201
|
Li J, Wang Z, Zhang Y, Li Y, Feng L, Wang J, Zhang J, Zhou Z, Zhang Y, Chang X. Effects of environmentally relevant concentration of short-chain chlorinated paraffins on BV2 microglia activation and lipid metabolism, implicating altered neurogenesis. ENVIRONMENTAL RESEARCH 2024; 251:118602. [PMID: 38431072 DOI: 10.1016/j.envres.2024.118602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Short-chain chlorinated paraffins (SCCPs), a class of persistent organic pollutants, have been found to cause diverse organ and systemic toxicity. However, little is known about their neurotoxic effects. In this study, we exposed BV2, a mouse microglia cell line, to environmentally relevant concentration of SCCPs (1 μg/L, 10 μg/L, 100 μg/L) for 24 h to investigate their impacts on the nervous system. Our observations revealed that SCCPs induced the activation of BV2 microglia, as indicated by altered morphology, stimulated cell proliferation, enhanced phagocytic and migratory capabilities. Analysis at the mRNA level confirmed the activation status, with the downregulation of TMEM119 and Tgfbr1, and upregulation of Iba1 and CD11b. The upregulated expression of genes such as cenpe, mki67, Axl, APOE and LPL also validated alterations in cell functions. Moreover, BV2 microglia presented an M2 alternative phenotype upon SCCPs exposure, substantiated by the reduction of NF-κB, TNF-α, IL-1β, and the elevation of TGF-β. Additionally, SCCPs caused lipid metabolic changes in BV2 microglia, characterized by the upregulations of long-chain fatty acids and acylcarnitines, reflecting an enhancement of β-oxidation. This aligns with our findings of increased ATP production upon SCCPs exposure. Intriguingly, cell activation coincided with elevated levels of omega-3 polyunsaturated fatty acids. Furthermore, activated microglial medium remarkably altered the proliferation and differentiation of mouse neural stem cells. Collectively, exposure to environmentally relevant concentrations of SCCPs resulted in activation and lipid metabolic alterations in BV2 microglia, potentially impacting neurogenesis. These findings provide valuable insights for further research on the neurotoxic effect of SCCPs.
Collapse
Affiliation(s)
- Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Longfei Feng
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jinglin Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yunhui Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
202
|
Bao L, Liu Y, Jia Q, Chu S, Jiang H, He S. Argon neuroprotection in ischemic stroke and its underlying mechanism. Brain Res Bull 2024; 212:110964. [PMID: 38670471 DOI: 10.1016/j.brainresbull.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Li Bao
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yongxin Liu
- Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Qi Jia
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Sihao Chu
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Han Jiang
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Shuang He
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
203
|
Wang HLV, Xiang JF, Yuan C, Veire AM, Gendron TF, Murray ME, Tansey MG, Hu J, Gearing M, Glass JD, Jin P, Corces VG, McEachin ZT. pTDP-43 levels correlate with cell type specific molecular alterations in the prefrontal cortex of C9orf72 ALS/FTD patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.12.523820. [PMID: 36711601 PMCID: PMC9882184 DOI: 10.1101/2023.01.12.523820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and familial frontotemporal dementia (ALS/FTD). To identify molecular defects that take place in the dorsolateral frontal cortex of patients with C9orf72 ALS/FTD, we compared healthy controls with C9orf72 ALS/FTD donor samples staged based on the levels of cortical phosphorylated TAR DNA binding protein (pTDP-43), a neuropathological hallmark of disease progression. We identified distinct molecular changes in different cell types that take place during FTD development. Loss of neurosurveillance microglia and activation of the complement cascade take place early, when pTDP-43 aggregates are absent or very low, and become more pronounced in late stages, suggesting an initial involvement of microglia in disease progression. Reduction of layer 2-3 cortical projection neurons with high expression of CUX2/LAMP5 also occurs early, and the reduction becomes more pronounced as pTDP-43 accumulates. Several unique features were observed only in samples with high levels of pTDP-43, including global alteration of chromatin accessibility in oligodendrocytes, microglia, and astrocytes; higher ratios of premature oligodendrocytes; increased levels of the noncoding RNA NEAT1 in astrocytes and neurons, and higher amount of phosphorylated ribosomal protein S6. Our findings reveal previously unknown progressive functional changes in major cell types found in the frontal cortex of C9orf72 ALS/FTD patients that shed light on the mechanisms underlying the pathology of this disease.
Collapse
Affiliation(s)
- Hsiao-Lin V. Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Chenyang Yuan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Austin M. Veire
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | | | | | - Malú G. Tansey
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32607
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32607
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Marla Gearing
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Jonathan D. Glass
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Zachary T. McEachin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
204
|
Zubova SG, Morshneva AV. The role of autophagy and macrophage polarization in the processes of chronic inflammation and regeneration. ЦИТОЛОГИЯ 2024; 66:20-34. [DOI: 10.31857/s0041377124010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The cause of many seriousillnesses, including diabetes, obesity, osteoporosis and neurodegenerative diseases is chronic inflammation that develops in adipose tissue, bones or the brain. This inflammation occurs due to a shift in the polarization of macrophages/microglia towards the pro-inflammatory phenotype M1. It has now been proven that the polarization of macrophages is determined by the intracellular level of autophagy in the macrophage. By modulating autophagy, it is possible to cause switching of macrophage activities towards M1 or M2. Summarizing the material accumulated in the literature, we believe that the activation of autophagy reprograms the macrophage towards M2, replacing its protein content, receptor apparatus and including a different type of metabolism. The term reprogramming is most suitable for this process, since it is followed by a change in the functional activity of the macrophage, namely, switching from cytotoxic pro-inflammatory activity to anti-inflammatory (regenerative). Modulation of autophagy can be an approach to the treatment of oncological diseases, neurodegenerative disorders, osteoporosis, diabetes and other serious diseases.
Collapse
Affiliation(s)
- S. G. Zubova
- Institute of Cytology of the Russian Academy of Sciences
| | | |
Collapse
|
205
|
Sun L, Zhao Z, Guo J, Qin Y, Yu Q, Shi X, Guo F, Zhang H, Sun X, Gao C, Yang Q. Mitochondrial transplantation confers protection against the effects of ischemic stroke by repressing microglial pyroptosis and promoting neurogenesis. Neural Regen Res 2024; 19:1325-1335. [PMID: 37905882 PMCID: PMC11467935 DOI: 10.4103/1673-5374.385313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 11/02/2023] Open
Abstract
Transferring healthy and functional mitochondria to the lateral ventricles confers neuroprotection in a rat model of ischemia-reperfusion injury. Autologous mitochondrial transplantation is also beneficial in pediatric patients with cardiac ischemia-reperfusion injury. Thus, transplantation of functional exogenous mitochondria may be a promising therapeutic approach for ischemic disease. To explore the neuroprotective effect of mitochondria transplantation and determine the underlying mechanism in ischemic stroke, in this study we established a photo-thrombosis-induced mouse model of focal ischemia and administered freshly isolated mitochondria via the tail vein or to the injury site (in situ ). Animal behavior tests, immunofluorescence staining, 2,3,5-triphenyltetrazolium chloride (TTC) staining, mRNA-seq, and western blotting were used to assess mouse anxiety and memory, cortical infarct area, pyroptosis, and neurogenesis, respectively. Using bioinformatics analysis, western blotting, co-immunoprecipitation, and mass spectroscopy, we identified S100 calcium binding protein A9 (S100A9) as a potential regulator of mitochondrial function and determined its possible interacting proteins. Interactions between exogenous and endogenous mitochondria, as well as the effect of exogenous mitochondria on recipient microglia, were assessed in vitro . Our data showed that: (1) mitochondrial transplantation markedly reduced mortality and improved emotional and cognitive function, as well as reducing infarct area, inhibiting pyroptosis, and promoting cortical neurogenesis; (2) microglial expression of S100A9 was markedly increased by ischemic injury and regulated mitochondrial function; (3) in vitro , exogenous mitochondria enhanced mitochondrial function, reduced redox stress, and regulated microglial polarization and pyroptosis by fusing with endogenous mitochondria; and (4) S100A9 promoted internalization of exogenous mitochondria by the microglia, thereby amplifying their pro-proliferation and anti-inflammatory effects. Taken together, our findings show that mitochondrial transplantation protects against the deleterious effects of ischemic stroke by suppressing pyroptosis and promoting neurogenesis, and that S100A9 plays a vital role in promoting internalization of exogenous mitochondria.
