201
|
Jääskeläinen M, Chang W, Moisy C, Schulman AH. Retrotransposon BARE displays strong tissue-specific differences in expression. THE NEW PHYTOLOGIST 2013; 200:1000-8. [PMID: 24033286 DOI: 10.1111/nph.12470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/30/2013] [Indexed: 05/25/2023]
Abstract
The BARE retrotransposon comprises c. 10% of the barley (Hordeum vulgare) genome. It is actively transcribed, translated and forms virus-like particles (VLPs). For retrotransposons, the inheritance of new copies depends critically on where in the plant replication occurs. In order to shed light on the replication strategy of BARE in the plant, we have used immunolocalization and in situ hybridization to examine expression of the BARE capsid protein, Gag, at a tissue-specific level. Gag is expressed in provascular tissues and highly localized in companion cells surrounding the phloem sieve tubes in mature vascular tissues. BARE Gag and RNA was not seen in the shoot apical meristem of young seedlings, but appeared, following transition to flowering, in the developing floral spike. Moreover, Gag has a highly specific localization in pre-fertilization ovaries. The strong presence of Gag in the floral meristems suggests that newly replicated copies there will be passed to the next generation. BARE expression patterns are consistent with transcriptional regulation by predicted response elements in the BARE promoter, and in the ovary with release from epigenetic transcriptional silencing. To our knowledge, this is the first analysis of the expression of native retrotransposon proteins within a plant to be reported.
Collapse
Affiliation(s)
- Marko Jääskeläinen
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
202
|
Nezhadahmadi A, Prodhan ZH, Faruq G. Drought tolerance in wheat. ScientificWorldJournal 2013; 2013:610721. [PMID: 24319376 PMCID: PMC3844267 DOI: 10.1155/2013/610721] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022] Open
Abstract
Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress.
Collapse
Affiliation(s)
- Arash Nezhadahmadi
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zakaria Hossain Prodhan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Golam Faruq
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
203
|
Jin K, Shen J, Ashton RW, Dodd IC, Parry MAJ, Whalley WR. How do roots elongate in a structured soil? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4761-4777. [PMID: 24043852 DOI: 10.1093/jxb/ert286] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this review, we examine how roots penetrate a structured soil. We first examine the relationship between soil water status and its mechanical strength, as well as the ability of the soil to supply water to the root. We identify these as critical soil factors, because it is primarily in drying soil that mechanical constraints limit root elongation. Water supply to the root is important because root water status affects growth pressures and root stiffness. To simplify the bewildering complexity of soil-root interactions, the discussion is focused around the special cases of root elongation in soil with pores much smaller than the root diameter and the penetration of roots at interfaces within the soil. While it is often assumed that the former case is well understood, many unanswered questions remain. While low soil-root friction is often viewed as a trait conferring better penetration of strong soils, it may also increase the axial pressure on the root tip and in so doing reduce the rate of cell division and/or expansion. The precise trade-off between various root traits involved in root elongation in homogeneous soil remains to be determined. There is consensus that the most important factors determining root penetration at an interface are the angle at which the root attempts to penetrate the soil, root stiffness, and the strength of the soil to be penetrated. The effect of growth angle on root penetration implicates gravitropic responses in improved root penetration ability. Although there is no work that has explored the effect of the strength of the gravitropic responses on penetration of hard layers, we attempt to outline possible interactions. Impacts of soil drying and strength on phytohormone concentrations in roots, and consequent root-to-shoot signalling, are also considered.
Collapse
Affiliation(s)
- Kemo Jin
- Department of Plant Nutrition, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | |
Collapse
|
204
|
Chen L, Dodd IC, Davies WJ, Wilkinson S. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. PLANT, CELL & ENVIRONMENT 2013; 36:1850-9. [PMID: 23488478 DOI: 10.1111/pce.12094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 05/08/2023]
Abstract
The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency.
Collapse
Affiliation(s)
- Lin Chen
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | | | | | | |
Collapse
|
205
|
Sengupta D, Guha A, Reddy AR. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:170-81. [DOI: 10.1016/j.jphotobiol.2013.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
|
206
|
York LM, Nord EA, Lynch JP. Integration of root phenes for soil resource acquisition. FRONTIERS IN PLANT SCIENCE 2013; 4:355. [PMID: 24062755 PMCID: PMC3771073 DOI: 10.3389/fpls.2013.00355] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/23/2013] [Indexed: 05/17/2023]
Abstract
Suboptimal availability of water and nutrients is a primary limitation to plant growth in terrestrial ecosystems. The acquisition of soil resources by plant roots is therefore an important component of plant fitness and agricultural productivity. Plant root systems comprise a set of phenes, or traits, that interact. Phenes are the units of the plant phenotype, and phene states represent the variation in form and function a particular phene may take. Root phenes can be classified as affecting resource acquisition or utilization, influencing acquisition through exploration or exploitation, and in being metabolically influential or neutral. These classifications determine how one phene will interact with another phene, whether through foraging mechanisms or metabolic economics. Phenes that influence one another through foraging mechanisms are likely to operate within a phene module, a group of interacting phenes, that may be co-selected. Examples of root phene interactions discussed are: (1) root hair length × root hair density, (2) lateral branching × root cortical aerenchyma (RCA), (3) adventitious root number × adventitious root respiration and basal root growth angle (BRGA), (4) nodal root number × RCA, and (5) BRGA × root hair length and density. Progress in the study of phenes and phene interactions will be facilitated by employing simulation modeling and near-isophenic lines that allow the study of specific phenes and phene combinations within a common phenotypic background. Developing a robust understanding of the phenome at the organismal level will require new lines of inquiry into how phenotypic integration influences plant function in diverse environments. A better understanding of how root phenes interact to affect soil resource acquisition will be an important tool in the breeding of crops with superior stress tolerance and reduced dependence on intensive use of inputs.
