201
|
Yang HC, Chang LC, Huggins RM, Chen CH, Mullighan CG. LOHAS: loss-of-heterozygosity analysis suite. Genet Epidemiol 2015; 35:247-60. [PMID: 21312262 DOI: 10.1002/gepi.20573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/10/2010] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
Abstract
Detection of loss of heterozygosity (LOH) plays an important role in genetic, genomic and cancer research. We develop computational methods to estimate the proportion of homozygous SNP calls, identify samples with structural alterations and/or unusual genotypic patterns, cluster samples with close LOH structures and map the genomic segments bearing LOH by analyzing data of genome-wide SNP arrays or customized SNP arrays. In addition to cancer genetics/genomics, we also apply the methods to study long contiguous stretches of homozygosity (LCSH) in general populations. The LCSH analysis aids in the identification of samples with complex LCSH patterns indicative of nonrandom mating and/or meiotic recombination cold spots, separation of samples with different genetic backgrounds and sex, and mapping of regions of LCSH. Affymetrix Human Mapping 500K Set SNP data from an acute lymphoblastic leukemia study containing 304 cancer patients and 50 normal controls and from the HapMap Project containing 30 African trios, 30 Caucasian trios and 90 independent Asian samples were analyzed. We identified common gene regions of LOH, e.g., ETV6 and CDKN1B, and identified frequent regions of LCSH, e.g., the region that encompasses the centromeric gene desert region of chromosome 16. Unsupervised analysis separated cancer subtypes and ethnic subpopulations by patterns of LOH/LCSH. Simulation studies considering LOH width, effect size and heterozygous interference fraction were performed, and the results show that the proposed LOH association test has good test power and controls type 1 error well. The developed algorithms are packaged into LOHAS written in R and R GUI.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Nankang, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
202
|
Zavarez LB, Utsunomiya YT, Carmo AS, Neves HHR, Carvalheiro R, Ferenčaković M, Pérez O'Brien AM, Curik I, Cole JB, Van Tassell CP, da Silva MVGB, Sonstegard TS, Sölkner J, Garcia JF. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Front Genet 2015; 6:5. [PMID: 25688258 PMCID: PMC4310349 DOI: 10.3389/fgene.2015.00005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
The use of relatively low numbers of sires in cattle breeding programs, particularly on those for carcass and weight traits in Nellore beef cattle (Bos indicus) in Brazil, has always raised concerns about inbreeding, which affects conservation of genetic resources and sustainability of this breed. Here, we investigated the distribution of autozygosity levels based on runs of homozygosity (ROH) in a sample of 1,278 Nellore cows, genotyped for over 777,000 SNPs. We found ROH segments larger than 10 Mb in over 70% of the samples, representing signatures most likely related to the recent massive use of few sires. However, the average genome coverage by ROH (>1 Mb) was lower than previously reported for other cattle breeds (4.58%). In spite of 99.98% of the SNPs being included within a ROH in at least one individual, only 19.37% of the markers were encompassed by common ROH, suggesting that the ongoing selection for weight, carcass and reproductive traits in this population is too recent to have produced selection signatures in the form of ROH. Three short-range highly prevalent ROH autosomal hotspots (occurring in over 50% of the samples) were observed, indicating candidate regions most likely under selection since before the foundation of Brazilian Nellore cattle. The putative signatures of selection on chromosomes 4, 7, and 12 may be involved in resistance to infectious diseases and fertility, and should be subject of future investigation.
Collapse
Affiliation(s)
- Ludmilla B Zavarez
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista Jaboticabal, São Paulo, Brazil
| | - Yuri T Utsunomiya
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista Jaboticabal, São Paulo, Brazil
| | - Adriana S Carmo
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista Jaboticabal, São Paulo, Brazil
| | - Haroldo H R Neves
- GenSys Consultores Associados Porto Alegre, Rio Grande do Sul, Brazil ; Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista Jaboticabal, São Paulo, Brazil
| | - Roberto Carvalheiro
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista Jaboticabal, São Paulo, Brazil
| | - Maja Ferenčaković
- Department of Animal Science, Faculty of Agriculture, University of Zagreb Zagreb, Croatia
| | - Ana M Pérez O'Brien
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, BOKU - University of Natural Resources and Life Sciences Vienna, Austria
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb Zagreb, Croatia
| | - John B Cole
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service Beltsville, MD, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service Beltsville, MD, USA
| | - Marcos V G B da Silva
- Bioinformatics and Animal Genomics Laboratory, Embrapa Dairy Cattle Juiz de Fora, Minas Gerais, Brazil
| | - Tad S Sonstegard
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service Beltsville, MD, USA
| | - Johann Sölkner
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, BOKU - University of Natural Resources and Life Sciences Vienna, Austria
| | - José F Garcia
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista Jaboticabal, São Paulo, Brazil ; Laboratório de Bioquímica e Biologia Molecular Animal, Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, UNESP - Univ Estadual Paulista Araçatuba, São Paulo, Brazil
| |
Collapse
|
203
|
Karafet TM, Bulayeva KB, Bulayev OA, Gurgenova F, Omarova J, Yepiskoposyan L, Savina OV, Veeramah KR, Hammer MF. Extensive genome-wide autozygosity in the population isolates of Daghestan. Eur J Hum Genet 2015; 23:1405-12. [PMID: 25604856 DOI: 10.1038/ejhg.2014.299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 01/01/2023] Open
Abstract
Isolated populations are valuable resources for mapping disease genes, as inbreeding increases genome-wide homozygosity and enhances the ability to map disease alleles on a genetically uniform background within a relatively homogenous environment. The populations of Daghestan are thought to have resided in the Caucasus Mountains for hundreds of generations and are characterized by a high prevalence of certain complex diseases. To explore the extent to which their unique population history led to increased levels of inbreeding, we genotyped >550 000 autosomal single-nucleotide polymorphisms (SNPs) in a set of 14 population isolates speaking Nakh-Daghestanian (ND) languages. The ND-speaking populations showed greatly elevated coefficients of inbreeding, very high numbers and long lengths of Runs of Homozygosity, and elevated linkage disequilibrium compared with surrounding groups from the Caucasus, the Near East, Europe, Central and South Asia. These results are consistent with the hypothesis that most ND-speaking groups descend from a common ancestral population that fragmented into a series of genetic isolates in the Daghestanian highlands. They have subsequently maintained a long-term small effective population size as a result of constant inbreeding and very low levels of gene flow. Given these findings, Daghestanian population isolates are likely to be useful for mapping genes associated with complex diseases.
Collapse
Affiliation(s)
- Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, USA
| | - Kazima B Bulayeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Oleg A Bulayev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Farida Gurgenova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Jamilia Omarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Levon Yepiskoposyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Olga V Savina
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, USA
| | | | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
204
|
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W. Quantifying realized inbreeding in wild and captive animal populations. Heredity (Edinb) 2015; 114:397-403. [PMID: 25585923 DOI: 10.1038/hdy.2014.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022] Open
Abstract
Most molecular measures of inbreeding do not measure inbreeding at the scale that is most relevant for understanding inbreeding depression-namely the proportion of the genome that is identical-by-descent (IBD). The inbreeding coefficient FPed obtained from pedigrees is a valuable estimator of IBD, but pedigrees are not always available, and cannot capture inbreeding loops that reach back in time further than the pedigree. We here propose a molecular approach to quantify the realized proportion of the genome that is IBD (propIBD), and we apply this method to a wild and a captive population of zebra finches (Taeniopygia guttata). In each of 948 wild and 1057 captive individuals we analyzed available single-nucleotide polymorphism (SNP) data (260 SNPs) spread over four different genomic regions in each population. This allowed us to determine whether any of these four regions was completely homozygous within an individual, which indicates IBD with high confidence. In the highly nomadic wild population, we did not find a single case of IBD, implying that inbreeding must be extremely rare (propIBD=0-0.00094, 95% CI). In the captive population, a five-generation pedigree strongly underestimated the average amount of realized inbreeding (FPed=0.013<propIBD=0.064), as expected given that pedigree founders were already related. We suggest that this SNP-based technique is generally useful for quantifying inbreeding at the individual or population level, and we show analytically that it can capture inbreeding loops that reach back up to a few hundred generations.