Collapse
Affiliation(s)
- Li Sun
- Department of Experimental Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Zhaoyan Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Jing Guo
- Department of Experimental Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yuan Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qian Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xiaolong Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Fei Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Haiqin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qian Yang
- Department of Experimental Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
206
|
Zhang H, Xiang L, Yuan H, Yu H. PTPRO inhibition ameliorates spinal cord injury through shifting microglial M1/M2 polarization via the NF-κB/STAT6 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167141. [PMID: 38565385 DOI: 10.1016/j.bbadis.2024.167141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Spinal cord injury (SCI) induces severe neuroinflammation, and subsequently neurological dysfunction. Activated microglia are critical for modulation of neuroinflammation. Protein tyrosine phosphatase receptor type O (PTPRO), a member of protein tyrosine phosphatases (PTPs), exerts a pro-inflammatory role in multiple human diseases; however, its role in SCI remains unclarified. Here, a T7 spinal cord compression injury model was established in Sprague-Dawley (SD) rats, and PTPRO expression was upregulated in injured spinal cord and microglia after SCI. Microglia M1 and M2 polarization in vitro were induced using LPS/IFN-γ and IL-4, respectively. PTPRO expression was elevated in M1-polarized microglia, and PTPRO downregulation mediated by PTPRO shRNA (shPTPRO) decreased CD86+ cell proportion, iNOS, TNF-α, IL-1β, and IL-6 levels, and p65 phosphorylation. PTPRO was downregulated in M2 microglia, and PTPRO upregulation by PTPRO overexpression plasmid (OE-PTPRO) reduced CD206+ cell percentage, Arg-1, IL-10, and TGF-β1 levels and STAT6 phosphorylation. Mechanistically, the transcription factor SOX4 elevated PTPRO expression and its promoter activity. SOX4 overexpression enhanced M1 polarization and p65 phosphorylation, while its knockdown promoted M2 polarization and STAT6 phosphorylation. PTPRO might mediate the function of SOX4 in BV2 microglia polarization. Furthermore, lentivirus-mediated downregulation of PTPRO following SCI improved locomotor functional recovery, demonstrated by elevated BBB scores, incline angle, consistent hindlimb coordination, and reduced lesion area and neuronal apoptosis. PTPRO downregulation promoted microglia M2 polarization, NF-κB inactivation and STAT6 activation after injury. In conclusion, PTPRO inhibition improves spinal cord injury through facilitating M2 microglia polarization via the NF-κB/STAT6 signaling pathway, which is probably controlled by SOX4.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Liangbi Xiang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Hong Yuan
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
207
|
Liu S, Zhang B, Guo H, Ding Z, Hou W, Hu X, Wang Y, Tan W, Zhou S. The antidepressant effects of protein arginine methyltransferase 2 involve neuroinflammation. Neurochem Int 2024; 176:105728. [PMID: 38561150 DOI: 10.1016/j.neuint.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Protein arginine methyltransferase (PRMT) 2 catalyzes the methylation of arginine residues in histones. Depression is associated with histone methylation; however, more comprehensive research is needed on how PRMT2 regulates depression. The present study aimed to investigate the effects and possible mechanism(s) of PRMT2 overexpression on depression-like behavior induced by chronic unpredictable mild stress (CUMS) in rats, and whether lentivirus-mediated PRMT2 overexpression in the hippocampus suppresses depression-like behavior. Furthermore, the PRMT2 inhibitor MS023 was administered to the animals to investigate whether the antidepressant effect of PRMT2 overexpression could be reversed. Behavioral experiments were performed to detect depression-like behavior in rats. Western blotting was used to determine protein expression levels of PRMT2, histone H3R8 asymmetric dimethylation (H3R8me2a), inducible nitric oxide synthase (iNOS), and arginase 1 (Arg1) in rat hippocampal tissues. Hippocampal microglia and PRMT2 were stained using immunofluorescence techniques. Enzyme-linked immunosorbent assay was used to determine the levels of various inflammatory factors in rat hippocampal tissue. Results of analysis revealed that PRMT2 overexpression in the hippocampus exerted an antidepressant effect. PRMT2 overexpression in the hippocampus reduced the proportion of activated microglia in the hippocampus, upregulated Arg1 and H3R8me2a expression, and downregulated iNOS expression. PRMT2 overexpression in the hippocampus inhibited the release of pro-inflammatory factors and promoted the release of anti-inflammatory factors. In summary, PRMT2 overexpression in the hippocampus promoted the conversion of microglia from the M1 to M2 type, resulting in an antidepressant effect. These results suggest that PRMT2 may be a potential therapeutic target to prevent and treat depression.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical College, Guilin, 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China.
| | - Bei Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Haowei Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Zhanghua Ding
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Wenhui Hou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Xiaoli Hu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Yuchu Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Wupeng Tan
- Department of Gynaecology, Maternal and Child Health Hospital of Hengyang, Hengyang, 421001, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| |
Collapse
|
208
|
Nigam M, Devi K, Coutinho HDM, Mishra AP. Exploration of gut microbiome and inflammation: A review on key signalling pathways. Cell Signal 2024; 118:111140. [PMID: 38492625 DOI: 10.1016/j.cellsig.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The gut microbiome, a crucial component of the human system, is a diverse collection of microbes that belong to the gut of human beings as well as other animals. These microbial communities continue to coexist harmoniously with their host organisms and perform various functions that affect the host's general health. Each person's gut microbiota has a unique makeup. The gut microbiota is well acknowledged to have a part in the local as well as systemic inflammation that underlies a number of inflammatory disorders (e.g., atherosclerosis, diabetes mellitus, obesity, and inflammatory bowel disease).The gut microbiota's metabolic products, such as short-chain fatty acids (butyrate, propionate, and acetate) inhibit inflammation by preventing immune system cells like macrophages and neutrophils from producing pro-inflammatory factors, which are triggered by the structural elements of bacteria (like lipopolysaccharide). The review's primary goal is to provide comprehensive and compiled data regarding the contribution of gut microbiota to inflammation and the associated signalling pathways.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Kanchan Devi
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | | | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
209
|
Zubova SG, Morshneva AV. The Role of Autophagy and Macrophage Polarization in the Process of Chronic Inflammation and Regeneration. CELL AND TISSUE BIOLOGY 2024; 18:244-256. [DOI: 10.1134/s1990519x24700184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 01/04/2025]
|
210
|
Lin R, Jin L, Xue Y, Zhang Z, Huang H, Chen D, Liu Q, Mao Z, Wu Z, Tao Q. Hybrid Membrane-Coated Nanoparticles for Precise Targeting and Synergistic Therapy in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306675. [PMID: 38647399 PMCID: PMC11200089 DOI: 10.1002/advs.202306675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
The blood brain barrier (BBB) limits the application of most therapeutic drugs for neurological diseases (NDs). Hybrid cell membrane-coated nanoparticles derived from different cell types can mimic the surface properties and functionalities of the source cells, further enhancing their targeting precision and therapeutic efficacy. Neuroinflammation has been increasingly recognized as a critical factor in the pathogenesis of various NDs, especially Alzheimer's disease (AD). In this study, a novel cell membrane coating is designed by hybridizing the membrane from platelets and chemokine (C-C motif) receptor 2 (CCR2) cells are overexpressed to cross the BBB and target neuroinflammatory lesions. Past unsuccessful endeavors in AD drug development underscore the challenge of achieving favorable outcomes when utilizing single-mechanism drugs.Two drugs with different mechanisms of actions into liposomes are successfully loaded to realize multitargeting treatment. In a transgenic mouse model for familial AD (5xFAD), the administration of these drug-loaded hybrid cell membrane liposomes results in a significant reduction in amyloid plaque deposition, neuroinflammation, and cognitive impairments. Collectively, the hybrid cell membrane-coated nanomaterials offer new opportunities for precise drug delivery and disease-specific targeting, which represent a versatile platform for targeted therapy in AD.
Collapse
Affiliation(s)
- Rong‐Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Lu‐Lu Jin
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yan‐Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Zhe‐Sheng Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Hui‐Feng Huang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Dian‐Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Qian Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Zheng‐Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Zhi‐Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
- MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310058China
- CAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai200031China
| | - Qing‐Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| |
Collapse
|
211
|
Peipei W, Yu D, Xiaoyan L, Yunxia L, Liuming L, Tongbin C, Shaoping L. Effects of a novel regimen of repetitive transcranial magnetic stimulation (rTMS) on neural remodeling and motor function in adult male mice with ischemic stroke. J Neurosci Res 2024; 102:e25358. [PMID: 38859672 DOI: 10.1002/jnr.25358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/03/2024] [Accepted: 05/12/2024] [Indexed: 06/12/2024]
Abstract
Neuroinflammation caused by excessive microglial activation plays a key role in the pathogenesis of ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulatory technique that has recently been reported to regulate microglial functions and exert anti-inflammatory effects. The intermittent burst stimulation (iTBS) regimen in rTMS improves neuronal excitability. However, whether iTBS exerts its anti-inflammatory effects by stimulating neurons and thereby modulating microglial polarization remains unclear. Motor function was assessed after 1 week of rTMS (iTBS regimen) treatment in adult male mice with occlusion/reperfusion of the middle cerebral artery (MCAO/r) injury. We also investigated the molecular biological alterations associated with microglial polarization using a cell proliferation assay, multiplex cytokine bioassays, and immunofluorescence staining. iTBS regimen can improve balance and motor coordination function, increase spontaneous movement, and improve walking function in mice with early cerebral ischemia injury. Expression levels of IL-1β, TNF-α, and IL-10 increased significantly in mice with MCAO injury. Especially, rTMS significantly increased the number of proliferating cells in the infarcted cortex. The fluorescence intensity of MAP2 in the peri-infarct area of MCAO injured mice was low, but the signal was broader. Compared with MCAO group, the fluorescence intensity of MAP2 in rTMS group was significantly increased. rTMS inhibited pro-inflammatory M1 activation (Iba1+/CD86+) and improved anti-inflammatory M2 activation (Iba1+/CD206+) in the peri-infarct zone, thus significantly changing the phenotypic ratio M1/M2. rTMS improves motor dysfunction and neuroinflammation after cerebral I/R injury in mice by regulating microglial polarization.