Collapse
Affiliation(s)
- Larry M. York
- Intercollege Program in Ecology, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Eric A. Nord
- Intercollege Program in Ecology, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Jonathan P. Lynch
- Intercollege Program in Ecology, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| |
Collapse
|
207
|
Boote KJ, Jones JW, White JW, Asseng S, Lizaso JI. Putting mechanisms into crop production models. PLANT, CELL & ENVIRONMENT 2013; 36:1658-1672. [PMID: 23600481 DOI: 10.1111/pce.12119] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/05/2013] [Accepted: 03/19/2013] [Indexed: 05/28/2023]
Abstract
Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects.
Collapse
Affiliation(s)
- Kenneth J Boote
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|
208
|
Easlon HM, Bloom AJ. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling. FRONTIERS IN PLANT SCIENCE 2013; 4:304. [PMID: 23983674 PMCID: PMC3739423 DOI: 10.3389/fpls.2013.00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/22/2013] [Indexed: 05/27/2023]
Abstract
Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root-shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source-sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot-root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot-root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source-sink interactions.
Collapse
Affiliation(s)
- Hsien Ming Easlon
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
| | | |
Collapse
|
209
|
Kalariya KA, Singh AL, Chakraborty K, Zala PV, Patel CB. Photosynthetic characteristics of groundnut (Arachis hypogaea L.) under water deficit stress. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40502-013-0027-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
210
|
Comparison of Evaluation Methods for Drought-Resistance at Soybean Adult Stage. ACTA AGRONOMICA SINICA 2013. [DOI: 10.3724/sp.j.1006.2012.00665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
211
|
Anderegg LDL, Anderegg WRL, Berry JA. Not all droughts are created equal: translating meteorological drought into woody plant mortality. TREE PHYSIOLOGY 2013; 33:701-12. [PMID: 23880634 DOI: 10.1093/treephys/tpt044] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Widespread drought-induced mortality of woody plants has recently occurred worldwide, is likely to be exacerbated by future climate change and holds large ecological consequences. Yet despite decades of research on plant-water relations, the pathways through which drought causes plant mortality are poorly understood. Recent work on the physiology of tree mortality has begun to reveal how physiological dysfunction induced by water stress leads to plant death; however, we are still far from being able to predict tree mortality using easily observed or modeled meteorological variables. In this review, we contend that, in order to fully understand when and where plants will exceed mortality thresholds when drought occurs, we must understand the entire path by which precipitation deficit is translated into physiological dysfunction and lasting physiological damage. In temperate ecosystems with seasonal climate patterns, precipitation characteristics such as seasonality, timing, form (snow versus rain) and intensity interact with edaphic characteristics to determine when and how much water is actually available to plants as soil moisture. Plant and community characteristics then mediate how quickly water is used and seasonally varying plant physiology determines whether the resulting soil moisture deficit is physiologically damaging. Recent research suggests that drought seasonality and timing matter for how an ecosystem experiences drought. But, mortality studies that bridge the gaps between climatology, hydrology, plant ecology and plant physiology are rare. Drawing upon a broad hydrological and ecological perspective, we highlight key and underappreciated processes that may mediate drought-induced tree mortality and propose steps to better include these components in current research.
Collapse
Affiliation(s)
- Leander D L Anderegg
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
212
|
Brodribb TJ, McAdam SAM. Abscisic acid mediates a divergence in the drought response of two conifers. PLANT PHYSIOLOGY 2013; 162:1370-7. [PMID: 23709665 PMCID: PMC3707560 DOI: 10.1104/pp.113.217877] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During water stress, stomatal closure occurs as water tension and levels of abscisic acid (ABA) increase in the leaf, but the interaction between these two drivers of stomatal aperture is poorly understood. We investigate the dynamics of water potential, ABA, and stomatal conductance during the imposition of water stress on two drought-tolerant conifer species with contrasting stomatal behavior. Rapid rehydration of excised shoots was used as a means of differentiating the direct influences of ABA and water potential on stomatal closure. Pinus radiata (Pinaceae) was found to exhibit ABA-driven stomatal closure during water stress, resulting in strongly isohydric regulation of water loss. By contrast, stomatal closure in Callitris rhomboidea (Cupressaceae) was initiated by elevated foliar ABA, but sustained water stress saw a marked decline in ABA levels and a shift to water potential-driven stomatal closure. The transition from ABA to water potential as the primary driver of stomatal aperture allowed C. rhomboidea to rapidly recover gas exchange after water-stressed plants were rewatered, and was associated with a strongly anisohydric regulation of water loss. These two contrasting mechanisms of stomatal regulation function in combination with xylem vulnerability to produce highly divergent strategies of water management. Species-specific ABA dynamics are proposed as a central component of drought survival and ecology.
