201
|
Llanos-Gómez KJ, Aime MC, Díaz-Valderrama JR. The surface of leaves and fruits of Peruvian cacao is home for several Hannaella yeast species, including the new species Hannaella theobromatis sp. nov. Antonie Van Leeuwenhoek 2024; 117:43. [PMID: 38413427 DOI: 10.1007/s10482-024-01936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
As part of a long-term study aiming to isolate and identify yeast species that inhabit the surface of leaves and fruits of native fine-aroma cacao in the department of Amazonas, Peru, we obtained multiple isolates of Hannaella species. Yeasts of the genus Hannaella are common inhabitants of the phyllosphere of natural and crop plants. On the basis of morphological, and physiological characteristics, and sequence analysis of the D1/D2 domains of the large subunit rRNA gene (LSU) and the internal transcribed spacer region (ITS), we identified five species of Hannaella from the phyllosphere of Peruvian cacao. Four have been previously described: H. phyllophila (isolates KLG-073, KLG-091), H. pagnoccae (KLG-076), H. sinensis (KLG-121), and H. taiwanensis (KLG-021). A fifth, represented by eight isolates (KLG-034, KLG-063, KLG-074, KLG-078, KLG-79, KLG-082, KLG-084, KLG-085), is not conspecific with any previously described Hannaella species, and forms the sister clade to H. surugaensis in the phylogenetic analysis. It has 2.6-3.9% (18-27 substitutions, 2-4 deletions, and 1-3 insertions in 610-938 bp-long alignments), and 9.8-10.0% nucleotide differences (37 substitutions and 14 insertions in 511-520 bp-long alignments) in the LSU and ITS regions, respectively, to H. surugaensis type strain, CBS 9426. Herein, the new species Hannaella theobromatis sp. nov. is described and characterised. The species epithet refers to its epiphytic ecology on its host Theobroma cacao.
Collapse
Affiliation(s)
- Kelvin J Llanos-Gómez
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jorge R Díaz-Valderrama
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú.
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú.
| |
Collapse
|
202
|
Kaishian P, Layug CRK, Anderson M, Berg DR, Aime MC. Rust HUBB: DNA barcode-based identification of Pucciniales. IMA Fungus 2024; 15:3. [PMID: 38402196 PMCID: PMC10894486 DOI: 10.1186/s43008-023-00132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 02/26/2024] Open
Abstract
Rust fungi (Pucciniales, Basidiomycota) are a species-rich (ca. 8000 species), globally distributed order of obligate plant pathogens. Rust species are host-specific, and as a group they cause disease on many of our most economically and/or ecologically significant plants. As such, the ability to accurately and rapidly identify these fungi is of particular interest to mycologists, botanists, agricultural scientists, farmers, quarantine officials, and associated stakeholders. However, the complexities of the rust life cycle, which may include production of up to five different spore types and alternation between two unrelated host species, have made standard identifications, especially of less-documented spore states or alternate hosts, extremely difficult. The Arthur Fungarium (PUR) at Purdue University is home to one of the most comprehensive collections of rust fungi in the world. Using material vouchered in PUR supplemented with fresh collections we generated DNA barcodes of the 28S ribosomal repeat from > 3700 rust fungal specimens. Barcoded material spans 120 genera and > 1100 species, most represented by several replicate sequences. Barcodes and associated metadata are hosted in a publicly accessible, BLAST searchable database called Rust HUBB (Herbarium-based Universal Barcode Blast) and will be continuously updated.
Collapse
Affiliation(s)
- Patricia Kaishian
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
- New York State Museum, 3140 Cultural Education Center, Albany, NY, 12230, USA
| | - Christopher R K Layug
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Mark Anderson
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Diane R Berg
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
203
|
Qi G, Hao L, Gan Y, Xin T, Lou Q, Xu W, Song J. Identification of closely related species in Aspergillus through Analysis of Whole-Genome. Front Microbiol 2024; 15:1323572. [PMID: 38450170 PMCID: PMC10915092 DOI: 10.3389/fmicb.2024.1323572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
The challenge of discriminating closely related species persists, notably within clinical diagnostic laboratories for invasive aspergillosis (IA)-related species and food contamination microorganisms with toxin-producing potential. We employed Analysis of the whole-GEnome (AGE) to address the challenges of closely related species within the genus Aspergillus and developed a rapid detection method. First, reliable whole genome data for 77 Aspergillus species were downloaded from the database, and through bioinformatic analysis, specific targets for each species were identified. Subsequently, sequencing was employed to validate these specific targets. Additionally, we developed an on-site detection method targeting a specific target using a genome editing system. Our results indicate that AGE has successfully achieved reliable identification of all IA-related species (Aspergillus fumigatus, Aspergillus niger, Aspergillus nidulans, Aspergillus flavus, and Aspergillus terreus) and three well-known species (A. flavus, Aspergillus parasiticus, and Aspergillus oryzae) within the Aspergillus section. Flavi and AGE have provided species-level-specific targets for 77 species within the genus Aspergillus. Based on these reference targets, the sequencing results targeting specific targets substantiate the efficacy of distinguishing the focal species from its closely related species. Notably, the amalgamation of room-temperature amplification and genome editing techniques demonstrates the capacity for rapid and accurate identification of genomic DNA samples at a concentration as low as 0.1 ng/μl within a concise 30-min timeframe. Importantly, this methodology circumvents the reliance on large specialized instrumentation by presenting a singular tube operational modality and allowing for visualized result assessment. These advancements aptly meet the exigencies of on-site detection requirements for the specified species, facilitating prompt diagnosis and food quality monitoring. Moreover, as an identification method based on species-specific genomic sequences, AGE shows promising potential as an effective tool for epidemiological research and species classification.
Collapse
Affiliation(s)
- Guihong Qi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yutong Gan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenjie Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| |
Collapse
|
204
|
Domán M, Kaszab E, Laczkó L, Bali K, Makrai L, Kovács R, Majoros L, Bányai K. Genomic epidemiology of antifungal resistance in human and avian isolates of Candida albicans: a pilot study from the One Health perspective. Front Vet Sci 2024; 11:1345877. [PMID: 38435368 PMCID: PMC10904516 DOI: 10.3389/fvets.2024.1345877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Stress-induced genomic changes in Candida albicans contribute to the adaptation of this species to various environmental conditions. Variations of the genome composition of animal-origin C. albicans strains are largely unexplored and drug resistance or other selective pressures driving the evolution of these yeasts remained an intriguing question. Comparative genome analysis was carried out to uncover chromosomal aneuploidies and regions with loss of heterozygosity (LOH), two mechanisms that manage genome plasticity. We detected aneuploidy only in human isolates. Bird-derived isolates showed LOH in genes commonly associated with antifungal drug resistance similar to human isolates. Our study suggests that environmental fungicide usage might exert selective pressure on C. albicans infecting animals, thus contributing to the spread of potentially resistant strains between different hosts.
Collapse
Affiliation(s)
- Marianna Domán
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- One Health Institute, University of Debrecen, Debrecen, Hungary
| | - Levente Laczkó
- One Health Institute, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - Krisztina Bali
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | | | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
205
|
Dvorak M, Dittmann IL, Pedrini-Martha V, Hamerlík L, Bitušík P, Stuchlik E, Vondrák D, Füreder L, Lackner R. Molecular and morphological characterisation of larvae of the genus Diamesa Meigen, 1835 (Diptera: Chironomidae) in Alpine streams (Ötztal Alps, Austria). PLoS One 2024; 19:e0298367. [PMID: 38358970 PMCID: PMC10868831 DOI: 10.1371/journal.pone.0298367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Diamesa species (Diptera, Chironomidae) are widely distributed in freshwater ecosystems, and their life cycles are closely linked to environmental variables such as temperature, water quality, and sediment composition. Their sensitivity to environmental changes, particularly in response to pollution and habitat alterations, makes them valuable indicators of ecosystem health. The challenges associated with the morphological identification of larvae invoke the use of DNA barcoding for species determination. The mitochondrial cytochrome oxidase subunit I (COI) gene is regularly used for species identification but faces limitations, such as similar sequences in closely related species. To overcome this, we explored the use of the internal transcribed spacers (ITS) region in addition to COI for Diamesa larvae identification. Therefore, this study employs a combination of molecular markers alongside traditional morphological identification to enhance species discrimination. In total, 129 specimens were analysed, of which 101 were sampled from a glacier-fed stream in Rotmoostal, and the remaining 28 from spring-fed streams in the neighbouring valleys of Königstal and Timmelstal. This study reveals the inadequacy of utilizing single COI or ITS genes for comprehensive species differentiation within the genus Diamesa. However, the combined application of COI and ITS markers significantly enhances species identification resolution, surpassing the limitations faced by traditional taxonomists. Notably, this is evident in cases involving morphologically indistinguishable species, such as Diamesa latitarsis and Diamesa modesta. It highlights the potential of employing a multi-marker approach for more accurate and reliable Diamesa species identification. This method can be a powerful tool for identifying Diamesa species, shedding light on their remarkable adaptations to extreme environments and the impacts of environmental changes on their populations.
Collapse
Affiliation(s)
- Martin Dvorak
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Ladislav Hamerlík
- Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, Slovakia
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Bitušík
- Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, Slovakia
| | - Evzen Stuchlik
- Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Daniel Vondrák
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Leopold Füreder
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Lackner
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
206
|
Pintye A, Bacsó R, Kovács GM. Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Front Microbiol 2024; 15:1354757. [PMID: 38410389 PMCID: PMC10896089 DOI: 10.3389/fmicb.2024.1354757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Azole antifungals are abundantly used in the environment and play an important role in managing fungal diseases in clinics. Due to the widespread use, azole resistance is an emerging global problem for all applications in several fungal species, including trans-kingdom pathogens, capable of infecting plants and humans. Azoles used in agriculture and clinics share the mode of action and facilitating cross-resistance development. The extensive use of azoles in the environment, e.g., for plant protection and wood preservation, contributes to the spread of resistant populations and challenges using these antifungals in medical treatments. The target of azoles is the cytochrome p450 lanosterol 14-α demethylase encoded by the CYP51 (called also as ERG11 in the case of yeasts) gene. Resistance mechanisms involve mainly the mutations in the coding region in the CYP51 gene, resulting in the inadequate binding of azoles to the encoded Cyp51 protein, or mutations in the promoter region causing overexpression of the protein. The World Health Organization (WHO) has issued the first fungal priority pathogens list (FPPL) to raise awareness of the risk of fungal infections and the increasingly rapid spread of antifungal resistance. Here, we review the main issues about the azole antifungal resistance of trans-kingdom pathogenic fungi with the ability to cause serious human infections and included in the WHO FPPL. Methods for the identification of these species and detection of resistance are summarized, highlighting the importance of these issues to apply the proper treatment.
Collapse
Affiliation(s)
- Alexandra Pintye
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Renáta Bacsó
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
| | - Gábor M. Kovács
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
207
|
Viotti C, Chalot M, Kennedy PG, Maillard F, Santoni S, Blaudez D, Bertheau C. Primer pairs, PCR conditions, and peptide nucleic acid clamps affect fungal diversity assessment from plant root tissues. Mycology 2024; 15:255-271. [PMID: 38813472 PMCID: PMC11132971 DOI: 10.1080/21501203.2023.2301003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024] Open
Abstract
High-throughput sequencing has become a prominent tool to assess plant-associated microbial diversity. Still, some technical challenges remain in characterising these communities, notably due to plant and fungal DNA co-amplification. Fungal-specific primers, Peptide Nucleic Acid (PNA) clamps, or adjusting PCR conditions are approaches to limit plant DNA contamination. However, a systematic comparison of these factors and their interactions, which could limit plant DNA contamination in the study of plant mycobiota, is still lacking. Here, three primers targeting the ITS2 region were evaluated alone or in combination with PNA clamps both on nettle (Urtica dioica) root DNA and a mock community. PNA clamps did not improve the richness or diversity of the fungal communities but increased the number of fungal reads. Among the tested factors, the most significant was the primer pair. Specifically, the 5.8S-Fun/ITS4-Fun pair exhibited a higher OTU richness but fewer fungal reads. Our study demonstrates that the choice of primers is critical for limiting plant and fungal DNA co-amplification. PNA clamps increase the number of fungal reads when ITS2 is targeted but do not result in higher fungal diversity recovery at high sequencing depth. At lower read depths, PNA clamps might enhance microbial diversity quantification for primer pairs lacking fungal specificity.