Collapse
Affiliation(s)
- U Knief
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - G Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - M Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - A Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - S C Griffith
- 1] Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia [2] School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - B Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - W Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
205
|
Marras G, Gaspa G, Sorbolini S, Dimauro C, Ajmone-Marsan P, Valentini A, Williams JL, Macciotta NPP. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Anim Genet 2014; 46:110-21. [DOI: 10.1111/age.12259] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriele Marras
- Dipartimento di Agraria-Sezione Scienze Zootecniche; Università di Sassari; Sassari 07100 Italy
- Parco Tecnologico Padano; Lodi 26900 Italy
| | - Giustino Gaspa
- Dipartimento di Agraria-Sezione Scienze Zootecniche; Università di Sassari; Sassari 07100 Italy
| | - Silvia Sorbolini
- Dipartimento di Agraria-Sezione Scienze Zootecniche; Università di Sassari; Sassari 07100 Italy
| | - Corrado Dimauro
- Dipartimento di Agraria-Sezione Scienze Zootecniche; Università di Sassari; Sassari 07100 Italy
| | - Paolo Ajmone-Marsan
- Istituto di Zootecnica; Università Cattolica del Sacro Cuore; Piacenza 29100 Italy
| | - Alessio Valentini
- Dipartimento per l'innovazione dei sistemi biologici agroalimentari e forestali DIBAF; Università della Tuscia; Viterbo 01000 Italy
| | | | - Nicolò P. P. Macciotta
- Dipartimento di Agraria-Sezione Scienze Zootecniche; Università di Sassari; Sassari 07100 Italy
| |
Collapse
|
206
|
Jalkh N, Sahbatou M, Chouery E, Megarbane A, Leutenegger AL, Serre JL. Genome-wide inbreeding estimation within Lebanese communities using SNP arrays. Eur J Hum Genet 2014; 23:1364-9. [PMID: 25424710 DOI: 10.1038/ejhg.2014.246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 08/29/2014] [Accepted: 09/19/2014] [Indexed: 12/14/2022] Open
Abstract
Consanguineous marriages have been widely practiced in several global communities with varying rates depending on religion, culture, and geography. In consanguineous marriages, parents pass to their children autozygous segments known as homozygous by descent segments. In this study, single-nucleotide polymorphisms were analyzed in 165 unrelated Lebanese people from Greek Orthodox, Maronite, Shiite and Sunni communities. Runs of homozygosity, total inbreeding levels, remote consanguinity, and population admixture and structure were estimated. The inbreeding coefficient value was estimated to be 1.61% in offspring of unrelated parents over three generations and 8.33% in offspring of first cousins. From these values, remote consanguinity values, resulting from genetic drift or recurrent consanguineous unions, were estimated in offspring of unrelated and first-cousin parents to be 0.61 and 1.2%, respectively. This remote consanguinity value suggests that for any unrelated marriages in Lebanon, the mates could be related as third cousins or as second cousins once removed. Under the assumption that 25% of marriages occur between first cousins, the mean inbreeding value of 2.3% may explain the increased incidence of recessive disease in offspring. Our analysis reveals a common ancestral population in the four Lebanese communities we studied.
Collapse
Affiliation(s)
- Nadine Jalkh
- Unité de Génétique Médicale et Laboratoire associé INSERM à l'Unité UMR_S910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon.,EA 2493 « pathologie cellulaire & génétique, de la conception à la naissance », Université de Versailles-Saint Quentin en Yvelines, Yvelines, France
| | | | - Eliane Chouery
- Unité de Génétique Médicale et Laboratoire associé INSERM à l'Unité UMR_S910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | - André Megarbane
- Unité de Génétique Médicale et Laboratoire associé INSERM à l'Unité UMR_S910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | | | - Jean-Louis Serre
- EA 2493 « pathologie cellulaire & génétique, de la conception à la naissance », Université de Versailles-Saint Quentin en Yvelines, Yvelines, France
| |
Collapse
|
207
|
Álvarez G, Ceballos FC, Berra TM. Darwin was right: inbreeding depression on male fertility in the Darwin family. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gonzalo Álvarez
- Department of Genetics; Faculty of Biology; University of Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Francisco C. Ceballos
- Department of Genetics; Faculty of Biology; University of Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Tim M. Berra
- Department of Evolution; Ecology and Organismal Biology; The Ohio State University; 1760 University Dr.; Mansfield OH 44906 USA
- Research Institute for the Environment and Livelihoods; Charles Darwin University; Darwin NT Australia
| |
Collapse
|
208
|
Mukherjee S, Guha S, Ikeda M, Iwata N, Malhotra AK, Pe'er I, Darvasi A, Lencz T. Excess of homozygosity in the major histocompatibility complex in schizophrenia. Hum Mol Genet 2014; 23:6088-95. [PMID: 24943592 PMCID: PMC4204767 DOI: 10.1093/hmg/ddu308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/11/2014] [Accepted: 06/12/2014] [Indexed: 01/20/2023] Open
Abstract
Genome-wide association studies (GWAS) in schizophrenia have focused on additive allelic effects to identify disease risk loci. In order to examine potential recessive effects, we applied a novel approach to identify regions of excess homozygosity in an ethnically homogenous cohort: 904 schizophrenia cases and 1640 controls drawn from the Ashkenazi Jewish (AJ) population. Genome-wide examination of runs of homozygosity identified an excess in cases localized to the major histocompatibility complex (MHC). To refine this signal, we used the recently developed GERMLINE algorithm to identify chromosomal segments shared identical-by-descent (IBD) and compared homozygosity at such segments in cases and controls. We found a significant excess of homozygosity in schizophrenia cases compared with controls in the MHC (P-value = 0.003). An independent replication cohort of 548 schizophrenia cases from Japan and 542 matched healthy controls demonstrated similar effects. The strongest case-control recessive effects (P = 8.81 × 10(-8)) were localized to a 53-kb region near HLA-A, in a segment encompassing three poorly annotated genes, TRIM10, TRIM15 and TRIM40. At the same time, an adjacent segment in the Class I MHC demonstrated clear additive effects on schizophrenia risk, demonstrating the complexity of association in the MHC and the ability of our IBD approach to refine localization of broad signals derived from conventional GWAS. In sum, homozygosity in the classical MHC region appears to convey significant risk for schizophrenia, consistent with the ecological literature suggesting that homozygosity at the MHC locus may be associated with vulnerability to disease.
Collapse
Affiliation(s)
- Semanti Mukherjee
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA,
| | - Saurav Guha
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Masashi Ikeda
- Fujita Health University School of Medicine, 1-98 Kutsukake-cho Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| | - Nakao Iwata
- Fujita Health University School of Medicine, 1-98 Kutsukake-cho Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| | - Anil K Malhotra
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA, Hofstra University School of Medicine, 500 Hofstra University, Hempstead, NY 11549, USA
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, NY 10027, USA and
| | - Ariel Darvasi
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Todd Lencz
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA, Hofstra University School of Medicine, 500 Hofstra University, Hempstead, NY 11549, USA,
| |
Collapse
|
209
|
Melhem NM, Lu C, Dresbold C, Middleton FA, Klei L, Wood S, Faraone SV, Vinogradov S, Tiobech J, Yano V, Roeder K, Byerley W, Myles-Worsley M, Devlin B. Characterizing runs of homozygosity and their impact on risk for psychosis in a population isolate. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:521-30. [PMID: 24980794 PMCID: PMC5058445 DOI: 10.1002/ajmg.b.32255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 11/12/2022]
Abstract
An increased abundance of runs of homozygosity (ROH) has been associated with risk for various diseases, including schizophrenia. Here we investigate the characteristics of ROH in Palau, an Oceanic population, evaluating whether these characteristics are related to risk for psychotic disorders and the nature of this association. To accomplish these aims we evaluate a sample of 203 cases with schizophrenia and related psychotic disorders-representing almost complete ascertainment of affected individuals in the population-and contrast their ROH to that of 125 subjects chosen to function as controls. While Palauan diagnosed with psychotic disorders tend to have slightly more ROH regions than controls, the distinguishing features are that they have longer ROH regions, greater total length of ROH, and their ROH tends to co-occur more often at the same locus. The nature of the sample allows us to investigate whether rare, highly penetrant recessive variants generate such case-control differences in ROH. Neither rare, highly penetrant recessive variants nor individual common variants of large effect account for a substantial proportion of risk for psychosis in Palau. These results suggest a more nuanced model for risk is required to explain patterns of ROH for this population.
Collapse
Affiliation(s)
- Nadine M. Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Cong Lu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA
| | - Cara Dresbold
- Department of Human Genetics, University of Pittsburgh
| | | | | | - Shawn Wood
- University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University; Syracuse NY
| | | | | | - Victor Yano
- Palauan Ministry of Health, Republic of Palau
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA
| | - William Byerley
- Department of Psychiatry, University of California San Francisco
| | | | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
210
|
Regions of homozygosity identified by oligonucleotide SNP arrays: evaluating the incidence and clinical utility. Eur J Hum Genet 2014; 23:663-71. [PMID: 25118026 DOI: 10.1038/ejhg.2014.153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 06/03/2014] [Accepted: 07/10/2014] [Indexed: 11/09/2022] Open
Abstract
Copy neutral segments with allelic homozygosity, also known as regions of homozygosity (ROHs), are frequently identified in cases interrogated by oligonucleotide single-nucleotide polymorphism (oligo-SNP) microarrays. Presence of ROHs may be because of parental relatedness, chromosomal recombination or rearrangements and provides important clues regarding ancestral homozygosity, consanguinity or uniparental disomy. In this study of 14 574 consecutive cases, 832 (6%) were found to harbor one or more ROHs over 10 Mb, of which 651 cases (78%) had multiple ROHs, likely because of identity by descent (IBD), and 181 cases (22%) with ROHs involving a single chromosome. Parental relatedness was predicted to be first degree or closer in 5%, second in 9% and third in 19%. Of the 181 cases, 19 had ROHs for a whole chromosome revealing uniparental isodisomy (isoUPD). In all, 25 cases had significant ROHs involving a single chromosome; 5 cases were molecularly confirmed to have a mixed iso- and heteroUPD15 and 1 case each with segmental UPD9pat and segmental UPD22mat; 17 cases were suspected to have a mixed iso- and heteroUPD including 2 cases with small supernumerary marker and 2 cases with mosaic trisomy. For chromosome 15, 12 (92%) of 13 molecularly studied cases had either Prader-Willi or Angelman syndrome. Autosomal recessive disorders were confirmed in seven of nine cases from eight families because of the finding of suspected gene within a ROH. This study demonstrates that ROHs are much more frequent than previously recognized and often reflect parental relatedness, ascertain autosomal recessive diseases or unravel UPD in many cases.