Collapse
Affiliation(s)
- Timothy J Brodribb
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | | |
Collapse
|
213
|
Sorce C, Giovannelli A, Sebastiani L, Anfodillo T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. PLANT CELL REPORTS 2013; 32:885-98. [PMID: 23553557 DOI: 10.1007/s00299-013-1431-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 05/21/2023]
Abstract
The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed.
Collapse
Affiliation(s)
- Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
214
|
Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 2013; 8:e64190. [PMID: 23675526 PMCID: PMC3651191 DOI: 10.1371/journal.pone.0064190] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/13/2013] [Indexed: 11/19/2022] Open
Abstract
Water-deficit stress is a major environmental factor that limits agricultural productivity worldwide. Recent episodes of extreme drought have severely affected cotton production in the Southwestern USA. There is a pressing need to develop cotton varieties with improved tolerance to water-deficit stress for sustainable production in water-limited regions. One approach to engineer drought tolerance is by delaying drought-induced senescence via up-regulation of cytokinin biosynthesis. The isopentenyltransferase gene (IPT) that encodes a rate limiting enzyme in cytokinin biosynthesis, under the control of a water-deficit responsive and maturation specific promoter PSARK was introduced into cotton and the performance of the PSARK::IPT transgenic cotton plants was analyzed in the greenhouse and growth chamber conditions. The data indicate that PSARK::IPT-transgenic cotton plants displayed delayed senescence under water deficit conditions in the greenhouse. These plants produced more root and shoot biomass, dropped fewer flowers, maintained higher chlorophyll content, and higher photosynthetic rates under reduced irrigation conditions in comparison to wild-type and segregated non-transgenic lines. Furthermore, PSARK::IPT-transgenic cotton plants grown in growth chamber condition also displayed greater drought tolerance. These results indicate that water-deficit induced expression of an isopentenyltransferase gene in cotton could significantly improve drought tolerance.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Neelam Mishra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Rongbin Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Xunlu Zhu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Paxton Payton
- USDA-ARS Cropping Systems Research Laboratory, Lubbock, Texas, United States of America
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
215
|
Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS. Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int J Mol Sci 2013; 14:9497-513. [PMID: 23644883 PMCID: PMC3676796 DOI: 10.3390/ijms14059497] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/13/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022] Open
Abstract
Acclimation of plants with an abiotic stress can impart tolerance to some biotic stresses. Such a priming response has not been widely studied. In particular, little is known about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum inoculation on N. benthamiana plants acclimated with drought stress lead to less disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in drought acclimated plants were highly correlated with disease resistance. Further, in planta growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl viologen showed complete inhibition of bacterial growth. Taken together, these experimental results suggested a role for ROS generated during drought acclimation in imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that the generation of ROS during drought acclimation primed a defense response in plants that subsequently caused the tolerance against the pathogens tested.
Collapse
Affiliation(s)
- Venkategowda Ramegowda
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
- Department of Crop Physiology, University of Agricultural Science, GKVK, Bangalore 560065, India; E-Mail:
| | - Muthappa Senthil-Kumar
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
| | - Yasuhiro Ishiga
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
| | - Amita Kaundal
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
| | - Makarla Udayakumar
- Department of Crop Physiology, University of Agricultural Science, GKVK, Bangalore 560065, India; E-Mail:
| | - Kirankumar S. Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
| |
Collapse
|
216
|
van Doorn WG, Çelikel FG, Pak C, Harkema H. Delay of iris flower senescence by cytokinins and jasmonates. PHYSIOLOGIA PLANTARUM 2013; 148:105-20. [PMID: 22974423 DOI: 10.1111/j.1399-3054.2012.01690.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/10/2012] [Indexed: 05/18/2023]
Abstract
It is not known whether tepal senescence in Iris flowers is regulated by hormones. We applied hormones and hormone inhibitors to cut flowers and isolated tepals of Iris × hollandica cv. Blue Magic. Treatments with ethylene or ethylene antagonists indicated lack of ethylene involvement. Auxins or auxin inhibitors also did not change the time to senescence. Abscisic acid (ABA) hastened senescence, but an inhibitor of ABA synthesis (norflurazon) had no effect. Gibberellic acid (GA3 ) slightly delayed senescence in some experiments, but in other experiments it was without effect, and gibberellin inhibitors [ancymidol or 4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate (AMO-1618)] were ineffective as well. Salicylic acid (SA) also had no effect. Ethylene, auxins, GA3 and SA affected flower opening, therefore did reach the flower cells. Jasmonates delayed senescence by about 2.0 days. Similarly, cytokinins delayed senescence by about 1.5-2.0 days. Antagonists of the phosphatidylinositol signal transduction pathway (lithium), calcium channels (niguldipine and verapamil), calmodulin action [fluphenazine, trifluoroperazine, phenoxybenzamide and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide hydrochloride (W-7)] or protein kinase activity [1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8) and N-(2-aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9)] had no effect on senescence, indicating no role of a few common signal transduction pathways relating to hormone effects on senescence. The results indicate that tepal senescence in Iris cv. Blue Magic is not regulated by endogenous ethylene, auxin, gibberellins or SA. A role of ABA can at present not be excluded. The data suggest the hypothesis that cytokinins and jasmonates are among the natural regulators.