Collapse
Affiliation(s)
- Chloé Viotti
- CNRS, Chrono-environnement, Université de Franche-Comté, Montbéliard, France
| | - Michel Chalot
- CNRS, Chrono-environnement, Université de Franche-Comté, Montbéliard, France
- Faculté des Sciences et Technologies, Université de Lorraine, Nancy, France
| | - Peter G. Kennedy
- Department of Plant & Microbiology, University of Minnesota, St. Paul, MN, USA
| | - François Maillard
- Department of Plant & Microbiology, University of Minnesota, St. Paul, MN, USA
| | - Sylvain Santoni
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Coralie Bertheau
- CNRS, Chrono-environnement, Université de Franche-Comté, Montbéliard, France
| |
Collapse
|
208
|
Yu L, Zhou Y, Chen Y, Wang Y, Gu Q, Song D. Antifungal activity and mechanism of Litsea cubeba (Lour.) Persoon essential oil against the waxberry spoilage fungi Penicillium oxalicum and its potential application. Int J Food Microbiol 2024; 411:110512. [PMID: 38043475 DOI: 10.1016/j.ijfoodmicro.2023.110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Litsea cubeba essential oil (LCEO) is a broad-spectrum bacteriostatic substance produced from the fruit of the Litsea tree that has been used for the treatment of various diseases in China for thousands of years. Here, the antifungal activities of LCEO against 10 different fungi (Naganishia diffluens, Fusarium sacchari, Cladosporium tenuissimum, Fusarium proliferatum, Fusarium verticillioides, Fusarium subglutinans, Mucor racemosus, Penicillium oxalicum, Penicillium chrysogenum, and Aspergillus niger) that cause rot to waxberries were assessed. The chemical components of LCEO and its modes of action against P. oxalicum were investigated. Citral (32.62 %) was characterized as the main component of LCEO by gas chromatography-mass spectrometry. LCEO exhibited excellent antifungal activities against all 10 fungi. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration of LCEO against P. oxalicum were 2.24 and 4.48 g/L, respectively. Furthermore, LCEO (MIC) compromised membrane permeability and integrity, caused leakage of the cell components, and increased production of malondialdehyde and reactive oxygen species. Scanning electron microscopy and transmission electron microscopy indicated that the morphology and ultrastructure of the LCEO-treated hyphal cell membrane and organelles were severely damaged. Meanwhile, LCEO increased the shelf life of waxberries from 1-2 to 5-6 d. LCEO is a potential ecologically friendly alternative to commercial fungicides to inhibit postharvest fungal contamination of waxberries during shipment and storage.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yangxia Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dafeng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
209
|
Mulder KP, Savage AE, Gratwicke B, Longcore JE, Bronikowski E, Evans M, Longo AV, Kurata NP, Walsh T, Pasmans F, McInerney N, Murray S, Martel A, Fleischer RC. Sequence capture identifies fastidious chytrid fungi directly from host tissue. Fungal Genet Biol 2024; 170:103858. [PMID: 38101696 DOI: 10.1016/j.fgb.2023.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
The chytrid fungus Batrachochytrium dendrobatidis (Bd) was discovered in 1998 as the cause of chytridiomycosis, an emerging infectious disease causing mass declines in amphibian populations worldwide. The rapid population declines of the 1970s-1990s were likely caused by the spread of a highly virulent lineage belonging to the Bd-GPL clade that was introduced to naïve susceptible populations. Multiple genetically distinct and regional lineages of Bd have since been isolated and sequenced, greatly expanding the known biological diversity within this fungal pathogen. To date, most Bd research has been restricted to the limited number of samples that could be isolated using culturing techniques, potentially causing a selection bias for strains that can grow on media and missing other unculturable or fastidious strains that are also present on amphibians. We thus attempted to characterize potentially non-culturable genetic lineages of Bd from distinct amphibian taxa using sequence capture technology on DNA extracted from host tissue and swabs. We focused our efforts on host taxa from two different regions that likely harbored distinct Bd clades: (1) wild-caught leopard frogs (Rana) from North America, and (2) a Japanese Giant Salamander (Andrias japonicus) at the Smithsonian Institution's National Zoological Park that exhibited signs of disease and tested positive for Bd using qPCR, but multiple attempts failed to isolate and culture the strain for physiological and genetic characterization. We successfully enriched for and sequenced thousands of fungal genes from both host clades, and Bd load was positively associated with number of recovered Bd sequences. Phylogenetic reconstruction placed all the Rana-derived strains in the Bd-GPL clade. In contrast, the A. japonicus strain fell within the Bd-Asia3 clade, expanding the range of this clade and generating additional genomic data to confirm its placement. The retrieved ITS locus matched public barcoding data from wild A. japonicus and Bd infections found on other amphibians in India and China, suggesting that this uncultured clade is widespread across Asia. Our study underscores the importance of recognizing and characterizing the hidden diversity of fastidious strains in order to reconstruct the spatiotemporal and evolutionary history of Bd. The success of the sequence capture approach highlights the utility of directly sequencing pathogen DNA from host tissue to characterize cryptic diversity that is missed by culture-reliant approaches.
Collapse
Affiliation(s)
- Kevin P Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA.
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Brian Gratwicke
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Ed Bronikowski
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Matthew Evans
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Naoko P Kurata
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA; Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA; Department of Ichthyology, American Museum of Natural History, New York, NY, USA
| | - Tim Walsh
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Frank Pasmans
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nancy McInerney
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Suzan Murray
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - An Martel
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
210
|
Zhang S, Fan D, Wu J, Zhang X, Zhuang X, Kong W. The interaction of climate, plant, and soil factors drives putative soil fungal pathogen diversity and community structure in dry grasslands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13223. [PMID: 38124298 PMCID: PMC10866062 DOI: 10.1111/1758-2229.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Soil pathogens play important roles in shaping soil microbial diversity and controlling ecosystem functions. Though climate and local environmental factors and their influences on fungal pathogen communities have been examined separately, few studies explore the relative contributions of these factors. This is particularly crucial in eco-fragile regions, which are more sensitive to environmental changes. Herein we investigated the diversity and community structure of putative soil fungal pathogens in cold and dry grasslands on the Tibetan Plateau, using high-throughput sequencing. The results showed that steppe soils had the highest diversity of all pathogens and plant pathogens; contrastingly, meadow soils had the highest animal pathogen diversity. Structural equation modelling revealed that climate, plant, and soil had similar levels of influence on putative soil fungal pathogen diversity, with total effects ranging from 52% to 59% (all p < 0.001), with precipitation exhibiting a stronger direct effect than plant and soil factors. Putative soil fungal pathogen community structure gradually changed with desert, steppe, and meadow, and was primarily controlled by the interactions of climate, plant, and soil factors rather than by distinct factors individually. This finding contrasts with most studies of soil bacterial and fungal community structure, which generally report dominant roles of individual environmental factors.
Collapse
Affiliation(s)
- Shaoyang Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER)Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Dandan Fan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER)Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural SciencesBeijingChina
| | - Xianzhou Zhang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
| | - Xuliang Zhuang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER)Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER)Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- College of Life SciencesCapital Normal UniversityBeijingChina
| |
Collapse
|
211
|
Rebollar-Ramos D, Ovalle-Magallanes B, Raja HA, Jacome-Rebollo M, Figueroa M, Tovar-Palacio C, Noriega LG, Madariaga-Mazón A, Mata R. Antidiabetic Potential of a Trimeric Anthranilic Acid Peptide Isolated from Malbranchea flocciformis. Chem Biodivers 2024; 21:e202301602. [PMID: 38102075 DOI: 10.1002/cbdv.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Compound 3, a trimeric anthranilic acid peptide, and another three metabolites were isolated from an organic extract from the culture medium of Malbranchea flocciformis ATCC 34530. The chemical structure proposed previously for 3 was unequivocally assigned via synthesis and X-ray diffraction analysis. Tripeptide 3 showed insulinotropic properties by decreasing the postprandial peak in healthy and hyperglycemic mice. It also increased glucose-induced insulin secretion in INS-1E at 5 μM, specifically at higher glucose concentrations. These results revealed that 3 might act as an insulin sensitizer and a non-classical insulin secretagogue. Altogether, these findings are in harmony with the in vivo oral glucose tolerance test and acute oral hypoglycemic assay. Finally, the chemical composition of the extract was established by the Global Natural Products Social Molecular Network platform. Phylogenetic analysis using the internal transcribed spacer region revealed that M. flocciformis ATCC 34530 is related to the Malbrancheaceae.
Collapse
Affiliation(s)
- Daniela Rebollar-Ramos
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | | | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC-27412, USA
| | - Mariano Jacome-Rebollo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Claudia Tovar-Palacio
- Dirección de Nutrición, Instituto Nacional Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, México
| | - Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida and f Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
212
|
Zhernova DA, Pushkova EN, Rozhmina TA, Povkhova LV, Novakovskiy RO, Turba AA, Borkhert EV, Sigova EA, Dvorianinova EM, Krasnov GS, Melnikova NV, Dmitriev AA. ITS and 16S rDNA metagenomic dataset of different soils from flax fields. Data Brief 2024; 52:109827. [PMID: 38059001 PMCID: PMC10696428 DOI: 10.1016/j.dib.2023.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Flax (Linum usitatissimum L.), one of the important and versatile crops, is used for the production of oil and fiber. To obtain high and stable yields of flax products, L. usitatissimum varieties should be cultivated under optimal conditions, including the composition of the soil microbiome. We evaluated the diversity of microorganisms in soils under conditions unfavorable for flax cultivation (suboptimal acidity or herbicide treatment) or infected with causative agents of harmful flax diseases (Septoria linicola, Colletotrichum lini, Melampsora lini, or Fusarium oxysporum f. sp. lini). For this purpose, twenty-two sod-podzolic soil samples were collected from flax fields and their metagenomes were analyzed using the regions of 16S ribosomal RNA gene (16S rDNA) and internal transcribed spacers (ITS) of the ribosomal RNA genes, which are used in phylogenetic studies of bacteria and fungi. Amplicons were sequenced on the Illumina MiSeq platform (reads of 300 + 300 bp). On average, we obtained 8,400 reads for ITS and 43,300 reads for 16S rDNA per sample. For identification of microorganisms in the soil samples, the Illumina reads were processed using DADA2. The raw data are deposited in the Sequence Read Archive under the BioProject accession number PRJNA956957. Tables listing the microorganisms identified in the soil samples are available in this article. The obtained dataset can be used to analyze the fungal and bacterial composition of flax field soils and their relationship to environmental conditions, including suboptimal soil acidity and infection with fungal pathogens. In addition, it can help to understand the influence of herbicide treatment on the microbial diversity of flax fields. Another useful application of our data is the ability to assess the suitability of the soil microbiome for flax cultivation.
Collapse
Affiliation(s)
- Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 35 Lunacharskogo, Torzhok 172002, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, Moscow 119991, Russia
| |
Collapse
|
213
|
Li D, Jin X, Li Y, Wang Y, He H, Zhang H. Fungal communities associated with early immature tubers of wild Gastrodia elata. Ecol Evol 2024; 14:e11004. [PMID: 38389997 PMCID: PMC10881901 DOI: 10.1002/ece3.11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Full myco-heterotrophic orchid Gastrodia elata Bl. is widely distributed in Northeast Asia, and previous research has not fully investigated the symbiotic fungal community of its early immature tubers. This study utilized Illumina sequencing to compare symbiotic fungal communities in natural G. elata immature tubers and their habitats. LEfSe (Linear Discriminant Analysis Effect Size) was used to screen for Biomarkers that could explain variations among different fungal communities, and correlation analyses were performed among Biomarkers and other common orchid mycorrhizal fungi. Our results illustrate that the symbiotic fungal communities of immature G. elata tubers cannot be simply interpreted as subsets of the environmental fungal communities because some key members cannot be traced back to the environment. The early growth of G. elata was related to a small group of fungi, such as Sebacina, Thelephora, and Inocybe, which were also common mycorrhizal fungi from other orchids. In addition, Mycena, Auricularia, and Cryptococcus were unique fungal partners of G. elata, and many new species have yet to be discovered. Possible symbiotic Mycena should be M. plumipes and its sibling species in this case. Our results provide insight into the symbiotic partner switch and trophic pattern change during the development and maturation of G. elata.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory Conservation and Utilization of Bio‐Resources in YunnanKunmingChina
- School of Ecology and Environmental ScienceYunnan UniversityKunmingChina
| | - Xiao‐Han Jin
- State Key Laboratory Conservation and Utilization of Bio‐Resources in YunnanKunmingChina
- School of Ecology and Environmental ScienceYunnan UniversityKunmingChina
| | - Yu Li
- State Key Laboratory Conservation and Utilization of Bio‐Resources in YunnanKunmingChina
| | - Yu‐Chuan Wang
- Gastrodia Tuber Research Institute of ZhaotongZhaotongChina
| | - Hai‐Yan He
- The Agriculture and Life Sciences CollegeZhaotong UniversityZhaotongChina
- Yunnan Key Laboratory of Gastrodia elata and Fungus Symbiotic BiologyZhaotongChina
| | - Han‐Bo Zhang
- State Key Laboratory Conservation and Utilization of Bio‐Resources in YunnanKunmingChina
| |
Collapse
|
214
|
Chen D, Cheng K, Wan L, Cui C, Li G, Zhao D, Yu Y, Liao X, Liu Y, D'Souza AW, Lian X, Sun J. Daily occupational exposure in swine farm alters human skin microbiota and antibiotic resistome. IMETA 2024; 3:e158. [PMID: 38868515 PMCID: PMC10989081 DOI: 10.1002/imt2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 06/14/2024]
Abstract
Antimicrobial resistance (AMR) is a major threat to global public health, and antibiotic resistance genes (ARGs) are widely distributed across humans, animals, and environment. Farming environments are emerging as a key research area for ARGs and antibiotic resistant bacteria (ARB). While the skin is an important reservoir of ARGs and ARB, transmission mechanisms between farming environments and human skin remain unclear. Previous studies confirmed that swine farm environmental exposures alter skin microbiome, but the timeline of these changes is ill defined. To improve understanding of these changes and to determine the specific time, we designed a cohort study of swine farm workers and students through collected skin and environmental samples to explore the impact of daily occupational exposure in swine farm on human skin microbiome. Results indicated that exposure to livestock-associated environments where microorganisms are richer than school environment can reshape the human skin microbiome and antibiotic resistome. Exposure of 5 h was sufficient to modify the microbiome and ARG structure in workers' skin by enriching microorganisms and ARGs. These changes were preserved once formed. Further analysis indicated that ARGs carried by host microorganisms may transfer between the environment with workers' skin and have the potential to expand to the general population using farm workers as an ARG vector. These results raised concerns about potential transmission of ARGs to the broader community. Therefore, it is necessary to take corresponding intervention measures in the production process to reduce the possibility of ARGs and ARB transmission.
