor antagonist RO1138452 on isolated blood vessel and platelet preparations. Br J Pharmacol 2006; 149:110-20. [PMID: 16880763 PMCID: PMC1629403 DOI: 10.1038/sj.bjp.0706841] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The current study examined the utility of the recently described prostacyclin (prostanoid IP) receptor antagonist RO1138452 (2-(4-(4-isopropoxybenzyl)-phenylamino) imidazoline) as a tool for classifying prostanoid receptors. EXPERIMENTAL APPROACH pA(2) values were determined on isolated smooth muscle and platelet preparations. KEY RESULTS RO1138452 antagonized relaxation of human pulmonary artery, guinea-pig aorta and rabbit mesenteric artery induced by the selective IP agonist cicaprost. Schild plots had slopes close to unity, generating pA(2) values of 8.20, 8.39 and 8.12 respectively. Non-surmountable antagonism was sometimes found with the higher concentrations of RO1138452, attributable to the EP(3) contractile action of cicaprost. RO1138452 did not block relaxation of guinea-pig trachea induced by the EP(2)-selective agonist butaprost. In contrast, there was a modest inhibition of butaprost-induced relaxation of human pulmonary artery by RO1138452, implying activation of both EP(2) and IP receptors by butaprost. RO1138452 did not affect relaxation induced by PGE(2) (EP(4) agonist) and substance P (NK(1)/endothelium-dependent agonist) in rabbit mesenteric artery. In human and rat platelet-rich plasmas, RO1138452 antagonized cicaprost-induced inhibition of platelet aggregation in a surmountable manner; pA(2) values may have been affected by binding of RO1138452 to plasma protein. RO1138452 did not affect the inhibitory actions of PGD(2) (DP(1) agonist) and NECA (adenosine A(2A) agonist) in human platelets. CONCLUSIONS AND IMPLICATIONS The data indicate that RO1138452 is a potent and selective IP receptor antagonist. RO1138452 represents an important addition to our armoury of prostanoid receptor antagonists and a potential clinical agent in situations where prostacyclin has a pathophysiological function.
Collapse
Affiliation(s)
- R L Jones
- Department of Pharmacology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
230
|
Kay LJ, Yeo WW, Peachell PT. Prostaglandin E2 activates EP2 receptors to inhibit human lung mast cell degranulation. Br J Pharmacol 2006; 147:707-13. [PMID: 16432506 PMCID: PMC1751511 DOI: 10.1038/sj.bjp.0706664] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The prostanoid, PGE2, is known to inhibit human lung mast cell activity. The aim of the present study was to characterize the EP receptor that mediates this effect. PGE2 (pEC(50), 5.8+/-0.1) inhibited the IgE-mediated release of histamine from mast cells in a concentration-dependent manner. Alternative EP receptor agonists were studied. The EP2-selective agonist, butaprost (pEC50, 5.2+/-0.2), was an effective inhibitor of mediator release whereas the EP1/EP3 receptor agonist, sulprostone, and the EP1-selective agonist, 17-phenyl-trinor-PGE2, were ineffective. The DP agonist PGD2, the FP agonist PGF(2alpha), the IP agonist iloprost and the TP agonist U-46619 were ineffective inhibitors of IgE-mediated histamine release from mast cells. PGE2 induced a concentration-dependent increase in intracellular cAMP levels in mast cells. The effects of the EP1/EP2 receptor antagonist, AH6809, and the EP4 receptor antagonist, AH23848, on the PGE2-mediated inhibition of histamine release were determined. AH6809 (pK(B), 5.6+/-0.1) caused a modest rightward shift in the PGE2 concentration-response curve, whereas AH23848 was ineffective. Long-term (24 h) incubation of mast cells with either PGE2 or butaprost (EP2 agonist), but not sulprostone (EP1/EP3 agonist), caused a significant reduction in the subsequent ability of PGE2 to inhibit histamine release. Collectively, these data suggest that PGE2 mediates effects on human lung mast cells by interacting with EP2 receptors.
Collapse
Affiliation(s)
- Linda J Kay
- Molecular Pharmacology, University of Sheffield, The Royal Hallamshire Hospital (Floor M), Glossop Road, Sheffield, S Yorks S10 2JF
| | - Wilfred W Yeo
- Molecular Pharmacology, University of Sheffield, The Royal Hallamshire Hospital (Floor M), Glossop Road, Sheffield, S Yorks S10 2JF
| | - Peter T Peachell
- Molecular Pharmacology, University of Sheffield, The Royal Hallamshire Hospital (Floor M), Glossop Road, Sheffield, S Yorks S10 2JF
- Author for correspondence:
| |
Collapse
|
231
|
Hung GHY, Jones RL, Lam FFY, Chan KM, Hidaka H, Suzuki M, Sasaki Y. Investigation of the pronounced synergism between prostaglandin E2 and other constrictor agents on rat femoral artery. Prostaglandins Leukot Essent Fatty Acids 2006; 74:401-15. [PMID: 16737803 DOI: 10.1016/j.plefa.2006.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 03/22/2006] [Accepted: 04/11/2006] [Indexed: 11/29/2022]
Abstract