Collapse
Affiliation(s)
- Wang Peipei
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Deng Yu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Xiaoyan
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Liu Yunxia
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Liang Liuming
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Cheng Tongbin
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Lv Shaoping
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| |
Collapse
|
212
|
Lauzier DC, Athiraman U. Role of microglia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:841-856. [PMID: 38415607 PMCID: PMC11318405 DOI: 10.1177/0271678x241237070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Subarachnoid hemorrhage is a devastating sequela of aneurysm rupture. Because it disproportionately affects younger patients, the population impact of hemorrhagic stroke from subarachnoid hemorrhage is substantial. Secondary brain injury is a significant contributor to morbidity after subarachnoid hemorrhage. Initial hemorrhage causes intracranial pressure elevations, disrupted cerebral perfusion pressure, global ischemia, and systemic dysfunction. These initial events are followed by two characterized timespans of secondary brain injury: the early brain injury period and the delayed cerebral ischemia period. The identification of varying microglial phenotypes across phases of secondary brain injury paired with the functions of microglia during each phase provides a basis for microglia serving a critical role in both promoting and attenuating subarachnoid hemorrhage-induced morbidity. The duality of microglial effects on outcomes following SAH is highlighted by the pleiotropic features of these cells. Here, we provide an overview of the key role of microglia in subarachnoid hemorrhage-induced secondary brain injury as both cytotoxic and restorative effectors. We first describe the ontogeny of microglial populations that respond to subarachnoid hemorrhage. We then correlate the phenotypic development of secondary brain injury after subarachnoid hemorrhage to microglial functions, synthesizing experimental data in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
213
|
Hu W, Wang M, Sun G, Zhang L, Lu H. RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation. Exp Cell Res 2024; 439:114088. [PMID: 38744409 DOI: 10.1016/j.yexcr.2024.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Neuroinflammation mediated by microglia plays an important role in the etiology of Parkinson's disease (PD). Rho family GTPase 3 (RND3) exerts anti-inflammatory effects and may act as a potential new inducer of neuroprotective phenotypes in microglia. However, whether RND3 can be used to regulate microglia activation or reduce neuroinflammation in PD remains elusive. The study investigated the microglia modulating effects and potential anti-inflammatory effects of RND3 in vivo and in vitro, using animal models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and cell models of BV-2 cells stimulated by LPS plus IFN-γ with or without RND3-overexpression. The results showed that RND3 was highly expressed in the MPTP-induced PD mouse model and BV-2 cells treated with LPS and IFN-γ. In vivo experiments confirmed that RND3 overexpression could modulate microglia phenotype and ameliorate MPTP-induced neuroinflammation through inhibiting activation of the NLRP3 inflammasome in substantia nigra pars compacta (SNpc). In vitro study showed that RND3 overexpression could attenuate the production of pro-inflammatory factors in BV2 cells stimulated by LPS and IFN-γ. Mechanistically, RND3 reduced the activation of the NLRP3 inflammasome upon LPS and IFN-γ stimulation. Taken together, these findings suggest that RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
214
|
Han T, Xu Y, Sun L, Hashimoto M, Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen Res 2024; 19:1241-1248. [PMID: 37905870 PMCID: PMC11467914 DOI: 10.4103/1673-5374.385845] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, China
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
215
|
Silva-Nolasco AM, de la Cruz-Morcillo MA, García-Martínez MM, Zalacain A, Gálvez BG, Carmona M. Immunomodulatory activity of argentatins A and B isolated from guayule. PLoS One 2024; 19:e0304713. [PMID: 38820477 PMCID: PMC11142701 DOI: 10.1371/journal.pone.0304713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/16/2024] [Indexed: 06/02/2024] Open
Abstract
Argentatins are secondary metabolites synthesized by guayule (Parthenium argentatum A. Gray) with numerous potential medical applications. In addition to inhibiting insect growth, they are endowed with several pharmacological properties including antimicrobial and antitumorigenic activity. However, their potential as immunomodulators remains unexplored. The aim of the present study was to investigate whether argentatins can modulate the function of the immune system. Human mesenchymal stem cells were treated with argentatins and the production of several anti- and proinflammatory cytokines was evaluated. The effect of argentatins on the polarization of CD4+ T-lymphocytes and macrophages was also assessed. Results demonstrated that argentatins can modulate the production of proinflammatory cytokines and the polarization of cellular phenotypes, including Th2 lymphocytes and M1 macrophages. These findings suggest that argentatins are promising therapeutic agents in autoimmune or allergic diseases, and open new perspectives for the investigation of argentatins in immune response and in the development of more targeted and effective immunomodulatory therapies.
Collapse
Affiliation(s)
- Aniela M. Silva-Nolasco
- Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, Albacete, Spain
| | | | - M. Mercedes García-Martínez
- Instituto Técnico Agronómico Provincial (ITAP) S.A. Polígono Industrial Campollano, Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Amaya Zalacain
- Instituto Técnico Agronómico Provincial (ITAP) S.A. Polígono Industrial Campollano, Albacete, Spain
| | - Beatriz G. Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Carmona
- Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
216
|
Jin K, Chen B, Han S, Dong J, Cheng S, Qin B, Lu J. Repetitive Transcranial Magnetic Stimulation (rTMS) Improves Cognitive Impairment and Intestinal Microecological Dysfunction Induced by High-Fat Diet in Rats. RESEARCH (WASHINGTON, D.C.) 2024; 7:0384. [PMID: 38826566 PMCID: PMC11140411 DOI: 10.34133/research.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024]
Abstract
Consuming a high-fat diet (HFD) is widely recognized to cause obesity and result in chronic brain inflammation that impairs cognitive function. Repetitive transcranial magnetic stimulation (rTMS) has shown effectiveness in both weight loss and cognitive improvement, although the exact mechanism is still unknown. Our study examined the effects of rTMS on the brain and intestinal microecological dysfunction. rTMS successfully reduced cognitive decline caused by an HFD in behavioral assessments involving the Y maze and novel object recognition. This was accompanied by an increase in the number of new neurons and the transcription level of genes related to synaptic plasticity (spindlin 1, synaptophysin, and postsynaptic protein-95) in the hippocampus. It was reached that rTMS decreased the release of high mobility group box 1, activation of microglia, and inflammation in the brains of HFD rats. rTMS also reduced hypothalamic hypocretin levels and improved peripheral blood lipid metabolism. In addition, rTMS recovered the HFD-induced gut microbiome imbalances, metabolic disorders, and, in particular, reduced levels of the microvirus. Our research emphasized that rTMS enhanced cognitive abilities, resulting in positive impacts on brain inflammation, neurodegeneration, and the microbiota in the gut, indicating the potential connection between the brain and gut, proposing that rTMS could be a new approach to addressing cognitive deficits linked to obesity.
