201
|
Yamauchi H, Miyakawa N, Miyake A, Itoh N. Fgf4 is required for left-right patterning of visceral organs in zebrafish. Dev Biol 2009; 332:177-85. [PMID: 19481538 DOI: 10.1016/j.ydbio.2009.05.568] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Fgf signaling plays essential roles in many developmental events. To investigate the roles of Fgf4 signaling in zebrafish development, we generated Fgf4 knockdown embryos by injection with Fgf4 antisense morpholino oligonucleotides. Randomized LR patterning of visceral organs including the liver, pancreas, and heart was observed in the knockdown embryos. Prominent expression of Fgf4 was observed in the posterior notochord and Kupffer's vesicle region in the early stages of segmentation. Lefty1, lefty2, southpaw, and pitx2 are known to play crucial roles in LR patterning of visceral organs. Fgf4 was essential for the expression of lefty1, which is necessary for the asymmetric expression of southpaw and pitx2 in the lateral plate mesoderm, in the posterior notochord, and the expression of lefty2 and lefty1 in the left cardiac field. Fgf8 is also known to be crucial for the formation of Kupffer's vesicle, which is needed for the LR patterning of visceral organs. In contrast, Fgf4 was required for the formation of cilia in Kupffer's vesicle, indicating that the role of Fgf4 in the LR patterning is quite distinct from that of Fgf8. The present findings indicate that Fgf4 plays a unique role in the LR patterning of visceral organs in zebrafish.
Collapse
Affiliation(s)
- Hajime Yamauchi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
202
|
Abstract
Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio University's Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA.
| |
Collapse
|
203
|
Quinet EM, Basso MD, Halpern AR, Yates DW, Steffan RJ, Clerin V, Resmini C, Keith JC, Berrodin TJ, Feingold I, Zhong W, Hartman HB, Evans MJ, Gardell SJ, DiBlasio-Smith E, Mounts WM, LaVallie ER, Wrobel J, Nambi P, Vlasuk GP. LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse. J Lipid Res 2009; 50:2358-70. [PMID: 19318684 DOI: 10.1194/jlr.m900037-jlr200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Liver X receptors (LXRs) are ligand-activated transcription factors that coordinate regulation of gene expression involved in several cellular functions but most notably cholesterol homeostasis encompassing cholesterol transport, catabolism, and absorption. WAY-252623 (LXR-623) is a highly selective and orally bioavailable synthetic modulator of LXR, which demonstrated efficacy for reducing lesion progression in the murine LDLR(-/-) atherosclerosis model with no associated increase in hepatic lipogenesis either in this model or Syrian hamsters. In nonhuman primates with normal lipid levels, WAY-252623 significantly reduced total (50-55%) and LDL-cholesterol (LDLc) (70-77%) in a time- and dose-dependent manner as well as increased expression of the target genes ABCA1/G1 in peripheral blood cells. Statistically significant decreases in LDLc were noted as early as day 7, reached a maximum by day 28, and exceeded reductions observed for simvastatin alone (20 mg/kg). Transient increases in circulating triglycerides and liver enzymes reverted to baseline levels over the course of the study. Complementary microarray analysis of duodenum and liver gene expression revealed differential activation of LXR target genes and suggested no direct activation of hepatic lipogenesis. WAY-252623 displays a unique and favorable pharmacological profile suggesting synthetic LXR ligands with these characteristics may be suitable for evaluation in patients with atherosclerotic dyslipidemia.
Collapse
Affiliation(s)
- Elaine M Quinet
- Department of Cardiovascular/Metabolic Diseases and Nuclear Receptor Biology, Wyeth Research, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8:235-53. [PMID: 19247306 DOI: 10.1038/nrd2792] [Citation(s) in RCA: 1437] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.
Collapse
Affiliation(s)
- Andrew Beenken
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
205
|
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89:147-91. [PMID: 19126757 DOI: 10.1152/physrev.00010.2008] [Citation(s) in RCA: 1211] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an increased risk of cardiovascular disease and diabetes. The metabolic syndrome can be defined as a cluster of cardiovascular disease risk factors including visceral obesity, insulin resistance, dyslipidemia, increased blood pressure, and hypercoagulability. The farnesoid X receptor (FXR) belongs to the superfamily of ligand-activated nuclear receptor transcription factors. FXR is activated by bile acids, and FXR-deficient (FXR(-/-)) mice display elevated serum levels of triglycerides and high-density lipoprotein cholesterol, demonstrating a critical role of FXR in lipid metabolism. In an opposite manner, activation of FXR by bile acids (BAs) or nonsteroidal synthetic FXR agonists lowers plasma triglycerides by a mechanism that may involve the repression of hepatic SREBP-1c expression and/or the modulation of glucose-induced lipogenic genes. A cross-talk between BA and glucose metabolism was recently identified, implicating both FXR-dependent and FXR-independent pathways. The first indication for a potential role of FXR in diabetes came from the observation that hepatic FXR expression is reduced in animal models of diabetes. While FXR(-/-) mice display both impaired glucose tolerance and decreased insulin sensitivity, activation of FXR improves hyperglycemia and dyslipidemia in vivo in diabetic mice. Finally, a recent report also indicates that BA may regulate energy expenditure in a FXR-independent manner in mice, via activation of the G protein-coupled receptor TGR5. Taken together, these findings suggest that modulation of FXR activity and BA metabolism may open new attractive pharmacological approaches for the treatment of the metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Institut National de la Sante et de la Recherche Medicale, Lille, France
| | | | | | | | | |
Collapse
|
206
|
Shin DJ, Osborne TF. FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action. J Biol Chem 2009; 284:11110-20. [PMID: 19237543 DOI: 10.1074/jbc.m808747200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The current studies show FGF15 signaling decreases hepatic forkhead transcription factor 1 (FoxO1) activity through phosphatidylinositol (PI) 3-kinase-dependent phosphorylation. The bile acid receptor FXR (farnesoid X receptor) activates expression of fibroblast growth factor (FGF) 15 in the intestine, which acts through hepatic FGFR4 to suppress cholesterol-7alpha hydroxylase (CYP7A1) and limit bile acid production. Because FoxO1 activity and CYP7A1 gene expression are both increased by fasting, we hypothesized CYP7A1 might be a FoxO1 target gene. Consistent with recently reported results, we show CYP7A1 is a direct target of FoxO1. Additionally, we show that the PI 3-kinase pathway is key for both the induction of CYP7A1 by fasting and the suppression by FGF15. FGFR4 is the major hepatic FGF receptor isoform and is responsible for the hepatic effects of FGF15. We also show that expression of FGFR4 in liver was decreased by fasting, increased by insulin, and reduced by streptozotocin-induced diabetes, implicating FGFR4 as a primary target of insulin regulation. Because insulin and FGF both target the PI 3-kinase pathway, these observations suggest FoxO1 is a key node in the convergence of FGF and insulin signaling pathways and functions as a key integrator for the regulation of glucose and bile acid metabolism.
Collapse
Affiliation(s)
- Dong-Ju Shin
- Department of Molecular Biology and Biochemistry, School of Biological Sciences and Center for Diabetes Research and Treatment, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
207
|
Kurosu H, Kuro-O M. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol 2009; 299:72-8. [PMID: 19063940 DOI: 10.1016/j.mce.2008.10.052] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 08/04/2008] [Accepted: 10/27/2008] [Indexed: 02/07/2023]
Abstract
The Klotho gene encodes a single-pass transmembrane protein and functions as an aging-suppressor gene, which extends lifespan when overexpressed and accelerates the development of aging-like phenotypes when disrupted in mice. Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that regulates phosphate and vitamin D homeostasis. It has been shown that Klotho-deficient mice and Fgf23 knockout mice exhibit identical phenotypes. This observation led to the identification of Klotho as a cofactor essential for interactions between FGF23 and FGF receptors. In addition to the Klotho-FGF23 axis, recent studies has shown that betaKlotho, a Klotho family protein, also functions as a cofactor required for FGF19 and FGF21 signaling and determines the tissue-specific metabolic activities of FGF19 and FGF21. This review summarizes recent progress in understanding of Klotho and betaKlotho function in the regulation of tissue-specific metabolic activity of the endocrine fibroblast growth factors (FGF19, FGF21, and FGF23).
