201
|
Moreira H, Pereira SIA, Vega A, Castro PML, Marques APGC. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109982. [PMID: 31868642 DOI: 10.1016/j.jenvman.2019.109982] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 05/28/2023]
Abstract
Salt-affected soils are a major problem worldwide for crop production. Bioinocula such as plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) can help plants to thrive in these areas but interactions between them and with soil conditions can modulate the effects on their host. To test potential synergistic effects of bioinoculants with intrinsically different functional relationships with their host in buffering the effect of saline stress, maize plants were grown under increasing soil salinity (0-5 g NaCl kg--1 soil) and inoculated with two PGPB strains (Pseudomonas reactans EDP28, and Pantoea alli ZS 3-6), one AMF (Rhizoglomus irregulare), and with the combination of both. We then modelled biomass, ion and nutrient content in maize plants in response to increasing salt concentration and microbial inoculant treatments using generalized linear models. The impacts of the different treatments on the rhizosphere bacterial communities were also analyzed. Microbial inoculants tended to mitigate ion imbalances in plants across the gradient of NaCl, promoting maize growth and nutritional status. These effects were mostly prominent in the treatments comprising the dual inoculation (AMF and PGPB), occurring throughout the gradient of salinity in the soil. The composition of bacterial communities of the soil was not affected by microbial treatments and were mainly driven by salt exposure. The tested bioinocula are most efficient for maize growth and health when co-inoculated, increasing the content of K+ accompanied by an effective decrease of Na+ in plant tissues. Moreover, synergistic effects potentially contribute to expanding crop production to otherwise unproductive soils. Results suggest that the combination of AMF and PGPB leads to interactions that may have a potential role in alleviating the stress and improve crop productivity in salt-affected soils.
Collapse
Affiliation(s)
- Helena Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Sofia I A Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Alberto Vega
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Ana P G C Marques
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
202
|
Lai Y, Zhang D, Wang J, Wang J, Ren P, Yao L, Si E, Kong Y, Wang H. Integrative Transcriptomic and Proteomic Analyses of Molecular Mechanism Responding to Salt Stress during Seed Germination in Hulless Barley. Int J Mol Sci 2020; 21:ijms21010359. [PMID: 31935789 PMCID: PMC6981547 DOI: 10.3390/ijms21010359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum) is one of the most important crops in the Qinghai-Tibet Plateau. Soil salinity seriously affects its cultivation. To investigate the mechanism of salt stress response during seed germination, two contrasting hulless barley genotypes were selected to first investigate the molecular mechanism of seed salinity response during the germination stage using RNA-sequencing and isobaric tags for relative and absolute quantitation technologies. Compared to the salt-sensitive landrace lk621, the salt-tolerant one lk573 germinated normally under salt stress. The changes in hormone contents also differed between lk621 and lk573. In lk573, 1597 differentially expressed genes (DEGs) and 171 differentially expressed proteins (DEPs) were specifically detected at 4 h after salt stress, and correspondingly, 2748 and 328 specifically detected at 16 h. Most specific DEGs in lk573 were involved in response to oxidative stress, biosynthetic process, protein localization, and vesicle-mediated transport, and most specific DEPs were assigned to an oxidation-reduction process, carbohydrate metabolic process, and protein phosphorylation. There were 96 genes specifically differentially expressed at both transcriptomic and proteomic levels in lk573. These results revealed the molecular mechanism of salt tolerance and provided candidate genes for further study and salt-tolerant improvement in hulless barley.
Collapse
Affiliation(s)
- Yong Lai
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Jinmin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Panrong Ren
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Erjing Si
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Yuhua Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
- Correspondence: (Y.K.); (H.W.)
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.K.); (H.W.)
| |
Collapse
|
203
|
Imran S, Horie T, Katsuhara M. Expression and Ion Transport Activity of Rice OsHKT1;1 Variants. PLANTS 2019; 9:plants9010016. [PMID: 31877741 PMCID: PMC7020204 DOI: 10.3390/plants9010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
OsHKT1;1 in rice, belongs to the high-affinity K+ Transporter family, has been found to be involved in salt tolerance. OsHKT1;1 in japonica rice (Nipponbare) produces mRNA variants, but their functions remain elusive. In salt tolerant rice, Pokkali, eight OsHKT1;1 variants (V1-V8) were identified in addition to the full-length OsHKT1;1 (FL) cDNA. Absolute quantification by qPCR revealed that accumulation of OsHKT1;1-FL mRNA is minor in contrast to that of OsHKT1;1-V1, -V2, -V4, and -V7 mRNAs, all of which are predominant in shoots, while only V1 and V7 mRNAs are predominant in roots. Two electrode voltage clamp (TEVC) experiments using Xenopus laevis oocytes revealed that oocytes-expressing OsHKT1;1-FL from Pokkali exhibited inward-rectified currents in the presence of 96 mM Na+ as reported previously. Further TEVC analyses indicated that six of eight OsHKT1;1 variants elicited currents in a Na+ or a K+ bath solution. OsHKT1;1-V6 exhibited a similar inward rectification to the FL protein. Contrastingly, however, the rests mediated bidirectional currents in both Na+ and K+ bath solutions. These data suggest possibilities that novel mechanisms regulating the transport activity of OsHKT1;1 might exist, and that OsHKT1;1 variants might also carry out distinct physiological roles either independently or in combination with OsHKT1;1-FL.
Collapse
Affiliation(s)
- Shahin Imran
- Institute of Plant Science and Resources, Okayama University, 2-20-1, Chuo, Kurashiki 710-0046, Japan;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of the Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda 386-8567, Japan
- Correspondence: (T.H.); (M.K.); Tel.: +81-268-5561 (T.H.); +81-86-434-1221 (M.K.)
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 2-20-1, Chuo, Kurashiki 710-0046, Japan;
- Correspondence: (T.H.); (M.K.); Tel.: +81-268-5561 (T.H.); +81-86-434-1221 (M.K.)
| |
Collapse
|
204
|
Miransari M, Smith D. Sustainable wheat ( Triticum aestivum L.) production in saline fields: a review. Crit Rev Biotechnol 2019; 39:999-1014. [PMID: 31448647 DOI: 10.1080/07388551.2019.1654973] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
A large part of global agricultural fields, including the wheat (Triticum aestivum L.) ones, are subjected to various stresses including salinity. Given the increasing world population, finding methods and strategies that can alleviate salinity stress on crop yield production is of outmost importance. The presented review has consulted more than 400 articles related to the clean and sustainable production of wheat in saline fields affected by biological, environmental, economical, and social parameters including the important issue of climate change (global warming). The negative effects of salt stress on plant growth and the techniques, which have been so far detected to alleviate salinity stress on wheat growth have been analyzed and presented. The naturally tolerant species of wheat can use a range of mechanisms to alleviate salinity stress including sodium exclusion, potassium retention, and osmoregulation. However, the following can be considered as the most important techniques to enhance wheat tolerance under stress: (1) the biotechnological (crop breeding), biological (soil microbes), and biochemical (seed priming) methods, (2) the use of naturally tolerant genotypes, and (3) their combined use. The proper handling of irrigation water is also an important subject, which must be considered when planting wheat in saline fields. In conclusion, the sustainable and cleaner production of wheat under salt stress is determined by a combination of different parameters including the biotechnological techniques, which if handled properly, can enhance wheat production in saline fields.
Collapse
Affiliation(s)
- Mohammad Miransari
- Department of Book and Article, AbtinBerkeh Scientific Ltd. Company , Isfahan , Iran
| | - Donald Smith
- Department of Plant Science, Macdonald College of McGill University , Quebec , Canada
| |
Collapse
|
205
|
Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. A HAK family Na + transporter confers natural variation of salt tolerance in maize. NATURE PLANTS 2019; 5:1297-1308. [PMID: 31819228 DOI: 10.1038/s41477-019-0565-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/30/2019] [Indexed: 05/08/2023]
Abstract
Excessive sodium ion (Na+) concentrations in cultivated land alter crop yield and quality worldwide. Previous studies have shown that shoot Na+ exclusion is essential in most crops for salt tolerance. Here, we show by a genome-wide association study that Zea may L. Na+ content 2 (ZmNC2), encoding the HAK family ion transporter ZmHAK4, confers the natural variation of shoot Na+ exclusion and salt tolerance in maize. The ZmHAK4 locus accounts for ~11% of the shoot Na+ variation, and a natural ZmHAK4-deficient allele displays a decreased ZmHAK4 expression level and an increased shoot Na+ content. ZmHAK4 is preferentially expressed in the root stele and encodes a novel membrane-localized Na+-selective transporter that mediates shoot Na+ exclusion, probably by retrieving Na+ from xylem sap. ZmHAK4 orthologues were identified in other plant species, and the orthologues of ZmHAK4 in rice and wheat show identical expression patterns and ion transport properties, suggesting that ZmHAK4 orthologues mediate an evolutionarily conserved salt-tolerance mechanism. Finally, we show that ZmHAK4 and ZmHKT1 (a HKT1 family Na+-selective transporter) confer distinct roles in promoting shoot Na+ exclusion and salt tolerance, indicating that the combination of the favourable alleles of ZmHKT1 and ZmHAK4 can facilitate the development of salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Limin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yibo Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Weibin Song
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junpeng Shi
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinsheng Lai
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
206
|
Su N, Wu Q, Chen J, Shabala L, Mithöfer A, Wang H, Qu M, Yu M, Cui J, Shabala S. GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6349-6361. [PMID: 31420662 PMCID: PMC6859739 DOI: 10.1093/jxb/erz367] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H+-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K+ leak from roots; (ii) reduced rates of net Na+ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na+ concentration in the cytoplasm by excluding Na+ to apoplast and sequestering Na+ in the vacuoles; (iv) a lower rate of H2O2 production and reduced reactive oxygen species-inducible K+ efflux from root epidermis; and (v) better K+ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.