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Agrotechnology and Food Sciences Group (AFSG), Wageningen University Research Centre, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
217
|
Du YL, Wang ZY, Fan JW, Turner NC, He J, Wang T, Li FM. Exogenous abscisic acid reduces water loss and improves antioxidant defence, desiccation tolerance and transpiration efficiency in two spring wheat cultivars subjected to a soil water deficit. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:494-506. [PMID: 32481126 DOI: 10.1071/fp12250] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/14/2013] [Indexed: 05/28/2023]
Abstract
The effect of soil drenching with 10µM abscisic acid (ABA) on the physiological responses of two spring wheat (Triticum aestivum L.) cultivars released in different decades was evaluated when subjected to a water deficit at jointing or at booting. Exogenous ABA application increased the ABA concentration in the leaves, reduced the stomatal conductance (gs), slowed the rate of water use, decreased the lethal leaf water potential (ψ) used to measure desiccation tolerance and lowered the soil water content (SWC) at which leaf relative water content (RWC) began to decrease and wilting was observed. Exogenous ABA application also reduced reactive oxygen species (ROS) formation and increased antioxidant enzyme activity, leading to a reduction in the oxidative damage to lipid membranes in both cultivars exposed to water stress at jointing and booting. The decrease in leaf RWC and wilting occurred at lower values of SWC in the recently-released cultivar than in the earlier-released cultivar. The recently-released cultivar also had higher grain yield than the earlier-released cultivar at moderate water stress, but the grain yield in both cultivars was reduced by water stress and by the exogenous ABA treatment. However, exogenous ABA treatment increased transpiration efficiency for grain (TEG) of both cultivars under moderate water stress. These results indicate that ABA played an important role in slowing water use and enhancing the antioxidant defence during soil drying, but this did not result in increased yields under drought stress.
Collapse
Affiliation(s)
- Yan-Lei Du
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhen-Yu Wang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jing-Wei Fan
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Neil C Turner
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jin He
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Tao Wang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Feng-Min Li
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
218
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Logan BA, Reblin JS, Zonana DM, Dunlavey RF, Hricko CR, Hall AW, Schmiege SC, Butschek RA, Duran KL, Emery RJN, Kurepin LV, Lewis JD, Pharis RP, Phillips NG, Tissue DT. Impact of eastern dwarf mistletoe (Arceuthobium pusillum) on host white spruce (Picea glauca) development, growth and performance across multiple scales. PHYSIOLOGIA PLANTARUM 2013; 147:502-13. [PMID: 22905764 DOI: 10.1111/j.1399-3054.2012.01681.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 05/12/2023]
Abstract
Infection by eastern dwarf mistletoe (Arceuthobium pusillum) modifies needle and branch morphology and hastens white spruce (Picea glauca) mortality. We examined potential causal mechanisms and assessed the impacts of infection-induced alterations to host development and performance across scales ranging from needle hormone contents to bole expansion. Needles on infected branches (IBs) possessed higher total cytokinin (CK) and lower abscisic acid contents than needles on uninfected branches (UBs). IBs exhibited greater xylem growth than same-aged UBs, which is consistent with the promotive effect of CKs on vascular differentiation and organ sink strength. Elevated CK content may also explain the dense secondary and tertiary branching observed at the site of infection, i.e. the formation of 'witches' brooms' with significantly lower light capture efficiencies. Observed hormone perturbations were consistent with higher rates of transpiration, lower water use efficiencies (WUEs) and more negative needle carbon isotope ratios observed for IBs. Observed reductions in needle size allowed IBs to compensate for reduced hydraulic conductivity. Severe infections resulted in dramatically decreased diameter growth of the bole. It seems likely that the modifications to host hormone contents by eastern dwarf mistletoe infection led white spruce trees to dedicate a disproportionate fraction of their photoassimilate and other resources to self-shaded branches with low WUE. This would have decreased the potential for fixed carbon accumulation, generating a decline in the whole-tree resource pool. As mistletoe infections grew in size and the number of IBs increased, this burden was manifested as increasingly greater reductions in bole growth.