Collapse
Affiliation(s)
- Hiroshi Kurosu
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | |
Collapse
|
208
|
Bijl N, van Roomen CPAA, Triantis V, Sokolovic M, Ottenhoff R, Scheij S, van Eijk M, Boot RG, Aerts JM, Groen AK. Reduction of glycosphingolipid biosynthesis stimulates biliary lipid secretion in mice. Hepatology 2009; 49:637-45. [PMID: 19072830 DOI: 10.1002/hep.22663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Recent reports indicate that glycosphingolipids play an important role in regulation of carbohydrate metabolism. We have shown that the iminosugar N-(5'-adamantane-1'-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM), an inhibitor of the enzyme glucosylceramide synthase, is a potent enhancer of insulin signaling in rodent models for insulin resistance and type 2 diabetes. In this study, we determined whether AMP-DNM also affects lipid homeostasis and, in particular, the reverse cholesterol transport pathway. Treatment of C57BL/6J mice with AMP-DNM for 5 weeks decreased plasma levels of triglycerides and cholesterol by 35%, whereas neutral sterol excretion increased twofold. Secretion of biliary lipid also increased twofold, which resulted in a similar rise in bile flow. This effect was not due to altered expression levels or kinetics of the various export pumps involved in bile formation. However, the bile salt pool size increased and the expression of Cyp7A1 was up-regulated. In vitro experiments using HepG2 hepatoma cell line revealed this to be due to inhibition of fibroblast growth factor-19 (FGF19)-mediated suppression of Cyp7A1 via the FGF receptor. CONCLUSION Pharmacological modulation of glycosphingolipid metabolism showed surprising effects on lipid homeostasis in C57BL/6J mice. Upon administration of 100 mg AMP-DNM/kg body weight/day, plasma cholesterol and triglyceride levels decreased, biliary lipid secretion doubled and also the endpoint of reverse cholesterol transport, neutral sterol excretion, doubled.
Collapse
Affiliation(s)
- Nora Bijl
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Die Rolle von Tyrosinkinasen bei Krebserkrankungen des Kopf-Hals-Bereichs. HNO 2009; 57:123-32. [DOI: 10.1007/s00106-008-1868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
210
|
Ho HK, Pok S, Streit S, Ruhe JE, Hart S, Lim KS, Loo HL, Aung MO, Lim SG, Ullrich A. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol 2009; 50:118-27. [PMID: 19008009 DOI: 10.1016/j.jhep.2008.08.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/22/2008] [Accepted: 08/29/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS FGFR4, a member of the fibroblast growth factor receptor family, has been recently associated with progression of melanoma, breast and head and neck carcinoma. Given its uniquely high expression in the liver, we investigated its contributory role to hepatocellular carcinoma (HCC). METHODS We performed a comprehensive sequencing of full-length FGFR4 transcript in 57 tumor/normal HCC tissue pairs, and quantified their mRNA expressions. Notable mutations and expression patterns were correlated with patient data. Clinically significant trends were examined in in vitro models. RESULTS We found eight genetic alterations including two highly frequent polymorphisms (V10I and G338R). Secretion of alpha-fetoprotein (AFP), a HCC biomarker, was increased among patients bearing homozygous Arg388 alleles. One-third of these patients exhibited increased FGFR4 mRNA expression in the matched tumor/normal tissue. Subsequent in vitro perturbation of FGFR4 signaling through both FGF19-stimulation and FGFR4 silencing confirmed a mechanistic link between FGFR4 activities and tumor aggressiveness. More importantly, inhibition of FGFR activity with PD173074 exquisitely blocked HuH7 (high FGFR4 expression) proliferation as compared to control cell lines. CONCLUSIONS FGFR4 contributes significantly to HCC progression by modulating AFP secretion, proliferation and anti-apoptosis. Its frequent overexpression in patients renders its inhibition a novel and much needed pharmacological approach against HCC.
Collapse
Affiliation(s)
- Han Kiat Ho
- Singapore OncoGenome Laboratory, Institute of Medical Biology, A *STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Song KH, Li T, Owsley E, Strom S, Chiang JYL. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 2009; 49:297-305. [PMID: 19085950 PMCID: PMC2614454 DOI: 10.1002/hep.22627] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Mouse fibroblast growth factor 15 (FGF15) and human ortholog FGF19 have been identified as the bile acid-induced intestinal factors that mediate bile acid feedback inhibition of cholesterol 7alpha-hydroxylase gene (C YP7A1) transcription in mouse liver. The mechanism underlying FGF15/FGF19 inhibition of bile acid synthesis in hepatocytes remains unclear. Chenodeoxycholic acid (CDCA) and the farnesoid X receptor (FXR)-specific agonist GW4064 strongly induced FGF19 but inhibited CYP7A1 messenger RNA (mRNA) levels in primary human hepatocytes. FGF19 strongly and rapidly repressed CYP7A1 but not small heterodimer partner (SHP) mRNA levels. Kinase inhibition and phosphorylation assays revealed that the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MAPK/Erk1/2) pathway played a major role in mediating FGF19 inhibition of CYP7A1. However, small interfering RNA (siRNA) knockdown of SHP did not affect FGF19 inhibition of CYP7A1. Interestingly, CDCA stimulated tyrosine phosphorylation of the FGF receptor 4 (FGFR4) in hepatocytes. FGF19 antibody and siRNA specific to FGFR4 abrogated GW4064 inhibition of CYP7A1. These results suggest that bile acid-activated FXR is able to induce FGF19 in hepatocytes to inhibit CYP7A1 by an autocrine/paracrine mechanism. CONCLUSION The hepatic FGF19/FGFR4/Erk1/2 pathway may inhibit CYP7A1 independent of SHP. In addition to inducing FGF19 in the intestine, bile acids in hepatocytes may activate the liver FGF19/FGFR4 signaling pathway to inhibit bile acid synthesis and prevent accumulation of toxic bile acid in human livers.
Collapse
Affiliation(s)
- Kwang-Hoon Song
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272
| | - Tiangang Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272
| | - Erika Owsley
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272
| | - Stephen Strom
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272
| |
Collapse
|
212
|
Abstract
Endocrine fibroblast growth factors (FGFs) function as hormones that maintain specific metabolic states by controlling homeostasis of bile acid, glucose, fatty acid, phosphate, and vitamin D. Endocrine FGFs exert their biological activity through a common design of coreceptor system consisting of the Klotho gene family of transmembrane proteins and cognate FGF receptors. Moreover, expression of endocrine FGFs is regulated by nuclear receptors whose lipophilic ligands are generated under the control of these hormones in the target organs. Thus, novel endocrine axes have emerged that regulate diverse metabolic processes through feedback loops composed of the FGF, Klotho, FGF receptor, and nuclear receptor gene families. This review summarizes the role of Klotho family proteins in the regulation of metabolic activity and expression of the endocrine FGFs.
Collapse
Affiliation(s)
- Hiroshi Kurosu
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, Shinjuku-Ku, Tokyo, Japan
| | | |
Collapse
|
213
|
Abstract
There are two major pathways that mammalian cells use to supply themselves with cholesterol, one involving the synthesis of sterols from acetyl-CoA and the other the metabolism of cholesterol-rich lipoprotein particles via receptor-mediated endocytosis. There also are several pathways that mammalian cells use to break down cholesterol, and these disposal pathways are equal in physiological importance to the supply pathways. A major catabolic route involves conversion of cholesterol into conjugated bile salts, a transformation mediated by 16 or more liver enzymes. This review highlights findings in cholesterol catabolism from the last five decades with special emphasis on advances in bile acid synthesis, transport, and regulation.