Collapse
Affiliation(s)
- Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Qi Wu
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Jiahui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Axel Mithöfer
- Research Group of Plant Defense Physiology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Haiyang Wang
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Mei Qu
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
207
|
Chakraborty K, Chattaopadhyay K, Nayak L, Ray S, Yeasmin L, Jena P, Gupta S, Mohanty SK, Swain P, Sarkar RK. Ionic selectivity and coordinated transport of Na + and K + in flag leaves render differential salt tolerance in rice at the reproductive stage. PLANTA 2019; 250:1637-1653. [PMID: 31399792 DOI: 10.1007/s00425-019-03253-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/01/2019] [Indexed: 05/27/2023]
Abstract
The present study shows that salt tolerance in the reproductive stage of rice is primarily governed by the selective Na+ and K+ transport from the root to upper plant parts. Ionic discrimination at the flag leaf, governed by differential expression of Na+- and K+-specific transporters/ion pumps, is associated with reduced spikelet sterility and reproductive stage salt tolerance. Reproductive stage salt tolerance is crucial in rice to guarantee yield under saline condition. In the present study, differential ionic selectivity and the coordinated transport (from root to flag leaf) of Na+ and K+ were investigated to assess their impact on reproductive stage salt tolerance. Four rice genotypes having differential salt sensitivity were subjected to reproductive stage salinity stress in pots. The selective Na+ and K+ transport from the root to upper plant parts was observed in tolerant genotypes. We noticed that prolonged salt exposure did not alter flag leaf greenness even up to 6 weeks; however, it had a detrimental effect on panicle development especially in the salt-susceptible genotype Sabita. But more precise chlorophyll fluorescence imaging analysis revealed salinity-induced damages in Sabita. The salt-tolerant genotype Pokkali (AC41585), a potential Na+ excluder, managed to sequester higher Na+ load in the roots with little upward transport as evident from greater expression of HKT1 and HKT2 transporters. In contrast, the moderately salt-tolerant Lunidhan was less selective in Na+ transport, but possessed a higher capacity to Na+ sequestration in leaves. Higher K+ uptake and tissue-specific redistribution mediated by HAK and AKT transporters showed robust control in selective K+ movement from the root to flag leaf and developing panicles. On the contrary, expressions of Na+-specific transporters in developing panicles were either down-regulated or unaffected in tolerant and moderately tolerant genotypes. Yet, in the panicles of the susceptible genotype Sabita, some of the Na+-specific transporter genes (SOS1, HKT1;5, HKT2;4) were upregulated. Apart from the ionic regulation strategy, cellular energy balance mediated by different plasma-membrane and tonoplastic H+-pumps were also associated with the reproductive stage salt tolerance in rice.
Collapse
Affiliation(s)
| | | | - Lopamudra Nayak
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Soham Ray
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Lucina Yeasmin
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Priyanka Jena
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sunanda Gupta
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sangram K Mohanty
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Padmini Swain
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ramani K Sarkar
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| |
Collapse
|
208
|
Wang WC, Lin TC, Kieber J, Tsai YC. Response Regulators 9 and 10 Negatively Regulate Salinity Tolerance in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2549-2563. [PMID: 31359043 DOI: 10.1093/pcp/pcz149] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/19/2019] [Indexed: 05/23/2023]
Abstract
Cytokinins are involved in the regulation of many plant growth and development processes, and function in response to abiotic stress. Cytokinin signaling is similar to the prokaryotic two-component signaling systems and includes the transcriptional upregulation of type-A response regulators (RRs), which in turn act to inhibit cytokinin signal response via negative feedback. Cytokinin signaling consists of several gene families and only a handful full of genes is studied. In this study, we demonstrated the function of two highly identical type-A RR genes from rice, OsRR9 and OsRR10, which are induced by cytokinin and only OsRR10 repressed by salinity stress in rice. Loss-of-function mutations give rise to mutant genes, osrr9/osrr10, which have higher salinity tolerance than wild type rice seedlings. The transcriptomic analysis uncovered several ion transporter genes, which were upregulated in response to salt stress in the osrr9/osrr10 mutants relative to the wild type seedlings. These include high-affinity potassium transporters, such as OsHKT1;1, OsHKT1;3 and OsHKT2;1, which play an important role in sodium and potassium homeostasis. In addition, disruption of the genes OsRR9 and OsRR10 also affects the expression of multiple genes related to photosynthesis, transcription and phytohormone signaling. Taken together, these results suggest that the genes OsRR9 and OsRR10 function as negative regulators in response to salinity in rice.
Collapse
Affiliation(s)
- Wei-Chen Wang
- Department of Agronomy, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| | - Te-Che Lin
- Department of Agronomy, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| | - Joseph Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yu-Chang Tsai
- Department of Agronomy, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
209
|
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. Genetic strategies for improving crop yields. Nature 2019; 575:109-118. [PMID: 31695205 PMCID: PMC7024682 DOI: 10.1038/s41586-019-1679-0] [Citation(s) in RCA: 582] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
The current trajectory for crop yields is insufficient to nourish the world's population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.
Collapse
Affiliation(s)
- Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA.
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, US Department of Agriculture, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Food and Fuel for the 21st Century, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
210
|
Huang Y, Cao H, Yang L, Chen C, Shabala L, Xiong M, Niu M, Liu J, Zheng Z, Zhou L, Peng Z, Bie Z, Shabala S. Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5879-5893. [PMID: 31290978 PMCID: PMC6812723 DOI: 10.1093/jxb/erz328] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 05/02/2023]
Abstract
Potassium (K+) is a critical determinant of salinity tolerance, and H2O2 has been recognized as an important signaling molecule that mediates many physiological responses. However, the details of how H2O2 signaling regulates K+ uptake in the root under salt stress remain elusive. In this study, salt-sensitive cucumber and salt-tolerant pumpkin which belong to the same family, Cucurbitaceae, were used to answer the above question. We show that higher salt tolerance in pumpkin was related to its superior ability for K+ uptake and higher H2O2 accumulation in the root apex. Transcriptome analysis showed that salinity induced 5816 (3005 up- and 2811 down-) and 4679 (3965 up- and 714 down-) differentially expressed genes (DEGs) in cucumber and pumpkin, respectively. DEGs encoding NADPH oxidase (respiratory burst oxidase homolog D; RBOHD), 14-3-3 protein (GRF12), plasma membrane H+-ATPase (AHA1), and potassium transporter (HAK5) showed higher expression in pumpkin than in cucumber under salinity stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium resulted in lower RBOHD, GRF12, AHA1, and HAK5 expression, reduced plasma membrane H+-ATPase activity, and lower K+ uptake, leading to a loss of the salinity tolerance trait in pumpkin. The opposite results were obtained when the plants were pre-treated with exogenous H2O2. Knocking out of RBOHD in pumpkin by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] editing of coding sequences resulted in lower root apex H2O2 and K+ content and GRF12, AHA1, and HAK5 expression, ultimately resulting in a salt-sensitive phenotype. However, ectopic expression of pumpkin RBOHD in Arabidopsis led to the opposite effect. Taken together, this study shows that RBOHD-dependent H2O2 signaling in the root apex is important for pumpkin salt tolerance and suggests a novel mechanism that confers this trait, namely RBOHD-mediated transcriptional and post-translational activation of plasma membrane H+-ATPase operating upstream of HAK5 K+ uptake transporters.
Collapse
Affiliation(s)
- Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Haishun Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Li Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Chen Chen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Mu Xiong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Mengliang Niu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Juan Liu
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Zuhua Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Lijian Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Zhaowen Peng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, PR China
| |
Collapse
|
211
|
Mitsuya S, Murakami N, Sato T, Kazama T, Toriyama K, Skoulding NS, Kano-Nakata M, Yamauchi A. Evaluation of rice grain yield and yield components of Nona Bokra chromosome segment substitution lines with the genetic background of Koshihikari, in a saline paddy field. AOB PLANTS 2019; 11:plz040. [PMID: 31632626 PMCID: PMC6790112 DOI: 10.1093/aobpla/plz040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
The ability to tolerate salt differs with the growth stages of rice and thus the yield components that are determined during various growth stages, are differentially affected by salt stress. In this study, we utilized chromosome segment substitution lines (CSSLs) from Nona Bokra, a salt-tolerant indica landrace, with the genetic background of Koshihikari, a salt-susceptible japonica variety. These were screened to find superior CSSLs under long-term saline conditions that showed higher grain yield and yield components in comparison to Koshihikari. One-month-old seedlings were transplanted into a paddy field without salinity. These were allowed to establish for 1 month further, then the field was flooded, with saline water maintained at 7.41 dS m-1 salinity until harvest. The experiments were performed twice, once in 2015 and a targeted study in 2016. Salt tolerance of growth and reproductive stage parameters was evaluated as the Salt Effect Index (SEI) which was computed as the difference in each parameter within each line between control and saline conditions. All CSSLs and Koshihikari showed a decrease in grain yield and yield components except panicle number under salinity. SL538 showed a higher SEI for grain yield compared with Koshihikari under salinity throughout the two experiments. This was attributed to the retained grain filling and harvest index, yet the mechanism was not due to maintaining Na+, Cl- and K+ homeostasis. Few other CSSLs showed greater SEI for grain weight under salinity compared with Koshihikari, which might be related to low concentration of Na+ in leaves and panicles. These data indicate that substitution of different Nona Bokra chromosome segments independently contributed to the maintenance of grain filling and grain weight of Koshihikari under saline conditions.
Collapse
Affiliation(s)
- Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Norifumi Murakami
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Tadashi Sato
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | | | - Mana Kano-Nakata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
212
|
Fu S, Fu L, Zhang X, Huang J, Yang G, Wang Z, Liu YG, Zhang G, Wu D, Xia J. OsC2DP, a Novel C2 Domain-Containing Protein Is Required for Salt Tolerance in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2220-2230. [PMID: 31198970 DOI: 10.1093/pcp/pcz115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/31/2019] [Indexed: 05/27/2023]
Abstract
Salt stress is one of the major factors limiting crop production globally, including rice (Oryza sativa). Although a number of genes involved in salt tolerance have been functionally identified, the mechanism underlying salt tolerance in rice is still poorly understood. Here, we reported a novel C2 domain-containing protein, OsC2DP required for salt tolerance in rice. OsC2DP was predominately expressed in the roots and its expression was repressed by salt stress. Transient expression of OsC2DP in rice protoplast cells showed that it was localized in the cytosol. Immunostaining further showed that OsC2DP was able to translocate from the cytosol to plasma membrane under salt conditions. Knockout of OsC2DP did not affect Na+ concentration in the roots, but increased shoot Na+ concentration, resulting in a significant sensitivity of rice to salt stress. Furthermore, the quantitative Real-time PCR and transcriptomic analysis showed that the expression level of some genes related to salt tolerance were indirectly regulated by OsC2DP, especially OsSOS1 and OsNHX4. These results indicate that OsC2DP has an important role in salt tolerance and these findings provide new insights into the regulation of OsC2DP gene for rice breeding with high salt tolerance.