Collapse
Affiliation(s)
- Barry A Logan
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Geilfus CM, Mühling KH. Ratiometric monitoring of transient apoplastic alkalinizations in the leaf apoplast of living Vicia faba plants: chloride primes and PM-H+-ATPase shapes NaCl-induced systemic alkalinizations. THE NEW PHYTOLOGIST 2013; 197:1117-1129. [PMID: 23176077 DOI: 10.1111/nph.12046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Transient apoplastic alkalinization has been discussed as a general stress factor, and is thought to represent a root-to-shoot signal that transmits information regarding an ongoing NaCl stress event from the site of the trigger to the distant plant tissue. Surprisingly, despite this importance, a number of gaps exist in our knowledge of NaCl-induced apoplastic pH alkalinization. This study was designed in order to shed light onto the mechanisms responsible for the initiation and transiency of leaf apoplastic alkalinization under conditions of NaCl stress as supplied to roots. An H(+)-sensitive fluorescence probe, in combination with ratiometric microscopy imaging, was used for in planta live recording of leaf apoplastic pH. The use of a nonionic solute demonstrated that the alkalinization is induced in response to ionic, and not osmotic, components of NaCl stress. Tests with Cl(-)- or Na(+)-accompanying counter-ions strengthened the idea that the stress factor itself, namely Cl(-), is transferred from root to shoot and elicits the pH alterations. Investigations with a plasma membrane ATPase inhibitor suggest that ATPase activity influences the course of the alkalinization by having a shaping re-acidifying effect on the alkalinization.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Hermann-Rodewald-Str. 2, 24118, Kiel, Germany
| | - Karl-Hermann Mühling
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Hermann-Rodewald-Str. 2, 24118, Kiel, Germany
| |
Collapse
|
221
|
DU ZY, Chen MX, Chen QF, Xiao S, Chye ML. Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. PLANT, CELL & ENVIRONMENT 2013; 36:300-14. [PMID: 22788984 DOI: 10.1111/j.1365-3040.2012.02574.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana acyl-CoA-binding protein 2 (ACBP2) is a stress-responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2-OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2-OXs also displayed improved drought tolerance and ABA-mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up-regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA-mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down-regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta-glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.
Collapse
Affiliation(s)
- Zhi-Yan DU
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
222
|
Adhikari E, Lee DK, Giavalisco P, Sieburth LE. Long-distance signaling in bypass1 mutants: bioassay development reveals the bps signal to be a metabolite. MOLECULAR PLANT 2013; 6:164-73. [PMID: 23335754 DOI: 10.1093/mp/sss129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Root-to-shoot signaling is used by plants to coordinate shoot development with the conditions experienced by the roots. A mobile and biologically active compound, the bps signal, is over-produced in roots of an Arabidopsis thaliana mutant called bypass1 (bps1), and might also be a normally produced signaling molecule in wild-type plants. Our goal is to identify the bps signal chemically, which will then allow us to assess its production in normal plants. To identify any signaling molecule, a bioassay is required, and here we describe the development of a robust, simple, and quantitative bioassay for the bps signal. The developed bioassay follows the growth-reducing activity of the bps signal using the pCYCB1;1::GUS cell cycle marker. Wild-type plants carrying this marker, and provided the bps signal through either grafts or metabolite extracts, showed reduced cell division. By contrast, control grafts and treatment with control extracts showed no change in pCYCB1;1::GUS expression. To determine the chemical nature of the bps signal, extracts were treated with RNase A, Proteinase K, or heat. None of these treatments diminished the activity of bps1 extracts, suggesting that the active molecule might be a metabolite. This bioassay will be useful for future biochemical fractionation and analysis directed toward bps signal identification.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
223
|
Chen Q, Tao S, Bi X, Xu X, Wang L, Li X. Research progress in physiological and molecular biology mechanism of drought resistance in rice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajmb.2013.32014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
224
|
Lüttge U. Whole-Plant Physiology: Synergistic Emergence Rather Than Modularity. PROGRESS IN BOTANY 2013. [DOI: 10.1007/978-3-642-30967-0_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
225
|
Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, Muller B, Simonneau T, Genty B. The dual effect of abscisic acid on stomata. THE NEW PHYTOLOGIST 2013; 197:65-72. [PMID: 23106390 DOI: 10.1111/nph.12013] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/18/2012] [Indexed: 05/18/2023]
Abstract
The classical view that the drought-related hormone ABA simply acts locally at the guard cell level to induce stomatal closure is questioned by differences between isolated epidermis and intact leaves in stomatal response to several stimuli. We tested the hypothesis that ABA mediates, in addition to a local effect, a remote effect in planta by changing hydraulic regulation in the leaf upstream of the stomata. By gravimetry, porometry to water vapour and argon, and psychrometry, we investigated the effect of exogenous ABA on transpiration, stomatal conductance and leaf hydraulic conductance of mutants described as ABA-insensitive at the guard cell level. We show that foliar transpiration of several ABA-insensitive mutants decreases in response to ABA. We demonstrate that ABA decreases stomatal conductance and down-regulates leaf hydraulic conductance in both the wildtype Col-0 and the ABA-insensitive mutant ost2-2. We propose that ABA promotes stomatal closure in a dual way via its already known biochemical effect on guard cells and a novel, indirect hydraulic effect through a decrease in water permeability within leaf vascular tissues. Variability in sensitivity of leaf hydraulic conductance to ABA among species could provide a physiological basis to the isohydric or anisohydric behaviour.