This study investigates the pronounced synergism between the weak contractile action of prostaglandin E(2) (PGE(2)) and strong actions of phenylephrine, U-46619 and K(+) on rat isolated femoral artery. The potency ranking for synergism was SC-46275 (prostanoid receptor agonist selectivity: EP(3)>>EP(1))=sulprostone (EP(3)>EP(1))>17-phenyl PGE(2) (EP(1)>EP(3)). The novel EP(3) antagonist L-798106 (0.2-1microM) blocked the enhanced action of sulprostone (pA(2)=7.35-8.10), while the EP(1) antagonist SC-51322 (1microM) did not (pA(2)<6.0). Matching responses to priming agent and priming agent/sulprostone were similarly suppressed by nifedipine (300nM) and the selective Rho-kinase inhibitors H-1152 (0.1-1microM) and Y-27632 (1-10microM). Our findings implicate an EP(3) receptor in the prostanoid component of contractile synergism. While the synergism predominantly operates through a Ca(2+) influx-Rho-kinase pathway, the EP(3) receptor does not necessarily transduce via Rho-kinase.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Dinoprostone/analogs & derivatives
- Dinoprostone/analysis
- Dinoprostone/pharmacology
- Drug Interactions
- Drug Synergism
- Femoral Artery/drug effects
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins
- Male
- Nifedipine/pharmacology
- Phenylephrine/pharmacology
- Potassium/pharmacology
- Prostaglandins F, Synthetic/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Sensitivity and Specificity
- Sulfonamides/metabolism
- Vasoconstrictor Agents/pharmacology
- rho-Associated Kinases
Collapse
Affiliation(s)
- Gloria H Y Hung
- Department of Pharmacology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
232
|
Brochhausen C, Neuland P, Kirkpatrick CJ, Nüsing RM, Klaus G. Cyclooxygenases and prostaglandin E2 receptors in growth plate chondrocytes in vitro and in situ--prostaglandin E2 dependent proliferation of growth plate chondrocytes. Arthritis Res Ther 2006; 8:R78. [PMID: 16646980 PMCID: PMC1526634 DOI: 10.1186/ar1948] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 03/16/2006] [Accepted: 03/28/2006] [Indexed: 11/10/2022] Open
Abstract
Prostaglandin E2 (PGE2) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE2 pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE2 receptors) is essential. We therefore examined the production of PGE2 in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE2 on cell proliferation. Furthermore, we analysed the expression and spatial distribution of cyclooxygenase (COX)-1 and COX-2 and PGE2 receptor types EP1, EP2, EP3 and EP4 in the growth plate in situ and in vitro. PGE2 synthesis was determined by mass spectrometry, cell proliferation by DNA [3H]-thymidine incorporation, mRNA expression of cyclooxygenases and EP receptors by RT-PCR on cultured cells and in homogenized growth plates. To determine cellular expression, frozen sections of rat tibial growth plate and primary chondrocyte cultures were stained using immunohistochemistry with polyclonal antibodies directed towards COX-1, COX-2, EP1, EP2, EP3, and EP4. Cultured growth plate chondrocytes transiently secreted PGE2 into the culture medium. Although both enzymes were expressed in chondrocytes in vitro and in vivo, it appears that mainly COX-2 contributed to PGE2-dependent proliferation. Exogenously added PGE2 stimulated DNA synthesis in a dose-dependent fashion and gave a bell-shaped curve with a maximum at 10-8 M. The EP1/EP3 specific agonist sulprostone and the EP1-selective agonist ONO-D1-004 increased DNA synthesis. The effect of PGE2 was suppressed by ONO-8711. The expression of EP1, EP2, EP3, and EP4 receptors in situ and in vitro was observed; EP2 was homogenously expressed in all zones of the growth plate in situ, whereas EP1 expression was inhomogenous, with spared cells in the reserve zone. In cultured cells these four receptors were expressed in a subset of cells only. The most intense staining for the EP1 receptor was found in polygonal cells surrounded by matrix. Expression of receptor protein for EP3 and EP4 was observed also in rat growth plates. In cultured chrondrocytes, however, only weak expression of EP3 and EP4 receptor was detected. We suggest that in growth plate chondrocytes, COX-2 is responsible for PGE2 release, which stimulates cell proliferation via the EP1 receptor.
Collapse
Affiliation(s)
| | - Pia Neuland
- Department of Pediatrics, Philipps-University, Marburg, Germany
| | | | - Rolf M Nüsing
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | - Günter Klaus
- Department of Pediatrics, Philipps-University, Marburg, Germany
| |
Collapse
|
233
|
Cheng K, Wu TJ, Wu KK, Sturino C, Metters K, Gottesdiener K, Wright SD, Wang Z, O'Neill G, Lai E, Waters MG. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc Natl Acad Sci U S A 2006; 103:6682-7. [PMID: 16617107 PMCID: PMC1458941 DOI: 10.1073/pnas.0601574103] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Indexed: 01/22/2023] Open
Abstract
Nicotinic acid (NA) is commonly used to treat dyslipidemia, but it elicits an adverse effect, termed flushing, which consists of cutaneous vasodilation with associated discomfort. An animal model of NA-induced flushing has been established in mice. As in humans, NA stimulated vasodilation in a dose-dependent manner, was associated with an increase of the vasodilatory prostaglandin (PG) D2 in plasma and could be blocked by pretreatment with aspirin. Two PGD2 receptors have been identified: PGD2 receptor 1 (DP1, also called DP) and PGD2 receptor 2 (DP2, sometimes termed CRTH2). DP2 does not mediate NA-induced vasodilation; the DP2-specific agonist DK-PGD2 (13,14-dihydro-15-keto-PGD2) did not induce cutaneous vasodilation, and DP2-/- mice had a normal vasodilatory response to NA. By contrast, BW245C, a DP1-selective agonist, induced vasodilation in mice, and MK-0524, a DP1-selective