Collapse
Affiliation(s)
- David W Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| |
Collapse
|
214
|
Kuro-o M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol Metab 2008; 19:239-45. [PMID: 18692401 DOI: 10.1016/j.tem.2008.06.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/09/2008] [Accepted: 06/09/2008] [Indexed: 01/03/2023]
Abstract
Endocrine fibroblast growth factors (FGFs) control a variety of physiological processes including suppression of bile acid synthesis in hepatocytes, promotion of lipolysis in adipocytes, and inhibition of phosphate reabsorption and vitamin D biosynthesis in renal tubular cells. Endocrine FGFs require the Klotho gene family of transmembrane proteins as co-receptors to bind cognate FGF receptors. Importantly, expression of endocrine FGFs is regulated by nuclear receptors whose lipophilic ligands are generated under the control of these hormones in their target organs. Thus, novel endocrine axes have emerged that regulate diverse metabolic processes through feedback loops composed of the FGF, Klotho, and nuclear receptor gene families. This review covers roles of Klotho family proteins in the regulation of activity and expression of endocrine FGFs.
Collapse
Affiliation(s)
- Makoto Kuro-o
- Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, TX 75390-9072, USA.
| |
Collapse
|
215
|
Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal 2008; 20:2180-97. [PMID: 18634871 DOI: 10.1016/j.cellsig.2008.06.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
Bile acids are mainly recognized for their role in dietary lipid absorption and cholesterol homeostasis. However, recent progress in bile acid research suggests that bile acids are important signaling molecules that play a role in glucose homeostasis. Among the various supporting evidence, several reports have demonstrated an improvement of the glycemic index of type 2 diabetic patients treated with diverse bile acid binding resins. Herein, we review the diverse interactions of bile acids with various signaling/response pathways, including calcium mobilization and protein kinase activation, membrane receptor-mediated responses, and nuclear receptor responses. Some of the effects of the bile acids are direct through the activation of specific receptors, i.e., TGR5, CAR, VDR, and FXR, while others imply modulation of the hormonal, growth factor and/or neuromediator responses, i.e., glucagon, EGF, and acetylcholine. We also discuss recent evidence implicating the interaction of bile acids with glucose homeostasis mechanisms, with the integration of our understanding of how the signaling mechanisms modulated by bile acid could regulate glucose metabolism.
Collapse
Affiliation(s)
- Amy Nguyen
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
216
|
Kwiatkowski BA, Kirillova I, Richard RE, Israeli D, Yablonka-Reuveni Z. FGFR4 and its novel splice form in myogenic cells: Interplay of glycosylation and tyrosine phosphorylation. J Cell Physiol 2008; 215:803-17. [PMID: 18186042 DOI: 10.1002/jcp.21365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here, we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(-16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(-16) coincided with that of wild-type FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T(1/2)-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.
Collapse
Affiliation(s)
- Boguslaw A Kwiatkowski
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
217
|
Abstract
The klotho gene functions as an aging-suppressor gene that extends life span when overexpressed and accelerates aging-like phenotypes when disrupted in mice. The klotho gene encodes a single-pass transmembrane protein that binds to multiple fibroblast growth factor (FGF) receptors and functions as a co-receptor for FGF23, a bone-derived hormone that suppresses phosphate reabsorption and vitamin D biosynthesis in the kidney. In addition, the extracellular domain of Klotho protein is shed and secreted, potentially functioning as a humoral factor. The secreted Klotho protein can regulate multiple growth factor signaling pathways, including insulin/IGF-1 and Wnt, and the activity of multiple ion channels. Klotho protein also protects cells and tissues from oxidative stress, yet the precise mechanism underlying these activities remains to be determined. Thus, understanding of Klotho protein function is expected to provide new insights into the molecular basis for aging, phosphate/vitamin D metabolism, cancer and stem cell biology.
Collapse
Affiliation(s)
- Makoto Kuro-o
- Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| |
Collapse
|
218
|
Liu Y, Havinga R, VAN DER Leij FR, Boverhof R, Sauer PJJ, Kuipers F, Stellaard F. Dexamethasone exposure of neonatal rats modulates biliary lipid secretion and hepatic expression of genes controlling bile acid metabolism in adulthood without interfering with primary bile acid kinetics. Pediatr Res 2008; 63:375-81. [PMID: 18356742 DOI: 10.1203/pdr.0b013e318165b8af] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Literature suggests that glucocorticoid (GC) exposure during early life may have long-term consequences into adult life. GCs are known to influence hepatic bile acid synthesis and their transport within the enterohepatic circulation. This study addresses effects of early postnatal exposure to GC on hepatic expression of key genes in bile acid metabolism and bile acid kinetics in adult rats. Male rats were treated with either dexamethasone (DEX) or saline at days 1-3 d after birth. Liver tissue and blood were collected from 2 d to 50 wk of age. Bile acid kinetics were determined at week 8. DEX acutely induced hepatic mRNA levels of cholesterol 7alpha-hydroxylase (Cyp7a1), cholesterol 27-hydroxylase (Cyp27), and in particular sterol 12alpha-hydroxylase (Cyp8b1), whereas expression of the bile acid transporters bile salt export pump (Bsep) and sodium taurocholate cotransporting polypeptide (Ntcp) was moderately affected. Neonatal DEX administration led to increased bilary lipid secretion, decreased Cyp8B1 mRNA expression and a 3-fold higher Cyp7a1/Cyp8b1 mRNA ratio in rats at week 8 compared with age-matched controls without alterations in bile acid kinetics. Therefore, neonatal DEX administration causes altered gene expressions later in life that are not translated into quantitative changes in bile acid kinetics.
Collapse
Affiliation(s)
- Yan Liu
- Center for Liver, Digestive, and Metabolic Disease, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
219
|
Davis RA. Resolving the mechanism of bile acid negative-feedback regulation, a Journal of Lipid Research tradition. J Lipid Res 2008; 49:2-3. [PMID: 18159090 DOI: 10.1194/jlr.e700009-jlr200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
220
|
Abstract
Fibroblast growth factor (FGF) 19 is an atypical member of the fibroblast growth factor family of signaling molecules. FGF19, FGF21, and FGF23 comprise a phylogenetic subfamily with attributes that distinguish them from typical FGFs. The FGF19 subfamily has reduced heparin binding resulting from a disrupted beta-trefoil domain. Reduced heparin binding allows these FGFs to diffuse beyond their site of origin and act as endocrine hormones. This family of FGFs is regulated, at least in part, by nuclear hormone receptors. FGF19 expression is regulated by the farnesoid X receptor, a nuclear hormone receptor that is a key regulator of bile acid biosynthesis and transport. In line with its regulation by a bile acid receptor, FGF19 is involved in the regulation of bile acid biosynthesis and gallbladder filling. FGF19 originates from intestine and signals to liver via the portal circulation with a pronounced diurnal pattern. FGF19 is the only FGF to not have a closely related mouse homologue. The mouse homologue of FGF19, called FGF15, is only 53% identical to the human FGF19. FGF19 transgenic mice and mice administered exogenous FGF19 are resistant to the effects of a high fat diet, suggesting FGF19 may play a role in metabolic signaling pathways. Hepatocellular carcinoma is seen in mice, predominantly female mice, exposed to FGF19. Further investigation into the cellular mechanisms involved in these activities will allow better understanding of FGF19 biology in the context of human physiology.
Collapse
Affiliation(s)
- Stacey Jones
- Discovery Technology Group, Research & Development, GlaxoSmithKline, Five Moore Drive, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
221
|
Staudinger JL, Lichti K. Cell signaling and nuclear receptors: new opportunities for molecular pharmaceuticals in liver disease. Mol Pharm 2008; 5:17-34. [PMID: 18159925 PMCID: PMC2387130 DOI: 10.1021/mp700098c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver-enriched nuclear receptors (NRs) collectively function as metabolic and toxicological "sensors" that mediate liver-specific gene-activation in mammals. NR-mediated gene-environment interaction regulates important steps in the hepatic uptake, metabolism, and excretion of glucose, fatty acids, lipoproteins, cholesterol, bile acids, and xenobiotics. Hence, liver-enriched NRs play pivotal roles in the overall control of energy homeostasis in mammals. While it is well-recognized that ligand-binding is the primary mechanism behind activation of NRs, recent research reveals that multiple signal transduction pathways modulate NR-function in liver. The interface between specific signal transduction pathways and NRs helps to determine their overall responsiveness to various environmental and physiological stimuli. In general, phosphorylation of hepatic NRs regulates multiple biological parameters including their transactivation capacity, DNA binding, subcellular location, capacity to interact with protein-cofactors, and protein stability. Certain pathological conditions including inflammation, morbid obesity, hyperlipidemia, atherosclerosis, insulin resistance, and type-2 diabetes are known to modulate selected signal transduction pathways in liver. This review will focus upon recent insights regarding the molecular mechanisms that comprise the interface between disease-mediated activation of hepatic signal transduction pathways and liver-enriched NRs. This review will also highlight the exciting opportunities presented by this new knowledge to develop novel molecular and pharmaceutical strategies for combating these increasingly prevalent human diseases.