Collapse
Affiliation(s)
- Shan Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jingjing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guangzhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhigang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
213
|
Abdel Latef AAH, Kordrostami M, Zakir A, Zaki H, Saleh OM. Eustress with H 2O 2 Facilitates Plant Growth by Improving Tolerance to Salt Stress in Two Wheat Cultivars. PLANTS (BASEL, SWITZERLAND) 2019; 8:E303. [PMID: 31461870 PMCID: PMC6783893 DOI: 10.3390/plants8090303] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022]
Abstract
In this study, the positive role of hydrogen peroxide (H2O2) pretreatment in mitigating the adverse impacts of seawater stress has been evaluated in two wheat (Triticum aestivum L.) cultivars, namely Gemmiza 11 as a salt-sensitive and Misr 1 as a salt-tolerant cultivar, with contrasting phenotypes in response to the salinity stress. Under normal conditions, wheat seeds eustress with H2O2 have shown significant effects on the improvement of plant growth parameters, such as dry weight and root and shoot lengths. Under salt stress conditions, seeds eustress with H2O2 have shown a reduction in damage to plant growth and physiological parameters as compared to the seeds kept as un-primed in both wheat cultivars. In addition, eustress of seeds with H2O2 has induced an increment in the pigments content, proline level and mineral uptake (K+, Ca2+ and Mg2+). Moreover, seeds eustress with H2O2 have shown significant decrement in Na+ content uptake in plants and that subsequently reduced lipid peroxidation. Seawater stress has increased the activity of the antioxidant system based on catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) in both cultivars, except POD in Gemmiza 11. Similarly, the application of H2O2 has further enhanced the activity of the antioxidant system in stressed plants and this enhancement of the antioxidant system further reduced Na+ content in plants and subsequently increased the growth parameters. Results of inter-simple sequence repeat (ISSR) markers have shown clear differentiation among the treatments and have provided strong evidence in support of the hypothesis proposed in this study that H2O2 eustress improves seed tolerance and enhances plant growth parameters under seawater stress.
Collapse
Affiliation(s)
- Arafat Abdel Hamed Abdel Latef
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt.
- Biology Department, Turabah University College, Taif University, Turabah Branch, 21955 Taif, Saudi Arabia.
| | - Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314 Rasht, Iran
- Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 41996-13475 Rasht, Iran
| | - Ali Zakir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan
| | - Hoida Zaki
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Osama Moseilhy Saleh
- National Products Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, 11787 Cairo, Egypt
| |
Collapse
|
214
|
Rahman MA, Thomson MJ, De Ocampo M, Egdane JA, Salam MA, Shah-E-Alam M, Ismail AM. Assessing trait contribution and mapping novel QTL for salinity tolerance using the Bangladeshi rice landrace Capsule. RICE (NEW YORK, N.Y.) 2019; 12:63. [PMID: 31410650 PMCID: PMC6692794 DOI: 10.1186/s12284-019-0319-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Salinity is one of the most widespread abiotic stresses affecting rice productivity worldwide. The purpose of this study was to establish the relative importance of different traits associated with salinity tolerance in rice and to identify new quantitative trait loci (QTL) conferring tolerance to salinity at seedling stage. A total of 231 F2:3 plants derived from a cross between a sensitive variety BRRI dhan29 (BR29 hereafter) and Capsule, a salt tolerant Bangladeshi indica landrace, were evaluated under salt stress in a phytotron. RESULTS Out of the 231 F2 plants, 47 highly tolerant and 47 most sensitive lines were selected, representing the two extreme tails of the phenotypic distribution. These 94 plants were genotyped for 105 simple sequence repeat (SSR) and insertion/deletion (InDel) markers. A genetic linkage map spanning approximately 1442.9 cM of the 12 linkage groups with an average marker distance of 13.7 cM was constructed. QTL were identified on the long arm of chromosome 1 for Na+ concentration, K+ concentration, Na+-K+ ratio and survival; chromosome 3 for Na+ concentration, survival and overall phenotypic evaluation using the Standard Evaluation system (SES); and chromosome 5 for SES. A total of 6 pairwise epistatic interactions were also detected between QTL-linked and QTL-unlinked regions. Graphical genotyping indicated an association between the phenotypes of the extreme families and their QTL genotypes. Path coefficient analysis revealed that Na+ concentration, survival, Na+-K+ ratio and the overall phenotypic performance (SES score) are the major traits associated with salinity tolerance of Capsule. CONCLUSIONS Capsule provides an alternative source of salinity tolerance aside from Pokkali and Nona Bokra, the two Indian salt tolerant landraces traditionally used for breeding salt tolerant rice varieties. Pyramiding the new QTL identified in this study with previously discovered loci, such as Saltol, will facilitate breeding varieties that are highly tolerant of salt stress.
Collapse
Affiliation(s)
- M Akhlasur Rahman
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - Michael J Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Marjorie De Ocampo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - James A Egdane
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M A Salam
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - M Shah-E-Alam
- Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
215
|
Farhat N, Hichri S, Hildebrandt TM, Debez A, Braun HP. Composition and Stability of the Oxidative Phosphorylation System in the Halophile Plant Cakile maritima. FRONTIERS IN PLANT SCIENCE 2019; 10:1010. [PMID: 31456813 PMCID: PMC6700300 DOI: 10.3389/fpls.2019.01010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/18/2019] [Indexed: 05/21/2023]
Abstract
Mitochondria play a central role in the energy metabolism of plants. At the same time, they provide energy for plant stress responses. We here report a first view on the mitochondrial Oxidative Phosphorylation (OXPHOS) system of the halophile (salt tolerant) plant Cakile maritima. Mitochondria were purified from suspension cultures of C. maritima and for comparison of Arabidopsis thaliana, a closely related glycophyte (salt sensitive) plant. Mitochondria were treated with digitonin and solubilized protein complexes were analyzed by 2D Blue native/SDS polyacrylamide gel electrophoresis. The OXPHOS systems of the two compared plants exhibit some distinct differences. C. maritima mitochondria include a very abundant respiratory supercomplex composed of monomeric complex I and dimeric complex III. At the same time the complexes II and IV are of reduced abundance. The stability of the OXPHOS complexes was investigated by combined salt and temperature treatments of isolated mitochondria. ATP synthase (complex V) is of increased stability in C. maritima. Also, the I + III2 supercomplex is present in high abundance during stress treatments. These results give insights into the mitochondrial contribution to the plant salt stress response.
Collapse
Affiliation(s)
- Nèjia Farhat
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Sarra Hichri
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | | | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
216
|
Plant cell-surface GIPC sphingolipids sense salt to trigger Ca 2+ influx. Nature 2019; 572:341-346. [PMID: 31367039 DOI: 10.1038/s41586-019-1449-z] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Salinity is detrimental to plant growth, crop production and food security worldwide. Excess salt triggers increases in cytosolic Ca2+ concentration, which activate Ca2+-binding proteins and upregulate the Na+/H+ antiporter in order to remove Na+. Salt-induced increases in Ca2+ have long been thought to be involved in the detection of salt stress, but the molecular components of the sensing machinery remain unknown. Here, using Ca2+-imaging-based forward genetic screens, we isolated the Arabidopsis thaliana mutant monocation-induced [Ca2+]i increases 1 (moca1), and identified MOCA1 as a glucuronosyltransferase for glycosyl inositol phosphorylceramide (GIPC) sphingolipids in the plasma membrane. MOCA1 is required for salt-induced depolarization of the cell-surface potential, Ca2+ spikes and waves, Na+/H+ antiporter activation, and regulation of growth. Na+ binds to GIPCs to gate Ca2+ influx channels. This salt-sensing mechanism might imply that plasma-membrane lipids are involved in adaption to various environmental salt levels, and could be used to improve salt resistance in crops.
Collapse
|
217
|
Kakar N, Jumaa SH, Redoña ED, Warburton ML, Reddy KR. Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. RICE (NEW YORK, N.Y.) 2019; 12:57. [PMID: 31363935 DOI: 10.4038/tar.v31i2.8362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/17/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the major staple food crops consumed globally. However, rice production is severely affected by high salinity levels, particularly at the seedling stage. A good solution would be the development of an efficient screening methodology to identify genotypes possessing genes for salt tolerance. RESULT A new salinity tolerance screening technique using rice seedlings in pot-culture was tested. This method controls soil heterogeneity by using pure sand as a growth medium and minimizes unexpected extreme weather conditions with a movable shelter. Seventy-four rice genotypes were screened at three salinity treatments including high salt stress (electrical conductivity (EC) 12 dSm- 1), moderate salt stress (EC 6 dSm- 1), and control (no salt stress), imposed 1 week after emergence. Several shoot and root morpho-physiological traits were measured at 37 days after sowing. A wide range of variability was observed among genotypes for measured traits with root traits being identified as the best descriptors for tolerance to salt stress conditions. Salt stress response indices (SSRI) were used to classify the 74 rice genotypes; 7 genotypes (9.46%) were identified as salt sensitive, 27 (36.48%) each as low and moderately salt tolerant, and 13 (17.57%) as highly salt tolerant. Genotypes FED 473 and IR85427 were identified as the most salt tolerant and salt sensitive, respectively. These results were further confirmed by principal component analysis (PCA) for accuracy and reliability. CONCLUSION Although tolerant genotypes still need to be confirmed in field studies and tolerance mechanisms identified at the molecular level, information gained from this study could help rice breeders and other scientists to accelerate breeding by selecting appropriate donor parents, progenies and potential genotypes at early growth stages necessary for salinity tolerance research.