antagonist, blocked both PGD2- and NA-induced vasodilation. NA-induced vasodilation was also studied in DP1+/+, DP1+/-, and DP1-/- mice; although NA-induced vasodilation depended almost completely on DP1 in female mice, it depended only partially on DP1 in male mice. The residual NA-induced vasodilation in male DP-/- mice was aspirin-sensitive. Thus, in the mouse, DP1 appears to be an important component involved in NA-induced vasodilation, but other cyclooxygenase-dependent mechanisms also may be involved. A clinical study in healthy men and women demonstrated that treatment with MK-0524 reduced the symptoms of flushing and the increase in skin perfusion after the administration of NA. These studies suggest that DP1 receptor antagonism may be an effective means to suppress NA-induced flushing in humans.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Aspirin/pharmacology
- Female
- Flushing/drug therapy
- Flushing/physiopathology
- Humans
- Hydantoins/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Niacin/pharmacology
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/pharmacology
- Prostaglandin-Endoperoxide Synthases/physiology
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/deficiency
- Receptors, Prostaglandin/genetics
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Kang Cheng
- Department of Cardiovascular Diseases, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Wang XS, Lau HYA. Prostaglandin E potentiates the immunologically stimulated histamine release from human peripheral blood-derived mast cells through EP1/EP3 receptors. Allergy 2006; 61:503-6. [PMID: 16512814 DOI: 10.1111/j.1398-9995.2006.01043.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mast cells cultured from human peripheral blood have been widely used to study human mast cell function. Prostanoids are the important regulators of mast cell activity, however, there were no reports about the class of prostanoid receptors expressed on such cultured cells. AIMS The present study was to characterize pharmacologically the prostanoid receptors by investigating the effects of prostanoid receptor agonists on the immunoglobulin E (IgE)-mediated histamine release from the cultured mast cells. METHODS Mast cells cultured from human progenitor cells in peripheral blood were sensitized with human myeloma IgE, and then challenged with anti-human IgE following pretreatment with diverse prostanoid receptor agonists. The histamine content in supernatants and cell pellets were measured by histamine auto-analyzer. RESULTS Of the prostanoid receptor agonists tested, the prostaglandin E2 (PGE2) receptor (EP receptor) agonist PGE2 (10(-7) to 10(-11) M) produced concentration-related potentiation of IgE-mediated histamine release from the cultured mast cells. Sulprostone, an EP1/EP3 agonist, SC-46275, a selective EP3 agonist, and 11-deoxy-PGE1, a selective EP2/EP3/EP4 agonist also caused a significant increase in histamine release induced by anti-IgE. BW245C, fluprostone, cicaprost and U46619 for the prostaglandin D2, F2alpha, I2, and thromboxane A2 receptors respectively, and the EP2/EP4 receptor agonist butaprost had little effect on anti-IgE stimulated histamine release from mast cells. CONCLUSIONS The present results suggest that PGE2 potentiates the IgE-mediated histamine release from the cultured mast cell via EP3 and/or EP1 receptors.
Collapse
Affiliation(s)
- X S Wang
- Department of Pharmacology, Faculty of Medicine, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | | |
Collapse
|
235
|
Matlhagela K, Taub M. Involvement of EP1 and EP2 receptors in the regulation of the Na,K-ATPase by prostaglandins in MDCK cells. Prostaglandins Other Lipid Mediat 2006; 79:101-13. [PMID: 16516814 PMCID: PMC1892594 DOI: 10.1016/j.prostaglandins.2005.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/28/2005] [Accepted: 12/07/2005] [Indexed: 11/20/2022]
Abstract
Prostaglandins are key regulators of ion transport in the kidney. In MDCK cells, which model distal tubule cells, the transcription of the Na,K-ATPase beta1 subunit is regulated by PGE1 and PGE2. To identify the EP receptors that mediate transcriptional regulation, transient transfection studies are conducted using the human beta1promoter/luciferase construct, pHbeta1-1141 Luc. The involvement of EP1 and EP2 receptors is indicated by studies with the EP1 selective agonist 17-phenyl trinor PGE2, and the EP2 selective agonist butaprost (which stimulate), as well as by studies with the antagonists SC-51089 (EP1 specific) and AH 6809 (EP1 and EP2 specific). Consistent with the involvement of Gs coupled EP2 receptors, is that the PGE1 stimulation is inhibited by the PKAI expression vector (encoding the protein kinase A (PKA) inhibitory protein), as well as by the myristolated PKA inhibitory peptide PKI. In addition to this evidence (for the involvement of EP2 receptors), evidence for the involvement of EP1 receptors in the PGE1 mediated stimulation of Na,K-ATPase beta subunit gene transcription includes the stimulatory effect of 17-phenyl trinor PGE2, as well as the inhibitory effects of SC-51089. Also consistent with the involvement of Gq coupled EP1 receptors, the PGE1 stimulation is inhibited by the PKCI vector (encoding the PKC inhibitory domain), the PKC inhibitor Go 6976, thapsigargin, as well as the calmodulin antagonists W7 and W13.