Collapse
Affiliation(s)
- Jeff L Staudinger
- University of Kansas, Department of Pharmacology and Toxicology, 1251 Wescoe Hall Dr, 5038 Malott Hall, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
222
|
Zhang Y, Edwards PA. FXR signaling in metabolic disease. FEBS Lett 2007; 582:10-8. [PMID: 18023284 DOI: 10.1016/j.febslet.2007.11.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 11/06/2007] [Indexed: 11/25/2022]
Abstract
Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily, has been shown to be important in controlling numerous metabolic pathways; these include roles in maintaining bile acid, lipid and glucose homeostasis, in preventing intestinal bacterial infection and gallstone formation and in modulating liver regeneration and tumorigenesis. The accumulating data suggest that FXR may be a pharmaceutical target for the treatment of certain metabolic diseases.
Collapse
Affiliation(s)
- Yanqiao Zhang
- Department of Biological Chemistry, University of California at Los Angeles, 47-105 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
223
|
Huang X, Yang C, Luo Y, Jin C, Wang F, McKeehan WL. FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet induced fatty liver. Diabetes 2007; 56:2501-10. [PMID: 17664243 DOI: 10.2337/db07-0648] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Fibroblast growth factor (FGF) family signaling largely controls cellular homeostasis through short-range intercell paracrine communication. Recently FGF15/19, 21, and 23 have been implicated in endocrine control of metabolic homeostasis. The identity and location of the FGF receptor isotypes that mediate these effects are unclear. The objective was to determine the role of FGFR4, an isotype that has been proposed to mediate an ileal FGF15/19 to hepatocyte FGFR4 axis in cholesterol homeostasis, in metabolic homeostasis in vivo. RESEARCH DESIGN AND METHODS FGFR4(-/-) mice-mice overexpressing constitutively active hepatic FGFR4--and FGFR4(-/-) with constitutively active hepatic FGFR4 restored in the liver were subjected to a normal and a chronic high-fat diet sufficient to result in obesity. Systemic and liver-specific metabolic phenotypes were then characterized. RESULTS FGFR4-deficient mice on a normal diet exhibited features of metabolic syndrome that include increased mass of white adipose tissue, hyperlipidemia, glucose intolerance, and insulin resistance, in addition to hypercholesterolemia. Surprisingly, the FGFR4 deficiency alleviated high-fat diet-induced fatty liver in obese mice, which is also a correlate of metabolic syndrome. Restoration of FGFR4, specifically in hepatocytes of FGFR4-deficient mice, decreased plasma lipid levels and restored the high-fat diet-induced fatty liver but failed to restore glucose tolerance and sensitivity to insulin. CONCLUSIONS FGFR4 plays essential roles in systemic lipid and glucose homeostasis. FGFR4 activity in hepatocytes that normally serves to prevent systemic hyperlipidemia paradoxically underlies the fatty liver disease associated with chronic high-fat intake and obesity.
Collapse
Affiliation(s)
- Xinqiang Huang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
224
|
Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-O M. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282:26687-26695. [PMID: 17623664 PMCID: PMC2496965 DOI: 10.1074/jbc.m704165200] [Citation(s) in RCA: 604] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1-4). We demonstrated that Klotho and betaKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires betaKlotho. Both FGF19 and FGF21 can signal through FGFR1-3 bound by betaKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the betaKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of betaKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.
Collapse
Affiliation(s)
- Hiroshi Kurosu
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Mihwa Choi
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Yasushi Ogawa
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Addie S Dickson
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Regina Goetz
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Anna V Eliseenkova
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Kevin P Rosenblatt
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Steven A Kliewer
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Makoto Kuro-O
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390.
| |
Collapse
|
225
|
Gilardi F, Mitro N, Godio C, Scotti E, Caruso D, Crestani M, De Fabiani E. The pharmacological exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in bile acid synthesis: from binding resins to chromatin remodelling to reduce plasma cholesterol. Pharmacol Ther 2007; 116:449-72. [PMID: 17959250 DOI: 10.1016/j.pharmthera.2007.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 01/25/2023]
Abstract
Mammals dispose of cholesterol mainly through 7alpha-hydroxylated bile acids, and the enzyme catalyzing the 7alpha-hydroxylation, cholesterol 7alpha-hydroxylase (CYP7A1), has a deep impact on cholesterol homeostasis. In this review, we present the study of regulation of CYP7A1 as a good exemplification of the extraordinary contribution of molecular biology to the advancement of our understanding of metabolic pathways that has taken place in the last 2 decades. Since the cloning of the gene from different species, experimental evidence has accumulated, indicating that the enzyme is mainly regulated at the transcriptional level and that bile acids are the most important physiological inhibitors of CYP7A1 transcription. Multiple mechanisms are involved in the control of CYP7A1 transcription and a variety of transcription factors and nuclear receptors participate in sophisticated regulatory networks. A higher order of transcriptional regulation, stemming from the so-called histone code, also applies to CYP7A1, and recent findings clearly indicate that chromatin remodelling events have profound effects on its expression. CYP7A1 also acts as a sensor of signals coming from the gut, thus representing another line of defence against the toxic effects of bile acids and a downstream target of agents acting at the intestinal level. From the pharmacological point of view, bile acid binding resins were the first primitive approach targeting the negative feed-back regulation of CYP7A1 to reduce plasma cholesterol. In recent years, new drugs have been designed based on recent discoveries of the regulatory network, thus confirming the position of CYP7A1 as a focus for innovative pharmacological intervention.
Collapse
Affiliation(s)
- Federica Gilardi
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
226
|
Kuipers F, Stroeve JHM, Caron S, Staels B. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control. Curr Opin Lipidol 2007; 18:289-97. [PMID: 17495603 DOI: 10.1097/mol.0b013e3281338d08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Bile acids are amphiphilic molecules synthesized from cholesterol exclusively in the liver that are essential for effective absorption of dietary fat. In addition to this 'classical role', bile acids act as signalling molecules that control their own metabolism by activating the nuclear receptor, farnesoid X receptor. RECENT FINDINGS Recent work demonstrates that farnesoid X receptor exerts metabolic control beyond bile acid homeostasis, notably effects on HDL, triglyceride and glucose metabolism. Farnesoid X receptor influences insulin sensitivity of tissues that are not part of the enterohepatic circulation, for example, adipose tissue. Certain metabolic effects in the liver appear to be mediated via farnesoid X receptor-stimulated release of an intestinal growth factor. In addition, novel signalling pathways independent of farnesoid X receptor have been identified that may contribute to bile acid-mediated metabolic regulation. SUMMARY Farnesoid X receptor represents a potentially attractive target for treatment of various aspects of the metabolic syndrome and for prevention of atherosclerosis. Yet, in view of its pleiotropic effects and apparent species-specificity, it is evident that successful interference of the farnesoid X receptor signalling system will require the development of gene-specific and/or organ-specific farnesoid X receptor modulators and extensive testing in human models of disease.
Collapse
Affiliation(s)
- Folkert Kuipers
- Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, The Netherlands.
| | | | | | | |
Collapse
|
227
|
Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R, Eliseenkova AV, Mohammadi M, Kuro-o M. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 2007; 104:7432-7. [PMID: 17452648 PMCID: PMC1855074 DOI: 10.1073/pnas.0701600104] [Citation(s) in RCA: 497] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine factor that stimulates glucose uptake in adipocytes. Here, we show that FGF21 activity depends on betaKlotho, a single-pass transmembrane protein whose expression is induced during differentiation from preadipocytes to adipocytes. BetaKlotho physically interacts with FGF receptors 1c and 4, thereby increasing the ability of these FGF receptors to bind FGF21 and activate the MAP kinase cascade. Knockdown of betaKlotho expression by siRNA in adipocytes diminishes glucose uptake induced by FGF21. Importantly, administration of FGF21 into mice induces MAP kinase phosphorylation in white adipose tissue and not in tissues without betaKlotho expression. Thus, betaKlotho functions as a cofactor essential for FGF21 activity.