Collapse
Affiliation(s)
- Florent Pantin
- INRA, UMR 759, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060, Montpellier, France
| | - Fabien Monnet
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
- CNRS, UMR 7265, Biologie Végétale et Microbiologie Environnementales, 13108, Saint-Paul-lez-Durance, France
- Université Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
- Université d'Avignon et des Pays de Vaucluse, 84000, Avignon, France
| | - Dorothée Jannaud
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
- CNRS, UMR 7265, Biologie Végétale et Microbiologie Environnementales, 13108, Saint-Paul-lez-Durance, France
- Université Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Joaquim Miguel Costa
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
- CNRS, UMR 7265, Biologie Végétale et Microbiologie Environnementales, 13108, Saint-Paul-lez-Durance, France
- Université Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Jeanne Renaud
- INRA, UMR 759, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060, Montpellier, France
| | - Bertrand Muller
- INRA, UMR 759, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060, Montpellier, France
| | - Thierry Simonneau
- INRA, UMR 759, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060, Montpellier, France
| | - Bernard Genty
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
- CNRS, UMR 7265, Biologie Végétale et Microbiologie Environnementales, 13108, Saint-Paul-lez-Durance, France
- Université Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
226
|
Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. THE NEW PHYTOLOGIST 2013; 197:139-150. [PMID: 23106247 DOI: 10.1111/nph.12004] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/16/2012] [Indexed: 05/18/2023]
Abstract
Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress.
Collapse
Affiliation(s)
- Weifeng Xu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Liguo Jia
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiansheng Liang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Feng Zhou
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qianfeng Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
227
|
Secchi F, Perrone I, Chitarra W, Zwieniecka AK, Lovisolo C, Zwieniecki MA. The dynamics of embolism refilling in abscisic acid (ABA)-deficient tomato plants. Int J Mol Sci 2012; 14:359-77. [PMID: 23263667 PMCID: PMC3565268 DOI: 10.3390/ijms14010359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 11/25/2022] Open
Abstract
Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant's refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant's capacity for refilling.
Collapse
Affiliation(s)
- Francesca Secchi
- UC Davis, PES, One Shields Avenue, Davis, CA 95616, USA; E-Mail:
- Arnold Arboretum of Harvard University, 1300 Centre St, Boston, MA 02131, USA; E-Mail:
| | - Irene Perrone
- Arnold Arboretum of Harvard University, 1300 Centre St, Boston, MA 02131, USA; E-Mail:
- Department of Agricultural, Forest and Food Sciences (AGRIFORFOOD), University of Turin, Via Leonardo da Vinci, 44, Grugliasco 10095, Italy; E-Mails: (W.C.); (C.L.)
| | - Walter Chitarra
- Department of Agricultural, Forest and Food Sciences (AGRIFORFOOD), University of Turin, Via Leonardo da Vinci, 44, Grugliasco 10095, Italy; E-Mails: (W.C.); (C.L.)
| | - Anna K. Zwieniecka
- BioLabs, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA; E-Mail:
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences (AGRIFORFOOD), University of Turin, Via Leonardo da Vinci, 44, Grugliasco 10095, Italy; E-Mails: (W.C.); (C.L.)
| | - Maciej A. Zwieniecki
- UC Davis, PES, One Shields Avenue, Davis, CA 95616, USA; E-Mail:
- Arnold Arboretum of Harvard University, 1300 Centre St, Boston, MA 02131, USA; E-Mail:
| |
Collapse
|
228
|
Zufferey V, Smart DR. Stomatal behaviour of irrigated Vitis vinifera cv. Syrah following partial root removal. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:1019-1027. [PMID: 32480851 DOI: 10.1071/fp12091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 09/07/2012] [Indexed: 06/11/2023]
Abstract
We examined stomatal behaviour of a grapevine cultivar (Vitis vinifera L. cv. Syrah) following partial root removal under field conditions during progressively developing water deficits. Partial root removal led to an increase in hydraulic resistances along the soil-to-leaf pathway and leaf wilting symptoms appeared in the root-pruned plants immediately following root removal. Leaves recovered from wilting shortly thereafter, but hydraulic resistances were sustained. In comparison with the non-root pruned vines, leaves of root-pruned vines showed an immediate decrease in both pre-dawn (ψPD) and midday (ψleaf) leaf water potential. The decline in ψPD was unexpected in as much as soil moisture was not altered and it has been shown that axial water transport readily occurs in woody perennials. Only ~30% of the functional root system was removed, thus leaving the system mainly intact for water redistribution. Stem water potential (ψStem) and leaf gas exchanges of CO2 (A) and H2O (E) also declined immediately following root pruning. The lowering of ψPD, ψleaf, ψStem, A and E was sustained during the entire growing season and was not dependent on irrigation during that time. This, and a close relationship between stomatal conductance (gs) and leaf-specific hydraulic conductance (Kplant), indicated that the stomatal response was linked to plant hydraulics. Stomatal closure was observed only in the root-restricted plants and at times of very high evaporative demand (VPD). In accordance with the Ball-Berry stomatal control model proposed by Ball et al. (1987), the stomatal sensitivity factor was also lower in the root-restricted plants than in intact plants as soil water availability decreased. Although ψPD, ψStem and ψLeaf changed modestly and gradually following root removal, gs changed dramatically and abruptly following removal. These results suggest the involvement of stomatal restricting signals being propagated following removal of roots.