Collapse
MESH Headings
- Alprostadil/antagonists & inhibitors
- Alprostadil/metabolism
- Animals
- Cell Line
- Dinoprostone/antagonists & inhibitors
- Dinoprostone/metabolism
- Dogs
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Hydrazines/pharmacology
- Ion Transport/drug effects
- Ion Transport/physiology
- Kidney Tubules, Distal/enzymology
- Oxazepines/pharmacology
- Prostaglandin Antagonists/pharmacology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Sodium-Potassium-Exchanging ATPase/biosynthesis
- Xanthones/pharmacology
Collapse
Affiliation(s)
| | - Mary Taub
- *Corresponding author. Tel.: +1 716 829 3300; fax: +1 716 829 2725. E-mail address: (M. Taub)
| |
Collapse
|
236
|
Shao J, Sheng GG, Mifflin RC, Powell DW, Sheng H. Roles of Myofibroblasts in Prostaglandin E2–Stimulated Intestinal Epithelial Proliferation and Angiogenesis. Cancer Res 2006; 66:846-55. [PMID: 16424017 DOI: 10.1158/0008-5472.can-05-2606] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostaglandins (PG) are produced throughout the gastrointestinal tract and are critical mediators for a complex array of physiologic and pathophysiologic processes in the intestine. Intestinal myofibroblasts, which express cyclooxygenase (COX) and generate PGE(2), play important roles in intestinal epithelial proliferation, differentiation, inflammation, and neoplasia through secreting growth factors and cytokines. Here, we show that PGE(2) activated human intestinal subepithelial myofibroblasts (18Co) through Gs protein-coupled E-prostanoid receptors and the cyclic AMP/protein kinase A pathway. 18Co cells and primary colonic myofibroblast isolates expressed a number of growth factors; several of them were dramatically regulated by PGE(2). An epidermal growth factor-like growth factor, amphiregulin (AR), which was not expressed by untreated cells, was strongly induced by PGE(2). Expression of vascular endothelial growth factor A (VEGFA) was rapidly increased by PGE(2) exposure. Hepatocyte growth factor (HGF) was elevated in PGE(2)-treated myofibroblasts at both mRNA and protein levels. Thus, PGE(2)-activated myofibroblasts promoted the proliferation and migration of intestinal epithelial cells, which were attenuated by neutralizing antibodies to AR and HGF, respectively. Moreover, in the presence of PGE(2), myofibroblasts strongly stimulated the migration and tubular formation of vascular endothelial cells. Neutralizing antibody to VEGFA inhibited the observed stimulation of migration. These results suggest that myofibroblast-generated growth factors are important mediators for PGE(2)-induced intestinal epithelial proliferation and angiogenesis, which play critical roles in intestinal homeostasis, inflammation, and neoplasia.
Collapse
Affiliation(s)
- Jinyi Shao
- Department of Surgery and Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
237
|
Fujino H, Regan JW. EP(4) prostanoid receptor coupling to a pertussis toxin-sensitive inhibitory G protein. Mol Pharmacol 2006; 69:5-10. [PMID: 16204467 DOI: 10.1124/mol.105.017749] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The EP(2) and EP(4) prostanoid receptor subtypes are G-protein-coupled receptors for prostaglandin E(2) (PGE(2)). Both receptor subtypes are known to couple to the stimulatory guanine nucleotide binding protein (Galpha(s)) and, after stimulation with PGE(2), can increase the formation of intracellular cAMP. In addition, PGE(2) stimulation of the EP(4) receptor can activate phosphatidylinositol 3-kinase (PI3K) leading to phosphorylation of the extracellular signal-regulated kinases (ERKs) and induction of early growth response factor-1 (EGR-1). We now report that the PGE(2)-mediated phosphorylation of the ERKs and induction of EGR-1 can be blocked by pretreatment of EP(4)-expressing cells with pertussis toxin (PTX). Furthermore, pretreatment with PTX increased the amount of PGE(2)-stimulated intracellular cAMP formation in EP(4)-expressing cells but not in EP(2)-expressing cells. These data indicate that the EP(4) prostanoid receptor subtype, but not the EP(2), couples to a PTX-sensitive inhibitory G-protein (Galpha(i)) that can inhibit cAMP-dependent signaling and activate PI3K/ERK-dependent signaling.
Collapse
Affiliation(s)
- Hiromichi Fujino
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721-0207, USA
| | | |
Collapse
|
238
|
Hsiao HY, Mak OT, Yang CS, Liu YP, Fang KM, Tzeng SF. TNF-α/IFN-γ-induced iNOS expression increased by prostaglandin E2 in rat primary astrocytes via EP2-evoked cAMP/PKA and intracellular calcium signaling. Glia 2006; 55:214-23. [PMID: 17091492 DOI: 10.1002/glia.20453] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Astrocytes, the most abundant glia in the central nervous system (CNS), produce a large amount of prostaglandin E(2) (PGE(2)) in response to proinflammatory mediators after CNS injury. However, it is unclear whether PGE(2) has a regulatory role in astrocytic activity under the inflamed condition. In the present work, we showed that PGE(2) increased inducible nitric oxide synthase (iNOS) production by tumor necrosis factor-alpha and interferon-gamma (T/I) in astrocytes. Pharmacological and RNA interference approaches further indicated the involvement of the receptor EP2 in PGE(2)-induced iNOS upregulation in T/I-treated astrocytes. Quantitative real-time polymerase chain reaction and gel mobility shift assays also demonstrated that PGE(2) increased iNOS transcription through EP2-induced cAMP/protein kinase A (PKA)-dependent pathway. Consistently, the effect of EP2 was significantly attenuated by the PKA inhibitor KT-5720 and partially suppressed by the inhibitor (SB203580) of p38 mitogen-activated protein kinase (p38MAPK), which serves as one of the downstream components of the PKA-dependent pathway. Interestingly, EP2-mediated PKA signaling appeared to increase intracellular Ca(2+) release through inositol triphosphate (IP3) receptor activation, which might in turn stimulate protein kinase C (PKC) activation to promote iNOS production in T/I-primed astrocytes. By analyzing the expression of astrocytic glial fibrillary acidic protein (GFAP), we found that PGE(2) alone only triggered the EP2-induced cAMP/PKA/p38MAPK signaling pathway in astrocytes. Collectively, PGE(2) may enhance T/I-induced astrocytic activation by augmenting iNOS/NO production through EP2-mediated cross-talk between cAMP/PKA and IP3/Ca(2+) signaling pathways.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/immunology