Collapse
Affiliation(s)
- Yasushi Ogawa
- *Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390; and
| | - Hiroshi Kurosu
- *Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390; and
| | - Masaya Yamamoto
- *Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390; and
| | - Animesh Nandi
- *Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390; and
| | - Kevin P. Rosenblatt
- *Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390; and
| | - Regina Goetz
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016
| | - Anna V. Eliseenkova
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016
| | - Makoto Kuro-o
- *Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390; and
| |
Collapse
|
228
|
Huang X, Yu C, Jin C, Yang C, Xie R, Cao D, Wang F, McKeehan WL. Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol Carcinog 2007; 45:934-42. [PMID: 16929488 DOI: 10.1002/mc.20241] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inappropriate fibroblast growth factor (FGF) signaling is involved in most tissue-specific pathologies including cancer. Previously we showed that inappropriate expression and chronic activity of FGF receptor (FGFR) 1 in hepatocytes accelerated diethylnitrosamine (DEN)-initiated hepatocarcinogenesis. Here we showed that although widely expressed FGF1 and FGF2 are frequently upregulated in hepatocellular carcinoma (HCC), germline deletion of both FGF1 and FGF2 had no effect on DEN-initiated hepatocarcinogenesis. Thus overexpression of FGF1 or FGF2 may be a consequence rather than contributor to hepatoma progression. FGF21 is the first of 22 homologues whose expression has been reported to be preferentially in the liver. We showed that similar to FGF1 and FGF2, FGF21 mRNA was upregulated in neoplastic and regenerating liver after partial hepatectomy (PH) and CCl4 administration. In situ hybridization analysis confirmed that in contrast to FGF1 and FGF2, expression of FGF21 mRNA was limited to hepatocytes. Forced overexpression of FGF21 in hepatocytes by gene targeting had no apparent impact on normal liver development and compensatory response to injury. Surprisingly, overexpression of FGF21 delayed the appearance of DEN-induced liver tumors. At 8 and 10 mo, only 10% and 30% of transgenic mice, respectively, developed adenomas compared to 50% (all adenomas) and 80% (60% adenoma/20% HCC) in the wild-type (WT) mice. However, the incidence and burden of HCC at 10 mo and later was equal in the FGF21 transgenic and WT mice. We propose that FGF21 may delay development of adenomas through activation of resident hepatocyte FGFR4 at early times, but counteracts the delay by acceleration of progression to HCC through interaction with ectopic FGFR1 once it appears in hepatoma cells. This indicates a dual function of FGF21 that may reflect changes in FGFR isotype during progression of differentiated hepatoma cells.
Collapse
MESH Headings
- Animals
- Carbon Tetrachloride/toxicity
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Fibroblast Growth Factor 1/antagonists & inhibitors
- Fibroblast Growth Factor 1/genetics
- Fibroblast Growth Factor 1/physiology
- Fibroblast Growth Factor 2/antagonists & inhibitors
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Fibroblast Growth Factors/antagonists & inhibitors
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/physiology
- Gene Targeting
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice
- Mice, Transgenic
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/agonists
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Xinqiang Huang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Lundåsen T, Gälman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2006; 260:530-6. [PMID: 17116003 DOI: 10.1111/j.1365-2796.2006.01731.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs) traversing the enterohepatic circulation exert several important metabolic effects. Their hepatic synthesis, controlled by the enzyme cholesterol 7alpha-hydroxylase (CYP7A1), has a unique diurnal variation in man. Here we provide evidence that the transintestinal flux of BAs regulates serum levels of intestinal fibroblast growth factor 19 (FGF19) that in turn modulate BA production in human liver. Basal FGF19 levels varied by 10-fold in normal subjects, and were reduced following treatment with a BA-binding resin and increased upon feeding the BA chenodeoxycholic acid. Serum FGF19 levels exhibited a pronounced diurnal rhythm with peaks occurring 90-120 min after the postprandial rise in serum BAs. The FGF19 peaks in turn preceded the declining phase of BA synthesis. The diurnal rhythm of serum FGF19 was abolished upon fasting. We conclude that, in humans, circulating FGF19 has a diurnal rhythm controlled by the transintestinal BA flux, and that FGF19 modulates hepatic BA synthesis. Through its systemic effects, circulating FGF19 may also mediate other known BA-dependent effects on lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- T Lundåsen
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Center for Nutrition and Toxicology, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|
230
|
Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 2006; 15:437-41. [PMID: 16775459 DOI: 10.1097/01.mnh.0000232885.81142.83] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the most recent findings on Klotho in the regulation of fibroblast growth factor-23 (FGF23) signaling and phosphate/calcium homeostasis. RECENT FINDINGS The klotho gene encodes a single-pass transmembrane protein and functions as an aging-suppressor gene, which extends life span when overexpressed and accelerates the development of aging-like phenotypes when disrupted in mice. FGF23 is a hormone that suppresses phosphate reabsorption in renal proximal tubules. Recent studies have shown that Klotho mice and Fgf23 mice exhibit identical phenotypes including hyperphosphatemia and hypercalcemia in addition to the aging-like syndrome. This may be explained by the fact that Klotho binds to multiple FGF receptors and increases their affinity to FGF23. Another Klotho protein function is to activate transient receptor potential vanilloid-5 - a calcium channel involved in calcium reabsorption in the kidney. Klotho protein can modify sugar chains on transient receptor potential vanilloid-5 through its activity as a beta-glucuronidase, preventing the calcium channel from internalization and inactivation. SUMMARY Klotho protein binds to fibroblast growth factor receptors and functions as a regulator of FGF23 signaling. It also functions as an enzyme that modifies sugar chains of transient receptor potential vanilloid-5 and regulates its activity. Klotho is a multi-functional protein that regulates phosphate/calcium metabolism as well as aging.
Collapse
Affiliation(s)
- Makoto Kuro-o
- Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9072, USA.
| |
Collapse
|
231
|
Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, Suino-Powell K, Xu HE, Richardson JA, Gerard RD, Mangelsdorf DJ, Kliewer SA. Identification of a hormonal basis for gallbladder filling. Nat Med 2006; 12:1253-5. [PMID: 17072310 DOI: 10.1038/nm1501] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 10/03/2006] [Indexed: 01/24/2023]
Abstract
The cycle of gallbladder filling and emptying controls the flow of bile into the intestine for digestion. Here we show that fibroblast growth factor-15, a hormone made by the distal small intestine in response to bile acids, is required for gallbladder filling. These studies demonstrate that gallbladder filling is actively regulated by an endocrine pathway and suggest a postprandial timing mechanism that controls gallbladder motility.
Collapse
Affiliation(s)
- Mihwa Choi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y. FXR, a multipurpose nuclear receptor. Trends Biochem Sci 2006; 31:572-80. [PMID: 16908160 DOI: 10.1016/j.tibs.2006.08.002] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/14/2006] [Accepted: 08/03/2006] [Indexed: 12/20/2022]
Abstract
The farnesoid X receptor (FXR) is a ligand-activated transcription factor and a member of the nuclear receptor superfamily. In the past six years, remarkable inroads have been made into determining the functional importance of FXR. This receptor has been shown to have crucial roles in controlling bile acid homeostasis, lipoprotein and glucose metabolism, hepatic regeneration, intestinal bacterial growth and the response to hepatotoxins. Thus, the development of FXR agonists might prove useful for the treatment of diabetes, cholesterol gallstones, and hepatic and intestinal toxicity.