Collapse
|
211
|
|
212
|
Abstract
Homozygosity disequilibrium (HD), a nonrandom sizable run of homozygosity in the genome, may be related to the evolution of populations and may also confer susceptibility to disease. No studies have investigated HD using whole genome sequencing (WGS) analysis. In this study, we used an enhanced version of Loss-Of-Heterozygosity Analysis Suite (LOHAS) software to investigate HD through analysis of real and simulated WGS data sets provided by Genetic Analysis Workshop 18. Using a local polynomial model, we derived whole-genome profiles of homozygosity intensities for 959 individuals and characterized the patterns of HD. Generalized estimating equation analysis for 855 related samples was performed to examine the association between patterns of HD and 3 phenotypes of interest, namely diastolic blood pressure, systolic blood pressure, and hypertension status, with covariate adjustments for age and gender. We found that 4.48% of individuals in this study carried sizable runs of homozygosity (ROHs). Distributions of the length of ROHs were derived and revealed a familial aggregation of HD. Genome-wide homozygosity association analysis identified 5 and 3 ROHs associated with diastolic blood pressure and hypertension, respectively. These regions contain genes associated with calcium channels (CACNA1S), renin catalysis (REN), blood groups (ABO), apolipoprotein (APOA5), and cardiovascular diseases (RASGRP1). Simulation studies showed that our homozygosity association tests controlled type 1 error well and had a promising power. This study provides a useful analysis tool for studying HD and allows us to gain a deeper understanding of HD in the human genome.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Nankang 115, Taipei, Taiwan
| | - Han-Wei Li
- Institute of Statistical Science, Academia Sinica, Nankang 115, Taipei, Taiwan
| |
Collapse
|
213
|
Heron EA, Cormican P, Donohoe G, O'Neill FA, Kendler KS, Riley BP, Gill M, Corvin AP, Morris DW. No evidence that runs of homozygosity are associated with schizophrenia in an Irish genome-wide association dataset. Schizophr Res 2014; 154:79-82. [PMID: 24560374 PMCID: PMC4034753 DOI: 10.1016/j.schres.2014.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/10/2014] [Accepted: 01/27/2014] [Indexed: 11/22/2022]
Abstract
Runs of homozygosity (ROH), regions of the genome containing many consecutive homozygous SNPs, may represent two copies of a haplotype inherited from a common ancestor. A rare variant on this haplotype could thus be present in a homozygous and potentially recessive state. To detect rare risk variants for schizophrenia, we performed an ROH analysis in a homogeneous Irish genome wide association study (GWAS) dataset consisting of 1606 cases and 1794 controls. There was no genome-wide excess of ROH in cases compared to controls (p=0.7986). No consensus ROH at individual loci showed association with schizophrenia after genome-wide correction.
Collapse
Affiliation(s)
- Elizabeth A Heron
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, School of Medicine, The Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Paul Cormican
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, School of Medicine, The Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Gary Donohoe
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, School of Medicine, The Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Francis A O'Neill
- Department of Psychiatry, Queen's University, Belfast, BT7 1NN, Northern Ireland, United Kingdom.
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States; Department of Human Genetics, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States.
| | - Brien P Riley
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States; Department of Human Genetics, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States.
| | - Michael Gill
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, School of Medicine, The Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Aiden P Corvin
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, School of Medicine, The Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Derek W Morris
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, School of Medicine, The Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
214
|
The application of genome-wide SNP genotyping methods in studies on livestock genomes. J Appl Genet 2014; 55:197-208. [PMID: 24566962 DOI: 10.1007/s13353-014-0202-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 01/07/2023]
Abstract
Animal genomics is currently undergoing dynamic development, which is driven by the flourishing of high-throughput genome analysis methods. Recently, a large number of animals has been genotyped with the use of whole-genome genotyping assays in the course of genomic selection programmes. The results of such genotyping can also be used for studies on different aspects of livestock genome functioning and diversity. In this article, we review the recent literature concentrating on various aspects of animal genomics, including studies on linkage disequilibrium, runs of homozygosity, selection signatures, copy number variation and genetic differentiation of animal populations. Our work is aimed at providing insight into certain achievements of animal genomics and to arouse interest in basic research on the complexity and structure of the genomes of livestock.
Collapse
|
215
|
Josephson R. Molecular cytogenetics: making it safe for human embryonic stem cells to enter the clinic. Expert Rev Mol Diagn 2014; 7:395-406. [PMID: 17620047 DOI: 10.1586/14737159.7.4.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regenerative therapies based on transplantation of cells derived from human embryonic stem cells (hESC) are currently being prepared for clinical trials. Unfortunately, recent evidence indicates that many kinds of changes can occur to hESC during expansion in culture, and alterations to the growth control mechanisms may be required to establish hESC lines at all. Changes in the genome and epigenome can affect the validity of in vitro and animal studies, and put transplant recipients at increased risk of cancer. New molecular cytogenetic technologies enable us to examine the whole human genome with ever-finer resolution. This review describes several techniques for whole-genome analysis and the information they can provide about hESC lines. Adoption of high-resolution genotyping into routine characterization may prevent highly discouraging clinical outcomes.
Collapse
|
216
|
Ferenčaković M, Sölkner J, Curik I. Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genet Sel Evol 2013; 45:42. [PMID: 24168655 PMCID: PMC4176748 DOI: 10.1186/1297-9686-45-42] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/13/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Runs of homozygosity are long, uninterrupted stretches of homozygous genotypes that enable reliable estimation of levels of inbreeding (i.e., autozygosity) based on high-throughput, chip-based single nucleotide polymorphism (SNP) genotypes. While the theoretical definition of runs of homozygosity is straightforward, their empirical identification depends on the type of SNP chip used to obtain the data and on a number of factors, including the number of heterozygous calls allowed to account for genotyping errors. We analyzed how SNP chip density and genotyping errors affect estimates of autozygosity based on runs of homozygosity in three cattle populations, using genotype data from an SNP chip with 777,972 SNPs and a 50 k chip. RESULTS Data from the 50 k chip led to overestimation of the number of runs of homozygosity that are shorter than 4 Mb, since the analysis could not identify heterozygous SNPs that were present on the denser chip. Conversely, data from the denser chip led to underestimation of the number of runs of homozygosity that were longer than 8 Mb, unless the presence of a small number of heterozygous SNP genotypes was allowed within a run of homozygosity. CONCLUSIONS We have shown that SNP chip density and genotyping errors introduce patterns of bias in the estimation of autozygosity based on runs of homozygosity. SNP chips with 50,000 to 60,000 markers are frequently available for livestock species and their information leads to a conservative prediction of autozygosity from runs of homozygosity longer than 4 Mb. Not allowing heterozygous SNP genotypes to be present in a homozygosity run, as has been advocated for human populations, is not adequate for livestock populations because they have much higher levels of autozygosity and therefore longer runs of homozygosity. When allowing a small number of heterozygous calls, current software does not differentiate between situations where these calls are adjacent and therefore indicative of an actual break of the run versus those where they are scattered across the length of the homozygous segment. Simple graphical tests that are used in this paper are a current, yet tedious solution.
Collapse
Affiliation(s)
- Maja Ferenčaković
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Str, 33, A-1180 Vienna, Austria.
| | | | | |
Collapse
|
217
|
Babushok DV, Xie HM, Roth JJ, Perdigones N, Olson TS, Cockroft JD, Gai X, Perin JC, Li Y, Paessler ME, Hakonarson H, Podsakoff GM, Mason PJ, Biegel JA, Bessler M. Single nucleotide polymorphism array analysis of bone marrow failure patients reveals characteristic patterns of genetic changes. Br J Haematol 2013; 164:73-82. [PMID: 24116929 DOI: 10.1111/bjh.12603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/28/2013] [Indexed: 11/29/2022]
Abstract
The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12·2, P < 0·01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse.
Collapse
Affiliation(s)
- Daria V Babushok
- Division of Hematology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Ghani M, Sato C, Lee JH, Reitz C, Moreno D, Mayeux R, St George-Hyslop P, Rogaeva E. Evidence of recessive Alzheimer disease loci in a Caribbean Hispanic data set: genome-wide survey of runs of homozygosity. JAMA Neurol 2013; 70:1261-7. [PMID: 23978990 PMCID: PMC3991012 DOI: 10.1001/jamaneurol.2013.3545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE The search for novel Alzheimer disease (AD) genes or pathologic mutations within known AD loci is ongoing. The development of array technologies has helped to identify rare recessive mutations among long runs of homozygosity (ROHs), in which both parental alleles are identical. Caribbean Hispanics are known to have an elevated risk for AD and tend to have large families with evidence of inbreeding. OBJECTIVE To test the hypothesis that the late-onset AD in a Caribbean Hispanic population might be explained in part by the homozygosity of unknown loci that could harbor recessive AD risk haplotypes or pathologic mutations. DESIGN We used genome-wide array data to identify ROHs (>1 megabase) and conducted global burden and locus-specific ROH analyses. SETTING A whole-genome case-control ROH study. PARTICIPANTS A Caribbean Hispanic data set of 547 unrelated cases (48.8% with familial AD) and 542 controls collected from a population known to have a 3-fold higher risk of AD vs non-Hispanics in the same community. Based on a Structure program analysis, our data set consisted of African Hispanic (207 cases and 192 controls) and European Hispanic (329 cases and 326 controls) participants. EXPOSURE Alzheimer disease risk genes. MAIN OUTCOMES AND MEASURES We calculated the total and mean lengths of the ROHs per sample. Global burden measurements among autosomal chromosomes were investigated in cases vs controls. Pools of overlapping ROH segments (consensus regions) were identified, and the case to control ratio was calculated for each consensus region. We formulated the tested hypothesis before data collection. RESULTS In total, we identified 17 137 autosomal regions with ROHs. The mean length of the ROH per person was significantly greater in cases vs controls (P = .0039), and this association was stronger with familial AD (P = .0005). Among the European Hispanics, a consensus region at the EXOC4 locus was significantly associated with AD even after correction for multiple testing (empirical P value 1 [EMP1], .0001; EMP2, .002; 21 AD cases vs 2 controls). Among the African Hispanic subset, the most significant but nominal association was observed for CTNNA3, a well-known AD gene candidate (EMP1, .002; 10 AD cases vs 0 controls). CONCLUSIONS AND RELEVANCE Our results show that ROHs could significantly contribute to the etiology of AD. Future studies would require the analysis of larger, relatively inbred data sets that might reveal novel recessive AD genes. The next step is to conduct sequencing of top significant loci in a subset of samples with overlapping ROHs.