- Astrocytes/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/immunology
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinase Type II
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Dinoprostone/immunology
- Dinoprostone/metabolism
- Dinoprostone/pharmacology
- Encephalitis/immunology
- Encephalitis/metabolism
- Encephalitis/physiopathology
- Enzyme Inhibitors/pharmacology
- Gliosis/immunology
- Gliosis/metabolism
- Gliosis/physiopathology
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Intracellular Fluid/drug effects
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Nitric Oxide Synthase Type II/immunology
- Nitric Oxide Synthase Type II/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Transcriptional Activation/drug effects
- Transcriptional Activation/physiology
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/immunology
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Han-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
239
|
Tanaka H, Kanako S, Abe S. Prostaglandin E2 receptor selective agonists E-prostanoid 2 and E-prostanoid 4 may have therapeutic effects on ovalbumin-induced bronchoconstriction. Chest 2005; 128:3717-23. [PMID: 16304339 DOI: 10.1378/chest.128.5.3717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The pharmacologic actions of prostaglandin E(2) (PGE(2)) are mediated through specific E-prostanoid (EP)-1, EP-2, EP-3, and EP-4 receptors. In this study, we determined which PGE(2) receptor subtype(s) contribute to the prevention of allergen-induced bronchoconstriction. METHODS We assessed the effects of these receptor agonists in ovalbumin (OA)-sensitized guinea pigs. The prostaglandin E receptor-subtype agonists tested were ONO-DI-004 (EP-1), ONO-AE1-259 (EP-2), ONO-AE-248 (EP-3), ONO-AE1-329 (EP-4), and sulprostone (EP-1 and EP-3) [Ono Pharmaceutical Company; Osaka, Japan]. We treated the animals with either PGE(2) or these agonists 15 min before OA challenge and measured respiratory resistance at 15 min, 1 h, and 3 h. RESULTS Allergen-induced bronchoconstriction was significantly (p < 0.01) suppressed at doses > 85 nmol/kg of PGE(2). The respiratory resistance elevations 15 min after OA challenge were significantly (p < 0.01) suppressed by preadministration of EP-2 and EP-4 agonists, but airway responsiveness to inhaled methacholine did not improve. EP-1, EP-3, or EP-1/EP-3 agonists had no effect on any parameter. CONCLUSIONS These results suggest that inhibition of OA-induced bronchoconstriction by PGE(2) acts through EP-2 and EP-4 receptors.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Third Department of Internal Medicine, Sapporo Medical University school of Medicine, Japan.
| | | | | |
Collapse
|
240
|
Pavlovic S, Du B, Sakamoto K, Khan KMF, Natarajan C, Breyer RM, Dannenberg AJ, Falcone DJ. Targeting prostaglandin E2 receptors as an alternative strategy to block cyclooxygenase-2-dependent extracellular matrix-induced matrix metalloproteinase-9 expression by macrophages. J Biol Chem 2005; 281:3321-8. [PMID: 16338931 DOI: 10.1074/jbc.m506846200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
COX-2-dependent prostaglandin (PG) E2 synthesis regulates macrophage MMP expression, which is thought to destabilize atherosclerotic plaques. However, the administration of selective COX-2 inhibitors paradoxically increases the frequency of adverse cardiovascular events potentially through the loss of anti-inflammatory prostanoids and/or disturbance in the balance of pro- and anti-thrombotic prostanoids. To avoid these collateral effects of COX-2 inhibition, a strategy to identify and block specific prostanoid-receptor interactions may be required. We previously reported that macrophage engagement of vascular extracellular matrix (ECM) triggers proteinase expression through a MAPKerk1/2-dependent increase in COX-2 expression and PGE2 synthesis. Here we demonstrate that elicited macrophages express the PGE2 receptors EP1-4. When plated on ECM, their expression of EP2 and EP4, receptors linked to PGE2-induced activation of adenylyl cyclase, is strongly stimulated. Forskolin and dibutryl cyclic-AMP stimulate macrophage matrix metalloproteinase (MMP)-9 expression in a dose-dependent manner. However, an EP2 agonist (butaprost) has no effect on MMP-9 expression, and macrophages from EP2 null mice exhibited enhanced COX-2 and MMP-9 expression when plated on ECM. In contrast, the EP4 agonist (PGE1-OH) stimulated macrophage MMP-9 expression, which was inhibited by the EP4 antagonist ONO-AE3-208. When compared with COX-2 silencing by small interfering RNA or inhibition by celecoxib, the EP4 antagonist was as effective in inhibiting ECM-induced proteinase expression. In addition, ECM-induced MMP-9 expression was blocked in macrophages in which EP4 was silenced by small interfering RNA. Thus, COX-2-dependent ECM-induced proteinase expression is effectively blocked by selective inhibition of EP4, a member of the PGE2 family of receptors.