Collapse
Affiliation(s)
- Florence Y Lee
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
233
|
Ratliff EP, Gutierrez A, Davis RA. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. J Lipid Res 2006; 47:1513-20. [PMID: 16609145 DOI: 10.1194/jlr.m600120-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constitutive expression of a cholesterol-7alpha-hydroxylase (CYP7A1) transgene in LDL receptor-deficient mice blocked the ability of a cholesterol-enriched diet to increase plasma levels of apolipoprotein B-containing lipoproteins. LDL receptor-deficient mice expressing the CYP7A1 transgene exhibited complete resistance to diet-induced hypercholesterolemia and to the accumulation of cholesterol in the liver. Hepatic mRNA expression of liver X receptor-inducible ABCG5 and ABCG8 was decreased in CYP7A1 transgenic, LDL receptor-deficient mice fed a cholesterol-enriched diet. Thus, increased biliary cholesterol excretion could not account for the maintenance of cholesterol homeostasis. CYP7A1 transgenic, LDL receptor-deficient mice fed the cholesterol-enriched diet exhibited decreased jejunal Niemann-Pick C1-Like 1 protein (NPC1L1) mRNA expression, an important mediator of intestinal cholesterol absorption. A taurocholate-enriched diet also decreased NPC1L1 mRNA expression in a farnesoid X receptor-independent manner. Reduced expression of NPC1L1 mRNA was associated with decreased cholesterol absorption ( approximately 20%; P < 0.05) exhibited by CYP7A1 transgenic LDL receptor-deficient mice fed the cholesterol-enriched diet. The combined data show that enhanced expression of CYP7A1 is an effective means to prevent the accumulation of cholesterol in the liver and of atherogenic apolipoprotein B-containing lipoproteins in plasma.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Cholesterol 7-alpha-Hydroxylase/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Cholesterol, Dietary/metabolism
- DNA-Binding Proteins/metabolism
- Diet, Atherogenic
- Gene Expression
- Hypercholesterolemia/etiology
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/prevention & control
- Intestinal Absorption
- Liver/metabolism
- Liver X Receptors
- Membrane Transport Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Orphan Nuclear Receptors
- Proprotein Convertase 9
- Proprotein Convertases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Serine Endopeptidases/genetics
- Sterol Regulatory Element Binding Protein 2/genetics
Collapse
Affiliation(s)
- Eric P Ratliff
- Heart Institute, BioScience Center, San Diego State University, CA 92182, USA
| | | | | |
Collapse
|
234
|
Zelcer N, van de Wetering K, de Waart R, Scheffer GL, Marschall HU, Wielinga PR, Kuil A, Kunne C, Smith A, van der Valk M, Wijnholds J, Elferink RO, Borst P. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. J Hepatol 2006; 44:768-75. [PMID: 16225954 DOI: 10.1016/j.jhep.2005.07.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/07/2005] [Accepted: 07/11/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIM Multidrug Resistance Protein 3 (MRP3) transports bile salts and glucuronide conjugates in vitro and is postulated to protect the liver in cholestasis. Whether the absence of Mrp3 affects these processes in vivo is tested. METHODS Mrp3-deficient mice were generated and the contribution of Mrp3 to bile salt and glucuronide conjugate transport was tested in (1): an Ussing-chamber set-up with ileal explants (2), the liver during bile-duct ligation (3), liver perfusion experiments, and (4) in vitro vesicular uptake experiments. RESULTS The Mrp3((-/-)) mice show no overt phenotype. No differences between WT and Mrp3-deficient mice were found in the trans-ileal transport of taurocholate. After bile-duct ligation, there were no differences in histological liver damage and serum bile salt levels between Mrp3((-/-)) and WT mice, but Mrp3-deficient mice had lower serum bilirubin glucuronide concentrations. Glucuronide conjugates of hyocholate and hyodeoxycholate are substrates of MRP3 in vitro and in livers that lack Mrp3, there is reduced sinusoidal secretion of hyodeoxycholate-glucuronide after perfusion with hyodeoxycholate. CONCLUSIONS Mrp3 does not have a major role in bile salt physiology, but is involved in the transport of glucuronidated compounds, which could include glucuronidated bile salts in humans.
Collapse
Affiliation(s)
- Noam Zelcer
- Division of Molecular Biology, H8, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Hoch RV, Soriano P. Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Development 2006; 133:663-73. [PMID: 16421190 DOI: 10.1242/dev.02242] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor receptor 1 (Fgfr1) plays pleiotropic roles during embryonic development, but the mechanisms by which this receptor signals in vivo have not previously been elucidated. Biochemical studies have implicated Fgf receptor-specific substrates (Frs2, Frs3) as the principal mediators of Fgfr1 signal transduction to the MAPK and PI3K pathways. To determine the developmental requirements for Fgfr1-Frs signaling, we generated mice (Fgfr1ΔFrs/ΔFrs) in which the Frs2/3-binding site on Fgfr1 is deleted. Fgfr1ΔFrs/ΔFrs embryos die during late embryogenesis, and exhibit defects in neural tube closure and in the development of the tail bud and pharyngeal arches. However, the mutant receptor is able to drive Fgfr1 functions during gastrulation and somitogenesis, and drives normal MAPK responses to Fgf. These findings indicate that Fgfr1 uses distinct signal transduction mechanisms in different developmental contexts, and that some essential functions of this receptor are mediated by Frs-independent signaling.
Collapse
Affiliation(s)
- Renée V Hoch
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
236
|
Huang X, Yu C, Jin C, Kobayashi M, Bowles CA, Wang F, McKeehan WL. Ectopic activity of fibroblast growth factor receptor 1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and vascular endothelial growth factor-induced angiogenesis. Cancer Res 2006; 66:1481-90. [PMID: 16452204 DOI: 10.1158/0008-5472.can-05-2412] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibroblast growth factor (FGF) signaling mediates cell-to-cell communication in development and organ homeostasis in adults. Of the four FGF receptor (FGFR) tyrosine kinases, only FGFR4 is expressed in mature hepatocytes. Although FGFR1 is expressed by hepatic cell progenitors and adult nonparenchymal cells, ectopic expression is commonly observed in hepatoma cells. Here, we determined whether ectopic FGFR1 is a cause or consequence of hepatocellular carcinoma by targeting a constitutively active human FGFR1 to mouse hepatocytes. Livers of transgenic mice exhibited accelerated regeneration after partial hepatectomy but no signs of neoplastic or preneoplastic abnormalities for up to 18 months. However, in diethylnitrosamine-treated mice, the chronic FGFR1 activity promoted an incidence of 44% adenomas at 4 months and 38% hepatocellular carcinoma at 8 months. No adenoma or hepatocellular carcinoma was observed in diethylnitrosamine-treated wild-type (WT) livers at 4 or 8 months, respectively. At 10 and 12 months, tumor-bearing livers in transgenic mice were twice the size of those in WT animals. Isolated hepatoma cells from the transgenic tumors exhibited a growth advantage in culture. Advanced hepatocellular carcinoma in the transgenic livers exhibited a reduced rate of necrosis. This was accompanied by a mean microvessel density of 2.7 times that of WT tumors and a markedly higher level of vascular endothelial growth factor. In cooperation with an initiator, the persistent activity of ectopic FGFR1 in hepatocytes is a strong promoter of hepatocellular carcinoma by driving cell proliferation at early stages and promoting neoangiogenesis at late stages of progression.
Collapse
MESH Headings
- Animals
- Carcinogens
- Cell Growth Processes/physiology
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- DNA, Neoplasm/biosynthesis
- Diethylnitrosamine
- Hepatectomy
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Liver/drug effects
- Liver/physiology
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Regeneration/physiology
- MAP Kinase Signaling System
- Mice
- Mice, Transgenic
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Xinqiang Huang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
237
|
Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006; 281:6120-3. [PMID: 16436388 PMCID: PMC2637204 DOI: 10.1074/jbc.c500457200] [Citation(s) in RCA: 1031] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aging suppressor gene Klotho encodes a single-pass transmembrane protein. Klotho-deficient mice exhibit a variety of aging-like phenotypes, many of which are similar to those observed in fibroblast growth factor-23 (FGF23)-deficient mice. To test the possibility that Klotho and FGF23 may function in a common signal transduction pathway(s), we investigated whether Klotho is involved in FGF signaling. Here we show that Klotho protein directly binds to multiple FGF receptors (FGFRs). The Klotho-FGFR complex binds to FGF23 with higher affinity than FGFR or Klotho alone. In addition, Klotho significantly enhanced the ability of FGF23 to induce phosphorylation of FGF receptor substrate and ERK in various types of cells. Thus, Klotho functions as a cofactor essential for activation of FGF signaling by FGF23.