Collapse
Affiliation(s)
- Naqeebullah Kakar
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Salah H Jumaa
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Edilberto Diaz Redoña
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, Stoneville, MS, 38776, USA
| | - Marilyn L Warburton
- Corn Host Plant Resistance Research Unit, Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS, 39762, USA
| | - K Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
218
|
Kakar N, Jumaa SH, Redoña ED, Warburton ML, Reddy KR. Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. RICE (NEW YORK, N.Y.) 2019; 12:57. [PMID: 31363935 PMCID: PMC6667605 DOI: 10.1186/s12284-019-0317-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/17/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the major staple food crops consumed globally. However, rice production is severely affected by high salinity levels, particularly at the seedling stage. A good solution would be the development of an efficient screening methodology to identify genotypes possessing genes for salt tolerance. RESULT A new salinity tolerance screening technique using rice seedlings in pot-culture was tested. This method controls soil heterogeneity by using pure sand as a growth medium and minimizes unexpected extreme weather conditions with a movable shelter. Seventy-four rice genotypes were screened at three salinity treatments including high salt stress (electrical conductivity (EC) 12 dSm- 1), moderate salt stress (EC 6 dSm- 1), and control (no salt stress), imposed 1 week after emergence. Several shoot and root morpho-physiological traits were measured at 37 days after sowing. A wide range of variability was observed among genotypes for measured traits with root traits being identified as the best descriptors for tolerance to salt stress conditions. Salt stress response indices (SSRI) were used to classify the 74 rice genotypes; 7 genotypes (9.46%) were identified as salt sensitive, 27 (36.48%) each as low and moderately salt tolerant, and 13 (17.57%) as highly salt tolerant. Genotypes FED 473 and IR85427 were identified as the most salt tolerant and salt sensitive, respectively. These results were further confirmed by principal component analysis (PCA) for accuracy and reliability. CONCLUSION Although tolerant genotypes still need to be confirmed in field studies and tolerance mechanisms identified at the molecular level, information gained from this study could help rice breeders and other scientists to accelerate breeding by selecting appropriate donor parents, progenies and potential genotypes at early growth stages necessary for salinity tolerance research.
Collapse
Affiliation(s)
- Naqeebullah Kakar
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Salah H Jumaa
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Edilberto Diaz Redoña
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, Stoneville, MS, 38776, USA
| | - Marilyn L Warburton
- Corn Host Plant Resistance Research Unit, Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS, 39762, USA
| | - K Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
219
|
Neang S, de Ocampo M, Egdane JA, Platten JD, Ismail AM, Skoulding NS, Kano-Nakata M, Yamauchi A, Mitsuya S. Fundamental parenchyma cells are involved in Na + and Cl - removal ability in rice leaf sheath. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:743-755. [PMID: 31046903 DOI: 10.1071/fp18318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Salt sensitivity in rice plants is associated with the accumulated amount of Na+ and Cl- in shoots and, more significantly, in photosynthetic tissues. Therefore, salt removal ability at the leaf sheath level is an important mechanism of salt tolerance. In the present study we attempted to determine whether rice leaf sheaths excluded Cl- as well as Na+, and to identify the tissues that were involved in the removal ability of both ions. In two rice genotypes, salt-tolerant FL478 and -sensitive IR29, leaf sheaths excluded Na+ and Cl- under NaCl treatment as estimated using their sheath:blade ratios. The sheath:blade ratio of Na+ but not of Cl-, was increased by NaCl treatment. Under NaCl treatment, Na+ concentration was higher in the basal leaf sheath, whereas Cl- concentration was higher in the middle and tip parts. At the tissue level, fundamental parenchyma cells of leaf sheaths retained the highest amounts of Na and Cl when treated with high amount of NaCl. These results imply that the leaf sheath potentially functions to remove excess Na+ and Cl- from xylem vessels in different locations along the axis, with the fundamental parenchyma cells of leaf sheaths being involved in over-accumulation of both Na+ and Cl-.
Collapse
Affiliation(s)
- Sarin Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Marjorie de Ocampo
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - James A Egdane
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - John D Platten
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Abdelbagi M Ismail
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Nicola S Skoulding
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Mana Kano-Nakata
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan; and Corresponding author.
| |
Collapse
|
220
|
Liao Q, Jian SF, Song HX, Guan CY, Lepo JE, Ismail AM, Zhang ZH. Balance between nitrogen use efficiency and cadmium tolerance in Brassica napus and Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:57-66. [PMID: 31084879 DOI: 10.1016/j.plantsci.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 05/14/2023]
Abstract
The transmembrane transport of NO3- and Cd2+ into plant cell vacuoles relies on the energy from their tonoplast proton pumps, V-ATPase and V-PPase. If the activity of these pumps is reduced, it results in less NO3- and Cd2+ being transported into the vacuoles, which contributes to better nitrogen use efficiency (NUE) and lower Cd2+ tolerance in plants. The physiological mechanisms that regulate the balance between NUE and Cd2+ tolerance remain unknown. In our study, two Brassica napus genotypes with differential NUEs, xiangyou 15 and 814, and Atclca-2 mutant and AtCAX4 over-expression line (AtCAX4-OE) of Arabidopsis thaliana, were used to investigate Cd2+ stress responses. We found that the Brassica napus genotype, with higher NUE, was more sensitive to Cd2+ stress. The AtCAX4-OE mutant, with higher Cd2+ vacuolar sequestration capacity (VSC), limited NO3- sequestration into root vacuoles and promoted NUE. Atclca-2 mutants, with decreased NO3- VSC, enhanced Cd2+ sequestration into root vacuoles and conferred greater Cd2+ tolerance than the WT. This may be due to the competition between Cd2+ andNO3- in the vacuoles for the energy provided by V-ATPase and V-PPase. Regulating the balance between Cd2+ and NO3- vacuolar accumulation by inhibiting the activity of CLCa transporter and increasing the activity of CAX4 transporter will simultaneously enhance both the NUE and Cd2+ tolerance of Brassica napus, essential for improving its Cd2+ phytoremediation potential.
Collapse
Affiliation(s)
- Qiong Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Shao-Fen Jian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Hai-Xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China; National Engineering Laboratory of High Efficiency Utilization of Soil and Fertilizer Resources, Hunan Agricultural University, Changsha, China
| | - Chun-Yun Guan
- National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Joe Eugene Lepo
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, 32514, United States
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Zhen-Hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China; National Engineering Laboratory of High Efficiency Utilization of Soil and Fertilizer Resources, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
221
|
Tian S, Guo R, Zou X, Zhang X, Yu X, Zhan Y, Ci D, Wang M, Wang Y, Si T. Priming With the Green Leaf Volatile (Z)-3-Hexeny-1-yl Acetate Enhances Salinity Stress Tolerance in Peanut ( Arachis hypogaea L.) Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:785. [PMID: 31333683 PMCID: PMC6621544 DOI: 10.3389/fpls.2019.00785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 05/17/2023]
Abstract
Green leaf volatiles play vital roles in plant biotic stress; however, their functions in plant responses to abiotic stress have not been determined. The aim of this study was to investigate the possible role of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of green leaf volatile, in alleviating the salinity stress of peanut (Arachis hypogaea L.) seedlings and the underlying physiological mechanisms governing this effect. One salt-sensitive and one salt-tolerant peanut genotype were primed with 200 μM Z-3-HAC at the 4-week-old stage before they were exposed to salinity stress. Physiological measurements showed that the primed seedlings possessed higher relative water content, net photosynthetic rate, maximal photochemical efficiency of photosystem II, activities of the antioxidant enzymes, and osmolyte accumulation under salinity conditions. Furthermore, the reactive oxygen species, electrolyte leakage, and malondialdehyde content in the third fully expanded leaves were significantly lower than in nonprimed plants. Additionally, we found that application of Z-3-HAC increased the total length, surface area, and volume of the peanut roots under salinity stress. These results indicated that the green leaf volatile Z-3-HAC protects peanut seedlings against damage from salinity stress through priming for modifications of photosynthetic apparatus, antioxidant systems, osmoregulation, and root morphology.
Collapse
Affiliation(s)
- Shufei Tian
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Runze Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yuan Zhan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dunwei Ci
- Shandong Peanut Research Institute, Qingdao, China
| | - Minglun Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yuefu Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
222
|
Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Yadav S, Kumar P, Sarkar AK, Jain A, Singh NK, Rai V. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin Cell Dev Biol 2019; 96:91-99. [PMID: 31075379 DOI: 10.1016/j.semcdb.2019.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Crop productivity in rice is harshly limited due to high concentration of salt in the soil. To understand the intricacies of the mechanism it is important to unravel the key pathways operating inside the plant cell. Emerging state-of-the art technologies have provided the tools to discover the key components inside the plant cell for salt tolerance. Among the molecular entities, transcription factors and/or other important components of sensing and signaling cascades have been the attractive targets and the role of NHX and SOS1 transporters amply described. Not only marker assisted programs but also transgenic approaches by using reverse genetic strategies (knockout or knockdown) or overexpression have been extensively used to engineer rice crop. CRISPR/Cas is an attractive paradigm and provides the feasibility for manipulating several genes simultaneously. Here, in this review we highlight some of the molecular entities that could be potentially targeted for generating rice amenable to sustain growth under high salinity conditions by employing CRISPR/Cas. We also try to address key questions for rice salt stress tolerance other than what is already known.
Collapse
Affiliation(s)
- Sufia Farhat
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Neha Jain
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Nisha Singh
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Rohini Sreevathsa
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Prasanta K Dash
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Rhitu Rai
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pramod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ajay Jain
- Department of Biotechnology, Amity University, Jaipur, India.
| | - Nagendra K Singh
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Vandna Rai
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| |
Collapse
|
223
|
Role of putrescine (Put) in imparting salt tolerance through modulation of put metabolism, mycorrhizal and rhizobial symbioses in Cajanus cajan (L.) Millsp. Symbiosis 2019. [DOI: 10.1007/s13199-019-00621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
224
|
The breadth of climate change impacts on biological systems. Emerg Top Life Sci 2019; 3:107-113. [PMID: 33523145 DOI: 10.1042/etls20180114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/17/2022]
Abstract
Human activity is driving climate change. This is affecting and will affect many aspects of life on earth. The breadth of its impacts is very wide and covers human, animal and plant health, and also the planet's biodiversity and the services that deliver benefits to people from natural capital. Finding solutions to the challenge of climate change will require multidisciplinary action in which the life sciences have a major role to play as this issue of Emerging Topics in Life Sciences indicates. More process and mechanistic knowledge could underpin solutions or even provide early warning of impacts. Any solutions will need to be developed and deployed in ways that gain and maintain public support.