Collapse
Affiliation(s)
- Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bing Chen
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou City 310003, China
| | - Jingyi Dong
- School of Life Sciences,
Zhejiang Chinese Medical University, Hangzhou, China
| | - Shangping Cheng
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bin Qin
- School of Life Sciences,
Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
217
|
Chang MH, Park JH, Lee HK, Choi JY, Koh YH. SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications of Metformin. Biomedicines 2024; 12:1223. [PMID: 38927430 PMCID: PMC11200543 DOI: 10.3390/biomedicines12061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Abnormal aggregation of α-synuclein is the hallmark of neurodegenerative diseases, classified as α-synucleinopathies, primarily occurring sporadically. Their onset is associated with an interaction between genetic susceptibility and environmental factors such as neurotoxins, oxidative stress, inflammation, and viral infections. Recently, evidence has suggested an association between neurological complications in long COVID (sometimes referred to as 'post-acute sequelae of COVID-19') and α-synucleinopathies, but its underlying mechanisms are not completely understood. In this study, we first showed that SARS-CoV-2 Spike protein 1 (S1) induces α-synuclein aggregation associated with activation of microglial cells in the rodent model. In vitro, we demonstrated that S1 increases aggregation of α-synuclein in BE(2)M-17 dopaminergic neurons via BV-2 microglia-mediated inflammatory responses. We also identified that S1 directly affects aggregation of α-synuclein in dopaminergic neurons through increasing mitochondrial ROS, though only under conditions of sufficient α-Syn accumulation. In addition, we observed a synergistic effect between S1 and the neurotoxin MPP+ S1 treatment. Combined with a low dose of MPP+, it boosted α-synuclein aggregation and mitochondrial ROS production compared to S1 or the MPP+ treatment group. Furthermore, we evaluated the therapeutic effects of metformin. The treatment of metformin suppressed the S1-induced inflammatory response and α-synucleinopathy. Our findings demonstrate that S1 promotes α-synucleinopathy via both microglia-mediated inflammation and mitochondrial ROS, and they provide pathological insights, as well as a foundation for the clinical management of α-synucleinopathies and the onset of neurological symptoms after the COVID-19 outbreak.
Collapse
Affiliation(s)
| | | | | | | | - Young Ho Koh
- Division of Brain Diseases Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea; (M.H.C.); (J.H.P.); (H.K.L.); (J.Y.C.)
| |
Collapse
|
218
|
Bradford D, Rodgers KE. Advancements and challenges in amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1401706. [PMID: 38846716 PMCID: PMC11155303 DOI: 10.3389/fnins.2024.1401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) continues to pose a significant challenge due to the disease complexity and heterogeneous manifestations. Despite recent drug approvals, there remains a critical need for the development of more effective therapies. This review explores the underlying mechanisms involved; including neuroinflammation, glutamate mediated excitotoxicity, mitochondrial dysfunction, and hypermetabolism, and how researchers are trying to develop novel drugs to target these pathways. While progress has been made, the unmet need of ALS patients highlights the urgency for continued research and resource allocation in the pursuit of effective treatments.
Collapse
Affiliation(s)
| | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
219
|
You JE, Kim EJ, Kim HW, Kim JS, Kim K, Kim PH. Exploring the Role of Guanylate-Binding Protein-2 in Activated Microglia-Mediated Neuroinflammation and Neuronal Damage. Biomedicines 2024; 12:1130. [PMID: 38791092 PMCID: PMC11117630 DOI: 10.3390/biomedicines12051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Neuron damage by microglia, which act as macrophage cells in the brain, can result in various brain diseases. However, the function of pro-inflammatory or anti-inflammatory microglia in the neurons remains controversial. Guanylate-binding protein-2 (GBP2) is expressed and activated in the microglia in the early phase of the inflammatory response and plays an important role in controlling immune responses. In this study, we evaluated whether GBP2 initially reduces the immune response induced by microglia, and whether microglia induce pro-inflammatory functions in neurons via GBP2 expression. In lipopolysaccharide (LPS)-stimulated microglia, we assessed the expression of GBP2 and how it affects neurons via activated microglia. The biological functions of microglia due to the downregulation of the GBP2 gene were examined using short hairpin RNA (shRNA)-RNA-GBP2. Downregulated GBP2 affected the function of mitochondria in the microglia and showed reduced neuronal damage when compared to the control group in the co-culture system. Furthermore, this protein was observed to be highly expressed in the brains of dementia mice. Our results are the first to report that the downregulation of GBP2 in activated microglia has an anti-inflammatory function. This study suggests that the GBP2 gene can be used as a therapeutic target biomarker for inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Eun You
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea; (J.-E.Y.); (E.-J.K.)
| | - Eun-Ji Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea; (J.-E.Y.); (E.-J.K.)
| | - Ho Won Kim
- Myunggok Medical Research Institute, College of Medical School, Konyang University, Daejeon 35365, Republic of Korea; (H.W.K.); (J.-S.K.)
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medical School, Konyang University, Daejeon 35365, Republic of Korea; (H.W.K.); (J.-S.K.)
| | - Kyunggon Kim
- Department of Digital Medicine, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea;
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea; (J.-E.Y.); (E.-J.K.)
| |
Collapse
|
220
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
221
|
Lu W, Wang Y, Wen J. The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. J Neuroimmune Pharmacol 2024; 19:19. [PMID: 38753217 DOI: 10.1007/s11481-024-10118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti‑inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Yilin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
222
|
Green TRF, Rowe RK. Quantifying microglial morphology: an insight into function. Clin Exp Immunol 2024; 216:221-229. [PMID: 38456795 PMCID: PMC11097915 DOI: 10.1093/cei/uxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Microglia are specialized immune cells unique to the central nervous system (CNS). Microglia have a highly plastic morphology that changes rapidly in response to injury or infection. Qualitative and quantitative measurements of ever-changing microglial morphology are considered a cornerstone of many microglia-centric research studies. The distinctive morphological variations seen in microglia are a useful marker of inflammation and severity of tissue damage. Although a wide array of damage-associated microglial morphologies has been documented, the exact functions of these distinct morphologies are not fully understood. In this review, we discuss how microglia morphology is not synonymous with microglia function, however, morphological outcomes can be used to make inferences about microglial function. For a comprehensive examination of the reactive status of a microglial cell, both histological and genetic approaches should be combined. However, the importance of quality immunohistochemistry-based analyses should not be overlooked as they can succinctly answer many research questions.
Collapse
Affiliation(s)
- Tabitha R F Green
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
223
|
Abdelkawy YS, Elharoun M, Sheta E, Abdel-Raheem IT, Nematalla HA. Liraglutide and Naringenin relieve depressive symptoms in mice by enhancing Neurogenesis and reducing inflammation. Eur J Pharmacol 2024; 971:176525. [PMID: 38561101 DOI: 10.1016/j.ejphar.2024.176525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.
Collapse
Affiliation(s)
- Yara S Abdelkawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Mona Elharoun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ihab Talat Abdel-Raheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Hisham A Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt.
| |
Collapse
|
224
|
Chung J, Jernigan J, Menees KB, Lee JK. RGS10 mitigates high glucose-induced microglial inflammation via the reactive oxidative stress pathway and enhances synuclein clearance in microglia. Front Cell Neurosci 2024; 18:1374298. [PMID: 38812790 PMCID: PMC11133718 DOI: 10.3389/fncel.2024.1374298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Microglia play a critical role in maintaining brain homeostasis but become dysregulated in neurodegenerative diseases. Regulator of G-protein Signaling 10 (RGS10), one of the most abundant homeostasis proteins in microglia, decreases with aging and functions as a negative regulator of microglia activation. RGS10-deficient mice exhibit impaired glucose tolerance, and high-fat diet induces insulin resistance in these mice. In this study, we investigated whether RGS10 modulates microglia activation in response to hyperglycemic conditions, complementing our previous findings of its role in inflammatory stimuli. In RGS10 knockdown (KD) BV2 cells, TNF production increased significantly in response to high glucose, particularly under proinflammatory conditions. Additionally, glucose uptake and GLUT1 mRNA levels were significantly elevated in RGS10 KD BV2 cells. These cells produced higher ROS and displayed reduced sensitivity to the antioxidant N-Acetyl Cysteine (NAC) when exposed to high glucose. Notably, both BV2 cells and primary microglia that lack RGS10 exhibited impaired uptake of alpha-synuclein aggregates. These findings suggest that RGS10 acts as a negative regulator of microglia activation not only in response to inflammation but also under hyperglycemic conditions.
Collapse
Affiliation(s)
| | | | | | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
225
|
Zakeri Z, Heiderzadeh M, Kocaarslan A, Metin E, Hosseini Karimi SN, Saghati S, Vural A, Akyoldaş G, Baysal K, Yağcı Y, Gürsoy-Özdemir Y, Taşoğlu S, Rahbarghazi R, Sokullu E. Exosomes encapsulated in hydrogels for effective central nervous system drug delivery. Biomater Sci 2024; 12:2561-2578. [PMID: 38602364 DOI: 10.1039/d3bm01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.
Collapse
Affiliation(s)
- Ziba Zakeri
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Morteza Heiderzadeh
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Azra Kocaarslan
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Ecem Metin
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atay Vural
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Göktuğ Akyoldaş
- Department of Neurosurgery, Koç University Hospital, Istanbul 34450, Turkey
| | - Kemal Baysal
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Biochemistry, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Yusuf Yağcı
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Savaş Taşoğlu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Mechanical Engineering Department, School of Engineering, Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| |
Collapse
|
226
|
Kang C, Sang Q, Liu D, Wang L, Li J, Liu X. Polyphyllin I alleviates neuroinflammation after cerebral ischemia-reperfusion injury via facilitating autophagy-mediated M2 microglial polarization. Mol Med 2024; 30:59. [PMID: 38745316 PMCID: PMC11094947 DOI: 10.1186/s10020-024-00828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.