Collapse
Affiliation(s)
- Hiroshi Kurosu
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Yasushi Ogawa
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Masayoshi Miyoshi
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Masaya Yamamoto
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Animesh Nandi
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Kevin P. Rosenblatt
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Michel G. Baum
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Susan Schiavi
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ming-Chang Hu
- Applied Genomics, Genzyme Corporation, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Orson W. Moe
- Applied Genomics, Genzyme Corporation, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Makoto Kuro-o
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
- To whom correspondence should be addressed: Dept. of Pathology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, TX 75390-9072. Tel.: 214-648-4018; Fax: 214-648-4070; E-mail:
| |
Collapse
|
238
|
Affiliation(s)
- Marco Arrese
- Departmento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | | |
Collapse
|
239
|
Gutierrez A, Ratliff EP, Andres AM, Huang X, McKeehan WL, Davis RA. Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4. Arterioscler Thromb Vasc Biol 2005; 26:301-6. [PMID: 16284190 DOI: 10.1161/01.atv.0000195793.73118.b4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The purpose of this research was to determine how dietary bile acids repress hepatic expression of paraoxonase 1 (PON1). METHODS AND RESULTS C57BL/6 mice and C3H/HeJ mice, having different susceptibilities to atherosclerosis, were fed a chow diet and an atherogenic diet containing taurocholate. Compared with the more atherosclerosis-susceptible C57BL/6 mice, C3H/HeJ mice display resistance to dietary bile acid repression of hepatic PON1 mRNA and decreased high-density lipoprotein cholesterol. Whereas knockout of toll receptor 4 did not affect response to taurocholate, deletion of either FXR or FGFR4 blocked taurocholate repression of PON1 and CYP7A1. FGF19, an activator of FGFR4 expressed in human ileum, decreased expression of both PON1 and CYP7A1 expression by human hepatoma cells. In all of the mice studied, dietary taurocholate increased ileal expression of FGF15, a FXR-inducible murine homologue of human FGF19. CONCLUSIONS Hepatic PON1 and CYP7A1 mRNA expression is repressed by bile acids via FXR-mediated induction of FGF15. Thus, the inability of C3H/HeJ mice to display taurocholate repression of PON1 and CYP7A1 mRNAs was not because of a lack of induction of FGF15 but rather signaling events distal to FGF15-FGFR4 association.
Collapse
MESH Headings
- Animals
- Aryldialkylphosphatase/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Bile Acids and Salts/pharmacology
- Carcinoma, Hepatocellular
- Cell Line, Tumor
- Cholesterol 7-alpha-Hydroxylase/genetics
- DNA-Binding Proteins/metabolism
- Diet, Atherogenic
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Lipoproteins, HDL/blood
- Liver/drug effects
- Liver/physiology
- Liver Neoplasms
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptors, Cytoplasmic and Nuclear
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Toll-Like Receptor 4/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Alejandra Gutierrez
- Department of Biology and Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | |
Collapse
|
240
|
Shih DM, Kast-Woelbern HR, Wong J, Xia YR, Edwards PA, Lusis AJ. A role for FXR and human FGF-19 in the repression of paraoxonase-1 gene expression by bile acids. J Lipid Res 2005; 47:384-92. [PMID: 16269825 DOI: 10.1194/jlr.m500378-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Paraoxonase-1 (PON1), an enzyme that metabolizes organophosphate insecticides, is secreted by the liver and transported in the blood complexed to HDL. In humans and mice, low plasma levels of PON1 have also been linked to the development of atherosclerosis. We previously reported that hepatic Pon1 expression was decreased when C57BL/6J mice were fed a high-fat, high-cholesterol diet supplemented with cholic acid (CA). In the current study, we used wild-type and farnesoid X receptor (FXR) null mice to demonstrate that this repression is dependent upon CA and FXR. PON1 mRNA levels were also repressed when HepG2 cells, derived from a human hepatoma, were incubated with natural or highly specific synthetic FXR agonists. In contrast, fibroblast growth factor-19 (FGF-19) mRNA levels were greatly induced by these same FXR agonists. Furthermore, treatment of HepG2 cells with recombinant human FGF-19 significantly decreased PON1 mRNA levels. Finally, deletion studies revealed that the proximal -230 to -96 bp region of the PON1 promoter contains regulatory element(s) necessary for promoter activity and bile acid repression. These data demonstrate that human PON1 expression is repressed by bile acids through the actions of FXR and FGF-19.
Collapse
Affiliation(s)
- Diana M Shih
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
241
|
Zhao P, Caretti G, Mitchell S, McKeehan WL, Boskey AL, Pachman LM, Sartorelli V, Hoffman EP. Fgfr4 is required for effective muscle regeneration in vivo. Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway. J Biol Chem 2005; 281:429-38. [PMID: 16267055 PMCID: PMC1892582 DOI: 10.1074/jbc.m507440200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fgfr4 has been shown to be important for appropriate muscle development in chick limb buds; however, Fgfr4 null mice show no phenotype. Here, we show that staged induction of muscle regeneration in Fgfr4 null mice becomes highly abnormal at the time point when Fgfr4 is normally expressed. By 7 days of regeneration, differentiation of myotubes became poorly coordinated and delayed by both histology and embryonic myosin heavy chain staining. By 14 days much of the muscle was replaced by fat and calcifications. To begin to dissect the molecular pathways involving Fgfr4, we queried the promoter sequences for transcriptional factor binding sites and tested candidate regulators in a 27-time point regeneration series. The Fgfr4 promoter region contained a Tead protein binding site (M-CAT 5'-CATTCCT-3'), and Tead2 showed induction during regeneration commensurate with Fgfr4 regulation. Co-transfection of Tead2 and Fgfr4 promoter reporter constructs into C2C12 myotubes showed Tead2 to activate Fgfr4, and mutation of the M-CAT motif in the Fgfr4 promoter abolished these effects. Immunostaining for Tead2 showed timed expression in myotube nuclei consistent with the mRNA data. Query of the expression timing and genomic sequences of Tead2 suggested direct regulation by MyoD, and consistent with this, MyoD directly bound to two strong E-boxes in the first intron of Tead2 by chromatin immunoprecipitation assay. Moreover, co-transfection of MyoD and Tead2 intron reporter constructs into 10T1/2 cells activated reporter activity in a dose-dependent manner. This activation was greatly reduced when the two E-boxes were mutated. Our data suggest a novel MyoD-Tead2-Fgfr4 pathway important for effective muscle regeneration.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Introns
- Mice
- Mice, Mutant Strains
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Mutagenesis
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myoblasts, Skeletal/pathology
- Myoblasts, Skeletal/physiology
- Promoter Regions, Genetic/physiology
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Regeneration/physiology
- TEA Domain Transcription Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/physiology
- Transfection
Collapse
Affiliation(s)
- Po Zhao
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Inoue Y, Yu AM, Yim SH, Ma X, Krausz KW, Inoue J, Xiang CC, Brownstein MJ, Eggertsen G, Björkhem I, Gonzalez FJ. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res 2005; 47:215-27. [PMID: 16264197 PMCID: PMC1413576 DOI: 10.1194/jlr.m500430-jlr200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) regulates many genes that are preferentially expressed in liver. Mice lacking hepatic expression of HNF4alpha (HNF4alphaDeltaL) exhibited markedly increased levels of serum bile acids (BAs) compared with HNF4alpha-floxed (HNF4alphaF/F) mice. The expression of genes involved in the hydroxylation and side chain beta-oxidation of cholesterol, including oxysterol 7alpha-hydroxylase, sterol 12alpha-hydroxylase (CYP8B1), and sterol carrier protein x, was markedly decreased in HNF4alphaDeltaL mice. Cholesterol 7alpha-hydroxylase mRNA and protein were diminished only during the dark cycle in HNF4alphaDeltaL mice, whereas expression in the light cycle was not different between HNF4alphaDeltaL and HNF4alphaF/F mice. Because CYP8B1 expression was reduced in HNF4alphaDeltaL mice, it was studied in more detail. In agreement with the mRNA levels, CYP8B1 enzyme activity was absent in HNF4alphaDeltaL mice. An HNF4alpha binding site was found in the mouse Cyp8b1 promoter that was able to direct HNF4alpha-dependent transcription. Surprisingly, cholic acid-derived BAs, produced as a result of CYP8B1 activity, were still observed in the serum and gallbladder of these mice. These studies reveal that HNF4alpha plays a central role in BA homeostasis by regulation of genes involved in BA biosynthesis, including hydroxylation and side chain beta-oxidation of cholesterol in vivo.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Ai-Ming Yu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Sun Hee Yim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Xiaochao Ma
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | | | - Junko Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Charlie C. Xiang
- Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael J. Brownstein
- Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Gösta Eggertsen
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Ingemar Björkhem
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
243
|
Abstract
Bile acids are natural detergents that assist in the absorption and digestion of fats in the intestine. In liver, the synthesis of bile acids from cholesterol is regulated by multiple signaling cascades that repress transcription of the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in the classic bile acid synthesis pathway. In this issue of the JCI, Ito and coworkers demonstrate that mice lacking betaKlotho, a membrane protein with 2 putative glycosidase domains, have increased Cyp7a1 mRNA levels and bile acid concentrations. betaKlotho-KO mice also have small gallbladders and are resistant to cholesterol gallstone formation. These findings highlight the central role of betaKlotho in bile acid homeostasis and raise the possibility that this protein could be a pharmacologic target for the treatment of gallstones.