Collapse
Affiliation(s)
- V Zufferey
- Station de recherche Agroscope Changins-Wädenswil ACW, CP 1012, CH-1260 Nyon (Switzerland)
| | - D R Smart
- Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
229
|
Cruz ZN, Rodríguez P, Galindo A, Torrecillas E, Ondoño S, Mellisho CD, Torrecillas A. Leaf mechanisms for drought resistance in Zizyphus jujuba trees. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:77-83. [PMID: 23116674 DOI: 10.1016/j.plantsci.2012.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/14/2012] [Accepted: 09/16/2012] [Indexed: 06/01/2023]
Abstract
No information exists on the mechanisms developed at the level of leaf water relations by pear-jujube trees (Zizyphus jujuba Mill.) to confront drought. For this reason, the purpose of the present study was to analyse its leaf water relations in order to clarify the resistance mechanisms (avoidance and tolerance) developed in response to a water stress and during recovery. Field-grown 7-year-old pear-jujube trees (cv. Grande de Albatera) were subjected to three irrigation treatments. Control (T0) plants were drip irrigated (112% ETo) in order to guarantee non-limiting soil water conditions, T1 plants (deficit irrigation, 64% ETo) were drip irrigated according to the criteria used by the grower and T2 plants irrigated as T0 but subjected to water withholding for 36 days and a subsequent re-irrigation at the levels used in T0 for 14 days, during the summer of 2011. The results indicated that pear-jujube plants confront water stress by developing stress avoidance and stress tolerance mechanisms. From the beginning of deficit irrigation (T1) and water withholding (T2) to when maximum water stress levels were achieved, leaf turgor was maintained allowing substantial gas exchange levels and, consequently, good leaf productivity. This leaf turgor maintenance was mainly due to two simultaneous and complementary mechanisms. Leaf conductance and the duration of maximum stomatal opening in water stressed plants decreased in order to control water loss via transpiration, contributing to maintain leaf turgor (stress avoidance mechanisms). Also, the gradual recovery of g(l) observed after rewatering the plants can be considered as a mechanism for promoting leaf rehydration. In addition, from the beginning of the stress period, active osmotic adjustment operated, also contributing to the maintenance of leaf turgor (stress tolerance mechanism). The high RWC(a) levels and the possibility of increasing the accumulation of water in the apoplasm in response to water stress, supporting a steeper gradient in water potential between the leaf and the soil, which can be considered another drought tolerance characteristic in pear-jujube.
Collapse
Affiliation(s)
- Z N Cruz
- Dpto. Fisiología y Bioquímica, Instituto Nacional de Ciencias Agrícolas (INCA), Ctra. de Tapaste, km 3.5, San José de Las Lajas, Mayabeque, Cuba
| | | | | | | | | | | | | |
Collapse
|
230
|
Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags of dehydration-treated fibrous roots under different abiotic stress conditions. Mol Biol Rep 2012. [PMID: 23187736 DOI: 10.1007/s11033-012-2304-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Drought stress is one of the most adverse conditions for plant growth and productivity. The plant antioxidant system is an important defense mechanism and includes antioxidant enzymes and low-molecular weight antioxidants. Understanding the biochemical and molecular responses to drought is essential for improving plant resistance to water-limited conditions. Previously, we isolated and characterized expressed sequence tags (ESTs) from a full-length enriched cDNA library prepared from fibrous roots of sweetpotato subjected to dehydration stress (Kim et al. in BMB Rep 42:271-276, [5]). In this study, we isolated and characterized 11 sweetpotato antioxidant genes from sweetpotato EST library under various abiotic stress conditions, which included six intracellular CuZn superoxide dismutases (CuZnSOD), ascorbate peroxidase, catalase, glutathione peroxidase (GPX), glutathione-S-transferase, thioredoxin (TRX), and five extracellular peroxidase genes. The expression of almost all the antioxidant genes induced under dehydration treatments occurred in leaves, with the exception of extracellular swPB6, whereas some antioxidant genes showed increased expression levels in the fibrous roots, such as intracellular GPX, TRX, extracellular swPA4, and swPB7 genes. During various abiotic stress treatments in leaves, such as exposure to NaCl, cold, and abscisic acid, several intracellular antioxidant genes were strongly expressed compared with the expression of extracellular antioxidant genes. These results indicated that some intracellular antioxidant genes, especially swAPX1 and CuZnSOD, might be specifically involved in important defense mechanisms against oxidative stress induced by various abiotic stresses including dehydration in sweetpotato plants.