Collapse
Affiliation(s)
- Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China
| | - Qiuling Sang
- Department of Neuroelectrophysiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Dingxi Liu
- Department of Clinical Medicine, Zunyi Medical University, Zhuhai, 519041, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China.
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China.
| |
Collapse
|
227
|
Pesti I, Légrádi Á, Farkas E. Primary microglia cell cultures in translational research: Strengths and limitations. J Biotechnol 2024; 386:10-18. [PMID: 38519034 DOI: 10.1016/j.jbiotec.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.
Collapse
Affiliation(s)
- István Pesti
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Ádám Légrádi
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary.
| |
Collapse
|
228
|
Ye D, Liu J, Lin L, Hou P, Feng T, Wang S. The Ang-(1-7)/MasR axis ameliorates neuroinflammation in hypothermic traumatic brain injury in mice by modulating phenotypic transformation of microglia. PLoS One 2024; 19:e0303150. [PMID: 38728304 PMCID: PMC11086881 DOI: 10.1371/journal.pone.0303150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
The Ang-(1-7)/MasR axis is critically involved in treating several diseases; For example, Ang-(1-7) improves inflammatory response and neurological function after traumatic brain injury and inhibits post-inflammatory hypothermia. However, its function in traumatic brain injury (TBI) combined with seawater immersion hypothermia remains unclear. Here, we used a mice model of hypothermic TBI and a BV2 cell model of hypothermic inflammation to investigate whether the Ang-(1-7)/MasR axis is involved in ameliorating hypothermic TBI. Quantitative reverse transcription PCR, western blotting assay, and immunofluorescence assay were performed to confirm microglia polarization and cytokine regulation. Hematoxylin-eosin staining, Nissl staining, and immunohistochemical assay were conducted to assess the extent of hypothermic TBI-induced damage and the ameliorative effect of Ang-(1-7) in mice. An open field experiment and neurological function scoring with two approaches were used to assess the degree of recovery and prognosis in mice. After hypothermic TBI establishment in BV2 cells, the Ang-(1-7)/MasR axis induced phenotypic transformation of microglia from M1 to M2, inhibited IL-6 and IL-1β release, and upregulated IL-4 and IL-10 levels. After hypothermic TBI development in mice, intraperitoneally administered Ang-(1-7) attenuated histological damage and promoted neurological recovery. These findings suggest that hypothermia exacerbates TBI-induced damage and that the Ang-(1-7)/MasR axis can ameliorate hypothermic TBI and directly affect prognosis.
Collapse
Affiliation(s)
- Dan Ye
- Department of Neurosurgery, Fuzong Teaching Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jiamin Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Long Lin
- Department of Neurosurgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Pengwei Hou
- Department of Neurosurgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Tianshun Feng
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shousen Wang
- Department of Neurosurgery, 900th Hospital, Fuzhou, Fujian, China
| |
Collapse
|
229
|
Wang T, Tang Y, Xia Y, Zhang Q, Cao S, Bie M, Kang F. IGF2 promotes alveolar bone regeneration in murine periodontitis via inhibiting cGAS/STING-mediated M1 macrophage polarization. Int Immunopharmacol 2024; 132:111984. [PMID: 38565043 DOI: 10.1016/j.intimp.2024.111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.
Collapse
Affiliation(s)
- Tairan Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yi Tang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuxing Xia
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qian Zhang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shaokang Cao
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Miaomiao Bie
- Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiwu Kang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
230
|
Charrière K, Schneider V, Perrignon-Sommet M, Lizard G, Benani A, Jacquin-Piques A, Vejux A. Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications. Int J Mol Sci 2024; 25:5041. [PMID: 38732259 PMCID: PMC11084463 DOI: 10.3390/ijms25095041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson's disease, Alzheimer's disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin's multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin's therapeutic promise and calls for further investigation into its clinical applications.
Collapse
Affiliation(s)
- Karine Charrière
- Université de Franche-Comté, CHU Besançon, UMR 1322 LINC, INSERM CIC 1431, 25000 Besançon, France;
| | - Vincent Schneider
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Neurology and Clinical Neurophysiology Department, CHU F. Mitterrand, 21000 Dijon, France
| | - Manon Perrignon-Sommet
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne, 21000 Dijon, France;
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Neurology and Clinical Neurophysiology Department, CHU F. Mitterrand, 21000 Dijon, France
- Memory Resource and Research Center (CMRR), CHU F. Mitterrand, 21000 Dijon, France
| | - Anne Vejux
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne, 21000 Dijon, France;
| |
Collapse
|
231
|
Sun H, Yang Y, Jin Y, Chen H, Li A, Chen X, Yin J, Cai J, Zhang L, Feng X, Wang Y, Xiong W, Tang C, Wan B. Novel nanocomposites improve functional recovery of spinal cord injury by regulating NF-κB mediated microglia polarization. CHEMICAL ENGINEERING JOURNAL 2024; 487:150633. [DOI: 10.1016/j.cej.2024.150633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
232
|
Soares AR, Picciotto MR. Nicotinic regulation of microglia: potential contributions to addiction. J Neural Transm (Vienna) 2024; 131:425-435. [PMID: 37778006 PMCID: PMC11189589 DOI: 10.1007/s00702-023-02703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.
Collapse
Affiliation(s)
- Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
233
|
Hua T, Kong E, Zhang H, Lu J, Huang K, Ding R, Wang H, Li J, Han C, Yuan H. PRMT6 deficiency or inhibition alleviates neuropathic pain by decreasing glycolysis and inflammation in microglia. Brain Behav Immun 2024; 118:101-114. [PMID: 38402915 DOI: 10.1016/j.bbi.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
Microglia induced chronic inflammation is the critical pathology of Neuropathic pain (NP). Metabolic reprogramming of macrophage has been intensively reported in various chronic inflammation diseases. However, the metabolic reprogramming of microglia in chronic pain remains to be elusive. Here, we reported that immuno-metabolic markers (HIF-1α, PKM2, GLUT1 and lactate) were related with increased expression of PRMT6 in the ipsilateral spinal cord dorsal horn of the chronic construction injury (CCI) mice. PRMT6 deficiency or prophylactic and therapeutic intrathecal administration of PRMT6 inhibitor (EPZ020411) ameliorated CCI-induced NP, inflammation and glycolysis in the ipsilateral spinal cord dorsal horn. PRMT6 knockout or knockdown inhibited LPS-induced inflammation, proliferation and glycolysis in microglia cells. While PRMT6 overexpression exacerbated LPS-induced inflammation, proliferation and glycolysis in BV2 cells. Recent research revealed that PRMT6 could interact with and methylate HIF-1α, which increased HIF-1α protein stability. In sum, increased expression of PRMT6 exacerbates NP progress by increasing glycolysis and neuroinflammation through interacting with and stabilizing HIF-1α in a methyltransferase manner, which outlines novel pathological mechanism and drug target for NP.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Anesthesiology, The No. 988 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinfang Lu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kesheng Huang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chaofeng Han
- Department of Histology and Embryology, and Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
234
|
Li H, Li B, Zheng Y. Role of microglia/macrophage polarisation in intraocular diseases (Review). Int J Mol Med 2024; 53:45. [PMID: 38551157 PMCID: PMC10998719 DOI: 10.3892/ijmm.2024.5369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024] Open
Abstract
Macrophages form a crucial component of the innate immune system, and their activation is indispensable for various aspects of immune and inflammatory processes, tissue repair, and maintenance of the balance of the body's state. Macrophages are found in all ocular tissues, spanning from the front surface, including the cornea, to the posterior pole, represented by the choroid/sclera. The neural retina is also populated by specialised resident macrophages called microglia. The plasticity of microglia/macrophages allows them to adopt different activation states in response to changes in the tissue microenvironment. When exposed to various factors, microglia/macrophages polarise into distinct phenotypes, each exhibiting unique characteristics and roles. Furthermore, extensive research has indicated a close association between microglia/macrophage polarisation and the development and reversal of various intraocular diseases. The present article provides a review of the recent findings on the association between microglia/macrophage polarisation and ocular pathological processes (including autoimmune uveitis, optic neuritis, sympathetic ophthalmia, retinitis pigmentosa, glaucoma, proliferative vitreoretinopathy, subretinal fibrosis, uveal melanoma, ischaemic optic neuropathy, retinopathy of prematurity and choroidal neovascularization). The paradoxical role of microglia/macrophage polarisation in retinopathy of prematurity is also discussed. Several studies have shown that microglia/macrophages are involved in the pathology of ocular diseases. However, it is required to further explore the relevant mechanisms and regulatory processes. The relationship between the functional diversity displayed by microglia/macrophage polarisation and intraocular diseases may provide a new direction for the treatment of intraocular diseases.