Collapse
Affiliation(s)
- Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York3Department of Epidemiolo
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada4Department of Medicine, University of Toronto, Toronto, Ontario, Canada5Cambridge Institute for Medical Research and Department of Clinical Neuroscienc
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada4Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
219
|
Dani SU, März W, Neves PMS, Walter GF. Pairomics, the omics way to mate choice. J Hum Genet 2013; 58:643-56. [PMID: 23945982 DOI: 10.1038/jhg.2013.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 11/09/2022]
Abstract
The core aspects of the biology and evolution of sexual reproduction are reviewed with a focus on the diploid, sexually reproducing, outbreeding, polymorphic, unspecialized, altricial and cultural human species. Human mate choice and pair bonding are viewed as central to individuals' lives and to the evolution of the species, and genetic assistance in reproduction is viewed as a universal human right. Pairomics is defined as an emerging branch of the omics science devoted to the study of mate choice at the genomic level and its consequences for present and future generations. In pairomics, comprehensive genetic information of individual genomes is stored in a database. Computational tools are employed to analyze the mating schemes and rules that govern mating among the members of the database. Mating models and algorithms simulate the outcomes of mating any given genome with each of a number of genomes represented in the database. The analyses and simulations may help to understand mating schemes and their outcomes, and also contribute a new cue to the multicued schemes of mate choice. The scientific, medical, evolutionary, ethical, legal and social implications of pairomics are far reaching. The use of genetic information as a search tool in mate choice may influence our health, lifestyle, behavior and culture. As knowledge on genomics, population genetics and gene-environment interactions, as well as the size of genomic databases expand, so does the ability of pairomics to investigate and predict the consequences of mate choice for the present and future generations.
Collapse
Affiliation(s)
- Sergio Ulhoa Dani
- Medawar Institute for Medical and Environmental Research, Acangau Foundation, Paracatu, Brazil
| | | | | | | |
Collapse
|
220
|
Lee KT, Chung WH, Lee SY, Choi JW, Kim J, Lim D, Lee S, Jang GW, Kim B, Choy YH, Liao X, Stothard P, Moore SS, Lee SH, Ahn S, Kim N, Kim TH. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics 2013; 14:519. [PMID: 23899338 PMCID: PMC3750754 DOI: 10.1186/1471-2164-14-519] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 06/18/2013] [Indexed: 12/29/2022] Open
Abstract
Background Hanwoo (Korean cattle), which originated from natural crossbreeding between taurine and zebu cattle, migrated to the Korean peninsula through North China. Hanwoo were raised as draft animals until the 1970s without the introduction of foreign germplasm. Since 1979, Hanwoo has been bred as beef cattle. Genetic variation was analyzed by whole-genome deep resequencing of a Hanwoo bull. The Hanwoo genome was compared to that of two other breeds, Black Angus and Holstein, and genes within regions of homozygosity were investigated to elucidate the genetic and genomic characteristics of Hanwoo. Results The Hanwoo bull genome was sequenced to 45.6-fold coverage using the ABI SOLiD system. In total, 4.7 million single-nucleotide polymorphisms and 0.4 million small indels were identified by comparison with the Btau4.0 reference assembly. Of the total number of SNPs and indels, 58% and 87%, respectively, were novel. The overall genotype concordance between the SNPs and BovineSNP50 BeadChip data was 96.4%. Of 1.6 million genetic differences in Hanwoo, approximately 25,000 non-synonymous SNPs, splice-site variants, and coding indels (NS/SS/Is) were detected in 8,360 genes. Among 1,045 genes containing reliable specific NS/SS/Is in Hanwoo, 109 genes contained more than one novel damaging NS/SS/I. Of the genes containing NS/SS/Is, 610 genes were assigned as trait-associated genes. Moreover, 16, 78, and 51 regions of homozygosity (ROHs) were detected in Hanwoo, Black Angus, and Holstein, respectively. ‘Regulation of actin filament length’ was revealed as a significant gene ontology term and 25 trait-associated genes for meat quality and disease resistance were found in 753 genes that resided in the ROHs of Hanwoo. In Hanwoo, 43 genes were located in common ROHs between whole-genome resequencing and SNP chips in BTA2, 10, and 13 coincided with quantitative trait loci for meat fat traits. In addition, the common ROHs in BTA2 and 16 were in agreement between Hanwoo and Black Angus. Conclusions We identified 4.7 million SNPs and 0.4 million small indels by whole-genome resequencing of a Hanwoo bull. Approximately 25,000 non-synonymous SNPs, splice-site variants, and coding indels (NS/SS/Is) were detected in 8,360 genes. Additionally, we found 25 trait-associated genes for meat quality and disease resistance among 753 genes that resided in the ROHs of Hanwoo. These findings will provide useful genomic information for identifying genes or casual mutations associated with economically important traits in cattle.
Collapse
Affiliation(s)
- Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Pintus E, Sorbolini S, Albera A, Gaspa G, Dimauro C, Steri R, Marras G, Macciotta NPP. Use of locally weighted scatterplot smoothing (LOWESS) regression to study selection signatures in Piedmontese and Italian Brown cattle breeds. Anim Genet 2013; 45:1-11. [PMID: 23889699 DOI: 10.1111/age.12076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2013] [Indexed: 11/27/2022]
Abstract
Selection is the major force affecting local levels of genetic variation in species. The availability of dense marker maps offers new opportunities for a detailed understanding of genetic diversity distribution across the animal genome. Over the last 50 years, cattle breeds have been subjected to intense artificial selection. Consequently, regions controlling traits of economic importance are expected to exhibit selection signatures. The fixation index (Fst ) is an estimate of population differentiation, based on genetic polymorphism data, and it is calculated using the relationship between inbreeding and heterozygosity. In the present study, locally weighted scatterplot smoothing (LOWESS) regression and a control chart approach were used to investigate selection signatures in two cattle breeds with different production aptitudes (dairy and beef). Fst was calculated for 42 514 SNP marker loci distributed across the genome in 749 Italian Brown and 364 Piedmontese bulls. The statistical significance of Fst values was assessed using a control chart. The LOWESS technique was efficient in removing noise from the raw data and was able to highlight selection signatures in chromosomes known to harbour genes affecting dairy and beef traits. Examples include the peaks detected for BTA2 in the region where the myostatin gene is located and for BTA6 in the region harbouring the ABCG2 locus. Moreover, several loci not previously reported in cattle studies were detected.
Collapse
Affiliation(s)
- Elia Pintus
- Dipartimento di Agraria, Sezione di Scienze Zootecniche Università degli Studi di Sassari, 07100, Sassari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Szpiech Z, Xu J, Pemberton T, Peng W, Zöllner S, Rosenberg N, Li J. Long runs of homozygosity are enriched for deleterious variation. Am J Hum Genet 2013; 93:90-102. [PMID: 23746547 DOI: 10.1016/j.ajhg.2013.05.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/22/2013] [Accepted: 05/01/2013] [Indexed: 02/02/2023] Open
Abstract
Exome sequencing offers the potential to study the population-genomic variables that underlie patterns of deleterious variation. Runs of homozygosity (ROH) are long stretches of consecutive homozygous genotypes probably reflecting segments shared identically by descent as the result of processes such as consanguinity, population size reduction, and natural selection. The relationship between ROH and patterns of predicted deleterious variation can provide insight into the way in which these processes contribute to the maintenance of deleterious variants. Here, we use exome sequencing to examine ROH in relation to the distribution of deleterious variation in 27 individuals of varying levels of apparent inbreeding from 6 human populations. A significantly greater fraction of all genome-wide predicted damaging homozygotes fall in ROH than would be expected from the corresponding fraction of nondamaging homozygotes in ROH (p < 0.001). This pattern is strongest for long ROH (p < 0.05). ROH, and especially long ROH, harbor disproportionately more deleterious homozygotes than would be expected on the basis of the total ROH coverage of the genome and the genomic distribution of nondamaging homozygotes. The results accord with a hypothesis that recent inbreeding, which generates long ROH, enables rare deleterious variants to exist in homozygous form. Thus, just as inbreeding can elevate the occurrence of rare recessive diseases that represent homozygotes for strongly deleterious mutations, inbreeding magnifies the occurrence of mildly deleterious variants as well.