Collapse
Affiliation(s)
- Dong‐Rui Chen
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
- Veterinary CenterGuangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.NanningChina
| | - Ke Cheng
- Veterinary CenterGuangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.NanningChina
| | - Lei Wan
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Chao‐Yue Cui
- Laboratory Animal CentreWenzhou Medical UniversityWenzhouChina
| | - Gong Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Dong‐Hao Zhao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Yang Yu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Xiao‐Ping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Ya‐Hong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Alaric W. D'Souza
- Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Xin‐Lei Lian
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| |
Collapse
|
215
|
Wei YH, Zhu HY, Guo LC, Luo LJ, Lee CF, Hui FL, Han Y, Zhen P, Hu S, Han PJ, Bai FY. Saturnispora sinensis sp. nov., a new ascomycetous yeast species from soil and rotten wood. Int J Syst Evol Microbiol 2024; 74. [PMID: 38415711 DOI: 10.1099/ijsem.0.006280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
A yeast strain (CGMCC 2.6937T) belonging to the ascomycetous yeast genus Saturnispora was recently isolated from soil collected in Xinghuacun, Shanxi Province, PR China. The strain produces one or two ellipsoid or spherical ascospores in asci formed by the conjugation between a cell and its bud. Phylogenetic analyses of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit rRNA gene suggest that this strain is conspecific with strains NYNU 14639 isolated from rotten wood collected in Funiu Mountain, Henan province and ES13S05 from soil collected in Nantou County, Taiwan. The CGMCC 2.6937T group is most closely related to Saturnispora dispora and Saturnispora zaruensis. However, strain CGMCC 2.6937T differs from S. dispora by 17 (3.2 %, 13 substitutions and four gaps) and 77 (18.8 %, 52 substitutions and 25 gaps) mismatches, and from S. zaruensis by 15 (2.9 %, 12 substitutions and three gaps) and 64 (15.6 %, 44 substitutions and 20 gaps) mismatches, in the D1/D2 domain and ITS region, respectively. The results suggest that the CGMCC 2.6937T group represents an undescribed species in the genus Saturnispora, for which the name Saturnispora sinensis sp. nov. is proposed. The holotype strain is CGMCC 2.6937T.
Collapse
Affiliation(s)
- Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liang-Chen Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lu-Jun Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, PR China
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Ching-Fu Lee
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Feng-Li Hui
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Ying Han
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Pan Zhen
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Shuang Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, PR China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
216
|
Zhu HY, Shang YJ, Wei XY, Groenewald M, Robert V, Zhang RP, Li AH, Han PJ, Ji F, Li JN, Liu XZ, Bai FY. Taxonomic revision of Geotrichum and Magnusiomyces, with the descriptions of five new Geotrichum species from China. Mycology 2024; 15:400-423. [PMID: 39247897 PMCID: PMC11376286 DOI: 10.1080/21501203.2023.2294945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/09/2023] [Indexed: 09/10/2024] Open
Abstract
The arthroconidial yeast-like species currently classified in the asexual genera Geotrichum and Saprochaete and the sexual genera Dipodascus, Galactomyces and Magnusiomyces are frequently associated with dairy and cosmetics production, fruit rot and human infection. However, the taxonomic system of these fungi has not been updated to accommodate the new nomenclature code adopting the "one fungus, one name" principle. Here, we performed phylogenetic analyses of these yeast-like species based on the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit of the rRNA gene. Two monophyletic groups were recognised from these species. One group contained Dipodascus, Galactomyces, and Geotrichum species and the other Magnusiomyces and Saprochaete species. We thus assigned the species in each group into one genus and selected the genus name Geotrichum for the first group and Magnusiomyces for the second one based on the principle of priority of publication. Five new Geotrichum species were identified from arthroconidial yeast strains recently isolated from various sources in China. The new species are described as Ge. dehoogii sp. nov., Ge. fujianense sp. nov., Ge. maricola sp. nov., Ge. smithiae sp. nov., and Ge. sinensis sp. nov.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Jie Shang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Yang Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | | | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ai-Hua Li
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fang Ji
- Jiangsu King's Luck Brewery Co, Ltd., Huai'an, China
| | - Jun-Ning Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin-Zhan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
217
|
Huamán-Pilco AF, Ramos-Carrasco TA, Franco MEE, Tineo-Flores D, Estrada-Cañari R, Romero PE, Aguilar-Rafael V, Ramírez-Orrego LA, Tincopa-Marca R, Márquez FR, Oliva-Cruz M, Díaz-Valderrama JR. Morphological, phylogenetic, and genomic evidence reveals the causal agent of thread blight disease of cacao in Peru is a new species of Marasmius in the section Neosessiles, Marasmius infestans sp. nov. F1000Res 2024; 12:1327. [PMID: 38680601 PMCID: PMC11053350 DOI: 10.12688/f1000research.140405.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 05/01/2024] Open
Abstract
The thread blight disease (TBD) of cacao ( Theobroma cacao) in the department of Amazonas, Peru was recently reported to be caused by Marasmius tenuissimus (sect. Neosessiles). This same species is known to be the main causal agent of TBD in West Africa. However, some morphological characteristics, such as the presence of rhizomorphs, the almost exclusively white color, and pileus sizes less than 5 mm, among others, differ to the description of M. tenuissimus. Therefore, we aimed to conduct a taxonomic revision of the cacao-TBD causal agent in Peru, by using thorough micro and macro morphological, phylogenetic, and nuclear and mitochondrial genomic approaches. We showed that the causal agent of TBD of cacao in Amazonas, Peru, belongs to a new species, Marasmius infestans sp. nov. This study enriches our knowledge of species in the sect. Neosessiles, and strongly suggests that the M. tenuissimus species complex is highly diverse.
Collapse
Affiliation(s)
- Angel Fernando Huamán-Pilco
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Tito Ademir Ramos-Carrasco
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Mario Emilio Ernesto Franco
- Sustainable Plant Protection Programme, Institute of Agrifood Research and Technology (IRTA), 25198 Lieda, Spain
- Department of Soil, Plant and Food Sciences, Universita degli Studi di Bari Aldo Moro, Bari, Apulia, 70126, Italy
| | - Daniel Tineo-Flores
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria, Jaén 06801, Calamarca, Peru
| | - Richard Estrada-Cañari
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria, Lima, Lima, Peru
| | - Pedro Eduardo Romero
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima District, Lima Region, Peru
| | - Vilma Aguilar-Rafael
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Lourdes Adriana Ramírez-Orrego
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Rosalina Tincopa-Marca
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Fanny-Rosario Márquez
- Escuela Profesional de Ingeniería Agronómica Tropical, Universidad Nacional Intercultural de Quillabamba, Quillabamba, Cusco, Peru
| | - Manuel Oliva-Cruz
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Jorge Ronny Díaz-Valderrama
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
- Facultad de Ingeniería y Ciencias Agrarias, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| |
Collapse
|
218
|
Bertin C, Sitterlé E, Scemla A, Fraitag S, Delliere S, Guegan S, Hermoso DG, Leclerc-Mercier S, Rouzaud C, Lanternier F, Bougnoux ME. Deep cutaneous mycoses in kidney transplant recipients: Diagnostic and therapeutic challenges. Med Mycol 2024; 62:myae001. [PMID: 38228404 DOI: 10.1093/mmy/myae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/18/2024] Open
Abstract
Deep cutaneous mycoses (DCMs) are rare infections that extend throughout the dermis and subcutis, often occurring after inoculation with pathogenic fungi. Trends toward a growing incidence have been observed that may be partially related to an increasing population of solid organ transplant patients. The aim of this study is to describe the diagnostics and the outcomes of DCM among kidney transplant recipients so as to optimize their management. We performed a retrospective review of cases of DCM occurring among kidney transplant recipients in our institution over 12 years. Twenty cases were included. Lesions were only located on the limbs and presented mainly as single (10/20, 50%) nodular lesions (15/20, 75%), with a mean size of 3 cm. Direct mycological examination was positive for 17 patients (17/20, 85%) and the cultures were consistently positive. Thirteen different fungal species were observed, including phaehyphomycetes (n = 8), hyalohyphomycetes (n = 3), dermatophytes (n = 1), and mucorale (n = 1). The (1-3) beta-D-glucan antigen (BDG) was also consistently detected in the serum (20/20, 100%). Systematic imaging did not reveal any distant infectious lesions, but locoregional extension was present in 11 patients (11/14, 79%). Nineteen patients received antifungal treatment (19/20, 95%) for a median duration of 3 months, with surgery for 10 (10/20, 50%). There is a great diversity of fungal species responsible for DCMs in kidney transplant recipients. The mycological documentation is necessary to adapt the antifungal treatment according to the sensitivity of the species. Serum BDG positivity is a potentially reliable and useful tool for diagnosis and follow-up.
Collapse
Affiliation(s)
- Chloé Bertin
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, GHU Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Emilie Sitterlé
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, GHU Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Anne Scemla
- Service de Néphrologie-Transplantation, GHU Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Sylvie Fraitag
- Service d'Anatomo-pathologie, GHU Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Sarah Delliere
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Université de Paris, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France
| | - Sarah Guegan
- Service de Dermatologie, GHU Cochin, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Dea Garcia Hermoso
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Université de Paris, Paris, France
| | - Stéphanie Leclerc-Mercier
- Service de Dermatologie, GHU Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Claire Rouzaud
- Service de Maladies Infectieuses, GHU Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Fanny Lanternier
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Université de Paris, Paris, France
- Service de Maladies Infectieuses, GHU Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, GHU Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| |
Collapse
|
219
|
Quaresma A, Ankenbrand MJ, Garcia CAY, Rufino J, Honrado M, Amaral J, Brodschneider R, Brusbardis V, Gratzer K, Hatjina F, Kilpinen O, Pietropaoli M, Roessink I, van der Steen J, Vejsnæs F, Pinto MA, Keller A. Semi-automated sequence curation for reliable reference datasets in ITS2 vascular plant DNA (meta-)barcoding. Sci Data 2024; 11:129. [PMID: 38272945 PMCID: PMC10810873 DOI: 10.1038/s41597-024-02962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
One of the most critical steps for accurate taxonomic identification in DNA (meta)-barcoding is to have an accurate DNA reference sequence dataset for the marker of choice. Therefore, developing such a dataset has been a long-term ambition, especially in the Viridiplantae kingdom. Typically, reference datasets are constructed with sequences downloaded from general public databases, which can carry taxonomic and other relevant errors. Herein, we constructed a curated (i) global dataset, (ii) European crop dataset, and (iii) 27 datasets for the EU countries for the ITS2 barcoding marker of vascular plants. To that end, we first developed a pipeline script that entails (i) an automated curation stage comprising five filters, (ii) manual taxonomic correction for misclassified taxa, and (iii) manual addition of newly sequenced species. The pipeline allows easy updating of the curated datasets. With this approach, 13% of the sequences, corresponding to 7% of species originally imported from GenBank, were discarded. Further, 259 sequences were manually added to the curated global dataset, which now comprises 307,977 sequences of 111,382 plant species.