Collapse
Affiliation(s)
- Haoran Li
- School of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Biao Li
- School of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yanlin Zheng
- School of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
235
|
Takahashi K, Tsuji M, Nakagawasai O, Katsuyama S, Miyagawa K, Kurokawa K, Mochida-Saito A, Takeda H, Tadano T. Polarization to M1-type microglia in the hippocampus is involved in depression-like behavior in a mouse model of olfactory dysfunction. Neurochem Int 2024; 175:105723. [PMID: 38490486 DOI: 10.1016/j.neuint.2024.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Impaired olfactory function may be associated with the development of psychiatric disorders such as depression and anxiety; however, knowledge on the mechanisms underlying psychiatric disorders is incomplete. A reversible model of olfactory dysfunction, zinc sulfate (ZnSO4) nasal-treated mice, exhibit depression-like behavior accompanying olfactory dysfunction. Therefore, we investigated olfactory function and depression-like behaviors in ZnSO4-treated mice using the buried food finding test and tail suspension test, respectively; investigated the changes in the hippocampal microglial activity and neurogenesis in the dentate gyrus by immunohistochemistry; and evaluated the inflammation and microglial polarity related-proteins in the hippocampus using western blot study. On day 14 after treatment, ZnSO4-treated mice showed depression-like behavior in the tail suspension test and recovery of the olfactory function in the buried food finding test. In the hippocampus of ZnSO4-treated mice, expression levels of ionized calcium-binding adapter molecule 1 (Iba1), cluster of differentiation 40, inducible nitric oxide synthase, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, cleaved caspase-3, as well as the number of Iba1-positive cells and cell body size increased, and arginase-1 expression and neurogenesis decreased. Except for the increased IL-6, these changes were prevented by a microglia activation inhibitor, minocycline. The findings suggest that neuroinflammation due to polarization of M1-type hippocampal microglia is involved in depression accompanied with olfactory dysfunction.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Soh Katsuyama
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, 10281 Komuro, Kitaadachigun, Inamachi, Saitama, 362-0806, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takeshi Tadano
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan; Department of Environment and Preventive Medicine, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
236
|
Kang YJ, Hyeon SJ, McQuade A, Lim J, Baek SH, Diep YN, Do KV, Jeon Y, Jo D, Lee CJ, Blurton‐Jones M, Ryu H, Cho H. Neurotoxic Microglial Activation via IFNγ-Induced Nrf2 Reduction Exacerbating Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304357. [PMID: 38482922 PMCID: PMC11132036 DOI: 10.1002/advs.202304357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/08/2024] [Indexed: 05/29/2024]
Abstract
Microglial neuroinflammation appears to be neuroprotective in the early pathological stage, yet neurotoxic, which often precedes neurodegeneration in Alzheimer's disease (AD). However, it remains unclear how the microglial activities transit to the neurotoxic state during AD progression, due to complex neuron-glia interactions. Here, the mechanism of detrimental microgliosis in AD by employing 3D human AD mini-brains, brain tissues of AD patients, and 5XFAD mice is explored. In the human and animal AD models, amyloid-beta (Aβ)-overexpressing neurons and reactive astrocytes produce interferon-gamma (IFNγ) and excessive oxidative stress. IFNγ results in the downregulation of mitogen-activated protein kinase (MAPK) and the upregulation of Kelch-like ECH-associated Protein 1 (Keap1) in microglia, which inactivate nuclear factor erythroid-2-related factor 2 (Nrf2) and sensitize microglia to the oxidative stress and induces a proinflammatory microglia via nuclear factor kappa B (NFκB)-axis. The proinflammatory microglia in turn produce neurotoxic nitric oxide and proinflammatory mediators exacerbating synaptic impairment, phosphorylated-tau accumulation, and discernable neuronal loss. Interestingly, recovering Nrf2 in the microglia prevents the activation of proinflammatory microglia and significantly blocks the tauopathy in AD minibrains. Taken together, it is envisioned that IFNγ-driven Nrf2 downregulation in microglia as a key target to ameliorate AD pathology.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Seung Jae Hyeon
- Center for Brain DisordersBrain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Amanda McQuade
- Institute for Neurodegenerative DiseasesUniversity of CaliforniaSan FranciscoCA94158USA
- Department of Neurobiology & BehaviorUniversity of California IrvineIrvineCA92697USA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCA92697USA
| | - Jiwoon Lim
- IBS SchoolUniversity of Science and Technology (UST)Daejeon34114Republic of Korea
- Center for Cognition and SocialityInstitute for Basic Science (IBS)Daejeon34126Republic of Korea
| | - Seung Hyun Baek
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Yen N. Diep
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Khanh V. Do
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Yeji Jeon
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Dong‐Gyu Jo
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Biomedical Institute for ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Samsung Advanced Institute for Health Sciences and TechnologySungkyunkwan UniversitySeoul16419Republic of Korea
| | - C. Justin Lee
- Center for Cognition and SocialityInstitute for Basic Science (IBS)Daejeon34126Republic of Korea
| | - Mathew Blurton‐Jones
- Department of Neurobiology & BehaviorUniversity of California IrvineIrvineCA92697USA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCA92697USA
| | - Hoon Ryu
- Center for Brain DisordersBrain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hansang Cho
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| |
Collapse
|
237
|
Han T, Xu Y, Liu H, Sun L, Cheng X, Shen Y, Wei J. Function and Mechanism of Abscisic Acid on Microglia-Induced Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2024; 25:4920. [PMID: 38732130 PMCID: PMC11084589 DOI: 10.3390/ijms25094920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Haixuan Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| |
Collapse
|
238
|
Liu L, Wang J, Wang Y, Chen L, Peng L, Bin Y, Ding P, Zhang R, Tong F, Dong X. Blocking the MIF-CD74 axis augments radiotherapy efficacy for brain metastasis in NSCLC via synergistically promoting microglia M1 polarization. J Exp Clin Cancer Res 2024; 43:128. [PMID: 38685050 PMCID: PMC11059744 DOI: 10.1186/s13046-024-03024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Brain metastasis is one of the main causes of recurrence and death in non-small cell lung cancer (NSCLC). Although radiotherapy is the main local therapy for brain metastasis, it is inevitable that some cancer cells become resistant to radiation. Microglia, as macrophages colonized in the brain, play an important role in the tumor microenvironment. Radiotherapy could activate microglia to polarize into both the M1 and M2 phenotypes. Therefore, searching for crosstalk molecules within the microenvironment that can specifically regulate the polarization of microglia is a potential strategy for improving radiation resistance. METHODS We used databases to detect the expression of MIF in NSCLC and its relationship with prognosis. We analyzed the effects of targeted blockade of the MIF/CD74 axis on the polarization and function of microglia during radiotherapy using flow cytometry. The mouse model of brain metastasis was used to assess the effect of targeted blockade of MIF/CD74 axis on the growth of brain metastasis. RESULT Our findings reveals that the macrophage migration inhibitory factor (MIF) was highly expressed in NSCLC and is associated with the prognosis of NSCLC. Mechanistically, we demonstrated CD74 inhibition reversed radiation-induced AKT phosphorylation in microglia and promoted the M1 polarization in combination of radiation. Additionally, blocking the MIF-CD74 interaction between NSCLC and microglia promoted microglia M1 polarization. Furthermore, radiation improved tumor hypoxia to decrease HIF-1α dependent MIF secretion by NSCLC. MIF inhibition enhanced radiosensitivity for brain metastasis via synergistically promoting microglia M1 polarization in vivo. CONCLUSIONS Our study revealed that targeting the MIF-CD74 axis promoted microglia M1 polarization and synergized with radiotherapy for brain metastasis in NSCLC.
Collapse
Affiliation(s)
- Lichao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ying Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yawen Bin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Peng Ding
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
239
|
Young AP, Denovan-Wright EM. JAK1/2 Regulates Synergy Between Interferon Gamma and Lipopolysaccharides in Microglia. J Neuroimmune Pharmacol 2024; 19:14. [PMID: 38642237 DOI: 10.1007/s11481-024-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
240
|
Yang Q, Vazquez AL, Cui XT. Revealing in vivo cellular mechanisms of cerebral microbleeds on neurons and microglia across cortical layers. iScience 2024; 27:109371. [PMID: 38510113 PMCID: PMC10951986 DOI: 10.1016/j.isci.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Cerebral microbleeds (CMBs) are associated with higher risk for various neurological diseases including stroke, dementia, and Alzheimer's disease. However, the understanding of cellular pathology of CMBs, particularly in deep brain regions, remains limited. Utilizing two-photon microscopy and microprism implantation, we longitudinally imaged the impact of CMBs on neuronal and microglial activities across cortical depths in awake mice. A temporary decline in spontaneous neuronal activity occurred throughout cortical layers, followed by recovery within a week. However, significant changes of neuron-neuron activity correlations persisted for weeks. Moreover, microglial contact with neuron soma significantly increased post-microbleeds, indicating an important modulatory role of microglia. Notably, microglial contact, negatively correlated with neuronal firing rate in normal conditions, became uncorrelated after microbleeds, suggesting a decreased neuron-microglia inhibition. These findings reveal chronic alterations in cortical neuronal networks and microglial-neuronal interactions across cortical depths, shedding light on the pathology of CMBs.