Collapse
|
225
|
Wei P, Che B, Shen L, Cui Y, Wu S, Cheng C, Liu F, Li MW, Yu B, Lam HM. Identification and functional characterization of the chloride channel gene, GsCLC-c2 from wild soybean. BMC PLANT BIOLOGY 2019; 19:121. [PMID: 30935372 PMCID: PMC6444504 DOI: 10.1186/s12870-019-1732-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The anionic toxicity of plants under salt stress is mainly caused by chloride (Cl-). Thus Cl- influx, transport and their regulatory mechanisms should be one of the most important aspects of plant salt tolerance studies, but are often sidelined by the focus on sodium (Na+) toxicity and its associated adaptations. Plant chloride channels (CLCs) are transport proteins for anions including Cl- and nitrate (NO3-), and are critical for nutrition uptake and transport, adjustment of cellular turgor, stomatal movement, signal transduction, and Cl- and NO3- homeostasis under salt stress. RESULTS Among the eight soybean CLC genes, the tonoplast-localized c2 has uniquely different transcriptional patterns between cultivated soybean N23674 and wild soybean BB52. Using soybean hairy root transformation, we found that GsCLC-c2 over-expression contributed to Cl- and NO3- homeostasis, and therefore conferred salt tolerance, through increasing the accumulation of Cl- in the roots, thereby reducing their transportation to the shoots where most of the cellular damages occur. Also, by keeping relatively high levels of NO3- in the aerial part of the plant, GsCLC-c2 could reduce the Cl-/NO3- ratio. Wild type GsCLC-c2, but not its mutants (S184P, E227V and E294G) with mutations in the conserved domains, is able to complement Saccharomyces cerevisiae △gef1 Cl- sensitive phenotype. Using two-electrode voltage clamp on Xenopus laevis oocytes injected with GsCLC-c2 cRNA, we found that GsCLC-c2 transports both Cl- and NO3- with slightly different affinity, and the affinity toward Cl- was pH-independent. CONCLUSION This study revealed that the expression of GsCLC-c2 is induced by NaCl-stress in the root of wild soybean. The tonoplast localized GsCLC-c2 transports Cl- with a higher affinity than NO3- in a pH-independent fashion. GsCLC-c2 probably alleviates salt stress in planta through the sequestration of excess Cl- into the vacuoles of root cells and thus preventing Cl- from entering the shoots where it could result in cellular damages.
Collapse
Affiliation(s)
- Peipei Wei
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Benning Che
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yiqing Cui
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shengyan Wu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cong Cheng
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Feng Liu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bingjun Yu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
226
|
Hossain MS, Hasanuzzaman M, Sohag MMH, Bhuyan MHMB, Fujita M. Acetate-induced modulation of ascorbate: glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in Lens culinaris Medik. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:443-455. [PMID: 30956427 PMCID: PMC6419701 DOI: 10.1007/s12298-018-00640-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 05/07/2023]
Abstract
Physiological and biochemical changes in six-day-old hydroponically grown lentil seedlings exposed to 100 mM salinity stress with or without 5 and 10 mM Na-acetate were studied. Results showed that salt stress reduced recovery percentage, fresh weight (FW), chlorophyll (chl) content, disturbed water balance, disrupted antioxidant defense pathway by decreasing reduced ascorbate content, and caused ion toxicity resulting from increased Na+ accumulation, severe K+ loss from roots in hydroponic culture. However, exogenous application of Na-acetate improved the seedling growth by maintaining water balance and increasing chl content. Furthermore, Na-acetate application reduced oxidative damage by modulating antioxidant defense pathway, and sustained ion homeostasis by reducing Na+ uptake and K+ loss. In the second experiment in glass house, we investigated the role of Na-acetate on lentil for long-term salinity. Acetate application increased FW and dry weight, reduced oxidative and membrane damage, and lowered the accumulation of Na+ in shoot compared with salt stressed seedlings alone. From the results of both experiments, it is clear that the exogenous application of Na-acetate enhanced salt tolerance in lentil seedlings.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Md. Mahmodul Hasan Sohag
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - M. H. M. Borhannuddin Bhuyan
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| |
Collapse
|
227
|
Jha UC, Bohra A, Jha R, Parida SK. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes. PLANT CELL REPORTS 2019; 38:255-277. [PMID: 30637478 DOI: 10.1007/s00299-019-02374-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Sustaining yield gains of grain legume crops under growing salt-stressed conditions demands a thorough understanding of plant salinity response and more efficient breeding techniques that effectively integrate modern omics knowledge. Grain legume crops are important to global food security being an affordable source of dietary protein and essential mineral nutrients to human population, especially in the developing countries. The global productivity of grain legume crops is severely challenged by the salinity stress particularly in the face of changing climates coupled with injudicious use of irrigation water and improper agricultural land management. Plants adapt to sustain under salinity-challenged conditions through evoking complex molecular mechanisms. Elucidating the underlying complex mechanisms remains pivotal to our knowledge about plant salinity response. Improving salinity tolerance of plants demand enriching cultivated gene pool of grain legume crops through capitalizing on 'adaptive traits' that contribute to salinity stress tolerance. Here, we review the current progress in understanding the genetic makeup of salinity tolerance and highlight the role of germplasm resources and omics advances in improving salt tolerance of grain legumes. In parallel, scope of next generation phenotyping platforms that efficiently bridge the phenotyping-genotyping gap and latest research advances including epigenetics is also discussed in context to salt stress tolerance. Breeding salt-tolerant cultivars of grain legumes will require an integrated "omics-assisted" approach enabling accelerated improvement of salt-tolerance traits in crop breeding programs.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067, India
| |
Collapse
|
228
|
Wang H, Shabala L, Zhou M, Shabala S. Developing a high-throughput phenotyping method for oxidative stress tolerance in barley roots. PLANT METHODS 2019; 15:12. [PMID: 30774702 PMCID: PMC6364415 DOI: 10.1186/s13007-019-0397-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 01/29/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND More than 20% of the world's agricultural land is affected by salinity, resulting in multibillion-dollar penalties and jeopardising food security. While the recent progress in molecular technologies has significantly advanced plant breeding for salinity stress tolerance, accurate plant phenotyping remains a bottleneck of many breeding programs. We have recently shown the existence of a strong causal link between salinity and oxidative stress tolerance in cereals (wheat and barley). Using the microelectrode ion flux estimation (MIFE) method, we have also found a major QTL conferring ROS control of ion flux in roots that coincided with the major QTL for the overall salinity stress tolerance. These findings open new (previously unexplored) prospects of improving salinity tolerance by pyramiding this trait alongside with other (traditional) mechanisms. RESULTS In this work, two high-throughput phenotyping methods-viability assay and root growth assay-were tested and assessed as a viable alternative to the (technically complicated) MIFE method using barley as a check species. In viability staining experiments, a dose-dependent H2O2-triggered loss of root cell viability was observed, with salt sensitive varieties showing significantly more damage to root cells. In the root growth assays, relative root length (RRL) was measured in plants grown in paper rolls under different H2O2 concentrations. The biggest difference in RRL between contrasting varieties was observed for 1 mM H2O2 treatment. Under these conditions, a significant negative correlation in the reduction in RRL and the overall salinity tolerance is reported. CONCLUSIONS These findings offer plant breeders a convenient high throughput method to screen germplasm for oxidative stress tolerance, targeting root-based genes regulating ion homeostasis and thus conferring salinity stress tolerance in barley (and potentially other species).
Collapse
Affiliation(s)
- Haiyang Wang
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001 Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001 Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001 Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001 Australia
| |
Collapse
|
229
|
Yu L, Fan J, Xu C. Peroxisomal fatty acid β-oxidation negatively impacts plant survival under salt stress. PLANT SIGNALING & BEHAVIOR 2019; 14:1561121. [PMID: 30618323 PMCID: PMC6351088 DOI: 10.1080/15592324.2018.1561121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/25/2023]
Abstract
Peroxisomal β-oxidation is the sole pathway for metabolic breakdown of fatty acids to generate energy and carbon skeletons in plants, is essential for oilseed germination and plays an important role in growth, development and cellular homeostasis. Yet, this process also produces cytotoxic reactive oxygen species (ROS) as byproducts. We recently showed that disruption of fatty acid β-oxidation enhance plant survival under carbon starvation conditions. Here, we extend these findings by demonstrating that blocking fatty acid import into peroxisomes reduces ROS accumulation and increases plant tolerance to salt stress, whereas increasing fatty acid flux into the β-oxidation pathway has opposite effects. Together, these results support the view that peroxisomal β-oxidation of fatty acids enhances stress-induced ROS production, thereby negatively impacting plant survival under adverse environmental conditions.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
230
|
Abdelhamid MT, El-Masry RR, Darwish DS, Abdalla MMF, Oba S, Ragab R. The Mechanisms Involved in Improving the Tolerance of Plants to Salt Stress Using Arbuscular Mycorrhizal Fungi. SOIL BIOLOGY 2019. [DOI: 10.1007/978-3-030-18975-4_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
231
|
Liu J, Shabala S, Shabala L, Zhou M, Meinke H, Venkataraman G, Chen Z, Zeng F, Zhao Q. Tissue-Specific Regulation of Na + and K + Transporters Explains Genotypic Differences in Salinity Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1361. [PMID: 31737000 PMCID: PMC6838216 DOI: 10.3389/fpls.2019.01361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/03/2019] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa) is a staple food that feeds more than half the world population. As rice is highly sensitive to soil salinity, current trends in soil salinization threaten global food security. To better understand the mechanistic basis of salinity tolerance in rice, three contrasting rice cultivars-Reiziq (tolerant), Doongara (moderately tolerant), and Koshihikari (sensitive)-were examined and the differences in operation of key ion transporters mediating ionic homeostasis in these genotypes were evaluated. Tolerant varieties had reduced Na+ translocation from roots to shoots. Electrophysiological and quantitative reverse transcription PCR experiments showed that tolerant genotypes possessed 2-fold higher net Na+ efflux capacity in the root elongation zone. Interestingly, this efflux was only partially mediated by the plasma membrane Na+/H+ antiporter (OsSOS1), suggesting involvement of some other exclusion mechanisms. No significant difference in Na+ exclusion from the mature root zones was found between cultivars, and the transcriptional changes in the salt overly sensitive signaling pathway genes in the elongation zone were not correlated with the genetic variability in salinity tolerance amongst genotypes. The most important hallmark of differential salinity tolerance was in the ability of the plant to retain K+ in both root zones. This trait was conferred by at least three complementary mechanisms: (1) its superior ability to activate H+-ATPase pump operation, both at transcriptional and functional levels; (2) reduced sensitivity of K+ efflux channels to reactive oxygen species; and (3) smaller upregulation in OsGORK and higher upregulation of OsAKT1 in tolerant cultivars in response to salt stress. These traits should be targeted in breeding programs aimed to improve salinity tolerance in commercial rice cultivars.