Collapse
Affiliation(s)
- Andreia Quaresma
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, S/N, Edifício FC4, 4169-007, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Vila do Conde, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Vila do Conde, Portugal
| | - Markus J Ankenbrand
- Center for Computational and Theoretical Biology, Faculty of Biology, Julius-Maximilians-Universität Würzburg, Klara-Oppenheimer-Weg 32, 97074, Würzburg, Germany
| | - Carlos Ariel Yadró Garcia
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - José Rufino
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Mónica Honrado
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Joana Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Valters Brusbardis
- Latvian Beekeepers' Association (LBA), Rigas iela 22, LV-3004, Jelgava, Latvia
| | - Kristina Gratzer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Fani Hatjina
- Ellinikos Georgikos Organismos DIMITRA (ELGO- DIMITRA), Kourtidou 56-58, GR-11145, Athina, Greece
| | - Ole Kilpinen
- Danish Beekeepers Association (DBF), Fulbyvej 15, DK-4180, Sorø, Denmark
| | - Marco Pietropaoli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri" (IZSLT), Via Appia Nuova 1411, IT-00178, Roma, Italy
| | - Ivo Roessink
- Wageningen Environmental Research, WageningenUniversity&Research, Droevendaalsesteeg 3, 6700 AA, Wageningen, Netherlands
| | | | - Flemming Vejsnæs
- Danish Beekeepers Association (DBF), Fulbyvej 15, DK-4180, Sorø, Denmark
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Alexander Keller
- Cellular and Organismic Interactions, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
220
|
Hussain S, Nisar M, Sher H. Taxonomic study and diversity of Postia s.lat. in Swat, Pakistan: addition of five brown rot Polypores to the country. Arch Microbiol 2024; 206:66. [PMID: 38227204 DOI: 10.1007/s00203-023-03795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
Brown rot Polypores are ecologically significant as they play a crucial role in maintaining the carbon cycle and contribute to humus formation in forest ecosystems through their lignocellulose degradation ability. It is important to note that some species can significantly impact timber, potentially causing decay in economically valuable wood. Many Asian countries including Pakistan are still under the exploratory phase and have undocumented species diversity in Polypore fungi. In the current study, collections representing five different species belonging to two families, Postiaceae and Adustoporiaceae, were subjected to detailed morphoanatomical and molecular analyses. A combined matrix of two gene datasets (ITS and nrLSU) was analyzed using three different phylogenetic methods viz. Maximum Parsimony (MP), Maximum Likelihood (ML), and Bayesian inference (BI). Our study presents descriptions of five previously undocumented brown rot Polypore species from the country including Fuscopostia fragilis (Fr.) B.K. Cui, L.L. Shen & Y.C. Dai, Amaropostia stiptica (Pers.) B.K. Cui, L.L. Shen & Y.C. Dai, Cyanosporus piceicola B.K. Cui, L.L. Shen & Y.C. Dai, Spongiporus balsameus (Peck) A. David, Rhodonia placenta (Fr.) Niemelä, K.H. Larss. & Schigel. Regarding the molecular data, nodes of our subject sequences were substantially supported and fell under their respective species clades with high ML bootstrap values (≥ 95), MP bootstrap ≥ 74 and BI probabilities ≥ 0.98. Findings of the study will not only contribute to our understanding of local Polypores species diversity but also enhance knowledge of geographical distribution in global context.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Botany, University of Malakand, 18800, Chakdara Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammad Nisar
- Department of Botany, University of Malakand, 18800, Chakdara Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, Khyber Pakhtunkhwa, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
221
|
Varrella S, Barone G, Corinaldesi C, Giorgetti A, Nomaki H, Nunoura T, Rastelli E, Tangherlini M, Danovaro R, Dell’Anno A. Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth. J Fungi (Basel) 2024; 10:73. [PMID: 38248982 PMCID: PMC10820024 DOI: 10.3390/jof10010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Hadal trenches host abundant and diversified benthic prokaryotic assemblages, but information on benthic fungi is still extremely limited. We investigated the fungal abundance and diversity in the Challenger Deep (at ca. 11,000 m depth) and the slope of the Mariana Trench in comparison with three sites of the adjacent abyssal plain. Our results indicate that trench sediments are a hotspot of fungal abundance in terms of the 18S rRNA gene copy number. The fungal diversity (as the number of amplicon sequence variants, ASVs) was relatively low at all sites (10-31 ASVs) but showed a high turnover diversity among stations due to the presence of exclusive fungal taxa belonging to Aspergillaceae, Trichosphaeriaceae, and Nectriaceae. Fungal abundance and diversity were closely linked to sediment organic matter content and composition (i.e., phytopigments and carbohydrates), suggesting a specialization of different fungal taxa for the exploitation of available resources. Overall, these findings provide new insights into the diversity of deep-sea fungi and the potential ecological role in trench sediments and pave the way for a better understanding of their relevance in one of the most extreme ecosystems on Earth.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| | - Giulio Barone
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- Institute for Marine Biological Resources and Biotechnology, National Research Council, Largo Fiera della Pesca 2, 60125 Ancona, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Centre, 90133 Palermo, Italy;
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alessio Giorgetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
| | - Hidetaka Nomaki
- X-Star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan;
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, Yokosuka 237-0061, Japan
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| |
Collapse
|
222
|
Silva JPD, Veloso TGR, Costa MD, Souza JJLLD, Soares EMB, Gomes LC, Schaefer CEGR. Microbial successional pattern along a glacier retreat gradient from Byers Peninsula, Maritime Antarctica. ENVIRONMENTAL RESEARCH 2024; 241:117548. [PMID: 37939803 DOI: 10.1016/j.envres.2023.117548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
The retreat of glaciers in Antarctica has increased in the last decades due to global climate change, influencing vegetation expansion, and soil physico-chemical and biological attributes. However, little is known about soil microbiology diversity in these periglacial landscapes. This study characterized and compared bacterial and fungal diversity using metabarcoding of soil samples from the Byers Peninsula, Maritime Antarctica. We identified bacterial and fungal communities by amplification of bacterial 16 S rRNA region V3-V4 and fungal internal transcribed spacer 1 (ITS1). We also applied 14C dating on soil organic matter (SOM) from six profiles. Physico-chemical analyses and attributes associated with SOM were evaluated. A total of 14,048 bacterial ASVs were obtained, and almost all samples had 50% of their sequences assigned to Actinobacteriota and Proteobacteria. Regarding the fungal community, Mortierellomycota, Ascomycota and Basidiomycota were the main phyla from 1619 ASVs. We found that soil age was more relevant than the distance from the glacier, with the oldest soil profile (late Holocene soil profile) hosting the highest bacterial and fungal diversity. The microbial indices of the fungal community were correlated with nutrient availability, soil reactivity and SOM composition, whereas the bacterial community was not correlated with any soil attribute. The bacterial diversity, richness, and evenness varied according to presence of permafrost and moisture regime. The fungal community richness in the surface horizon was not related to altitude, permafrost, or moisture regime. The soil moisture regime was crucial for the structure, high diversity and richness of the microbial community, specially to the bacterial community. Further studies should examine the relationship between microbial communities and environmental factors to better predict changes in this terrestrial ecosystem.
Collapse
Affiliation(s)
- Jônatas Pedro da Silva
- Graduate Program in Soils and Plant Nutrition, Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil
| | | | - Maurício Dutra Costa
- Microbiology Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| | - José João Lelis Leal de Souza
- Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| | | | | | - Carlos Ernesto G R Schaefer
- Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| |
Collapse
|
223
|
Povedano-Priego C, Jroundi F, Morales-Hidalgo M, Pinel-Cabello M, Peula-Ruiz E, Merroun ML, Martin-Sánchez I. Unveiling fungal diversity in uranium and glycerol-2-phosphate-amended bentonite microcosms: Implications for radionuclide immobilization within the Deep Geological Repository system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168284. [PMID: 37924892 DOI: 10.1016/j.scitotenv.2023.168284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Uranium (U) represents the preeminent hazardous radionuclide within the context of nuclear waste repositories. Indigenous microorganisms in bentonite can influence radionuclide speciation and migration in Deep Geological Repositories (DGRs) for nuclear waste storage. While bacterial communities in bentonite samples have been extensively studied, the impact of fungi has been somewhat overlooked. Here, we investigate the geomicrobiological processes in bentonite microcosms amended with uranyl nitrate and glycerol-2-phosphate (G2P) for six-month incubation. ITS sequencing revealed that the fungal community was mainly composed of Ascomycota (96.6 %). The presence of U in microcosms enriched specific fungal taxa, such as Penicillium and Fusarium, potentially associated with uranium immobilization mechanisms. Conversely, the amendment of U into G2P-suplemented samples exhibited minimal impact, resulting in a fungal community akin to the control group. Several fungal strains were isolated from bentonite microcosms to explore their potential in the U biomineralization, including Fusarium oxysporum, Aspergillus sp., Penicillium spp., among others. High Annular Angle Dark-Field Scanning Transmission Electron Microscopy (HAADF) analyses showed the capacity of F. oxysporum B1 to form U-phosphate mineral phases, likely mediated by phosphatase activity. Therefore, our study emphasizes the need to take into account indigenous bentonite fungi in the overall assessment of the impact of microbial processes in the immobilization of U within DGRs environments.
Collapse
Affiliation(s)
- Cristina Povedano-Priego
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Fadwa Jroundi
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Mar Morales-Hidalgo
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - María Pinel-Cabello
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Esther Peula-Ruiz
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Mohamed L Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Inés Martin-Sánchez
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| |
Collapse
|
224
|
Pais A, Ristaino J, Whetten R, Xiang QY(J. Metagenomic study reveals hidden relationships among fungal diversity, variation of plant disease, and genetic distance in Cornus florida (Cornaceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1282188. [PMID: 38273942 PMCID: PMC10809005 DOI: 10.3389/fpls.2023.1282188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction Understanding patterns of plant-microbe interactions across plant species and populations is a critical yet poorly characterized aspect in the field of plant pathology. Microbial DNA sequences present as contaminants in omics data of plants obtained using next-generation sequencing methods provide a valuable source to explore the relationships among endophytic microbial diversity, disease and genetic differentiation of host plants, and environmental variation, but few such studies have been conducted. The flowering dogwood tree (Cornus florida L.), an ecologically important species in North America, is threatened by powdery mildew and dogwood anthracnose diseases, and knowledge of the microbial diversity harbored within genetically and environmental distinct populations of this species remains largely unknown. Methods We conducted a metagenomics study utilizing the sequences of RAD-tag/genotype-by-sequence libraries from leaf tissues of C. florida to examine such host-fungus interactions across the dogwood's US range. We performed various combinations of alignments to both host and pathogen genomes to obtain filtered sets sequences for metagenomics analysis. Taxonomic assignments were determined on each filtered set of sequences, followed by estimation of microbial diversity and correlation to environment and host-genetic variation. Results Our data showed that microbial community composition significantly differed between visually healthy and diseased sites. Several microbial taxa known to interact with dogwood were identified from these sequences. We found no correlation between microbial diversity and relative abundances of sequences aligning to draft genomes of either pathogen causing powdery mildew or dogwood anthracnose. We found a significant relationship between differences of fungal communities and geographic distances of plant populations, suggesting roles of environments in shaping fungal communities in leaf tissues. Significant correlations between the genetic differentiation of plant samples and fungal community dissimilarity (beta diversity) were also observed in certain sets of our analyses-suggesting the possibility of a relationship between microbial community composition and plant genetic distance. This relationship persisted in significance even after controlling for significant effects of geographic-bioclimatic variation of microbial diversity. Discussion Our results suggest that both genetics and the environment play a significant role in shaping foliar fungal communities. Our findings underscore the power of leveraging hidden microbial sequences within datasets originally collected for plant genetic studies to understand plant-pathogen interactions.