Collapse
Affiliation(s)
- Svetlana Pavlovic
- Department of Pathology and Laboratory Medicine, Vascular Biology Center, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Ahmad AS, Ahmad M, de Brum-Fernandes AJ, Doré S. Prostaglandin EP4 receptor agonist protects against acute neurotoxicity. Brain Res 2005; 1066:71-7. [PMID: 16360658 DOI: 10.1016/j.brainres.2005.10.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 12/21/2022]
Abstract
Under various abnormal physiologic conditions, overactivation of glutamate-gated ion channel receptor family members, including NMDA receptors, causes increase in COX-2 expression and generation of prostaglandins. PGE(2) exerts its physiologic actions mainly through its PGE(2) prostanoid (EP) receptors. In the present study, the role of the EP4 receptor against NMDA-induced excitotoxicity was investigated. Using the EP4 receptor agonist ONO-AE1-329, which has relative selectivity toward murine EP receptors on the order of EP1:EP2:EP3:EP4 of >1000:210:120:1, respectively, we questioned whether activation of the EP4 receptors has the potential to attenuate injury in brain. Mice were pretreated by intracerebroventricular injection with different doses of ONO-AE1-329 (0.1, 1, and 10 nmol; n = 9/group) and, after 20 min, by a single unilateral intrastriatal injection of NMDA (15 nmol, n = 12). NMDA injection produced a significant lesion in the ipsilateral striatum. This lesion volume was significantly reduced in groups that were pretreated with ONO-AE1-329, with maximum protection of more than 32% at 10 nmol. This is the first study revealing the protective effect of ONO-AE1-329 in an acute model of excitotoxicity in brain, and it suggests that preferential stimulation of EP4 receptors attenuates excitotoxic brain injury.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
242
|
Konger RL, Brouxhon S, Partillo S, VanBuskirk J, Pentland AP. The EP3 receptor stimulates ceramide and diacylglycerol release and inhibits growth of primary keratinocytes. Exp Dermatol 2005; 14:914-22. [PMID: 16274459 DOI: 10.1111/j.1600-0625.2005.00381.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Primary human keratinocytes (PHKs) are known to express the EP3 subtype of prostaglandin E2 receptor. To better understand the role of EP3 receptors in regulating epidermal function, we characterized their expression, localization, and signaling effects in human skin. Three different splice variants of the EP3 receptor (EP3A1, EP3C, and EP3D) were found to be expressed. Immunohistochemical analysis of human skin demonstrated that EP3 receptors were most prominently expressed in the basal and lower spinous layers of the epidermis. The EP3 receptor agonist sulprostone was then used to examine EP3 receptor-dependent keratinocyte signaling pathways and functional effects. We observed that sulprostone inhibits keratinocyte growth at doses between 0.02 and 2 nM and induces sn-1,2-diacylglycerol (DAG) and ceramide production. Concurrent expression of the cell-cycle inhibitory protein p21WAF1 also occurred. These data suggest that EP3 receptors produce epidermal growth inhibition through the action of DAG and ceramide second messengers.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46122, USA.
| | | | | | | | | |
Collapse
|
243
|
Sanchez T, Moreno JJ. GR 63799X, an EP3 receptor agonist, induced S phase arrest and 3T6 fibroblast growth inhibition. Eur J Pharmacol 2005; 529:16-23. [PMID: 16316649 DOI: 10.1016/j.ejphar.2005.10.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/18/2005] [Accepted: 10/25/2005] [Indexed: 11/26/2022]
Abstract
The importance of arachidonic acid metabolites on the control of cell growth, particularly those derived from cyclooxygenase pathway has long been recognized. Recently, we observed that prostaglandin E(2) (PGE(2)) interaction with EP(1) and EP(4) receptors is involved in serum-induced 3T6 fibroblast growth due to their effect at various levels of the cell cycle machinery. This study shows that prostanoid EP(3) receptor was expressed in 3T6 fibroblast. We studied the role of EP(3) receptor agonist GR 63799X in serum-induced 3T6 cell proliferation. This was concentration-dependent inhibit (IC(50) approximately 10 microM) to a complete inhibition without any cytotoxic or proapoptotic effect. The prostanoid EP(3) receptor agonist treatment decreased the G(0)/G(1) and G(2)/M populations whereas cells were accumulated in S phase. This arrest in S phase was associated with a decrease in cyclin B levels and the enhancement of p21 expression. Our data show that EP(3) agonist decreases cAMP levels in our experimental conditions. Interestingly, the S arrest caused by prostanoid EP(3) receptor agonist seems to be cAMP dependent, at least in part, because forskolin treatment allowed S-arrested cells to progress through cell cycle and consequently growth. Thus, our results suggest that PGE(2) EP(3) receptor interaction may be involved in serum-induced 3T6 fibroblast growth due to their effects on cAMP levels and on cell cycle machinery of the S phase.
Collapse
Affiliation(s)
- Teresa Sanchez
- Department of Physiology, Faculty of Pharmacy, Barcelona University, E-08028 Barcelona, Spain
| | | |
Collapse
|
244
|
Nakayama T, Mutsuga N, Yao L, Tosato G. Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J Leukoc Biol 2005; 79:95-104. [PMID: 16275896 DOI: 10.1189/jlb.0405226] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mast cells (MCs) are common components of inflammatory infiltrates and a source of proangiogenic factors. Inflammation is often accompanied by vascular changes. However, little is known about modulation of MC-derived proangiogenic factors during inflammation. In this study, we evaluated the effects of the proinflammatory mediator prostaglandin E2 (PGE2) on MC expression and release of proangiogenic factors. We report that PGE2 dose-dependently induces primary MCs to release the proangiogenic chemokine monocyte chemoattractant protein-1 (MCP-1). This release of MCP-1 is complete by 2 h after PGE2 exposure, reaches levels of MCP-1 at least 15-fold higher than background, and is not accompanied by degranulation or increased MCP-1 gene expression. By immunoelectron microscopy, MCP-1 is detected within MCs at a cytoplasmic location distinct from the secretory granules. Dexamethasone and cyclosporine A inhibit PGE2-induced MCP-1 secretion by approximately 60%. Agonists of PGE2 receptor subtypes revealed that the EP1 and EP3 receptors can independently mediate MCP-1 release from MCs. These observations identify PGE2-induced MCP-1 release from MCs as a pathway underlying inflammation-associated angiogenesis and extend current understanding of the activities of PGE2.