Collapse
|
223
|
|
224
|
Wang C, Xu Z, Jin G, Hu Z, Dai J, Ma H, Jiang Y, Hu L, Chu M, Cao S, Shen H. Genome-wide analysis of runs of homozygosity identifies new susceptibility regions of lung cancer in Han Chinese. J Biomed Res 2013; 27:208-14. [PMID: 23720676 PMCID: PMC3664727 DOI: 10.7555/jbr.27.20130017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/27/2013] [Accepted: 03/14/2013] [Indexed: 12/02/2022] Open
Abstract
Runs of homozygosity (ROHs) are a class of important but poorly studied genomic variations and may be involved in individual susceptibility to diseases. To better understand ROH and its relationship with lung cancer, we performed a genome-wide ROH analysis of a subset of a previous genome-wide case-control study (1,473 cases and 1,962 controls) in a Han Chinese population. ROHs were classified into two classes, based on lengths, intermediate and long ROHs, to evaluate their association with lung cancer risk using existing genome-wide single nucleotide polymorphism (SNP) data. We found that the overall level of intermediate ROHs was significantly associated with a decreased risk of lung cancer (odds ratio = 0.63; 95% confidence interval: 0.51-0.77; P = 4.78×10−6 ), while the long ROHs seemed to be a risk factor of lung cancer. We also identified one ROH region at 14q23.1 that was consistently associated with lung cancer risk in the study. These results indicated that ROHs may be a new class of variation which may be associated with lung cancer risk, and genetic variants at 14q23.1 may be involved in the development of lung cancer.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Shaffer LG, Ballif BC, Schultz RA. The use of cytogenetic microarrays in myelodysplastic syndrome characterization. Methods Mol Biol 2013; 973:69-85. [PMID: 23412784 DOI: 10.1007/978-1-62703-281-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Various microarray platforms, including BAC, oligonucleotide, and SNP arrays, have been shown to -provide clinically useful diagnostic and prognostic information for patients with myelodysplastic syndromes (MDS). Clinically useful arrays are designed with specific purposes in mind and with attention to genomic content and probe density. All array types have been shown to detect genomic copy gains and losses, with SNP arrays having the added advantage of detecting copy neutral loss of heterozygosity (CNLOH). The finding of CNLOH has led to the identification of certain disease genes implicated in the initiation or progression of myeloid diseases. In addition, SNP karyotyping alone, or in conjunction with routine cytogenetics, can affect the outcome prediction and improve prognostic stratification of patients with MDS. Patients who were reclassified after array testing as having adverse-risk chromosomal findings correlated with poor survival. Results of over 25 published studies support the use of arrays in MDS testing. Because few balanced translocations are found in MDS, this disease is particularly amenable to microarray testing, and studies have shown better disease classification, identification of cryptic changes, and prognostication in this heterogeneous group of disorders. Novel genomic alterations identified by array testing may lead to better targeted therapies for treating patients with MDS.
Collapse
Affiliation(s)
- Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, WA, USA.
| | | | | |
Collapse
|
226
|
Stevens EL, Baugher JD, Shirley MD, Frelin LP, Pevsner J. Unexpected relationships and inbreeding in HapMap phase III populations. PLoS One 2012; 7:e49575. [PMID: 23185369 PMCID: PMC3501496 DOI: 10.1371/journal.pone.0049575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/10/2012] [Indexed: 01/02/2023] Open
Abstract
Correct annotation of the genetic relationships between samples is essential for population genomic studies, which could be biased by errors or omissions. To this end, we used identity-by-state (IBS) and identity-by-descent (IBD) methods to assess genetic relatedness of individuals within HapMap phase III data. We analyzed data from 1,397 individuals across 11 ethnic populations. Our results support previous studies (Pemberton et al., 2010; Kyriazopoulou-Panagiotopoulou et al., 2011) assessing unknown relatedness present within this population. Additionally, we present evidence for 1,657 novel pairwise relationships across 9 populations. Surprisingly, significant Cotterman's coefficients of relatedness K1 (IBD1) values were detected between pairs of known parents. Furthermore, significant K2 (IBD2) values were detected in 32 previously annotated parent-child relationships. Consistent with a hypothesis of inbreeding, regions of homozygosity (ROH) were identified in the offspring of related parents, of which a subset overlapped those reported in previous studies (Gibson et al. 2010; Johnson et al. 2011). In total, we inferred 28 inbred individuals with ROH that overlapped areas of relatedness between the parents and/or IBD2 sharing at a different genomic locus between a child and a parent. Finally, 8 previously annotated parent-child relationships had unexpected K0 (IBD0) values (resulting from a chromosomal abnormality or genotype error), and 10 previously annotated second-degree relationships along with 38 other novel pairwise relationships had unexpected IBD2 (indicating two separate paths of recent ancestry). These newly described types of relatedness may impact the outcome of previous studies and should inform the design of future studies relying on the HapMap Phase III resource.
Collapse
Affiliation(s)
- Eric L. Stevens
- Predoctoral Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph D. Baugher
- Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew D. Shirley
- Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Laurence P. Frelin
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States of America
| | - Jonathan Pevsner
- Predoctoral Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
227
|
Palamara PF, Lencz T, Darvasi A, Pe'er I. Length distributions of identity by descent reveal fine-scale demographic history. Am J Hum Genet 2012; 91:809-22. [PMID: 23103233 DOI: 10.1016/j.ajhg.2012.08.030] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/18/2012] [Accepted: 08/29/2012] [Indexed: 11/28/2022] Open
Abstract
Data-driven studies of identity by descent (IBD) were recently enabled by high-resolution genomic data from large cohorts and scalable algorithms for IBD detection. Yet, haplotype sharing currently represents an underutilized source of information for population-genetics research. We present analytical results on the relationship between haplotype sharing across purportedly unrelated individuals and a population's demographic history. We express the distribution of IBD sharing across pairs of individuals for segments of arbitrary length as a function of the population's demography, and we derive an inference procedure to reconstruct such demographic history. The accuracy of the proposed reconstruction methodology was extensively tested on simulated data. We applied this methodology to two densely typed data sets: 500 Ashkenazi Jewish (AJ) individuals and 56 Kenyan Maasai (MKK) individuals (HapMap 3 data set). Reconstructing the demographic history of the AJ cohort, we recovered two subsequent population expansions, separated by a severe founder event, consistent with previous analysis of lower-throughput genetic data and historical accounts of AJ history. In the MKK cohort, high levels of cryptic relatedness were detected. The spectrum of IBD sharing is consistent with a demographic model in which several small-sized demes intermix through high migration rates and result in enrichment of shared long-range haplotypes. This scenario of historically structured demographies might explain the unexpected abundance of runs of homozygosity within several populations.
Collapse
|
228
|
Ferenčaković M, Hamzić E, Gredler B, Solberg TR, Klemetsdal G, Curik I, Sölkner J. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. J Anim Breed Genet 2012; 130:286-93. [PMID: 23855630 DOI: 10.1111/jbg.12012] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/14/2012] [Indexed: 11/27/2022]
Abstract
Using genome-wide SNP data, we calculated genomic inbreeding coefficients (FROH > 1 Mb , FROH > 2 Mb , FROH > 8 Mb and FROH > 16 Mb ) derived from runs of homozygosity (ROH) of different lengths (>1, >2, >8 and > 16 Mb) as well as from levels of homozygosity (FHOM ). We compared these values of inbreeding coefficients with those calculated from pedigrees (FPED ) of 1422 bulls comprising Brown Swiss (304), Fleckvieh (502), Norwegian Red (499) and Tyrol Grey (117) cattle breeds. For all four breeds, population inbreeding levels estimated by the genomic inbreeding coefficients FROH > 8 Mb and FROH > 16 Mb were similar to the levels estimated from pedigrees. The lowest values were obtained for Fleckvieh (FPED = 0.014, FROH > 8 Mb = 0.019 and FROH > 16 Mb = 0.008); the highest, for Brown Swiss (FPED = 0.048, FROH > 8 Mb = 0.074 and FROH > 16 Mb = 0.037). In contrast, inbreeding estimates based on the genomic coefficients FROH > 1 Mb and FROH > 2 Mb were considerably higher than pedigree-derived estimates. Standard deviations of genomic inbreeding coefficients were, on average, 1.3-1.7-fold higher than those obtained from pedigrees. Pearson correlations between genomic and pedigree inbreeding coefficients ranged from 0.50 to 0.62 in Norwegian Red (lowest correlations) and from 0.64 to 0.72 in Tyrol Grey (highest correlations). We conclude that the proportion of the genome present in ROH provides a good indication of inbreeding levels and that analysis based on ROH length can indicate the relative amounts of autozygosity due to recent and remote ancestors.
Collapse
Affiliation(s)
- M Ferenčaković
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
229
|
Coughlin CR, Scharer GH, Shaikh TH. Clinical impact of copy number variation analysis using high-resolution microarray technologies: advantages, limitations and concerns. Genome Med 2012; 4:80. [PMID: 23114084 PMCID: PMC3580449 DOI: 10.1186/gm381] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copy number variation (CNV) analysis has had a major impact on the field of medical genetics, providing a mechanism to identify disease-causing genomic alterations in an unprecedented number of diseases and phenotypes. CNV analysis is now routinely used in the clinical diagnostic laboratory, and has led to a significant increase in the detection of chromosomal abnormalities. These findings are used for prenatal decision making, clinical management and genetic counseling. Although a powerful tool to identify genomic alterations, CNV analysis may also result in the detection of genomic alterations that have unknown clinical significance or reveal unintended information. This highlights the importance of informed consent and genetic counseling for clinical CNV analysis. This review examines the advantages and limitations of CNV discovery in the clinical diagnostic laboratory, as well as the impact on the clinician and family.