Collapse
Affiliation(s)
- Andrew Pais
- Department of Plant and Microbial Biology, North Carolina State University (NCSU), Raleigh, NC, United States
| | - Jean Ristaino
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, United States
| | - Ross Whetten
- Department of Forestry and Environmental Resources, North Carolina State University (NCSU), Raleigh, NC, United States
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant and Microbial Biology, North Carolina State University (NCSU), Raleigh, NC, United States
| |
Collapse
|
225
|
Sasoni N, Caracciolo B, Cabeza MS, Gamarra S, Carnovale S, Garcia-Effron G. Antifungal susceptibility testing following the CLSI M27 document, along with the measurement of MFC/MIC ratio, could be the optimal approach to detect amphotericin B resistance in Clavispora ( Candida) lusitaniae. Susceptibility patterns of contemporary isolates of this species. Antimicrob Agents Chemother 2024; 68:e0096823. [PMID: 38084953 PMCID: PMC10777849 DOI: 10.1128/aac.00968-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 01/11/2024] Open
Abstract
Antifungal susceptibility testing (AST) is crucial in clinical settings to guide appropriate therapy. Nevertheless, discrepancies between treatment response and some results still persist, particularly in detecting resistance to amphotericin B (AMB) in Clavispora (Candida) lusitaniae. This study aimed to assess the susceptibility patterns of 48 recent isolates of C. lusitaniae to 9 antifungal agents and explore the feasibility of using a CLSI reference-based method to identify AMB resistance. Microdilution techniques revealed a wide range of minimal inhibitory concentration (MIC) values for azole antifungals, while echinocandins and AMB exhibited a narrow range of MIC values, with all strains considered wild-type for the tested polyene and echinocandins. However, when agar diffusion (ellipsometry) was employed for AST, certain strains displayed colonies within the inhibition ellipse, indicating potential resistance. Interestingly, these strains did not respond to AMB treatment and were isolated during AMB treatment (breakthrough). Moreover, the evaluation of AMB minimum fungicidal concentrations (MFCs) indicated that only the strains with colonies inside the ellipse had MFC/MIC ratios ≥ 4, suggesting reduced fungicidal activity. In conclusion, this study confirms the effectiveness of ellipsometry with RPMI-1640 2% glucose agar for detecting AMB resistance in C. lusitaniae. Additionally, the proposed approach of culturing "clear" wells in the microdilution method can aid in uncovering resistant strains. The findings highlight the importance of appropriate AST methods to guide effective treatment strategies for deep-seated candidiasis caused by C. lusitaniae. Further collaborative studies are warranted to validate these findings and improve the detection of AMB clinical resistance.
Collapse
Affiliation(s)
- Natalia Sasoni
- Laboratorio de Micología y Diagnóstico Molecular – Cátedra de Parasitología y Micología – Facultad de Bioquímica y Ciencias Biológicas – Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Beatriz Caracciolo
- Servicio de Microbiología Laboratorio de Micología Hospital Juan P Garrahan, Buenos Aires, Argentina
| | - Matías S. Cabeza
- Laboratorio de Micología y Diagnóstico Molecular – Cátedra de Parasitología y Micología – Facultad de Bioquímica y Ciencias Biológicas – Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Soledad Gamarra
- Laboratorio de Micología y Diagnóstico Molecular – Cátedra de Parasitología y Micología – Facultad de Bioquímica y Ciencias Biológicas – Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Susana Carnovale
- Servicio de Microbiología Laboratorio de Micología Hospital Juan P Garrahan, Buenos Aires, Argentina
| | - Guillermo Garcia-Effron
- Laboratorio de Micología y Diagnóstico Molecular – Cátedra de Parasitología y Micología – Facultad de Bioquímica y Ciencias Biológicas – Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
226
|
Xiao YP, Yang Y, Jayawardena RS, Gentekaki E, Peng XC, Luo ZL, Lu YZ. Four novel Pleurocordyceps (Polycephalomycetaceae) species from China. Front Microbiol 2024; 14:1256967. [PMID: 38268701 PMCID: PMC10807425 DOI: 10.3389/fmicb.2023.1256967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024] Open
Abstract
Entomopathogenic fungi comprise an ecologically important group of specialized pathogens infecting other fungi, invertebrates, and plants. These fungi are species-rich with high diversity and broad distribution worldwide. The majority of entomopathogenic fungi belong to clavicipitoids, which consist of the hypocrealean families, Clavicipitaceae, Cordycipitaceae, Ophiocordycipitaceae, and Polycephalomycetaceae. The latter is a newly established entomopathogenic family that recently separated from the family Ophiocordycipitaceae to accommodate the genera, Perennicordyceps, Pleurocordyceps, and Polycephalomyces. In recent years, Polycephalomycetaceae has been enriched with parasitic and hyperparasitic fungi. With 16 species spread across China, Ecuador, Japan, and Thailand, Pleurocordyceps is the most speciose genus in the family. In this study, we expand the number of taxa in the genus by introducing four new Pleurocordyceps species from China, namely, P. clavisynnema, P. multisynnema, P. neoagarica, and P. sanduensis. We provide detailed descriptions and illustrations and infer genus-level phylogenies based on a combined 6-loci gene sequence dataset comprising the internal transcribed spacer gene region (ITS), small subunit ribosomal RNA gene region (SSU), large subunit rRNA gene region (LSU), translation elongation factor 1-alpha gene region (TEF-1α), RNA polymerase II largest subunit gene region (RPB1), and RNA polymerase II second largest subunit (RPB2). This study contributes to knowledge with regard to the diversity of Pleurocordyceps specifically and entomopathogenic Hypocreales more broadly.
Collapse
Affiliation(s)
- Yuan-Pin Xiao
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Yu Yang
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Eleni Gentekaki
- University of Nicosia School of Veterinary Medicine, Nicosia, Cyprus
| | - Xing-Can Peng
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, China
| |
Collapse
|
227
|
Sarker S, Choi HW, Lim UT. Evaluation of new strain (AAD16) of Beauveria bassiana recovered from Japanese rhinoceros beetle: Effects on three coleopteran insects. PLoS One 2024; 19:e0296094. [PMID: 38198474 PMCID: PMC10781193 DOI: 10.1371/journal.pone.0296094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
A strain (AAD16) of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin was isolated from field-collected Japanese rhinoceros beetle, Allomyrina dichotoma (L.) (Coleoptera: Scarabaeidae). Its virulence was compared with another strain (ARP14) recovered from a cadaver of Riptortus pedestris (F.) (Hemiptera: Alydidae) focusing on its effect on three coleopteran, i.e., Tenebrio molitor L., A. dichotoma, and Monochamus alternatus Hope. The LT50 value of T. molitor for two larval sizes, i.e., 16-18 and 22-24 mm, was 15.3 and 19.4% lower for strain AAD16 compared to strain ARP14, respectively. Furthermore, after 8 and 10 days of exposure, the mycosis rate of strain AAD16 was 1.3 and 1.2 times higher than that of strain ARP14 in the 16-18 and 22-24 mm larval sizes, respectively. The LT50 for M. alternatus larvae was 23.2% lower on strain AAD16 than on strain ARP14. In addition, the LT50 for M. alternatus adults was 47.1% lower for strain AAD16 compared to control. The mycosis rate of strain AAD16 on M. alternatus larvae was 1.8 higher than that of strain ARP14 after 120 hours of exposure. The strain AAD16 also showed higher larval mortality (90%) for A. dichotoma compared to strain ARP14 (45.0%) at 28 days after exposure. These results suggest that B. bassiana AAD16 can be a potential biological control agent against coleopteran pests.
Collapse
Affiliation(s)
- Souvic Sarker
- Department of Entomology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Un Taek Lim
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| |
Collapse
|
228
|
Abarenkov K, Nilsson RH, Larsson KH, Taylor AS, May T, Frøslev TG, Pawlowska J, Lindahl B, Põldmaa K, Truong C, Vu D, Hosoya T, Niskanen T, Piirmann T, Ivanov F, Zirk A, Peterson M, Cheeke T, Ishigami Y, Jansson A, Jeppesen T, Kristiansson E, Mikryukov V, Miller J, Oono R, Ossandon F, Paupério J, Saar I, Schigel D, Suija A, Tedersoo L, Kõljalg U. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res 2024; 52:D791-D797. [PMID: 37953409 PMCID: PMC10767974 DOI: 10.1093/nar/gkad1039] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into ∼2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms.
Collapse
Affiliation(s)
- Kessy Abarenkov
- Natural History Museum, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - R Henrik Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 453, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Box 453, 405 30 Göteborg, Sweden
| | - Karl-Henrik Larsson
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Box 453, 405 30 Göteborg, Sweden
- Natural History Museum, University of Oslo, Box 1172 Blindern, 0318 Oslo, Norway
| | - Andy F S Taylor
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Tom W May
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, VIC 3004, Australia
| | - Tobias Guldberg Frøslev
- Global Biodiversity Information Facility (GBIF), Secretariat, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Julia Pawlowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Björn Lindahl
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Box 7014, SE-750 07 Uppsala, Sweden
| | - Kadri Põldmaa
- Natural History Museum, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Camille Truong
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, VIC 3004, Australia
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, The Netherlands
| | | | - Tuula Niskanen
- Botany Unit, Finnish Museum of Natural History, P.O.Box 7, 00014 University of Helsinki, Finland
| | - Timo Piirmann
- Natural History Museum, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Filipp Ivanov
- Natural History Museum, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Allan Zirk
- Natural History Museum, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Marko Peterson
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Tanya E Cheeke
- School of Biological Sciences, Washington State University, 2710 Crimson Way, Richland, WA 9935, USA
| | - Yui Ishigami
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Arnold Tobias Jansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 453, 405 30 Göteborg, Sweden
| | - Thomas Stjernegaard Jeppesen
- Global Biodiversity Information Facility (GBIF), Secretariat, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Vladimir Mikryukov
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Joseph T Miller
- Global Biodiversity Information Facility (GBIF), Secretariat, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology, University of California at Santa Barbara, USA
| | | | - Joana Paupério
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Irja Saar
- Natural History Museum, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Dmitry Schigel
- Global Biodiversity Information Facility (GBIF), Secretariat, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Ave Suija
- Natural History Museum, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
229
|
Yu Y, Zhou Y, Janssens IA, Deng Y, He X, Liu L, Yi Y, Xiao N, Wang X, Li C, Xiao C. Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. GLOBAL CHANGE BIOLOGY 2024; 30:e17111. [PMID: 38273581 DOI: 10.1111/gcb.17111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1°C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Zhou
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
- Ecology Center, Utah State University, Logan, Utah, USA
| | - Ivan A Janssens
- Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yin Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaodong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chao Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chunwang Xiao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
230
|
Shumskaya M. DNA Barcoding for an Undergraduate Class. Methods Mol Biol 2024; 2744:537-550. [PMID: 38683341 DOI: 10.1007/978-1-0716-3581-0_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
DNA technique is a topic mandatorily covered in a biology and biochemistry undergraduate curriculum. Inquiry-based pedagogy is proven to be the most effective way of learning, and DNA barcoding method allows to merge necessary-to-study experimental techniques such as DNA isolation and purification, PCR, and basic BLAST search into a two- or three-week inquiry-based student project. It also provides a research-based experience to the students, who, when organized in groups, can design their own DNA-barcoding project if they wish. Here, we describe how DNA barcoding can be offered in an undergraduate college or advanced high school settings. This chapter is intended to help college and high school instructors to include DNA barcoding in their classes.
Collapse
Affiliation(s)
- Maria Shumskaya
- Department of Biology, CSMT, Kean University, Union, NJ, USA.
| |
Collapse
|
231
|
Liu R, Wang Y, Yao X, Liu C. Generating 2D Barcode for DNA Barcode Sequences. Methods Mol Biol 2024; 2744:239-246. [PMID: 38683323 DOI: 10.1007/978-1-0716-3581-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
DNA barcode sequence is a short DNA sequence representing a sample from a particular species. The commonly used DNA barcodes are at least 200 bps long. This large number of characters cannot be encoded in two-dimensional codes for sample recognition and tracking. In the present study, we described a method that can be used to compress the DNA sequences and then generate the corresponding QR code. With the large numbers of software and hardware, the QR code can be used efficiently for printing, labeling, and scanning.