Collapse
Affiliation(s)
- Juan Liu
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- *Correspondence: Sergey Shabala, ; Quanzhi Zhao,
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Holger Meinke
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Zhonghua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Sergey Shabala, ; Quanzhi Zhao,
| |
Collapse
|
232
|
Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:31-38. [PMID: 30059606 DOI: 10.1111/plb.12884] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/27/2018] [Indexed: 05/18/2023]
Abstract
Thirty crop species provide 90% of our food, most of which display severe yield losses under moderate salinity. Securing and augmenting agricultural yield in times of global warming and population increase is urgent and should, aside from ameliorating saline soils, include attempts to increase crop plant salt tolerance. This short review provides an overview of the processes that limit growth and yield in saline conditions. Yield is reduced if soil salinity surpasses crop-specific thresholds, with cotton, barley and sugar beet being highly tolerant, while sweet potato, wheat and maize display high sensitivity. Apart from Na+ , also Cl- , Mg2+ , SO4 2- or HCO3 - contribute to salt toxicity. The inhibition of biochemical or physiological processes cause imbalance in metabolism and cell signalling and enhance the production of reactive oxygen species interfering with cell redox and energy state. Plant development and root patterning is disturbed, and this response depends on redox and reactive oxygen species signalling, calcium and plant hormones. The interlink of the physiological understanding of tolerance processes from molecular processes as well as the agronomical techniques for stabilizing growth and yield and their interlinks might help improving our crops for future demand and will provide improvement for cultivating crops in saline environment.
Collapse
Affiliation(s)
- C Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - C-M Geilfus
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Division of Controlled Environment Horticulture, Humboldt Universität Berlin, Berlin, Germany
| | - K-J Dietz
- Biochemistry and Physiology of Plants, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
233
|
Wang Z, Zhao Z, Fan G, Dong Y, Deng M, Xu E, Zhai X, Cao H. A comparison of the transcriptomes between diploid and autotetraploid Paulownia fortunei under salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1-11. [PMID: 30804626 PMCID: PMC6352521 DOI: 10.1007/s12298-018-0578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/08/2018] [Accepted: 06/29/2018] [Indexed: 05/06/2023]
Abstract
Paulownia is a tree species grown in many countries. Our previous study reveals that tetraploid Paulownia fortunei is more tolerant to salt stress than its corresponding diploid tree. To investigate the molecular mechanisms of salt stress tolerance in P. fortunei, the transcriptomes of normal and salt-stressed diploid and tetraploid were investigated. After assembling the clean reads, we obtained 130,842 unigenes. The unigenes were aligned against six public databases (Nr, Nt, Swiss-Prot, COG, KEGG, GO) to discover homologs and assign functional annotations. We retrieved 7983 and 15,503 differentially expressed unigenes (DEUs) between the normal and the salt-stressed diploid and tetraploid P. fortunei, respectively. We identified dozens of important DEUs including 3 related to photosynthesis, 10 related to plant growth and development and 11 related to osmolytes. Some of these DEUs were upregulated in tetraploid compared to diploid and others were upregulated under salt stress. Quantitative reverse transcriptase polymerase chain reaction verified the expression patterns of 15 unigenes. Our results provided insights into the molecular aspects why tetraploid is stronger and more energetic than diploid under saline environment. This study provides useful information for further studies on the molecular mechanisms of salt tolerance in other tree plants.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Enkai Xu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan People’s Republic of China
| | - Heping Cao
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70124 USA
| |
Collapse
|
234
|
Yichie Y, Brien C, Berger B, Roberts TH, Atwell BJ. Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. RICE (NEW YORK, N.Y.) 2018; 11:66. [PMID: 30578452 PMCID: PMC6303227 DOI: 10.1186/s12284-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/03/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Soil salinity is widespread in rice-producing areas globally, restricting both vegetative growth and grain yield. Attempts to improve the salt tolerance of Asian rice, Oryza sativa-the most salt sensitive of the major cereal crops-have met with limited success, due to the complexity of the trait and finite variation in salt responses among O. sativa lines. Naturally occurring variation among the more than 20 wild species of the Oryza genus has great potential to provide breeders with novel genes to improve resistance to salt. Here, through two distinct screening experiments, we investigated variation in salinity tolerance among accessions of two wild rice species endemic to Australia, O. meridionalis and O. australiensis, with O. sativa cultivars Pokkali and IR29 providing salt-tolerant and sensitive controls, respectively. RESULTS Rice plants were grown on soil supplemented with field-relevant concentrations of NaCl (0, 40, 80, and 100 mM) for 30 d, a period sufficient to reveal differences in growth and physiological traits. Two complementary screening approaches were used: destructive phenotyping and high-throughput image-based phenotyping. All genotypes displayed clear responses to salt treatment. In the first experiment, both salt-tolerant Pokkali and an O. australiensis accession (Oa-VR) showed the least reduction in biomass accumulation, SES score and chlorophyll content in response to salinity. Average shoot Na+/K+ values of these plants were the lowest among the genotypes tested. In the second experiment, plant responses to different levels of salt stress were quantified over time based on projected shoot area calculated from visible red-green-blue (RGB) and fluorescence images. Pokkali grew significantly faster than the other genotypes. Pokkali and Oa-VR plants displayed the same absolute growth rate under 80 and 100 mM, while Oa-D grew significantly slower with the same treatments. Oa-VR showed substantially less inhibition of growth in response to salinity when compared with Oa-D. Senescence was seen in Oa-D after 30 d treatment with 40 mM NaCl, while the putatively salt-tolerant Oa-VR had only minor leaf damage, even at higher salt treatments, with less than a 40% increase in relative senescence at 100 mM NaCl compared to 120% for Oa-VR. CONCLUSION The combination of our two screening experiments uncovered striking levels of salt tolerance diversity among the Australian wild rice accessions tested and enabled analysis of their growth responses to a range of salt levels. Our results validate image-based phenotyping as a valuable tool for quantitative measurement of plant responses to abiotic stresses. They also highlight the potential of exotic germplasm to provide new genetic variation for salinity tolerance in rice.
Collapse
Affiliation(s)
- Yoav Yichie
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Chris Brien
- School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, Waite Research Institute, University of Adelaide, Adelaide, Australia
| | - Bettina Berger
- School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, Waite Research Institute, University of Adelaide, Adelaide, Australia
| | - Thomas H. Roberts
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Brian J. Atwell
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
235
|
Cao C, Long R, Zhang T, Kang J, Wang Z, Wang P, Sun H, Yu J, Yang Q. Genome-Wide Identification of microRNAs in Response to Salt/Alkali Stress in Medicago truncatula through High-Throughput Sequencing. Int J Mol Sci 2018; 19:ijms19124076. [PMID: 30562933 PMCID: PMC6321334 DOI: 10.3390/ijms19124076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 11/25/2022] Open
Abstract
Saline-alkaline stress is a universal abiotic stress that adversely affects plant growth and productivity. Saline-alkaline conditions results in plant abnormal transcriptome expression finally manifesting as defective phenotypes. Considerable research has revealed the active role of microRNA in various stress conditions. This study was aimed to identify novel miRNAs and the miRNA expression patterns in the leguminous model plant R108 (Medicago truncatula). The miRNA contained in the total RNA extracted from Medicago truncatula seedlings (72 h) that had been treated with solutions mimicking saline and alkaline soils was subjected to miRNA deep sequencing. The Illumina HiSeq sequencing platform was used to analyze nine small RNA libraries of three treatment groups: distilled water, 20 mM NaCl + Na2SO4 and 5 mM Na2CO3 + NaHCO3. Sequencing revealed that 876 miRNAs including 664 known miRNAs and 212 potential novel miRNAs were present in all the libraries. The miR159 family, miR156 family, miR2086-3p, miR396, miR166, miR319, miR167, miR5213-5p, miR1510 and miR2643 were among the most expressed miRNAs in all libraries. The results of miRNAs expression under treatments were validated by reverse-transcription quantitative PCR (RT-qPCR). Target gene prediction through computational analysis and pathway annotation analysis revealed that the primary pathways affected by stress were related to plant development, including metabolic processes, single-organism processes and response to the stimulus. Our results provide valuable information towards elucidating the molecular mechanisms of salt/alkali tolerance in Medicago truncatula and provide insight into the putative role of miRNAs in plant stress resistance.