Collapse
Affiliation(s)
- Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, CO 80045, USA
| | - Gunter H Scharer
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, CO 80045, USA ; Intellectual and Developmental Disabilities Research Center, University of Colorado Denver, Aurora, CO 80045, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, CO 80045, USA ; Intellectual and Developmental Disabilities Research Center, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
230
|
Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and population history in cattle. BMC Genet 2012; 13:70. [PMID: 22888858 PMCID: PMC3502433 DOI: 10.1186/1471-2156-13-70] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/03/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are present in an individual due to parents transmitting identical haplotypes to their offspring. The extent and frequency of ROHs may inform on the ancestry of an individual and its population. Here we use high density (n = 777,962) bi-allelic SNPs in a range of cattle breed samples to correlate ROH with the pedigree-based inbreeding coefficients and to validate subsequent analyses using 54,001 SNP genotypes. This study provides a first testing of the inference drawn from ROH through comparison with estimates of inbreeding from calculations based on the detailed pedigree data available for several breeds. RESULTS All animals genotyped on the HD panel displayed at least one ROH that was between 1-5 Mb in length with certain regions of the genome more likely to be involved in a ROH than others. Strong correlations (r = 0.75, p < 0.0001) existed between the pedigree-based inbreeding coefficient and a statistic based on sum of ROH of length > 0.5 KB and suggests that in the absence of an animal's pedigree data, the extent of a genome under ROH may be used to infer aspects of recent population history even from relatively few samples. CONCLUSIONS Our findings suggest that ROH are frequent across all breeds but differing patterns of ROH length and burden illustrate variations in breed origins and recent management.
Collapse
Affiliation(s)
- Deirdre C Purfield
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
231
|
Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet 2012; 91:275-92. [PMID: 22883143 DOI: 10.1016/j.ajhg.2012.06.014] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/09/2012] [Accepted: 06/25/2012] [Indexed: 12/20/2022] Open
Abstract
Genome-wide patterns of homozygosity runs and their variation across individuals provide a valuable and often untapped resource for studying human genetic diversity and evolutionary history. Using genotype data at 577,489 autosomal SNPs, we employed a likelihood-based approach to identify runs of homozygosity (ROH) in 1,839 individuals representing 64 worldwide populations, classifying them by length into three classes-short, intermediate, and long-with a model-based clustering algorithm. For each class, the number and total length of ROH per individual show considerable variation across individuals and populations. The total lengths of short and intermediate ROH per individual increase with the distance of a population from East Africa, in agreement with similar patterns previously observed for locus-wise homozygosity and linkage disequilibrium. By contrast, total lengths of long ROH show large interindividual variations that probably reflect recent inbreeding patterns, with higher values occurring more often in populations with known high frequencies of consanguineous unions. Across the genome, distributions of ROH are not uniform, and they have distinctive continental patterns. ROH frequencies across the genome are correlated with local genomic variables such as recombination rate, as well as with signals of recent positive selection. In addition, long ROH are more frequent in genomic regions harboring genes associated with autosomal-dominant diseases than in regions not implicated in Mendelian diseases. These results provide insight into the way in which homozygosity patterns are produced, and they generate baseline homozygosity patterns that can be used to aid homozygosity mapping of genes associated with recessive diseases.
Collapse
|
232
|
Regions of homozygosity identified by SNP microarray analysis aid in the diagnosis of autosomal recessive disease and incidentally detect parental blood relationships. Genet Med 2012; 15:70-8. [PMID: 22858719 DOI: 10.1038/gim.2012.94] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The purpose of this study was to document the ability of single-nucleotide polymorphism microarray to identify copy-neutral regions of homozygosity, demonstrate clinical utility of regions of homozygosity, and discuss ethical/legal implications when regions of homozygosity are associated with a parental blood relationship. METHODS Study data were compiled from consecutive samples sent to our clinical laboratory over a 3-year period. A cytogenetics database identified patients with at least two regions of homozygosity >10 Mb on two separate chromosomes. A chart review was conducted on patients who met the criteria. RESULTS Of 3,217 single-nucleotide polymorphism microarrays, 59 (1.8%) patients met inclusion criteria. The percentage of homozygosity ranged from 0.9 to 30.1%, indicating parental relationships from distant to first-degree relatives. First-degree kinship was suspected in the parents of at least 11 patients with regions of homozygosity covering >21.3% of their autosome. In four patients from two families, homozygosity mapping discovered a candidate gene that was sequenced to identify a clinically significant mutation. CONCLUSION This study demonstrates clinical utility in the identification of regions of homozygosity, as these regions may aid in diagnosis of the patient. This study establishes the need for careful reporting, thorough pretest counseling, and careful electronic documentation, as microarray has the capability of detecting previously unknown/unreported relationships.
Collapse
|
233
|
Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 2012; 487:190-5. [PMID: 22785314 PMCID: PMC3397394 DOI: 10.1038/nature11236] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/15/2012] [Indexed: 12/16/2022]
Abstract
Recent advances in whole genome sequencing have brought the vision of personal genomics and genomic medicine closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and haplotyping process, Long Fragment Read (LFR) technology, similar to sequencing long single DNA molecules without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only ~100 pg of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants (SNVs) were assembled into long haplotype contigs. Removal of false positive SNVs not phased by multiple LFR haplotypes resulted in a final genome error rate of 1 in 10 Mb. Cost-effective and accurate genome sequencing and haplotyping from 10-20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse clinical applications.
Collapse
|
234
|
Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics 2012; 5:577-622. [PMID: 22155605 PMCID: PMC3525251 DOI: 10.1186/1479-7364-5-6-577] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.
Collapse
Affiliation(s)
- Nasheen Naidoo
- Centre for Molecular Epidemiology, Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
235
|
Tucker T, Schlade-Bartusiak K, Eydoux P, Nelson TN, Brown L. Uniparental disomy: can SNP array data be used for diagnosis? Genet Med 2012; 14:753-756. [PMID: 22538256 DOI: 10.1038/gim.2012.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose:Single-nucleotide polymorphism microarray analysis identifies copy-number variants and blocks of homozygosity, suggestive of consanguinity or uniparental disomy. The purpose of this study was to validate chromosomal microarray analysis for the identification of uniparental disomy in a clinical laboratory.Methods:In phase I of this retrospective study, nine cases with uniparental disomy for chromosomes 7 (n = 1), 14 (n = 1), and 15 (n = 7), identified by conventional polymorphic microsatellite marker analysis were analyzed on the Affymetrix 6.0 single-nucleotide polymorphism array. In phase II, four cases of uniparental disomy 15 showing heterozygosity for all microsatellite markers were analyzed using the same array.Results:Chromosomal microarray analysis detected blocks of homozygosity in eight of the nine cases in phase I. Phase II analysis of molecularly defined heterodisomy failed to detect blocks of homozygosity in three of the four cases. The four cases in which microarray did not detect blocks of homozygosity all involved chromosome 15.Conclusion:A failure to recombine may predispose to nondisjunction and, therefore, to uniparental disomy. Four cases of heterodisomy 15 were not detected by array, suggesting a lack of recombination. Therefore, a normal chromosomal microarray result for chromosome 15 does not exclude the possibility of uniparental disomy. This observation may apply to other chromosomes; however, further study is needed.Genet Med advance online publication 26 April 2012.
Collapse
Affiliation(s)
- Tracy Tucker
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
236
|
A genome-wide homozygosity association study identifies runs of homozygosity associated with rheumatoid arthritis in the human major histocompatibility complex. PLoS One 2012; 7:e34840. [PMID: 22536334 PMCID: PMC3335047 DOI: 10.1371/journal.pone.0034840] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 03/08/2012] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with a polygenic mode of inheritance. This study examined the hypothesis that runs of homozygosity (ROHs) play a recessive-acting role in the underlying RA genetic mechanism and identified RA-associated ROHs. Ours is the first genome-wide homozygosity association study for RA and characterized the ROH patterns associated with RA in the genomes of 2,000 RA patients and 3,000 normal controls of the Wellcome Trust Case Control Consortium. Genome scans consistently pinpointed two regions within the human major histocompatibility complex region containing RA-associated ROHs. The first region is from 32,451,664 bp to 32,846,093 bp (−log10(p)>22.6591). RA-susceptibility genes, such as HLA-DRB1, are contained in this region. The second region ranges from 32,933,485 bp to 33,585,118 bp (−log10(p)>8.3644) and contains other HLA-DPA1 and HLA-DPB1 genes. These two regions are physically close but are located in different blocks of linkage disequilibrium, and ∼40% of the RA patients' genomes carry these ROHs in the two regions. By analyzing homozygote intensities, an ROH that is anchored by the single nucleotide polymorphism rs2027852 and flanked by HLA-DRB6 and HLA-DRB1 was found associated with increased risk for RA. The presence of this risky ROH provides a 62% accuracy to predict RA disease status. An independent genomic dataset from 868 RA patients and 1,194 control subjects of the North American Rheumatoid Arthritis Consortium successfully validated the results obtained using the Wellcome Trust Case Control Consortium data. In conclusion, this genome-wide homozygosity association study provides an alternative to allelic association mapping for the identification of recessive variants responsible for RA. The identified RA-associated ROHs uncover recessive components and missing heritability associated with RA and other autoimmune diseases.