Collapse
Affiliation(s)
- Rui Liu
- College of Information Management, Central China Normal University, Wuhan City, Hubei Province, China
| | - Yujun Wang
- College of Information Management, Central China Normal University, Wuhan City, Hubei Province, China
| | - Xinjing Yao
- College of Information Management, Central China Normal University, Wuhan City, Hubei Province, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing City, China
| |
Collapse
|
232
|
Gallegos-Casillas P, García-Ortega LF, Espinosa-Cantú A, Avelar-Rivas JA, Torres-Lagunes CG, Cano-Ricardez A, García-Acero ÁM, Ruiz-Castro S, Flores-Barraza M, Castillo A, González-Zozaya F, Delgado-Lemus A, Molina-Freaner F, Jacques-Hernández C, Hernández-López A, Delaye L, Aguirre-Dugua X, Kirchmayr MR, Morales L, Mancera E, DeLuna A. Yeast diversity in open agave fermentations across Mexico. Yeast 2024; 41:35-51. [PMID: 38054508 DOI: 10.1002/yea.3913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Yeasts are a diverse group of fungal microorganisms that are widely used to produce fermented foods and beverages. In Mexico, open fermentations are used to obtain spirits from agave plants. Despite the prevalence of this traditional practice throughout the country, yeasts have only been isolated and studied from a limited number of distilleries. To systematically describe the diversity of yeast species from open agave fermentations, here we generate the YMX-1.0 culture collection by isolating 4524 strains from 68 sites with diverse climatic, geographical, and biological contexts. We used MALDI-TOF mass spectrometry for taxonomic classification and validated a subset of the strains by ITS and D1/D2 sequencing, which also revealed two potential novel species of Saccharomycetales. Overall, the composition of yeast communities was weakly associated with local variables and types of climate, yet a core set of six species was consistently isolated from most producing regions. To explore the intraspecific variation of the yeasts from agave fermentations, we sequenced the genomes of four isolates of the nonconventional yeast Kazachstania humilis. The genomes of these four strains were substantially distinct from a European isolate of the same species, suggesting that they may belong to different populations. Our work contributes to the understanding and conservation of an open fermentation system of great cultural and economic importance, providing a valuable resource to study the biology and genetic diversity of microorganisms living at the interface of natural and human-associated environments.
Collapse
Affiliation(s)
- Porfirio Gallegos-Casillas
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Luis F García-Ortega
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Adriana Espinosa-Cantú
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - J Abraham Avelar-Rivas
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Carolina G Torres-Lagunes
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Adrián Cano-Ricardez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Ángela M García-Acero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
- Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Susana Ruiz-Castro
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Mayra Flores-Barraza
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Alejandra Castillo
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | | | - Francisco Molina-Freaner
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Unidad Hermosillo, Universidad Nacional Autónoma de México, Hermosillo, Mexico
| | | | - Antonio Hernández-López
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, León, Mexico
| | - Luis Delaye
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Xitlali Aguirre-Dugua
- Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Mexico City, Mexico
| | - Manuel R Kirchmayr
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Zapopan, Jalisco, Mexico
| | - Lucia Morales
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Eugenio Mancera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
233
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 PMCID: PMC11651280 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People’s Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
234
|
Mirarab S, Bafna V. Analyses of Nuclear Reads Obtained Using Genome Skimming. Methods Mol Biol 2024; 2744:247-265. [PMID: 38683324 DOI: 10.1007/978-1-0716-3581-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In this protocol paper, we review a set of methods developed in recent years for analyzing nuclear reads obtained from genome skimming. As the cost of sequencing drops, genome skimming (low-coverage shotgun sequencing of a sample) becomes increasingly a cost-effective method of measuring biodiversity at high resolution. While most practitioners only use assembled over-represented organelle reads from a genome skim, the vast majority of the reads are nuclear. Using assembly-free and alignment-free methods described in this protocol, we can compare samples to each other and reference genomes to compute distances, characterize underlying genomes, and infer evolutionary relationships.
Collapse
Affiliation(s)
- Siavash Mirarab
- Electrical and Computer Engineering, University of California-San Diego, La Jolla, CA, USA.
| | - Vineet Bafna
- Computer Science and Engineering, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
235
|
Alfattani A, Queiroz EF, Marcourt L, Leoni S, Stien D, Hofstetter V, Gindro K, Perron K, Wolfender JL. One-step Bio-guided Isolation of Secondary Metabolites from the Endophytic Fungus Penicillium crustosum Using High-resolution Semi-preparative HPLC. Comb Chem High Throughput Screen 2024; 27:573-583. [PMID: 37424340 DOI: 10.2174/1386207326666230707110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND An endophytic fungal strain Penicillium crustosum was isolated from the seagrass Posidonia oceanica and investigated to identify its antimicrobial constituents and characterize its metabolome composition. The ethyl acetate extract of this fungus exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) as well as an anti-quorum sensing effect against Pseudomonas aeruginosa. METHODS The crude extract was profiled by UHPLC-HRMS/MS, and the dereplication was assisted by feature-based molecular networking. As a result, more than twenty compounds were annotated in this fungus. To rapidly identify the active compounds, the enriched extract was fractionated by semipreparative HPLC-UV applying a chromatographic gradient transfer and dry load sample introduction to maximise resolution. The collected fractions were profiled by 1H-NMR and UHPLC-HRMS. RESULTS The use of molecular networking-assisted UHPLC-HRMS/MS dereplication allowed preliminary identification of over 20 compounds present in the ethyl acetate extract of P. crustosum. The chromatographic approach significantly accelerated the isolation of the majority of compounds present in the active extract. The one-step fractionation allowed the isolation and identification of eight compounds (1-8). CONCLUSION This study led to the unambiguous identification of eight known secondary metabolites as well as the determination of their antibacterial properties.
Collapse
Affiliation(s)
- Abdulelah Alfattani
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Sara Leoni
- Microbiological Analysis Platform, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Valerie Hofstetter
- Agroscope, Plant Protection Research Division, Mycology Group, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Katia Gindro
- Agroscope, Plant Protection Research Division, Mycology Group, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Karl Perron
- Microbiological Analysis Platform, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| |
Collapse
|
236
|
Rintarhat P, Cho YJ, Koh H, Park S, Lee EJ, Lim H, Noh J, Lee DW, Jung WH. Assessment of DNA extraction methods for human gut mycobiome analysis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231129. [PMID: 38204788 PMCID: PMC10776226 DOI: 10.1098/rsos.231129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
The gut mycobiome plays an important role in the health and disease of the human gut, but its exact function is still under investigation. While there is a wealth of information available on the bacterial community of the human gut microbiome, research on the fungal community is still relatively limited. In particular, technical methodologies for mycobiome analysis, especially the DNA extraction method for human faecal samples, varied in different studies. In the current study, two commercial kits commonly used in DNA extraction, the QIAamp® Fast DNA Stool Mini Kit and DNeasy PowerSoil Pro Kit, and one manual method, the International Human Microbiome Standards Protocol Q, were compared. Furthermore, the effectiveness of two different bead-beating machines, the Mini-Beadbeater-16 and FastPrep-24TM 5G, was compared in parallel. A mock fungal community with a known composition of fungal strains was also generated and included to compare different DNA extraction methods. Our results suggested that the method using the DNeasy PowerSoil Pro Kit and Mini-Beadbeater-16 provides the best results to extract DNA from human faecal samples. Based on our data, we propose a standard operating procedure for DNA extraction from human faecal samples for mycobiome analysis.
Collapse
Affiliation(s)
- Piyapat Rintarhat
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon 24341, Korea
| | - Hong Koh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sowon Park
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeji Lim
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jihye Noh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
237
|
Almiman B. Glimpse into phytopathogenic fungal species in Al Baha Province, Saudi Arabia; identification from molecular and morphological characteristics. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2164458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Bandar Almiman
- Department of Biology, Faculty of Science, Al Baha University, Alaqiq, Al Baha, Kingdom of Saudi Arabia
| |
Collapse
|
238
|
Frank ET, Kesner L, Liberti J, Helleu Q, LeBoeuf AC, Dascalu A, Sponsler DB, Azuma F, Economo EP, Waridel P, Engel P, Schmitt T, Keller L. Targeted treatment of injured nestmates with antimicrobial compounds in an ant society. Nat Commun 2023; 14:8446. [PMID: 38158416 PMCID: PMC10756881 DOI: 10.1038/s41467-023-43885-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Infected wounds pose a major mortality risk in animals. Injuries are common in the ant Megaponera analis, which raids pugnacious prey. Here we show that M. analis can determine when wounds are infected and treat them accordingly. By applying a variety of antimicrobial compounds and proteins secreted from the metapleural gland to infected wounds, workers reduce the mortality of infected individuals by 90%. Chemical analyses showed that wound infection is associated with specific changes in the cuticular hydrocarbon profile, thereby likely allowing nestmates to diagnose the infection state of injured individuals and apply the appropriate antimicrobial treatment. This study demonstrates that M. analis ant societies use antimicrobial compounds produced in the metapleural glands to treat infected wounds and reduce nestmate mortality.
Collapse
Affiliation(s)
- Erik T Frank
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland.
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.
| | - Lucie Kesner
- Department of Fundamental Microbiology, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
- Department of Fundamental Microbiology, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Quentin Helleu
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005, Paris, France
| | - Adria C LeBoeuf
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Andrei Dascalu
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Douglas B Sponsler
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Fumika Azuma
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495, Japan
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495, Japan
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, 02138, USA
| | - Patrice Waridel
- Protein Analysis Facility, Génopode, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
239
|
Olou BA, Hègbè ADMT, Piepenbring M, Yorou NS. Genetic diversity and population differentiation in Earliella scabrosa, a pantropical species of Polyporales. Sci Rep 2023; 13:23020. [PMID: 38155211 PMCID: PMC10754928 DOI: 10.1038/s41598-023-50398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Earliella scabrosa is a pantropical species of Polyporales (Basidiomycota) and well-studied concerning its morphology and taxonomy. However, its pantropical intraspecific genetic diversity and population differentiation is unknown. We initiated this study to better understand the genetic variation within E. scabrosa and to test if cryptic species are present. Sequences of three DNA regions, the nuclear ribosomal internal transcribed spacer (ITS), the large subunit ribosomal DNA (LSU), and the translation elongation factor (EF1α) were analysed for 66 samples from 15 geographical locations. We found a high level of genetic diversity (haplotype diversity, Hd = 0.88) and low nucleotide diversity (π = 0.006) across the known geographical range of E. scabrosa based on ITS sequences. The analysis of molecular variance (AMOVA) indicates that the genetic variability is mainly found among geographical populations. The results of Mantel tests confirmed that the genetic distance among populations of E. scabrosa is positively correlated with the geographical distance, which indicates that geographical isolation is an important factor for the observed genetic differentiation. Based on phylogenetic analyses of combined dataset ITS-LSU-EF1α, the low intraspecific divergences (0-0.3%), and the Automated Barcode Gap Discovery (ABGD) analysis, E. scabrosa can be considered as a single species with five different geographical populations. Each population might be in the process of allopatric divergence and in the long-term they may evolve and become distinct species.
Collapse
Affiliation(s)
- Boris Armel Olou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin.
| | - Apollon D M T Hègbè
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
| | - Meike Piepenbring
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Nourou Soulemane Yorou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
| |
Collapse
|
240
|
Xie Z, Canalda-Baltrons A, d'Enfert C, Manichanh C. Shotgun metagenomics reveals interkingdom association between intestinal bacteria and fungi involving competition for nutrients. MICROBIOME 2023; 11:275. [PMID: 38098063 PMCID: PMC10720197 DOI: 10.1186/s40168-023-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The accuracy of internal-transcribed-spacer (ITS) and shotgun metagenomics has not been robustly evaluated, and the effect of diet on the composition and function of the bacterial and fungal gut microbiome in a longitudinal setting has been poorly investigated. Here we compared two approaches to study the fungal community (ITS and shotgun metagenomics), proposed an enrichment protocol to perform a reliable mycobiome analysis using a comprehensive in-house fungal database, and correlated dietary data with both bacterial and fungal communities. RESULTS We found that shotgun DNA sequencing after a new enrichment protocol combined with the most comprehensive and novel fungal databases provided a cost-effective approach to perform gut mycobiome profiling at the species level and to integrate bacterial and fungal community analyses in fecal samples. The mycobiome was significantly more variable than the bacterial community at the compositional and functional levels. Notably, we showed that microbial diversity, composition, and functions were associated with habitual diet composition instead of driven by global dietary changes. Our study indicates a potential competitive inter-kingdom interaction between bacteria and fungi for food foraging. CONCLUSION Together, our present work proposes an efficient workflow to study the human gut microbiome integrating robustly fungal, bacterial, and dietary data. These findings will further advance our knowledge of the interaction between gut bacteria and fungi and pave the way for future investigations in human mycobiome. Video Abstract.