Collapse
Affiliation(s)
- Qianru Yang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alberto L. Vazquez
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
241
|
Deng Y, Chen Q, Wan C, Sun Y, Huang F, Hu Y, Yang K. Microglia and macrophage metabolism: a regulator of cerebral gliomas. Cell Biosci 2024; 14:49. [PMID: 38632627 PMCID: PMC11022384 DOI: 10.1186/s13578-024-01231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Reciprocal interactions between the tumor microenvironment (TME) and cancer cells play important roles in tumorigenesis and progression of glioma. Glioma-associated macrophages (GAMs), either of peripheral origin or representing brain-intrinsic microglia, are the majority population of infiltrating immune cells in glioma. GAMs, usually classified into M1 and M2 phenotypes, have remarkable plasticity and regulate tumor progression through different metabolic pathways. Recently, research efforts have increasingly focused on GAMs metabolism as potential targets for glioma therapy. This review aims to delineate the metabolic characteristics of GAMs within the TME and provide a summary of current therapeutic strategies targeting GAMs metabolism in glioma. The goal is to provide novel insights and therapeutic pathways for glioma by highlighting the significance of GAMs metabolism.
Collapse
Affiliation(s)
- Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinyan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
242
|
Wang X, Wu Y, Tian Y, Hu H, Zhao Y, Xue B, Sun Z, Wei A, Xie F, Qian LJ. GLUT1-mediated microglial proinflammatory activation contributes to the development of stress-induced spatial learning and memory dysfunction in mice. Cell Biosci 2024; 14:48. [PMID: 38627830 PMCID: PMC11020476 DOI: 10.1186/s13578-024-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Stress is a recognized risk factor for cognitive decline, which triggers neuroinflammation involving microglial activation. However, the specific mechanism for microglial activation under stress and affects learning and memory remains unclear. METHODS The chronic stress mouse model was utilized to explore the relationship between microglial activation and spatial memory impairment. The effect of hippocampal hyperglycemia on microglial activation was evaluated through hippocampal glucose-infusion and the incubation of BV2 cells with high glucose. The gain-and loss-of-function experiments were conducted to investigate the role of GLUT1 in microglial proinflammatory activation. An adeno-associated virus (AAV) was employed to specifically knockdown of GLUT1 in hippocampal microglia to assess its impact on stressed-mice. RESULTS Herein, we found that chronic stress induced remarkable hippocampal microglial proinflammatory activation and neuroinflammation, which were involved in the development of stress-related spatial learning and memory impairment. Mechanistically, elevated hippocampal glucose level post-stress was revealed to be a key regulator of proinflammatory microglial activation via specifically increasing the expression of microglial GLUT1. GLUT1 overexpression promoted microglial proinflammatory phenotype while inhibiting GLUT1 function mitigated this effect under high glucose. Furthermore, specific downregulation of hippocampal microglial GLUT1 in stressed-mice relieved microglial proinflammatory activation, neuroinflammation, and spatial learning and memory injury. Finally, the NF-κB signaling pathway was demonstrated to be involved in the regulatory effect of GLUT1 on microglia. CONCLUSIONS We demonstrate that elevated glucose and GLUT1 expression induce microglia proinflammatory activation, contributing to stress-associated spatial memory dysfunction. These findings highlight significant interplay between metabolism and inflammation, presenting a possible therapeutic target for stress-related cognitive disorders.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China
| | - Yuhan Wu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China
| | - Yingrui Tian
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China
- Centers for Disease Control and Prevention, Jiulongpo District, Chongqing, 400050, China
| | - Hui Hu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China
| | - Binghua Xue
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China
| | - Aijun Wei
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China.
| | - Ling-Jia Qian
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100850, China.
| |
Collapse
|
243
|
Pallarés-Moratalla C, Bergers G. The ins and outs of microglial cells in brain health and disease. Front Immunol 2024; 15:1305087. [PMID: 38665919 PMCID: PMC11043497 DOI: 10.3389/fimmu.2024.1305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.
Collapse
|
244
|
Zhu Q, Wan L, Huang H, Liao Z. IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment? Front Neurosci 2024; 18:1370406. [PMID: 38665289 PMCID: PMC11043581 DOI: 10.3389/fnins.2024.1370406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1β release. It also explores the physiological and pathophysiological role of IL-1β in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Wan
- Department of Medical Genetics/Prenatal Diagnostic Center Nursing and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
245
|
Shen J, Xie J, Ye L, Mao J, Sun S, Chen W, Wei S, Ruan S, Wang L, Hu H, Wei J, Zheng Y, Xi Z, Wang K, Xu Y. Neuroprotective effect of green tea extract (-)-epigallocatechin-3-gallate in a preformed fibril-induced mouse model of Parkinson's disease. Neuroreport 2024; 35:421-430. [PMID: 38526966 PMCID: PMC11060057 DOI: 10.1097/wnr.0000000000002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The main bioactive component of green tea polyphenols (-)-epigallocatechin-3-gallate (EGCG) exerts protective effects against diseases such as neurodegenerative diseases and cancer. Therefore, this study investigated the effect of EGCG on the amelioration of neural damage in a chronic PD mouse model induced by α-synuclein preformed fibrils (α-syn-PFFs). A total of 20 C57BL/6J female mice were randomly divided into 3 groups: control group (saline, n = 6), model group (PFFs, n = 7), and prevention group (EGCG+PFFs, n = 7). A chronic PD mouse model was obtained by the administration of α-syn-PFFs by stereotaxic localization in the striatum. Behavioral tests were performed to evaluate PD-related anxiety-like behavior and motor impairments in the long-term PD progression. Tyrosine hydroxylase (TH) immuno-positive neurons and Ser129-phosphorylated α-syn (p-α-syn) were identified by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokines were measured by real-time quantitative PCR. EGCG pretreatment reduced anxiety-like behavior and motor impairments as revealed by the long-term behavioral test (2 weeks, 1 month, 3 months, and 6 months) on PD mice. EGCG also ameliorated PFF-induced degeneration of TH immuno-positive neurons and accumulation of p-α-syn in the SN and striatum at 6 months. Additionally, EGCG reduced the expression of pro-inflammatory cytokines while promoting the release of anti-inflammatory cytokines. EGCG exerts a neuroprotective effect on long-term progression of the PD model.
Collapse
Affiliation(s)
- Jianing Shen
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Junhua Xie
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Liyuan Ye
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Jian Mao
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Shihao Sun
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Weiwei Chen
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Sijia Wei
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Sisi Ruan
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Linhai Wang
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Hangcui Hu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Jingjing Wei
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Yao Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Zhouyan Xi
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Ke Wang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Yan Xu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
- Beijing Life Science Academy (BLSA), Beijing, China
| |
Collapse
|
246
|
Boisserand LSB, Geraldo LH, Bouchart J, El Kamouh MR, Lee S, Sanganahalli BG, Spajer M, Zhang S, Lee S, Parent M, Xue Y, Skarica M, Yin X, Guegan J, Boyé K, Saceanu Leser F, Jacob L, Poulet M, Li M, Liu X, Velazquez SE, Singhabahu R, Robinson ME, Askenase MH, Osherov A, Sestan N, Zhou J, Alitalo K, Song E, Eichmann A, Sansing LH, Benveniste H, Hyder F, Thomas JL. VEGF-C prophylaxis favors lymphatic drainage and modulates neuroinflammation in a stroke model. J Exp Med 2024; 221:e20221983. [PMID: 38442272 PMCID: PMC10913814 DOI: 10.1084/jem.20221983] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice. Intracerebrospinal administration of an adeno-associated virus expressing mouse full-length VEGF-C (AAV-mVEGF-C) increased CSF drainage to the deep cervical lymph nodes (dCLNs) by enhancing lymphatic growth and upregulated neuroprotective signaling pathways identified by single nuclei RNA sequencing of brain cells. In a mouse model of ischemic stroke, AAV-mVEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage, associated with mitigated microglia-mediated inflammation and increased BDNF signaling in brain cells. Neuroprotective effects of VEGF-C were lost upon cauterization of the dCLN afferent lymphatics and not mimicked by acute post-stroke VEGF-C injection. We conclude that VEGF-C prophylaxis promotes multiple vascular, immune, and neural responses that culminate in a protection against neurological damage in acute ischemic stroke.