Collapse
Affiliation(s)
- Takayuki Nakayama
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
245
|
Chang TC, Huang CJ, Tam K, Chen SF, Tan KT, Tsai MS, Lin TN, Shyue SK. Stabilization of Hypoxia-inducible Factor-1α by Prostacyclin under Prolonged Hypoxia via Reducing Reactive Oxygen Species Level in Endothelial Cells. J Biol Chem 2005; 280:36567-74. [PMID: 16115891 DOI: 10.1074/jbc.m504280200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) takes part in the transcriptional activation of hypoxia-responsive genes. HIF-1alpha, a subunit of HIF-1, is rapidly degraded under normoxic conditions by the ubiquitin-proteosome system. Hypoxia up-regulates HIF-1alpha by inhibiting its degradation, thereby allowing it to accumulate to high levels with 3-6 h of hypoxia treatment and decreasing thereafter. In vascular tissues, prostacyclin (prostaglandin I(2) (PGI(2))) is a potent vasodilator and inhibitor of platelet aggregation and is known as a vasoprotective molecule. However, the role of PGI(2) in HIF-1 activation has not been studied. In the present study, we investigated the effect of PGI(2) on HIF-1 regulation in human umbilical vein endothelial cells under prolonged hypoxia (12 h). Augmentation of PGI(2) via adenovirus-mediated gene transfer of both cyclooxygenase-1 and PGI(2) synthase activated HIF-1 by stabilizing HIF-1alpha in cells under prolonged hypoxia or the hypoxia-normoxia transition but not under normoxia. Exogenous H(2)O(2) abolished PGI(2)- and catalase-induced HIF-1alpha up-regulation, which suggests that degradation of HIF-1alpha under prolonged hypoxia is through a reactive oxygen species-dependent pathway. Moreover, PGI(2) attenuated NADPH oxidase activity by suppressing Rac1 and p47(phox) expression under hypoxia. These data demonstrate a novel function of PGI(2) in down-regulating reactive oxygen species production by attenuating NADPH oxidase activity, which stabilizes HIF-1alpha in human umbilical vein endothelial cells exposed to prolonged hypoxia.
Collapse
Affiliation(s)
- Tzu-Ching Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Larsen R, Hansen MB, Bindslev N. Duodenal secretion in humans mediated by the EP4 receptor subtype. ACTA ACUST UNITED AC 2005; 185:133-40. [PMID: 16168007 DOI: 10.1111/j.1365-201x.2005.01471.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Assessment of functional EP receptor subtypes involved in PGE2-induced secretion in human duodenum. The spectrum of activities by PGE2 in mammals, including cytoprotective bicarbonate secretion in duodenum, is mediated through four G protein-coupled receptor subtypes (EP1-EP4). METHODS Biopsies from the second part of duodenum from patients undergoing endoscopy were mounted in modified Ussing chambers. Basal and stimulated short circuit current (SCC) and slope conductance (SG) were measured. Dose-response relations for PGE2 and subtype receptors EP1/EP3 (sulprostone), EP2 (butaprost), and EP4 (1-OH PGE1) were assessed by cumulated doses of single agonists. RESULTS PGE2 caused a dose-dependent increase in SCC, maximum 101 +/- 20 microA cm(-2) with an EC50 of 35.6 +/- 5.8 nm (n = 3). Likewise 1-OH PGE1 caused a dose-dependent SCC increase, maximum 63.3 +/- 28.6 microA cm(-2) with an EC50 of 56.7 +/- 7.2 nm (n = 3). 1-OH PGE1 at 500 nm increased SCC by 18.0 +/- 3.0 microA cm(-2) (n = 10) and SG by 2.9 +/- 0.4 mS cm(-2) (n = 6). Sulprostone (n = 6) and butaprost (n = 6) had no effects on SCC or SG. SCC was inhibited 31.4 +/- 13.2% (n = 10) by bumetanide (25 microM serosa) and 18.6 +/- 5.8% (n = 10) by acetazolamide (250 microM lumen). Diphenylamine-2-carboxylate (DPC) (250 microM mucosa) and SITS (10 microM mucosa) had almost no effect. CONCLUSIONS Effects of PGE2 on secretion in the second part of human duodenum is mediated through the EP4 receptor and not through EP1, EP2, or EP3.
Collapse
Affiliation(s)
- R Larsen
- Department of Medicine M, Division of Gastroenterology, Glostrup University Hospital of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
247
|
Meves H. The effect of prostaglandin E1 on ion currents of NG108-15 cells. Prostaglandins Other Lipid Mediat 2005; 76:117-32. [PMID: 15967167 DOI: 10.1016/j.prostaglandins.2005.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/10/2005] [Accepted: 03/13/2005] [Indexed: 11/20/2022]
Abstract
The aim of this study was to elucidate the mechanism by which prostaglandin E(1) (PGE(1)) acts on ion currents of whole-cell voltage-clamped NG108-15 neuroblastomaxglioma hybrid cells. Ruptured and perforated patch were used. The holding current at -70 mV, the current-voltage curve produced by ramp pulses from -70 to 0 mV and the T-type and hva (high-voltage-activated) Ca(2+) currents associated with rectangular pulses were recorded. Bath application of PGE(1) (0.2 or 3 microM) reversibly increased the holding current, an effect mimicked by the prostanoid agonist iloprost (5-50 nM). The PGE(1) effect was totally blocked by the cAMP-antagonist Rp-cAMPS whereas H-89, an inhibitor of protein kinase A (PKA), failed to inhibit it, even when applied in the fairly high bath concentration of 30 microM. PGE(1) and iloprost also inhibited the T-type and hva Ca(2+) currents and this effect of PGE(1) was likewise not prevented by H-89. In some of the cells, the PGE(1) effect on holding current could be mimicked by 8-pCPT-2Me-cAMP (100-300 microM), a selective agonist of Epac (exchange protein activated by cAMP), but unlike the PGE(1) effect its action was not abolished by Rp-cAMPS. The effect of PGE(1) on the the holding current and on the T-type Ca(2+) current was diminished when EGTA in the pipette solution was replaced by BAPTA, suggesting that Ca(2+) ions are involved in the PGE(1) effect. It is concluded that the PGE(1) effect is mediated by cAMP and Ca(2+) ions but not by PKA or Epac.