Collapse
Affiliation(s)
- Zixuan Xie
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aleix Canalda-Baltrons
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
241
|
Zhang M, Gao XL, Mu LQ, Deng WQ. Morphology and Molecular Phylogeny Reveal Five New Species of Laccaria (Hydnangiaceae, Agaricales) from Southern China. J Fungi (Basel) 2023; 9:1179. [PMID: 38132780 PMCID: PMC10744585 DOI: 10.3390/jof9121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
The genus Laccaria is a type of cosmopolitan and ecologically important fungal group. Members can form ectomycorrhizal associations with numerous trees, and some species are common edible fungi in local markets. Although some new species from China are recently published, the species diversity of Laccaria is still unclear in China. In this study, some samples of Laccaria were collected from southern China, and morphological characteristics and phylogenetic analyses based on the multilocus dataset of ITS-LSU-tef1-rpb2 confirmed five new species. Laccaria miniata, L. nanlingensis and L. neovinaceoavellanea were collected from subtropical broad-leaved forests, and L. rufobrunnea and L. umbilicata were collected from subtropical mixed forests of southwest China. Full descriptions, illustrations, comparisons with similar species and phylogenetic analysis are provided.
Collapse
Affiliation(s)
- Ming Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Xue-Lian Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Li-Qin Mu
- Chuxiong Yi Autonomous Prefecture Forestry and Grassland Science Research Institute, Chuxiong 675000, China
| | - Wang-Qiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
242
|
Liu DK, Zhou CY, Tu XD, Zhao Z, Chen JL, Gao XY, Xu SW, Zeng MY, Ma L, Ahmad S, Li MH, Lan S, Liu ZJ. Comparative and phylogenetic analysis of Chiloschista (Orchidaceae) species and DNA barcoding investigation based on plastid genomes. BMC Genomics 2023; 24:749. [PMID: 38057701 DOI: 10.1186/s12864-023-09847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Chiloschista (Orchidaceae, Aeridinae) is an epiphytic leafless orchid that is mainly distributed in tropical or subtropical forest canopies. This rare and threatened orchid lacks molecular resources for phylogenetic and barcoding analysis. Therefore, we sequenced and assembled seven complete plastomes of Chiloschista to analyse the plastome characteristics and phylogenetic relationships and conduct a barcoding investigation. RESULTS We are the first to publish seven Chiloschista plastomes, which possessed the typical quadripartite structure and ranged from 143,233 bp to 145,463 bp in size. The plastomes all contained 120 genes, consisting of 74 protein-coding genes, 38 tRNA genes and eight rRNA genes. The ndh genes were pseudogenes or lost in the genus, and the genes petG and psbF were under positive selection. The seven Chiloschista plastomes displayed stable plastome structures with no large inversions or rearrangements. A total of 14 small inversions (SIs) were identified in the seven Chiloschista plastomes but were all similar within the genus. Six noncoding mutational hotspots (trnNGUU-rpl32 > rpoB-trnCGCA > psbK-psbI > psaC-rps15 > trnEUUC-trnTGGU > accD-psaI) and five coding sequences (ycf1 > rps15 > matK > psbK > ccsA) were selected as potential barcodes based on nucleotide diversity and species discrimination analysis, which suggested that the potential barcode ycf1 was most suitable for species discrimination. A total of 47-56 SSRs and 11-14 long repeats (> 20 bp) were identified in Chiloschista plastomes, and they were mostly located in the large single copy intergenic region. Phylogenetic analysis indicated that Chiloschista was monophyletic. It was clustered with Phalaenopsis and formed the basic clade of the subtribe Aeridinae with a moderate support value. The results also showed that seven Chiloschista species were divided into three major clades with full support. CONCLUSION This study was the first to analyse the plastome characteristics of the genus Chiloschista in Orchidaceae, and the results showed that Chiloschista plastomes have conserved plastome structures. Based on the plastome hotspots of nucleotide diversity, several genes and noncoding regions are suitable for phylogenetic and population studies. Chiloschista may provide an ideal system to investigate the dynamics of plastome evolution and DNA barcoding investigation for orchid studies.
Collapse
Affiliation(s)
- Ding-Kun Liu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng-Yuan Zhou
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiong-De Tu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhuang Zhao
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin-Liao Chen
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu-Yong Gao
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shao-Wei Xu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Ma
- Fujian Health College, Fuzhou, 350101, Fujian, China
| | - Sagheer Ahmad
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming-He Li
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siren Lan
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhong-Jian Liu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
243
|
Danladi MMA, Ogbonna CIC, Ogbonna AI, Giles C, Fletcher MT, Akinsanmi OA. Fungal composition, quantification of mycotoxins, and enzyme activity in processed Solanum tuberosum Linn (potato) products stored at different relative humidity. J Appl Microbiol 2023; 134:lxad266. [PMID: 37968133 DOI: 10.1093/jambio/lxad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023]
Abstract
AIM Postharvest loss of potatoes at the peak of harvest is of global concern. This study aimed to determine the quality of stored processed potato products based on fungal composition, mycotoxin contamination, and fungal enzyme activity. MATERIALS AND METHODS Potato products from three cultivars (Caruso, Marabel, and Nicola) were grouped as peeled or unpeeled, oven- or sun-dried, and all samples were in flour form. Samples were incubated separately for 6 weeks at 25%, 74%, and 87% relative humidities (RH) at 25°C. The pH, moisture content (MC), visible deterioration, mycotoxin, fungal identity by DNA sequencing, and enzyme activity were determined. RESULTS Results of grouped products (based on variety, drying, and peeling method) revealed that MC increased in the oven-dried samples and the pH value reduced after incubation. About 26% of the products at 87% RH showed visible deterioration, low amounts of fumonisin were detected in fermented potato product and nine fungal genera were identified across the three RH levels. Enzyme activities by Aspergillus niger, Fusarium circinatum, and Rhizopus stolonifer isolates were confirmed. CONCLUSION RH influenced deterioration and fungal activities in some stored processed potato products. Low levels of fumonisin were detected.
Collapse
Affiliation(s)
- Margaret M A Danladi
- Department of Plant Science and Biotechnology, University of Jos, Jos 930001, Nigeria
| | - Chike I C Ogbonna
- Department of Plant Science and Biotechnology, University of Jos, Jos 930001, Nigeria
| | - Abigail I Ogbonna
- Department of Plant Science and Biotechnology, University of Jos, Jos 930001, Nigeria
| | - Cindy Giles
- Department of Agriculture and Fisheries, Chemical Residue Laboratory, Queensland Government, Coopers Plains, QLD 4108, Australia
| | - Mary T Fletcher
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Science Precinct Coopers Plains, QLD 4108, Australia
| | - Olufemi A Akinsanmi
- Centre for Horticultural Science, QAAFI, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| |
Collapse
|
244
|
Wang S, Han Y, Wu X, Sun H. Metagenomics reveals the effects of glyphosate on soil microbial communities and functional profiles of C and P cycling in the competitive vegetation control process of Chinese fir plantation. ENVIRONMENTAL RESEARCH 2023; 238:117162. [PMID: 37722584 DOI: 10.1016/j.envres.2023.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Although considerable efforts have been devoted to investigate the behavior of glyphosate on microbiome in various environment, knowledge about the soil microbial community and functional profile in weeds control process of the Chinese fir plantation are limited. In this study, shotgun metagenomic sequencing was used to determine the abundance and diversity of microbial communities and functional genes after foliar application of glyphosate for 1, 2, 3 and 4 months in a Chinese fir plantation. The results showed that glyphosate increased the copy numbers (qPCR) of 16S rRNA gene for 16.9%, improved the bacterial diversity (Shannon index) and complexity of bacterial co-occurrence network, and changed the abundances of some bacterial and fungal taxa, but had no effects on ITS gene copy numbers, fungal Shannon index, and bacterial and fungal communities (PCoA). Glyphosate application significantly decreased the amount of microbial function potentials involved in organic P mineralization for 10.7%, chitin degradation for 13.1%, and CAZy gene families with an exception of PL for 11.5% at the first month, while did not affect the profile of microbial genes response to P and C cycling in longer term. In addition, glyphosate reduced the contents of soil TOC, DOC and NH4+-H for 17.6%, 52.3% and 44.6% respectively, and decreased the starch, soluble sugar, Zn and Fe of Chinese fir leaves for 20.6%, 19.8%, 32.8% and 48.4% respectively. Mantle test, Spearman's correlation, and PLS-PM model revealed the connections among soil properties, tree nutrients, bacterial and fungal communities, and microbial function potentials were influenced by glyphosate. While our findings need to be validated in other filed and mechanistic studies, they may indicate that the foliar application of glyphosate has a potential effect on Chinese fir seedlings, and this effect may contribute to the changes of the bacterial community and soil properties including AN, DON and NH4+-H.
Collapse
Affiliation(s)
- Song Wang
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Yuanyuan Han
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Xiaoyu Wu
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi, 336600, China
| | - Honggang Sun
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| |
Collapse
|
245
|
Dutra YLG, Rosado AWC, Condé TO, Leão AF, Neves SDC, Fraga LMS, Kasuya MCM, Pereira OL. Two new Cladosporium species from a quartzite cave in Brazil. Braz J Microbiol 2023; 54:3021-3031. [PMID: 37880564 PMCID: PMC10689331 DOI: 10.1007/s42770-023-01156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Caves are underground and natural environments mainly found in rocky terrain. Caves have a very specific microclimate, which benefits the occurrence of specific fungi. In recent studies, researchers have observed that caves harbour a great diversity of fungi. However, studies on fungal diversity in Brazilian caves are still incipient. In September 2019, airborne spore and soil samples were collected from the Monte Cristo cave, in the Southern Espinhaço Range, Diamantina, Minas Gerais state, Brazil. Two Cladosporium single-spore isolates, among other genera, were obtained from these samples. This study aimed to characterise these two fungal isolates based on their DNA sequence data and morphology. Phylogenetic analyses of the rDNA-ITS, ACT and TEF1-α loci revealed that the isolates belonged to the Cladosporium cladosporioides species complex. Both isolates did not cluster with any known species and were formally described and named herein as C. diamantinense and C. speluncae. This study presents taxonomic novelties and contributes to the knowledge about the fungal diversity in Brazilian caves.
Collapse
Affiliation(s)
- Yan Lucas Gomes Dutra
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - André Wilson Campos Rosado
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Thiago Oliveira Condé
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Ana Flávia Leão
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Soraya de Carvalho Neves
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Lucio Mauro Soares Fraga
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | | | - Olinto Liparini Pereira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
246
|
EL-Shemy A, Mekky H, Bosila M, Elbayoumi K, Amer M, Elaish M. Investigation of aspergillosis outbreak in young ducklings: Unraveling the role of hatcheries in Aspergillus fumigatus transmission. J Adv Vet Anim Res 2023; 10:763-772. [PMID: 38370888 PMCID: PMC10868690 DOI: 10.5455/javar.2023.j732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 02/20/2024] Open
Abstract
Objective Aspergillosis is a disease that affects several species of birds and causes substantial losses in the poultry business. The purpose of the investigation was to identify the pathogen responsible for a respiratory outbreak among juvenile ducklings. Materials and Methods An epidemic of Aspergillosis infected a total of 800 Muscovy ducks that were being reared in El-Beheira Governorate. Tissue samples were obtained to isolate suspected fungi from diseased birds and the hatchery environment. In addition, identification and molecular characterization were performed on the obtained fungal isolates. Results Affected birds displayed acute respiratory manifestations such as difficulty breathing, gasping for air, nasal discharge, and a mortality rate of up to 28.1%. Postmortem examination revealed bronchitis, tracheitis, congested lungs, air sacculitis, severe multifocal granulomatous pneumonia, a congested, enlarged liver, and a congested kidney with nephritis. Mycological examination revealed seven Aspergillus (A.) spp. isolates from ducklings and six from hatcheries. Isolate colonial morphology and microscopical examination were as follows: A. fumigatus, A. niger, Syncephalastrum racemosum, and four untypable isolates. These isolates were further identified by polymerase chain reaction (PCR), and the internal transcribed spacers (ITSs) gene was detected. Four representative isolates were submitted for sequencing and further phylogenetic analysis. The source of duckling infection might be linked to the hatchery environment due to the observed similarity of isolates from both affected birds and the hatchery, as evidenced by phylogenetic analysis. Conclusion Our findings demonstrated the significance of appropriate hatchery control in preventing infection in young ducklings. Furthermore, the use of molecular identification techniques would be helpful for tracing the source of infection and rapid diagnosis of Aspergillus in the field.