Collapse
Affiliation(s)
| | - Luiz Henrique Geraldo
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Jean Bouchart
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Marie-Renee El Kamouh
- Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris, France
| | - Seyoung Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Myriam Spajer
- Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris, France
| | - Shenqi Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sungwoon Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yuechuan Xue
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Mario Skarica
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Xiangyun Yin
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Justine Guegan
- Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris, France
| | - Kevin Boyé
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Felipe Saceanu Leser
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laurent Jacob
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Mathilde Poulet
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Xiaodan Liu
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Sofia E. Velazquez
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ruchith Singhabahu
- Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris, France
| | - Mark E. Robinson
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | | | - Artem Osherov
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA
| | - Jiangbing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kari Alitalo
- Faculty of Medicine, Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Eric Song
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Anne Eichmann
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris, France
| |
Collapse
|
247
|
Zhao S, Yan Q, Xu W, Zhang J. Gut microbiome in diabetic retinopathy: A systematic review and meta-analysis. Microb Pathog 2024; 189:106590. [PMID: 38402917 DOI: 10.1016/j.micpath.2024.106590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
CONTEXT Changes in the gut microbiome are linked with Type 2diabetes mellitus (T2DM) development, but alterations in patients with diabetic retinopathy (DR) are still being debated. OBJECTIVE To investigate the differences in biodiversity and relative abundance of gut microbiome between patients with DR and T2DM. METHODS A comprehensive search was performed in five electronic databases (PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Web of Science, and CNKI) from the inception of each database through to August 2023. The standardized mean difference (SMD) and its 95% confidence interval (CI) were estimated using Stata 15.1. Furthermore, the alpha diversity index and relative abundance of the gut microbiome were calculated. The Egger test determined publication bias in the literature. RESULTS Seven case-control studies were included in the final dataset, comprising 195 patients with DR and 211 patients with T2DM. Compared to T2DM patients, patients in the DR group had a reduced but not significantly different α-diversity. The analysis of microbial composition at the phylum level revealed a marked increase in the relative abundance of Bacteroidetes(ES = 23.27, 95%CI[8.30, 38.23], P = 0.000) and a decline in Firmicutes(ES = 47.05, 95%CI[36.58, 57.52], P = 0.000), Proteobacteria (ES = 11.08, 95%CI[6.08, 16.07], P = 0.000) and Actinobacteria (ES = 10.43, 95%CI[1.64, 19.22], P = 0.001) in patients with DR when compared to those with T2DM. CONCLUSIONS An association exists between alterations in the gut microbiome of T2DM and the development and progression of DR. This suggests that re-establishing homeostasis of the gut microbiome could be a potential way to prevent or treat DR and requires further confirmation in future studies. REGISTRATION DATABASE Prospero. REGISTRATION NUMBER CRD42023455280.
Collapse
Affiliation(s)
- Shuang Zhao
- Shandong First Medical University, Jinan, China.
| | - Qi Yan
- Jiangsu Pei People's Hospital, China.
| | - Wanjing Xu
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, China.
| | - Juanmei Zhang
- The Department of Ophthalmology, Linyi People's Hospital, Linyi, China.
| |
Collapse
|
248
|
Li Y, Yin C, Jiang J, Yang H, Zhang F, Xing Y, Wang W, Lu C. Tumor necrosis factor α-induced protein 8-like-2 controls microglia phenotype via metabolic reprogramming in BV2 microglial cells and responses to neuropathic pain. Int J Biochem Cell Biol 2024; 169:106541. [PMID: 38309648 DOI: 10.1016/j.biocel.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Microglial are major players in neuroinflammation that have recently emerged as potential therapeutic targets for neuropathic pain. Glucose metabolic programming has been linked to differential activation state and function in microglia. Tumor necrosis factor α-induced protein 8-like-2 (TNFAIP8L2) is an important component in regulating the anti-inflammatory response. However, the role of TNFAIP8L2 in microglia differential state during neuropathic pain and its interplay with glucose metabolic reprogramming in microglia has not yet been determined. Thus, we aimed to investigate the role of TNFAIP8L2 in the status of microglia in vitro and in vivo. BV2 microglial cells were treated with lipopolysaccharides plus interferon-gamma (LPS/IFNγ) or interleukin-4 (IL-4) to induce the two different phenotypes of microglia in vitro. In vivo experiments were conducted by chronic constriction injury of the sciatic nerve (CCI). We investigated whether TNFAIP8L2 regulates glucose metabolic programming in BV2 microglial cells. The data in vitro showed that TNFAIP8L2 lowers glycolysis and increases mitochondrial oxidative phosphorylation (OXPHOS) in inflammatory microglia. Blockade of glycolytic pathway abolished TNFAIP8L2-mediated differential activation of microglia. TNFAIP8L2 suppresses inflammatory microglial activation and promotes restorative microglial activation in BV2 microglial cells and in spinal cord microglia after neuropathic pain. Furthermore, TNFAIP8L2 controls differential activation of microglia and glucose metabolic reprogramming through the MAPK/mTOR/HIF-1α signaling axis. This study reveals that TNFAIP8L2 plays a critical role in neuropathic pain, providing important insights into glucose metabolic reprogramming and microglial phenotypic transition, which indicates that TNFAIP8L2 may be used as a potential drug target for the prevention of neuropathic pain.
Collapse
Affiliation(s)
- Yeqi Li
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cui Yin
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinhong Jiang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan Yang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhong Xing
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuyang Wang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chen Lu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
249
|
Florance I, Ramasubbu S. Regulation of genes involved in the metabolic adaptation of murine microglial cells in response to elevated HIF-1α mediated activation. Immunogenetics 2024; 76:93-108. [PMID: 38326657 DOI: 10.1007/s00251-024-01334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Microglia cells are activated in response to different stress signals. Several metabolic adaptations underlie microglia activation in the brain. Among these, in conditions like ischemic stroke and, hypoxic stress stimuli activate microglia cells. Hypoxic stress is mediated by HIF-1α. Although HIF-1α has been implicated in the alteration of metabolic pathways, changes in microglia lipid metabolism during M1 activation of microglia induced by elevated HIF-1α levels are yet to be understood. This can also merit interest in the development of novel targets to mitigate chronic inflammation. Our study aims to elucidate the transcriptional regulation of metabolic pathways in microglia cells during HIF-1α mediated activation. To study the adaptations in the metabolic pathways we induced microglia activation, by activating HIF-1α. Here, we show that microglia cells activated in response to elevated HIF-1α require ongoing lipogenesis and fatty acid breakdown. Notably, autophagy is activated during the initial stages of microglia activation. Inhibition of autophagy in activated microglia affects their viability and phagocytic activity. Collectively, our study expands the understanding of the molecular link between autophagy, lipid metabolism, and inflammation during HIF-1α mediated microglial activation that can lead to the development of promising strategies for controlling maladaptive activation states of microglia responsible for neuroinflammation. Together, our findings suggest that the role of HIF-1α in regulating metabolic pathways during hypoxia in microglia is beyond optimization of glucose utilization and distinctly regulates lipid metabolism during pro-inflammatory activation.
Collapse
Affiliation(s)
- Ida Florance
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Seenivasan Ramasubbu
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
250
|
Stojiljkovic MR, Schmeer C, Witte OW. Senescence and aging differentially alter key metabolic pathways in murine brain microglia. Neurosci Lett 2024; 828:137751. [PMID: 38548220 DOI: 10.1016/j.neulet.2024.137751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Microglia, the resident immune cells of the central nervous system, are critically involved in maintaining brain homeostasis. With age, microglia display morphological and functional alterations that have been associated with cognitive decline and neurodegeneration. Although microglia seem to participate in an increasing number of biological processes which require a high energy demand, little is known about their metabolic regulation under physiological and pathophysiological conditions and during aging/senescence. Here, we determined mRNA expression levels of critical rate limiting enzymes in several key metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis in association with oxidative phosphorylation in microglia, both under aging and senescent conditions. We found strong evidence for different metabolic changes occuring in senescent vs. aged microglia cells. While senescent microglia display a hypermetabolic state as indicated by increased expression of key enzymes involved in glycolysis and pentose phosphate pathway, aging microglia are rather in a state of hypometabolism. Our findings indicate that studies involving aging and senescent microglia require a clear differentiation between these microglial states due to profound metabolic differences observed here. Understanding metabolic changes in senescent and aged microglia may lead to novel strategies to decrease over-activation of these cells due to aging, which is associated to the process of inflamm-aging and neurodegeneration.
Collapse
Affiliation(s)
- Milan R Stojiljkovic
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Christian Schmeer
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|