Collapse
Affiliation(s)
- Chunyu Cao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tiejun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pingqing Wang
- Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Hao Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
236
|
Singh R, Upadhyay AK, Chandra P, Singh DP. Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. BIORESOURCE TECHNOLOGY 2018; 270:489-497. [PMID: 30245319 DOI: 10.1016/j.biortech.2018.09.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 05/21/2023]
Abstract
In the present study, microalgae Chlorococcum humicola and Chlorella vulgaris were grown in different concentrations of NaCl (25-1000 mM) to elucidate its impact on morphology, lipid synthesis, minerals status and antioxidative responses. Scanning Electron microscopy showed distorted cell morphology and increased cell size by 33.52% (C. humicola) and 27.79% (C. vulgaris) at 100 mM NaCl. Energy Dispersive Spectroscopy data revealed reduction in mineral contents (C, S, Fe, Mg, Si, Mn and Zn) by 14-54% in both algae. Further, C. humicola was found to have high lipid content than C. vulgaris under NaCl regime. The activities of superoxide dismutase, catalase and glutathione reductase were increased by 2.5-5 folds in both algae as compared to control. The increased level of ascorbate, cysteine and proline in both algae indicated tolerance against salinity. Thus, C. humicola and C. vulgaris may exhibit dual benefits viz., high lipid production and reclamation of sodic soil.
Collapse
Affiliation(s)
- R Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - A K Upadhyay
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - P Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - D P Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
| |
Collapse
|
237
|
Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress. Sci Rep 2018; 8:16248. [PMID: 30389990 PMCID: PMC6214910 DOI: 10.1038/s41598-018-34505-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2018] [Indexed: 11/25/2022] Open
Abstract
Salinity is one of the major abiotic factors that affect productivity in oat. Here, we report a comparison of the transcriptomes of two hexaploid oat cultivars, ‘Hanyou-5’ and ‘Huazao-2’, which differ with respect to salt tolerance, in seedlings exposed to salt stress. Analysis of the assembled unigenes from the osmotically stressed and control libraries of ‘Hanyou-5’ and ‘Huazao-2’ showed that the expression of 21.92% (36,462/166,326) of the assembled unigenes was differentially regulated in the two cultivars after different durations of salt stress. Bioinformatics analysis showed that the main functional categories enriched in these DEGs were “metabolic process”, “response to stresses”, “plant hormone signal transduction”, “MAPK signalling”, “oxidative phosphorylation”, and the plant-pathogen interaction pathway. Some regulatory genes, such as those encoding MYB, WRKY, bHLH, and zinc finger proteins, were also found to be differentially expressed under salt stress. Physiological measurements also detected significant differences in the activities of POD (76.24 ± 1.07 Vs 81.53 ± 1.47 U/g FW) in the two genotypes in response to osmotic stress. Furthermore, differential expression of 18 of these genes was successfully validated using RNA-seq and qRT-PCR analyses. A number of stress-responsive genes were identified in both cultivars, and candidate genes with potential roles in the adaptation to salinity were proposed.
Collapse
|
238
|
Dong W, Liu X, Li D, Gao T, Song Y. Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PLoS One 2018; 13:e0204033. [PMID: 30252877 PMCID: PMC6155508 DOI: 10.1371/journal.pone.0204033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/02/2018] [Indexed: 12/23/2022] Open
Abstract
MYB transcription factors are important regulators of the plant response to abiotic stress. Their participation in the salinity stress of the key forage legume species alfalfa (Medicago sativa) was investigated here by comparing the transcriptomes of the two cultivars Dryland (DL) and Sundory (SD), which differed with respect to their ability to tolerate salinity stress. When challenged by the stress, DL plants were better able than SD ones to scavenge reactive oxygen species. A large number of genes encoding transcription regulators, signal transducers and proteins involved in both primary and secondary metabolism were differentially transcribed in the two cultivars, especially when plants were subjected to salinity stress. The set of induced genes included 17 MYB family of transcription factors, all of which were subsequently isolated. The effect of constitutively expressing these genes on the salinity tolerance expressed by Arabidopsis thaliana was investigated. The introduction of MsMYB4 significantly increased the plants’ salinity tolerance in an abscisic acid-dependent manner. A sub-cellular localization experiment and a transactivation assay indicated that MsMYB4 was deposited in the nucleus and was able to activate transcription in yeast. Based on this information, we propose that the MsMYB4 products is likely directly involved in alfalfa’s response to salinity stress.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
| | - Xijiang Liu
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
| | - Donglei Li
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
| | - Tianxue Gao
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
- * E-mail:
| |
Collapse
|
239
|
Formentin E, Barizza E, Stevanato P, Falda M, Massa F, Tarkowskà D, Novák O, Lo Schiavo F. Fast Regulation of Hormone Metabolism Contributes to Salt Tolerance in Rice ( Oryzasativa spp. Japonica, L.) by Inducing Specific Morpho-Physiological Responses. PLANTS (BASEL, SWITZERLAND) 2018; 7:E75. [PMID: 30223560 PMCID: PMC6161274 DOI: 10.3390/plants7030075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 11/16/2022]
Abstract
Clear evidence has highlighted a role for hormones in the plant stress response, including salt stress. Interplay and cross-talk among different hormonal pathways are of vital importance in abiotic stress tolerance. A genome-wide transcriptional analysis was performed on leaves and roots of three-day salt treated and untreated plants of two Italian rice varieties, Baldo and Vialone Nano, which differ in salt sensitivity. Genes correlated with hormonal pathways were identified and analyzed. The contents of abscisic acid, indoleacetic acid, cytokinins, and gibberellins were measured in roots, stems, and leaves of seedlings exposed for one and three days to salt stress. From the transcriptomic analysis, a huge number of genes emerged as being involved in hormone regulation in response to salt stress. The expression profile of genes involved in biosynthesis, signaling, response, catabolism, and conjugation of phytohormones was analyzed and integrated with the measurements of hormones in roots, stems, and leaves of seedlings. Significant changes in the hormone levels, along with differences in morphological responses, emerged between the two varieties. These results support the faster regulation of hormones metabolism in the tolerant variety that allows a prompt growth reprogramming and the setting up of an acclimation program, leading to specific morpho-physiological responses and growth recovery.
Collapse
Affiliation(s)
- Elide Formentin
- Department of Biology, University of Padova, 35131 Padua, Italy.
| | | | - Piergiorgio Stevanato
- Department of Agronomy, Animals, Natural Resources and Environment-DAFNAE, University of Padova, 35020 Legnaro (Padova), Italy.
| | - Marco Falda
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy.
| | - Federica Massa
- Department of Biology, University of Padova, 35131 Padua, Italy.
| | - Danuše Tarkowskà
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| | | |
Collapse
|
240
|
Fu L, Shen Q, Kuang L, Yu J, Wu D, Zhang G. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:248-257. [PMID: 30021179 DOI: 10.1016/j.plaphy.2018.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 05/21/2023]
Abstract
Barley (Hordeum vulgare) and rice (Oryza sativa) differ greatly in their salt tolerance, although both species belong to the Poaceae family. To understand the mechanisms in the difference of salt tolerance between the two species, the responses of ionome, metabolome and gene expression of Na and K transporters to the different salt treatments were analyzed using 4 barley and 4 rice genotypes differing in salt tolerance. In comparison with 4 rice genotypes, four barley genotypes showed better plant growth, lower shoot Na concentration and higher K concentration at the 9 day after salt treatments. There was a dramatic difference in absolute expression levels of SOS, HKT and NHX family genes between barley and rice, which might account for their difference in Na/K homeostasis and salt tolerance. Moreover, rice leaves accumulated excess Na under salt treatments, which caused serious damages to physiological metabolisms based on metabolomic analysis, but barley leaves had lower Na concentration and small changes in the most metabolites. These results provide useful insights into the molecular mechanism in the difference of salt tolerance between rice and barley.
Collapse
Affiliation(s)
- Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Jiahua Yu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
241
|
Belghith I, Senkler J, Hildebrandt T, Abdelly C, Braun HP, Debez A. Comparative analysis of salt-induced changes in the root proteome of two accessions of the halophyte Cakile maritima. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:20-29. [PMID: 29957572 DOI: 10.1016/j.plaphy.2018.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
NaCl stress is a major abiotic stress factor limiting the productivity and the geographical distribution of many plant species. Although halophytes are able to withstand and even to require salt in the rhizosphere, roots are the most sensitive organs to salinity. Here, we investigate the variability of salt tolerance in two Tunisian accessions of the halophyte Cakile maritima (Raoued and Djerba, harvested from the semi-arid and arid Mediterranean bioclimatic stages, respectively) with a special emphasis on the proteomic changes in roots. Seedlings were hydroponically grown for one month under salt-free conditions and subsequently at three salinities (0, 100, and 300 mM NaCl). Physiological parameters (plant growth, water content, Na+, K+ contents) and root protein profiles were analyzed. Plant biomass was higher in Raoued than in Djerba but the latter was impacted to a lesser extent by salinity, notably due to lower sodium accumulation and higher selectivity for K+. 121 and 97 salt-responsive proteins were identified in Djerba and Raoued accessions, respectively. These proteins can be assigned to several different functional categories: protein metabolism, nucleotide metabolism, amino acid metabolism, glutathione metabolism, translation and ribosome biogenesis, carbohydrate and energy metabolism, and reactive oxygen species regulation and detoxification. The comparative proteome analysis revealed that 33 proteins were salt-responsive in both accessions, while 88 and 64 proteins were salt-responsive only in the Djerba or Raoued accessions, respectively. Our results give deeper insights into the plasticity of salt-stress response of C. maritima in its native ecosystems.
Collapse
Affiliation(s)
- Ikram Belghith
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany; Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Jennifer Senkler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Tatjana Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
242
|
Effect of polyploidy on the leaf epidermis structure of Cynodon dactylon (L.) Pers. (Poaceae). Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0106-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
243
|
Keshishian EA, Hallmark HT, Ramaraj T, Plačková L, Sundararajan A, Schilkey F, Novák O, Rashotte AM. Salt and oxidative stresses uniquely regulate tomato cytokinin levels and transcriptomic response. PLANT DIRECT 2018; 2:e00071. [PMID: 31245735 PMCID: PMC6508850 DOI: 10.1002/pld3.71] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 06/02/2023]
Abstract
Cytokinins are well-known to be involved in processes responsible for plant growth and development. More recently, these hormones have begun to be associated with stress responses as well. However, it is unclear how changes in cytokinin biosynthesis, signaling, or transport relate to stress effects. This study examines in parallel how two different stresses, salt, and oxidative stress, affect changes in both cytokinin levels and whole plant transcriptome response. Solanum lycopersicum seedlings were given a short-term (6 hr) exposure to either salt (150 mM NaCl) or oxidative (20 mM H2O2) stress and then examined to determine both changes in cytokinin levels and transcriptome. LC-MS/MS was used to determine the levels of 22 different types of cytokinins in tomato plants including precursors, active, transported, and conjugated forms. When examining cytokinin levels we found that salt treatment caused an increase in both active and inactive cytokinin levels and oxidative stress caused a decrease in these levels. RNA-sequencing analyses of these same stress-treated tissues revealed 6,643 significantly differentially expressed genes (DEGs). Although many DEGs are similar between the two stresses, approximately one-third of the DEGs in each treatment were unique to that stress. Several cytokinin-related genes were among the DEGs. Examination of photosystem II efficiency revealed that cytokinins affect physiological response to stress in tomato, further validating the changes in cytokinin levels seen in planta.