Collapse
Affiliation(s)
- Ahmed EL-Shemy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Hoda Mekky
- Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Mohamed Bosila
- Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Khaled Elbayoumi
- Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Mohamed Amer
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Elaish
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
247
|
Větrovský T, Kolaříková Z, Lepinay C, Awokunle Hollá S, Davison J, Fleyberková A, Gromyko A, Jelínková B, Kolařík M, Krüger M, Lejsková R, Michalčíková L, Michalová T, Moora M, Moravcová A, Moulíková Š, Odriozola I, Öpik M, Pappová M, Piché-Choquette S, Skřivánek J, Vlk L, Zobel M, Baldrian P, Kohout P. GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. THE NEW PHYTOLOGIST 2023; 240:2151-2163. [PMID: 37781910 DOI: 10.1111/nph.19283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are crucial mutualistic symbionts of the majority of plant species, with essential roles in plant nutrient uptake and stress mitigation. The importance of AM fungi in ecosystems contrasts with our limited understanding of the patterns of AM fungal biogeography and the environmental factors that drive those patterns. This article presents a release of a newly developed global AM fungal dataset (GlobalAMFungi database, https://globalamfungi.com) that aims to reduce this knowledge gap. It contains almost 50 million observations of Glomeromycotinian AM fungal amplicon DNA sequences across almost 8500 samples with geographical locations and additional metadata obtained from 100 original studies. The GlobalAMFungi database is built on sequencing data originating from AM fungal taxon barcoding regions in: i) the small subunit rRNA (SSU) gene; ii) the internal transcribed spacer 2 (ITS2) region; and iii) the large subunit rRNA (LSU) gene. The GlobalAMFungi database is an open source and open access initiative that compiles the most comprehensive atlas of AM fungal distribution. It is designed as a permanent effort that will be continuously updated by its creators and through the collaboration of the scientific community. This study also documented applicability of the dataset to better understand ecology of AM fungal taxa.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Zuzana Kolaříková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Sandra Awokunle Hollá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St 2, 504 09, Tartu, Estonia
| | - Anna Fleyberková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Anastasiia Gromyko
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Barbora Jelínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Manuela Krüger
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Renata Lejsková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Lenka Michalčíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St 2, 504 09, Tartu, Estonia
| | - Andrea Moravcová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czechia
| | - Štěpánka Moulíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St 2, 504 09, Tartu, Estonia
| | - Monika Pappová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Sarah Piché-Choquette
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Jakub Skřivánek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czechia
| | - Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St 2, 504 09, Tartu, Estonia
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czechia
| |
Collapse
|
248
|
Lu J, Zhang X, Zhang X, Wang L, Zhao R, Liu XY, Liu X, Zhuang W, Chen L, Cai L, Wang J. Nanopore sequencing of full rRNA operon improves resolution in mycobiome analysis and reveals high diversity in both human gut and environments. Mol Ecol 2023; 32:6330-6344. [PMID: 35593386 DOI: 10.1111/mec.16534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
High-throughput sequencing has substantially improved our understanding of fungal diversity. However, the short read (<500 bp) length of current second-generation sequencing approaches provides limited taxonomic and phylogenetic resolution for species discrimination. Longer sequences containing more information are highly desired to provide greater taxonomic resolution. Here, we amplified full-length rRNA operons (~5.5 kb) and established a corresponding fungal rRNA operon database for ONT sequences (FRODO), which contains ONT sequences representing eight phyla, 41 classes, 109 orders, 256 families, 524 genera and 1116 species. We also benchmarked the optimal method for sequence classification and determined that the RDP classifier based on our FRODO database was capable of improving the classification of ONT reads, with an average of 98%-99% reads correctly classified at the genus or species level. We investigated the applicability of our approach in three representative mycobiomes, namely, the soil, marine and human gut mycobiomes, and found that the gut contains the largest number of unknown species (over 90%), followed by the marine (42%) and soil (33.8%) mycobiomes. We also observed a distinct difference in the composition of the marine and soil mycobiomes, with the highest richness and diversity detected in soils. Overall, our study provides a systematic approach for mycobiome studies and revealed that the previous methods might have underestimated the diversity of mycobiome species. Future application of this method will lead to a better understanding of the taxonomic and functional diversity of fungi in environmental and health-related mycobiomes.
Collapse
Affiliation(s)
- Jingjing Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xudong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linqi Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruilin Zhao
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiao Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xinzhan Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenying Zhuang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Cai
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
249
|
Mikryukov V, Dulya O, Zizka A, Bahram M, Hagh-Doust N, Anslan S, Prylutskyi O, Delgado-Baquerizo M, Maestre FT, Nilsson H, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander Ü, Khalid AN, Corrales A, Agan A, Vasco-Palacios AM, Saitta A, Rinaldi A, Verbeken A, Sulistyo B, Tamgnoue B, Furneaux B, Duarte Ritter C, Nyamukondiwa C, Sharp C, Marín C, Gohar D, Klavina D, Sharmah D, Dai DQ, Nouhra E, Biersma EM, Rähn E, Cameron E, De Crop E, Otsing E, Davydov E, Albornoz F, Brearley F, Buegger F, Zahn G, Bonito G, Hiiesalu I, Barrio I, Heilmann-Clausen J, Ankuda J, Doležal J, Kupagme J, Maciá-Vicente J, Djeugap Fovo J, Geml J, Alatalo J, Alvarez-Manjarrez J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan Issifou K, Armolaitis K, Hyde K, Newsham KK, Panksep K, Lateef AA, Hansson L, Lamit L, Saba M, Tuomi M, Gryzenhout M, Bauters M, Piepenbring M, Wijayawardene NN, Yorou N, Kurina O, Mortimer P, Meidl P, Kohout P, Puusepp R, Drenkhan R, Garibay-Orijel R, Godoy R, Alkahtani S, Rahimlou S, Dudov S, Põlme S, Ghosh S, Mundra S, Ahmed T, Netherway T, Henkel T, Roslin T, Nteziryayo V, Fedosov V, Onipchenko V, Yasanthika WAE, Lim Y, Van Nuland M, Soudzilovskaia N, Antonelli A, Kõljalg U, Abarenkov K, Tedersoo L. Connecting the multiple dimensions of global soil fungal diversity. SCIENCE ADVANCES 2023; 9:eadj8016. [PMID: 38019923 PMCID: PMC10686567 DOI: 10.1126/sciadv.adj8016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
Collapse
Affiliation(s)
- Vladimir Mikryukov
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Olesya Dulya
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Alexander Zizka
- Department of Biology, Philipps-University, Marburg 35032, Germany
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, School of Biology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas, Sevilla 41012, Spain
| | - Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’ and Departamento de Ecología, Universidad de Alicante, Alicante 03690, Spain
| | - Henrik Nilsson
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg 40530, Sweden
| | - Jaan Pärn
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | | | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá 111221, Colombia
| | - Ahto Agan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Aída-M. Vasco-Palacios
- Grupo de BioMicro y Microbiología Ambiental, Escuela de Microbiologia, Universidad de Antioquia UdeA, Medellin 050010, Colombia
| | - Alessandro Saitta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo 90128, Italy
| | - Andrea Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cagliari 09124, Italy
| | | | - Bobby Sulistyo
- Department Biology, Ghent University, Ghent 9000, Belgium
| | - Boris Tamgnoue
- Department of Crop Science, University of Dschang, Dschang, Cameroon
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | | | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye 10071, Botswana
| | - Cathy Sharp
- Natural History Museum of Zimbabwe, Bulawayo, Zimbabwe
| | - César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad SantoTomás, Valdivia, Chile
| | - Daniyal Gohar
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Darta Klavina
- Latvian State Forest Research Institute Silava, Salaspils 2169, Latvia
| | - Dipon Sharmah
- Department of Botany, Jawaharlal Nehru Rajkeeya Mahavidyalaya, Pondicherry University, Port Blair 744101, India
| | - Dong-Qin Dai
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Cordoba 5000, Argentina
| | - Elisabeth Machteld Biersma
- Natural History Museum of Denmark, Copenhagen 1123, Denmark
- British Antarctic Survey, NERC, High Cross, Cambridge CB3 0ET, UK
| | - Elisabeth Rähn
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Erin Cameron
- Department of Environmental Science, Saint Mary's University, Halifax B3H 3C3, Canada
| | - Eske De Crop
- Department Biology, Ghent University, Ghent 9000, Belgium
| | - Eveli Otsing
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | | | - Felipe Albornoz
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Wembley 6014, Australia
| | - Francis Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Franz Buegger
- Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, Orem, UT 84058, USA
| | - Gregory Bonito
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824-6254, USA
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Isabel Barrio
- Faculty of Natural and Environmental Sciences, Agricultural University of Iceland, Reykjavík 112, Iceland
| | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Copenhagen 1350, Denmark
| | - Jelena Ankuda
- Vokė branch, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Vilnius LT-02232, Lithuania
| | - Jiri Doležal
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice 37005, Czech Republic
| | - John Kupagme
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Jose Maciá-Vicente
- Department of Environmental Sciences, Plant Ecology and Nature Conservation, Wageningen University and Research, Wageningen 6708, Netherlands
| | | | - József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger 3300, Hungary
| | - Juha Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | | | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Kadri Runnel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Kari-Anne Bråthen
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø 9019, Norway
| | - Karin Pritsch
- Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Kassim Tchan Issifou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, University of Parakou, Parakou 00229, Benin
| | - Kęstutis Armolaitis
- Department of Silviculture and Ecology, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Girionys 53101, Lithuania
| | - Kevin Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin K. Newsham
- British Antarctic Survey, NERC, High Cross, Cambridge CB3 0ET, UK
| | - Kristel Panksep
- Chair of Hydrobiology and Fishery, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Adebola Azeez Lateef
- Department of Plant Biology, Faculty of Life Science, University of Ilorin, Ilorin 240102, Nigeria
- Department of Forest Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Linda Hansson
- Gothenburg Centre for Sustainable Development, Gothenburg 41133, Sweden
| | - Louis Lamit
- Department of Biology, Syracuse University, Syracuse 13244, USA
| | - Malka Saba
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Tuomi
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø 9019, Norway
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Marijn Bauters
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Meike Piepenbring
- Mycology Working Group, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Nalin N. Wijayawardene
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nourou Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, University of Parakou, Parakou 00229, Benin
| | - Olavi Kurina
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Peter Mortimer
- Center For Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Peter Meidl
- Freie Universität Berlin, Institut für Biologie, Berlin 14195, Germany
| | - Petr Kohout
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Rasmus Puusepp
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Roberto Godoy
- Instituto Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Rahimlou
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Sergey Dudov
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | - Sergei Põlme
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Talaat Ahmed
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Terry Henkel
- Department of Biological Sciences, California State Polytechnic University, Arcata, CA 95521, USA
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Vincent Nteziryayo
- Department of Food Science and Technology, University of Burundi, Bujumbura Burundi
| | - Vladimir Fedosov
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | - Vladimir Onipchenko
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | | | - Young Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Michael Van Nuland
- Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA
| | | | | | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Leho Tedersoo
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
250
|
Torres-Garcia D, Gené J, García D, Cano-Lira JF. Insights into Some Onygenalean Fungi from Freshwater Sediments in Spain and Description of Novel Taxa. J Fungi (Basel) 2023; 9:1129. [PMID: 38132730 PMCID: PMC10744713 DOI: 10.3390/jof9121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
During the course of a project investigating culturable Ascomycota diversity from freshwater sediments in Spain, we isolated 63 strains of cycloheximide-resistant fungi belonging to the order Onygenales. These well-known ascomycetes, able to infect both humans and animals, are commonly found in terrestrial habitats, colonizing keratin-rich soils or dung. Little is known about their diversity in aquatic environments. Combining morphological features and sequence analyses of the ITS and LSU regions of the nrDNA, we identified 14 species distributed in the genera Aphanoascus, Arachniotus, Arthroderma, Arthropsis, Emmonsiellopsis, Gymnoascoideus, Leucothecium, Malbranchea, and Myriodontium. Furthermore, three novel species for the genus Malbranchea are proposed as M. echinulata sp. nov., M. irregularis sp. nov., and M. sinuata sp. nov. The new genera Albidomyces and Neoarthropsis are introduced based on Arachniotus albicans and Arthropsis hispanica, respectively. Neoarthropsis sexualis sp. nov. is characterized and differentiated morphologically from its counterpart by the production of a sexual morph. The novel family Neoarthropsidaceae is proposed for the genera Albidomyes, Apinisia, Arachnotheca, Myriodontium, and Neoarthropsis, based on their phylogenetic relationships and phenotypic and ecological traits. Pseudoamaurascopsis gen. nov. is introduced to accommodate P. spiralis sp. nov., a fungus with unclear taxonomy related to Amaurascopsis and Polytolypa. We traced the ecology and global distribution of the novel fungi through ITS environmental sequences deposited in the GlobalFungi database. Studying the fungal diversity from freshwater sediments not only contributes to filling gaps in the relationships and taxonomy of the Ascomycota but also gives us insights into the fungal community that might represent a putative risk to the health of animals and humans inhabiting or transient in aquatic environments.
Collapse
Affiliation(s)
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.T.-G.); (D.G.); (J.F.C.-L.)
| | | | | |
Collapse
|