Collapse
Affiliation(s)
- Antonio Moschetta
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | |
Collapse
|
244
|
Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima YI. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 2005; 115:2202-8. [PMID: 16075061 PMCID: PMC1180526 DOI: 10.1172/jci23076] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 05/31/2005] [Indexed: 12/12/2022] Open
Abstract
We have generated a line of mutant mouse that lacks betaKlotho, a protein that structurally resembles Klotho. The synthesis and excretion of bile acids were found to be dramatically elevated in these mutants, and the expression of 2 key bile acid synthase genes, cholesterol 7alpha-hydroxylase (Cyp7a1) and sterol 12alpha-hydroxylase (Cyp8b1), was strongly upregulated. Nuclear receptor pathways and the enterohepatic circulation, which regulates bile acid synthesis, seemed to be largely intact; however, bile acid-dependent induction of the small heterodimer partner (SHP) NR0B2, a common negative regulator of Cyp7a1 and Cyp8b1, was significantly attenuated. The expression of Cyp7a1 and Cyp8b1 is known to be repressed by dietary bile acids via both SHP-dependent and -independent regulations. Interestingly, the suppression of Cyp7a1 expression by dietary bile acids was impaired, whereas that of Cyp8b1 expression was not substantially altered in betaklotho mice. Therefore, betaKlotho may stand as a novel contributor to Cyp7a1-selective regulation. Additionally, betaKlotho-knockout mice exhibit resistance to gallstone formation, which suggests the potential future clinical relevance of the betaKlotho system.
Collapse
Affiliation(s)
- Shinji Ito
- Department of Pathology and Tumor Biology, Graduate School of Medicine, and Horizontal Medical Research Organization, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
245
|
Abstract
The maintenance of adequate amounts of bile acids in the liver, biliary tract, and intestine requires a finely tuned control of their synthesis. A paper in this issue of Cell Metabolism by Inagaki et al. (2005) indicates that sensing of the levels of bile acids in the intestine may trigger the secretion of a hormone which regulates bile acid production in the liver.
Collapse
Affiliation(s)
- Bo Angelin
- Department of Endocrinology, Metabolism & Diabetes, Karolinska Insitutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
246
|
Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2:217-25. [PMID: 16213224 DOI: 10.1016/j.cmet.2005.09.001] [Citation(s) in RCA: 1408] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/01/2005] [Accepted: 09/01/2005] [Indexed: 02/06/2023]
Abstract
The liver and intestine play crucial roles in maintaining bile acid homeostasis. Here, we demonstrate that fibroblast growth factor 15 (FGF15) signals from intestine to liver to repress the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1), which catalyzes the first and rate-limiting step in the classical bile acid synthetic pathway. FGF15 expression is stimulated in the small intestine by the nuclear bile acid receptor FXR and represses Cyp7a1 in liver through a mechanism that involves FGF receptor 4 (FGFR4) and the orphan nuclear receptor SHP. Mice lacking FGF15 have increased hepatic CYP7A1 mRNA and protein levels and corresponding increases in CYP7A1 enzyme activity and fecal bile acid excretion. These studies define FGF15 and FGFR4 as components of a gut-liver signaling pathway that synergizes with SHP to regulate bile acid synthesis.
Collapse
Affiliation(s)
- Takeshi Inagaki
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16:107-37. [PMID: 15863029 DOI: 10.1016/j.cytogfr.2005.01.008] [Citation(s) in RCA: 545] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.
Collapse
Affiliation(s)
- Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016, USA.
| | | | | |
Collapse
|
248
|
Claudel T, Sturm E, Kuipers F, Staels B. The farnesoid X receptor: a novel drug target? Expert Opin Investig Drugs 2005; 13:1135-48. [PMID: 15330745 DOI: 10.1517/13543784.13.9.1135] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bile acids are end products of cholesterol metabolism. They are exclusively synthesised by the liver and subsequently secreted via the bile duct into the intestine to facilitate the absorption of dietary fat and fat-soluble vitamins. Nuclear receptors are ligand-activated transcription factors. The farnesoid X receptor (FXR) has recently been identified as a bile acid-activated nuclear receptor. FXR controls bile-acid synthesis, conjugation and transport, as well as lipid metabolism. Recent advances in FXR biology demonstrate that FXR may represent a valuable target for the identification of novel drugs to treat dyslipidaemia and cholestasis. However, for therapeutic purposes the development of selective FXR modulators, which only activate or inhibit specific FXR target genes and as such induce specific responses, will be required.
Collapse
Affiliation(s)
- Thierry Claudel
- Unité de Recherche 545, Institut National de la Santé et de la Recherche Médicale, Département d'Athérosclérose, Institut Pasteur de Lille and the Faculté de Pharmacie, Université de Lille II, Lille, France
| | | | | | | |
Collapse
|
249
|
Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005; 25:2020-30. [PMID: 16037564 DOI: 10.1161/01.atv.0000178994.21828.a7] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are the end products of cholesterol metabolism. They are synthesized in the liver and secreted via bile into the intestine, where they aid in the absorption of fat-soluble vitamins and dietary fat. Subsequently, bile acids return to the liver to complete their enterohepatic circulation. The Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily and has emerged as a key player in the control of multiple metabolic pathways. On its activation by bile acids, FXR regulates bile acid synthesis, conjugation, and transport, as well as various aspects of lipid and glucose metabolism. This review summarizes recent advances in deciphering the role of FXR in the context of hepatic lipid and glucose homeostasis and discusses the potential of FXR as a pharmacological target for therapeutic applications.
Collapse
Affiliation(s)
- Thierry Claudel
- Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
250
|
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115:1627-35. [PMID: 15902306 PMCID: PMC1088017 DOI: 10.1172/jci23606] [Citation(s) in RCA: 1683] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 03/23/2005] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a major health concern, affecting more than 5% of the population. Here we describe a potential novel therapeutic agent for this disease, FGF-21, which was discovered to be a potent regulator of glucose uptake in mouse 3T3-L1 and primary human adipocytes. FGF-21-transgenic mice were viable and resistant to diet-induced obesity. Therapeutic administration of FGF-21 reduced plasma glucose and triglycerides to near normal levels in both ob/ob and db/db mice. These effects persisted for at least 24 hours following the cessation of FGF-21 administration. Importantly, FGF-21 did not induce mitogenicity, hypoglycemia, or weight gain at any dose tested in diabetic or healthy animals or when overexpressed in transgenic mice. Thus, we conclude that FGF-21, which we have identified as a novel metabolic factor, exhibits the therapeutic characteristics necessary for an effective treatment of diabetes.
Collapse
Affiliation(s)
- Alexei Kharitonenkov
- Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|