Collapse
|
237
|
Shieh JTC, Bittles AH, Hudgins L. Consanguinity and the risk of congenital heart disease. Am J Med Genet A 2012; 158A:1236-41. [PMID: 22488956 DOI: 10.1002/ajmg.a.35272] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/26/2011] [Indexed: 11/05/2022]
Abstract
Consanguineous unions have been associated with an increased susceptibility to various forms of inherited disease. Although consanguinity is known to contribute to recessive diseases, the potential role of consanguinity in certain common birth defects is less clear, particularly since the disease pathophysiology may involve genetic and environmental/epigenetic factors. In this study, we ask whether consanguinity affects one of the most common birth defects, congenital heart disease, and identify areas for further research into these birth defects, since consanguinity may now impact health on a near-global basis. A systematic review of consanguinity in congenital heart disease was performed, focusing on non-syndromic disease, with the methodologies and results from studies of different ethnic populations compared. The risks for congenital heart disease have been assessed and summarized collectively and by individual lesion. The majority of studies support the view that consanguinity increases the prevalence of congenital heart disease, however, the study designs differed dramatically. Only a few (n = 3) population-based studies that controlled for potential sociodemographic confounding were identified, and data on individual cardiac lesions were limited by case numbers. Overall the results suggest that the risk for congenital heart disease is increased in consanguineous unions in the studied populations, principally at first-cousin level and closer, a factor that should be considered in empiric risk estimates in genetic counseling. However, for more precise risk estimates a better understanding of the underlying disease factors is needed.
Collapse
Affiliation(s)
- Joseph T C Shieh
- Division of Medical Genetics, Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
238
|
Zhang L, Yang W, Ying D, Cherny SS, Hildebrandt F, Sham PC, Lau YL. Homozygosity mapping on a single patient: identification of homozygous regions of recent common ancestry by using population data. Hum Mutat 2012; 32:345-53. [PMID: 21309031 PMCID: PMC3357498 DOI: 10.1002/humu.21432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Homozygosity mapping has played an important role in detecting recessive mutations using families of consanguineous marriages. However, detection of regions identical and homozygosity by descent (HBD) when family data are not available, or when relationships are unknown, is still a challenge. Making use of population data from high-density SNP genotyping may allow detection of regions HBD from recent common founders in singleton patients without genealogy information. We report a novel algorithm that detects such regions by estimating the population haplotype frequencies (HF) for an entire homozygous region. We also developed a simulation method to evaluate the probability of HBD and linkage to disease for a homozygous region by examining the best regions in unaffected controls from the host population. The method can be applied to diseases of Mendelian inheritance but can also be extended to complex diseases to detect rare founder mutations that affect a very small number of patients using either multiplex families or sporadic cases. Testing of the method on both real cases (singleton affected) and simulated data demonstrated its superb sensitivity and robustness under genetic heterogeneity. Hum Mutat 32:345–353, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Paediatrics and Adolescent Medicine, University of Hong KongHong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, University of Hong KongHong Kong
- *Correspondence to: Wanling Yang, Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China. E-mail:
| | - Dingge Ying
- Department of Paediatrics and Adolescent Medicine, University of Hong KongHong Kong
| | - Stacey S Cherny
- Department of Psychiatry and the State Key Laboratory for Brain and Cognitive Sciences, University of Hong KongHong Kong
| | - Friedhelm Hildebrandt
- Department of Pediatrics, University of Michigan School of MedicineAnn Arbor, Michigan
- Howard Hughes Medical Institute, University of Michigan School of MedicineAnn Arbor, Michigan
| | - Pak Chung Sham
- Department of Psychiatry and the State Key Laboratory for Brain and Cognitive Sciences, University of Hong KongHong Kong
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, University of Hong KongHong Kong
| |
Collapse
|
239
|
Abstract
Whole-genome genetic diagnostics has changed the clinical landscape of pediatric and adolescent medicine. In this article, we review the history of clinical cytogenetics as the field has progressed from studying chromosomes prepared from cells squashed between 2 slides to the high-resolution, whole-genome technology in use today, which has allowed for the identification of numerous previously unrecognized microdeletion and microduplication syndromes. Types of arrays and the data they collect are addressed, as are the types of results that array comparative genomic hybridization studies may generate. Throughout the review, we present case stories to illustrate the familiar (Down syndrome) and the new (a never-before reported microdeletion on the long arm of chromosome 12).
Collapse
|
240
|
Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiol Aging 2012; 33:437-56. [PMID: 20594621 PMCID: PMC2980860 DOI: 10.1016/j.neurobiolaging.2010.03.025] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 03/01/2010] [Accepted: 03/11/2010] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a complex disorder with a clear genetic component. Three genes have been identified as the cause of early onset familial AD (EOAD). The most common form of the disease, late onset Alzheimer's disease (LOAD), is, however, a sporadic one presenting itself in later stages of life. The genetic component of this late onset form of AD has been the target of a large number of studies, because only one genetic risk factor (APOE4) has been consistently associated with the disease. However, technological advances allow new approaches in the study of complex disorders. In this review, we discuss the new results produced by genome wide association studies, in light of the current knowledge of the complexity of AD genetics.
Collapse
Affiliation(s)
- Rita J Guerreiro
- Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
241
|
Stevens EL, Heckenberg G, Baugher JD, Roberson EDO, Downey TJ, Pevsner J. Consanguinity in Centre d'Étude du Polymorphisme Humain (CEPH) pedigrees. Eur J Hum Genet 2012; 20:657-67. [PMID: 22274586 DOI: 10.1038/ejhg.2011.266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A set of Centre d'Étude du Polymorphisme Humain (CEPH) cell lines serves as a large reference collection that has been widely used as a benchmark for allele frequencies in the analysis of genetic variants, to create linkage maps of the human genome, to study the genetics of gene expression, to provide samples to the HapMap and 1000 Genomes projects, and for a variety of other applications. An explicit feature of the CEPH collection is that these multigenerational families represent reference panels of known relatedness, consisting mostly of three-generation pedigrees with large sibships, two parents, and grandparents. We applied identity-by-state (IBS) and identity-by-descent (IBD) methods to high-density genotype data from 186 CEPH individuals in 13 families. We identified unexpected relatedness between nominally unrelated grandparents both within and between pedigrees. For one pair, the estimated Cotterman coefficient of relatedness k1 exceeded 0.2, consistent with one-eighth sharing (eg, first-cousins). Unexpectedly, significant IBD2 values were discovered in both second-degree and parent-child relationships. These were accompanied by regions of homozygosity in the offspring, which corresponded to blocks lacking IBS0 in purportedly unrelated parents, consistent with inbreeding. Our findings support and extend a 1999 report, based on the use of short tandem-repeat polymorphisms, that several CEPH families had regions of homozygosity consistent with autozygosity. We benchmarked our IBD approach (called kcoeff) against both RELPAIR and PREST software packages. Our findings may affect the interpretation of previous studies and the design of future studies that rely on the CEPH resource.
Collapse
Affiliation(s)
- Eric L Stevens
- Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
242
|
Birch AH, Arcand SL, Oros KK, Rahimi K, Watters AK, Provencher D, Greenwood CM, Mes-Masson AM, Tonin PN. Chromosome 3 anomalies investigated by genome wide SNP analysis of benign, low malignant potential and low grade ovarian serous tumours. PLoS One 2011; 6:e28250. [PMID: 22163003 PMCID: PMC3232202 DOI: 10.1371/journal.pone.0028250] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Ovarian carcinomas exhibit extensive heterogeneity, and their etiology remains unknown. Histological and genetic evidence has led to the proposal that low grade ovarian serous carcinomas (LGOSC) have a different etiology than high grade carcinomas (HGOSC), arising from serous tumours of low malignant potential (LMP). Common regions of chromosome (chr) 3 loss have been observed in all types of serous ovarian tumours, including benign, suggesting that these regions contain genes important in the development of all ovarian serous carcinomas. A high-density genome-wide genotyping bead array technology, which assayed >600,000 markers, was applied to a panel of serous benign and LMP tumours and a small set of LGOSC, to characterize somatic events associated with the most indolent forms of ovarian disease. The genomic patterns inferred were related to TP53, KRAS and BRAF mutations. An increasing frequency of genomic anomalies was observed with pathology of disease: 3/22 (13.6%) benign cases, 40/53 (75.5%) LMP cases and 10/11 (90.9%) LGOSC cases. Low frequencies of chr3 anomalies occurred in all tumour types. Runs of homozygosity were most commonly observed on chr3, with the 3p12-p11 candidate tumour suppressor region the most frequently homozygous region in the genome. An LMP harboured a homozygous deletion on chr6 which created a GOPC-ROS1 fusion gene, previously reported as oncogenic in other cancer types. Somatic TP53, KRAS and BRAF mutations were not observed in benign tumours. KRAS-mutation positive LMP cases displayed significantly more chromosomal aberrations than BRAF-mutation positive or KRAS and BRAF mutation negative cases. Gain of 12p, which harbours the KRAS gene, was particularly evident. A pathology review reclassified all TP53-mutation positive LGOSC cases, some of which acquired a HGOSC status. Taken together, our results support the view that LGOSC could arise from serous benign and LMP tumours, but does not exclude the possibility that HGOSC may derive from LMP tumours.