Collapse
Affiliation(s)
| | | | | | - Lenka Plačková
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of SciencesOlomoucCzech Republic
| | | | - Faye Schilkey
- National Center for Genome ResourcesSanta FeNew Mexico
| | - Ondřej Novák
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of SciencesOlomoucCzech Republic
| | | |
Collapse
|
244
|
Patankar HV, Al-Harrasi I, Al-Yahyai R, Yaish MW. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA Cell Biol 2018; 37:524-534. [DOI: 10.1089/dna.2018.4159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Himanshu V. Patankar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ibtisam Al-Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
245
|
Manishankar P, Wang N, Köster P, Alatar AA, Kudla J. Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5003005. [PMID: 29800460 DOI: 10.1093/jxb/ery201] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.
Collapse
Affiliation(s)
- P Manishankar
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - N Wang
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
246
|
Xu B, Waters S, Byrt CS, Plett D, Tyerman SD, Tester M, Munns R, Hrmova M, Gilliham M. Structural variations in wheat HKT1;5 underpin differences in Na + transport capacity. Cell Mol Life Sci 2018; 75:1133-1144. [PMID: 29177534 PMCID: PMC11105589 DOI: 10.1007/s00018-017-2716-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 12/01/2022]
Abstract
An important trait associated with the salt tolerance of wheat is the exclusion of sodium ions (Na+) from the shoot. We have previously shown that the sodium transporters TmHKT1;5-A and TaHKT1;5-D, from Triticum monoccocum (Tm) and Triticum aestivum (Ta), are encoded by genes underlying the major shoot Na+-exclusion loci Nax1 and Kna1, respectively. Here, using heterologous expression, we show that the affinity (K m) for the Na+ transport of TmHKT1;5-A, at 2.66 mM, is higher than that of TaHKT1;5-D at 7.50 mM. Through 3D structural modelling, we identify residues D471/a gap and D474/G473 that contribute to this property. We identify four additional mutations in amino acid residues that inhibit the transport activity of TmHKT1;5-A, which are predicted to be the result of an occlusion of the pore. We propose that the underlying transport properties of TmHKT1;5-A and TaHKT1;5-D contribute to their unique ability to improve Na+ exclusion in wheat that leads to an improved salinity tolerance in the field.
Collapse
Affiliation(s)
- Bo Xu
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Shane Waters
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Darren Plett
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, 4700, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rana Munns
- School of Agriculture and Environment, and ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia.
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
247
|
Biswas S, Amin USM, Sarker S, Rahman MS, Amin R, Karim R, Tuteja N, Seraj ZI. Introgression, Generational Expression and Salinity Tolerance Conferred by the Pea DNA Helicase 45 Transgene into Two Commercial Rice Genotypes, BR28 and BR47. Mol Biotechnol 2018; 60:111-123. [PMID: 29282651 DOI: 10.1007/s12033-017-0055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA helicase (PDH45) from the pea plant (Pisum sativum) is a member of the DEAD box protein family and plays a vital regulatory role in saline stress tolerance in plants. We previously reported that over-expression of PDH45 gene confers both seedling and reproductive stage salinity tolerance to a Bangladeshi rice landrace, Binnatoa (BA). In this study, transgenic BA-containing PDH45 (♂) was crossed with two different farmer-popular BRRI rice varieties (♀), BR28 and BR47, in a contained net house. F1 plants positive for the transgene and having recipient phenotype were advanced from F1 to F5. Expression of the PDH45 gene was detected in all generations. The expression level of PDH45 was 200-fold higher in the donor compared to the two recipient genotypes but without any effect on their salt stress tolerance ability in various assays. Under 120 mM NaCl stress at seedling stage, all rice genotypes showed vigorous growth, higher chlorophyll content, lower electrolyte leakage and lower LDS (Leaf Damage Score) compared to their corresponding wild types. At the reproductive stage under continuous salinity stress at 80 mM NaCl, the cross-bred lines BR28 and BR47 showed significantly better spikelet fertility and yield per plant, which were two- and 2.5-folds, respectively, than their corresponding wild types. The PDH45 transgene was observed to increase the expression of 6 salt stress-related downstream genes at 150 mM NaCl stress to similar differential degrees in the donor and recipient genotypes. However, the expression of OsLEA was significantly higher in transgenic BR28 compared to transgenic BR47, where the latter shows comparatively higher salt tolerance. The study shows stability of transgene expression across generations. It also demonstrates that there may be an effect of background genotype on transgene expression. Moreover, some downstream effects of the transgene may also be genotype-specific.
Collapse
Affiliation(s)
- Sudip Biswas
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - U S Mahzabin Amin
- Molecular Biotechnology Division, National Institution of Biotechnology, Savar, Bangladesh
| | - Sarah Sarker
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - M Sazzadur Rahman
- Plant Physiology Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ruhul Amin
- Institute of Food Science and Technology, BCSIR, Dhaka, Bangladesh
| | - Rezaul Karim
- Institute of Food Science and Technology, BCSIR, Dhaka, Bangladesh
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Zeba I Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
248
|
T-DNA Tagging-Based Gain-of-Function of OsHKT1;4 Reinforces Na Exclusion from Leaves and Stems but Triggers Na Toxicity in Roots of Rice Under Salt Stress. Int J Mol Sci 2018; 19:ijms19010235. [PMID: 29329278 PMCID: PMC5796183 DOI: 10.3390/ijms19010235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/25/2023] Open
Abstract
The high affinity K⁺ transporter 1;4 (HKT1;4) in rice (Oryza sativa), which shows Na⁺ selective transport with little K⁺ transport activity, has been suggested to be involved in reducing Na in leaves and stems under salt stress. However, detailed physiological roles of OsHKT1;4 remain unknown. Here, we have characterized a transfer DNA (T-DNA) insertion mutant line of rice, which overexpresses OsHKT1;4, owing to enhancer elements in the T-DNA, to gain an insight into the impact of OsHKT1;4 on salt tolerance of rice. The homozygous mutant (the O/E line) accumulated significantly lower concentrations of Na in young leaves, stems, and seeds than the sibling WT line under salt stress. Interestingly, however, the mutation rendered the O/E plants more salt sensitive than WT plants. Together with the evaluation of biomass of rice lines, rhizosphere acidification assays using a pH indicator bromocresol purple and 22NaCl tracer experiments have led to an assumption that roots of O/E plants suffered heavier damages from Na which excessively accumulated in the root due to increased activity of Na⁺ uptake and Na⁺ exclusion in the vasculature. Implications toward the application of the HKT1-mediated Na⁺ exclusion system to the breeding of salt tolerant crop cultivars will be discussed.
Collapse
|
249
|
Formentin E, Sudiro C, Perin G, Riccadonna S, Barizza E, Baldoni E, Lavezzo E, Stevanato P, Sacchi GA, Fontana P, Toppo S, Morosinotto T, Zottini M, Lo Schiavo F. Transcriptome and Cell Physiological Analyses in Different Rice Cultivars Provide New Insights Into Adaptive and Salinity Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:204. [PMID: 29556243 PMCID: PMC5844958 DOI: 10.3389/fpls.2018.00204] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/02/2018] [Indexed: 05/20/2023]
Abstract
Salinity tolerance has been extensively investigated in recent years due to its agricultural importance. Several features, such as the regulation of ionic transporters and metabolic adjustments, have been identified as salt tolerance hallmarks. Nevertheless, due to the complexity of the trait, the results achieved to date have met with limited success in improving the salt tolerance of rice plants when tested in the field, thus suggesting that a better understanding of the tolerance mechanisms is still required. In this work, differences between two varieties of rice with contrasting salt sensitivities were revealed by the imaging of photosynthetic parameters, ion content analysis and a transcriptomic approach. The transcriptomic analysis conducted on tolerant plants supported the setting up of an adaptive program consisting of sodium distribution preferentially limited to the roots and older leaves, and in the activation of regulatory mechanisms of photosynthesis in the new leaves. As a result, plants resumed grow even under prolonged saline stress. In contrast, in the sensitive variety, RNA-seq analysis revealed a misleading response, ending in senescence and cell death. The physiological response at the cellular level was investigated by measuring the intracellular profile of H2O2 in the roots, using a fluorescent probe. In the roots of tolerant plants, a quick response was observed with an increase in H2O2 production within 5 min after salt treatment. The expression analysis of some of the genes involved in perception, signal transduction and salt stress response confirmed their early induction in the roots of tolerant plants compared to sensitive ones. By inhibiting the synthesis of apoplastic H2O2, a reduction in the expression of these genes was detected. Our results indicate that quick H2O2 signaling in the roots is part of a coordinated response that leads to adaptation instead of senescence in salt-treated rice plants.
Collapse
Affiliation(s)
- Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- *Correspondence: Elide Formentin,
| | | | - Giorgio Perin
- Department of Biology, University of Padova, Padova, Italy
| | - Samantha Riccadonna
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, Italy
| | | | - Elena Baldoni
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padova, Italy
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Paolo Fontana
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
250
|
Wang J, Yao L, Li B, Meng Y, Ma X, Wang H. Single-Molecule Long-Read Transcriptome Dataset of Halophyte Halogeton glomeratus. Front Genet 2017; 8:197. [PMID: 29250103 PMCID: PMC5716979 DOI: 10.3389/fgene.2017.00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.,Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.,Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.,Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.,Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.,Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.,Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|