Collapse
Affiliation(s)
- Hans Meves
- Physiologisches Institut, Universität des Saarlandes, Homburg-Saar, Germany.
| |
Collapse
|
248
|
Wilhelm D, Martinson F, Bradford S, Wilson MJ, Combes AN, Beverdam A, Bowles J, Mizusaki H, Koopman P. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev Biol 2005; 287:111-24. [PMID: 16185683 DOI: 10.1016/j.ydbio.2005.08.039] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/18/2005] [Accepted: 08/22/2005] [Indexed: 11/22/2022]
Abstract
We have raised an antibody specifically recognizing endogenous mouse SRY protein and used it to investigate the molecular and cellular mode of action of SRY in testis determination. We find that expression of SRY protein closely mirrors the expression of Sry mRNA in mouse genital ridges and is detectable for 6 to 8 h after the mRNA ceases to be detectable. The subset of somatic cells that expresses SRY begins to express SOX9 almost immediately. Since these SOX9-positive cells go on to develop as Sertoli cells, it appears that SRY expression marks the pre-Sertoli cell lineage and leads to up-regulation of Sox9 expression cell-autonomously. However, a small proportion of SOX9-positive cells did not appear to express SRY, possibly reflecting the additional involvement of paracrine signaling in activating Sox9 transcription in these cells. We confirmed by ex vivo cell mixing experiments that SRY is able to engage receptor-mediated signaling to up-regulate Sox9 expression. Finally, we showed by employing specific inhibitors that the causative signaling molecule is prostaglandin D2 (PGD2) and that PGD2 can induce Sox9 transcription in cultured XX gonads. Our data indicate a mechanism whereby Sry uses both a cell-autonomous mechanism and a PGD2-mediated signaling mechanism to stimulate expression of Sox9 and induce the differentiation of Sertoli cells in vivo.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Cao J, Yosida M, Kitazawa T, Taneike T. Uterine region-dependent differences in responsiveness to prostaglandins in the non-pregnant porcine myometrium. Prostaglandins Other Lipid Mediat 2005; 75:105-22. [PMID: 15789619 DOI: 10.1016/j.prostaglandins.2004.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To clarify the uterine region-dependent distribution of prostanoid receptors, we compared the mechanical responses to selective prostanoid receptor agonists (FP, EP3, DP, EP2) and naturally occurring prostaglandins (PGF2alpha PGE2, PGD2) in longitudinal and circular muscles isolated from three different regions (cornu, corpus and cervix) of the non-pregnant porcine uterus. Expression levels of FP receptor and cyclooxygenase (COX-1 and COX-2) in the respective regions were also examined using RT-PCR and Western blotting. The contractile responses to fluprostenol (an FP agonist) and PGF2alpha in both longitudinal and circular muscles were strongest in the cornu but weak in the corpus and cervix. Expression levels of mRNA and protein of FP receptor were highest in the cornu, consistent with the contractile responses. ONO-AE-248 (an EP3 agonist) caused contraction of both muscle layers, but region-related difference in responsiveness was observed only in the longitudinal muscle. ONO-AE1-259 (an EP2 agonist) inhibited spontaneous contraction of the myometrium, and inhibition was conspicuously stronger in the cervix. PGE2 caused contraction (<100 nM, cornu > corpus = cervix) and inhibition (>300 nM, cornu = corpus < or = cervix) of contractility depending on the concentration in both muscle layers. BW245C (a DP agonist) inhibited the spontaneous contraction, and region-dependent different responsiveness was marked in the longitudinal muscle (cervix = corpus > cornu). COX-1 but not COX-2 was detected in the non-pregnant porcine uterus. Expression level of COX-1 was different in the longitudinal muscle (cornu > corpus = cervix) but the same in the circular muscle. SC-560 inhibited the spontaneous contraction of longitudinal muscles in all regions. The results of the present study indicate that there are region-related heterogeneous distributions of contractile (FP and EP3, cornu > cervix) and relaxant (EP2 and DP, cervix > cornu) prostanoid receptors and COX-1 in the porcine uterus. The results also suggest involvement of endogenous PGs in the regulation of spontaneous uterine contractility. Region-related differences in COX-1 and prostanoid receptors might be necessary to produce a gradient of uterine motility decreasing from the cornu to the cervix that manages movement of luminal contents.
Collapse
Affiliation(s)
- Jinshan Cao
- Department of Pharmacology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | |
Collapse
|
250
|
Torisu K, Kobayashi K, Iwahashi M, Egashira H, Nakai Y, Okada Y, Nanbu F, Ohuchida S, Nakai H, Toda M. Development of a prostaglandin D2 receptor antagonist: discovery of a new chemical lead. Eur J Med Chem 2005; 40:505-19. [PMID: 15893024 DOI: 10.1016/j.ejmech.2004.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 11/24/2004] [Accepted: 11/29/2004] [Indexed: 11/29/2022]
Abstract
A series of N-(p-alkoxy)benzoyl-5-methoxy-2-methylindole-3-acetic acids and N-(p-butoxy)benzoyl-2-methylindole-4-acetic acid were discovered as new chemical leads for a prostaglandin D2 (PGD2) receptor antagonist. Most of them exhibited PGD2 receptor binding and blocked cyclic adenosine 3',5'-monophosphate (cAMP) formation in vitro. In particular, 2-methylindole-4-acetic acid analog 1 showed markedly increased receptor affinity and cAMP antagonist activity. Chemistry and structure activity relationship (SAR) data are also presented.
Collapse
Affiliation(s)
- Kazuhiko Torisu
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka 618-8585, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|