Collapse
Affiliation(s)
- Ashley H. Birch
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Suzanna L. Arcand
- The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kathleen K. Oros
- Division of Clinical Epidemiology and Segal Cancer Centre, Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
| | - Kurosh Rahimi
- Department of Pathology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - A. Kevin Watters
- Department of Pathology, McGill University and McGill University Health Centre (MUHC), Montréal, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Institut du cancer de Montréal, Montreal, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, Canada
| | - Celia M. Greenwood
- Division of Clinical Epidemiology and Segal Cancer Centre, Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Institut du cancer de Montréal, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
243
|
Kearney HM, Kearney JB, Conlin LK. Diagnostic Implications of Excessive Homozygosity Detected by SNP-Based Microarrays: Consanguinity, Uniparental Disomy, and Recessive Single-Gene Mutations. Clin Lab Med 2011; 31:595-613, ix. [DOI: 10.1016/j.cll.2011.08.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
244
|
Sims R, Dwyer S, Harold D, Gerrish A, Hollingworth P, Chapman J, Jones N, Abraham R, Ivanov D, Pahwa JS, Moskvina V, Dowzell K, Thomas C, Stretton A, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuiness B, Todd S, Johnston JA, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Livingston G, Bass NJ, Gurling H, McQuillin A, Jones L, Holmans PA, O'Donovan M, Owen MJ, Williams J. No evidence that extended tracts of homozygosity are associated with Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:764-71. [PMID: 21812096 DOI: 10.1002/ajmg.b.31216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/09/2011] [Indexed: 12/15/2022]
Abstract
We sought to investigate the contribution of extended runs of homozygosity in a genome-wide association dataset of 1,955 Alzheimer's disease cases and 955 elderly screened controls genotyped for 529,205 autosomal single nucleotide polymorphisms. Tracts of homozygosity may mark regions inherited from a common ancestor and could reflect disease loci if observed more frequently in cases than controls. We found no excess of homozygous tracts in Alzheimer's disease cases compared to controls and no individual run of homozygosity showed association to Alzheimer's disease.
Collapse
Affiliation(s)
- Rebecca Sims
- MRC Centre for Neuropyschiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, Cardiff University, Heath Park.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Teo SM, Ku CS, Salim A, Naidoo N, Chia KS, Pawitan Y. Regions of homozygosity in three Southeast Asian populations. J Hum Genet 2011; 57:101-8. [PMID: 22129560 DOI: 10.1038/jhg.2011.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of outbred populations were first shown in 2006 to contain regions of homozygosity (ROHs) of several megabases. Further studies have also investigated the characteristics of ROHs in healthy individuals in various populations but there are no studies on Singapore populations to date. This study aims to identify and investigate the characteristics of ROHs in three Singapore populations. A total of 268 samples (96 Chinese, 89 Malays and 83 Indians) are genotyped on Illumina Human 1 M Beadchip and Affymetrix Genome-Wide Human SNP Array 6.0. We use the PennCNV algorithm to detect ROHs. We report an abundance of ROHs (≥500 kb), with an average of more than one hundred regions per individual. On average, the Indian population has the lowest number of ROHs and smallest total length of ROHs per individual compared with the Chinese and Malay populations. We further investigate the relationship between the occurrence of ROHs and haplotype frequency, regional linkage disequilibrium (LD) and positive selection. Based on the results of this data set, we find that the frequency of occurrence of ROHs is positively associated with haplotype frequency and regional LD. The majority of regions detected for recent positive selection and regions with differential LD between populations overlap with the ROH loci. When we consider both the location of the ROHs and the allelic form of the ROHs, we are able to separate the populations by principal component analysis, demonstrating that ROHs contain information on population structure and the demographic history of a population.
Collapse
Affiliation(s)
- Shu-Mei Teo
- Centre for Molecular Epidemiology, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
246
|
Lee CY, Qin J, Munyard KA, Siva Subramaniam N, Wetherall JD, Stear MJ, Groth DM. Conserved haplotype blocks within the sheep MHC and low SNP heterozygosity in the Class IIa subregion. Anim Genet 2011; 43:429-37. [PMID: 22497756 DOI: 10.1111/j.1365-2052.2011.02268.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes single-nucleotide polymorphisms (SNPs) in the sheep major histocompatibility complex (MHC) class II and class III regions and provides insights into the internal structure of this important genomic complex. MHC haplotypes were deduced from sheep family trios based on genotypes from 20 novel SNPs representative of the class II region and 10 previously described SNPs spanning the class III region. All 30 SNPs exhibited Hardy-Weinberg proportions in the sheep population studied. Recombination within an extended sire haplotype was observed within the class II region for 4 of 20 sheep chromosomes, thereby supporting the presence of separated IIa and IIb subregions similar to those present in cattle. SNP heterozygosity varied across the class II and III regions. One segment of the class IIa subregion manifested very low heterozygosity for several SNPs spanning approximately 120 Kbp. This feature corresponds to a subregion within the human MHC class II region previously described as a 'SNP desert' because of its paucity of SNPs. Linkage disequilibrium (LD) was reduced at the junction separating the putative class IIb and IIa subregions and also between the class IIa and the class III subregions. The latter observation is consistent with either an unmapped physical separation at this location or more likely a boundary characterized by more frequent recombination between two conserved subregions, each manifesting high within-block LD. These results identify internal blocks of loci in the sheep MHC, within which recombination is relatively rare.
Collapse
Affiliation(s)
- C Y Lee
- Western Australian Biomedical Research Institute, School of Biomedical Sciences, Curtin University, Perth, Australia
| | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
Numerous articles have been published linking consanguineous marriage to an elevated prevalence of congenital heart disease, with ventricular septal defects and atrial septal defects the most commonly cited disorders. While initially persuasive, on closer examination many of these studies have fundamental shortcomings in their design and in the recruitment of study subjects and controls. Improved matching of cases and controls, to include recognition of the long-established community boundaries within which most marriages are contracted, and the assessment of consanguinity within specific levels and types of marital union would improve and help to focus the study outcomes. At the same time, major discrepancies between studies in their reported prevalence and types of congenital heart disease suggest an urgent need for greater standardization in the classification and reporting of these disorders.
Collapse
Affiliation(s)
- Alan H Bittles
- Centre for Comparative Genomics, Murdoch University, and School of Medical Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
248
|
Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics 2011; 12:460. [PMID: 21943305 PMCID: PMC3188534 DOI: 10.1186/1471-2164-12-460] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/23/2011] [Indexed: 01/19/2023] Open
Abstract
Background A central aim for studying runs of homozygosity (ROHs) in genome-wide SNP data is to detect the effects of autozygosity (stretches of the two homologous chromosomes within the same individual that are identical by descent) on phenotypes. However, it is unknown which current ROH detection program, and which set of parameters within a given program, is optimal for differentiating ROHs that are truly autozygous from ROHs that are homozygous at the marker level but vary at unmeasured variants between the markers. Method We simulated 120 Mb of sequence data in order to know the true state of autozygosity. We then extracted common variants from this sequence to mimic the properties of SNP platforms and performed ROH analyses using three popular ROH detection programs, PLINK, GERMLINE, and BEAGLE. We varied detection thresholds for each program (e.g., prior probabilities, lengths of ROHs) to understand their effects on detecting known autozygosity. Results Within the optimal thresholds for each program, PLINK outperformed GERMLINE and BEAGLE in detecting autozygosity from distant common ancestors. PLINK's sliding window algorithm worked best when using SNP data pruned for linkage disequilibrium (LD). Conclusion Our results provide both general and specific recommendations for maximizing autozygosity detection in genome-wide SNP data, and should apply equally well to research on whole-genome autozygosity burden or to research on whether specific autozygous regions are predictive using association mapping methods.
Collapse
|
249
|
Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics 2011; 189:237-49. [PMID: 21705750 PMCID: PMC3176119 DOI: 10.1534/genetics.111.130922] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inbreeding depression, which refers to reduced fitness among offspring of related parents, has traditionally been studied using pedigrees. In practice, pedigree information is difficult to obtain, potentially unreliable, and rarely assessed for inbreeding arising from common ancestors who lived more than a few generations ago. Recently, there has been excitement about using SNP data to estimate inbreeding (F) arising from distant common ancestors in apparently “outbred” populations. Statistical power to detect inbreeding depression using SNP data depends on the actual variation in inbreeding in a population, the accuracy of detecting that with marker data, the effect size, and the sample size. No one has yet investigated what variation in F is expected in SNP data as a function of population size, and it is unclear which estimate of F is optimal for detecting inbreeding depression. In the present study, we use theory, simulated genetic data, and real genetic data to find the optimal estimate of F, to quantify the likely variation in F in populations of various sizes, and to estimate the power to detect inbreeding depression. We find that F estimated from runs of homozygosity (Froh), which reflects shared ancestry of genetic haplotypes, retains variation in even large populations (e.g., SD = 0.5% when Ne = 10,000) and is likely to be the most powerful method of detecting inbreeding effects from among several alternative estimates of F. However, large samples (e.g., 12,000–65,000) will be required to detect inbreeding depression for likely effect sizes, and so studies using Froh to date have probably been underpowered.
Collapse
|
250
|
Kuningas M, McQuillan R, Wilson JF, Hofman A, van Duijn CM, Uitterlinden AG, Tiemeier H. Runs of homozygosity do not influence survival to old age. PLoS One 2011; 6:e22580. [PMID: 21799906 PMCID: PMC3143169 DOI: 10.1371/journal.pone.0022580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/24/2011] [Indexed: 11/22/2022] Open
Abstract
Runs of homozygosity (ROH) are extended tracts of adjacent homozygous single nucleotide polymorphisms (SNPs) that are more common in unrelated individuals than previously thought. It has been proposed that estimating ROH on a genome-wide level, by making use of the genome-wide single nucleotide polymorphism (SNP) data, will enable to indentify recessive variants underlying complex traits. Here, we examined ROH larger than 1.5 Mb individually and in combination for association with survival in 5974 participants of the Rotterdam Study. In addition, we assessed the role of overall homozygosity, expressed as a percentage of the autosomal genome that is in ROH longer than 1.5 Mb, on survival during a mean follow-up period of 12 years. None of these measures of homozygosity was associated with survival to old age.
Collapse
Affiliation(s)
- Maris Kuningas
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|