Collapse
|
231
|
Liu BH, Cheng L, Ma FW, Liang D, Zou YJ. Influence of rootstock on drought response in young 'Gale Gala' apple (Malus domestica Borkh.) trees. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2421-2427. [PMID: 22430615 DOI: 10.1002/jsfa.5647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/20/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Drought is a major environmental stress limiting plant growth, productivity, and survival worldwide. Rootstocks are widely used to enhance plants resistance to drought stresses. This study determined influence of rootstock on drought responses in 1-year-old 'Gale Gala' apple trees grafted onto Malus sieversii or M. hupehensis. RESULTS Choice of rootstock resulted in differential response to drought stress. Specifically, M. sieversii caused less drought-induced reduction in relative growth rate, biomass accumulation, leaf area, leaf chlorophyll content, relative water content, photosynthesis rate and maximum chlorophyll fluorescence yield but greater increase in whole-plant water use efficiency compared to M. hupehensis. Secondly, compared with M. hupehensis, M. sieversii caused less drought-induced accumulation of reactive oxygen species but more increase in activities of antioxidant enzymes. In addition, xylem sap abscisic acid concentration was greater in trees grafted onto M. hupehensis than in those grafted onto M. sieversii under drought stress. CONCLUSION 'Gale Gala' trees' response to drought stress was associated with the rootstock's genotype onto which it was grafted. Trees with M. sieversii as rootstock are more drought resistant than trees with M. hupehensis as rootstock, which suggests that M. sieversii can be widely used as rootstock in arid and semi-arid regions.
Collapse
Affiliation(s)
- Bing-hua Liu
- College of Horticulture, Northwest A&F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, Shaanxi 712100, China
| | | | | | | | | |
Collapse
|
232
|
Einhorn TC, Caspari HW, Green S. Total soil water content accounts for augmented ABA leaf concentration and stomatal regulation of split-rooted apple trees during heterogeneous soil drying. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5365-76. [PMID: 22791825 PMCID: PMC3431003 DOI: 10.1093/jxb/ers195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A split-rooted containerized system was developed by approach grafting two, 1-year-old apple (Malus×domestica Borkh. cv 'Gala') trees to investigate the effect of soil moisture heterogeneity and total soil moisture content (θ(v)) on tree water relations, gas exchange, and leaf abscisic acid (ABA) concentration [ABA(leaf)]. Four irrigation treatments comprising a 2×2 factorial experiment of irrigation volume and placement were imposed over a 30-day period: control (C) [>100% of crop evapotranspiration (ET(c))] applied to both containers; PRD100 (>100% ET(c)) applied to one container only; and two treatments receiving 50% ET(c) applied to either one (PRD50) or both containers (DI50). Irrigation between PRD (partial rootzone drying) root compartments was alternated when θ(v) reached ~35% of field capacity. Maximum daily sap flow of the irrigated roots of PRD100 exceeded that of C roots throughout the experimental period. Pre-dawn water potential (Ψ(pd)) was similar between C and PRD100; however, daily water use and mid-day gas exchange of PRD100 was 30% lower. Slightly higher [ABA(leaf)] was observed in PRD100, but the effect was not significant and could not explain the observed reductions in leaf gas exchange. Both 50% ET(c) treatments had similar, but lower θ(v), Ψ(pd), and gas exchange, and higher [ABA(leaf)] than C and PRD100. Regardless of treatment, the container having the lower θ(v) of a split-rooted system correlated poorly with [ABA(leaf)], but when θ(v) of both containers or θ(v) of the container possessing the higher soil moisture was used, the relationship markedly improved. These results imply that apple canopy gas exchange and [ABA(leaf)] are responsive to the total soil water environment.
Collapse
Affiliation(s)
- Todd C Einhorn
- Department of Horticulture and L.A., Colorado State University, Western Colorado Research Center, Grand Junction, CO 81503, USA.
| | | | | |
Collapse
|
233
|
Zheng Y, Huang Y, Xian W, Wang J, Liao H. Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses. ANNALS OF BOTANY 2012; 110:743-56. [PMID: 22751653 PMCID: PMC3400457 DOI: 10.1093/aob/mcs133] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/16/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Abscisic acid (ABA) plays crucial roles in plants' responses to abiotic stresses. ABA 8'-hydroxylation controlled by CYP707A genes has been well studied in Arabidopsis and rice, but not in legumes. The aims of the present study were to identify and functionally analyse the soybean CYP707A gene family, and to explore their expression patterns under dehydration and salt stresses. METHODS A complementation experiment was employed to verify the function of soybean CYP707A1a in ABA catabolism. Genomic and cDNA sequences of other soybean CYP707A genes were isolated from the Phytozome database based on soybean CYP707A1a. The structure and phylogenetic relationship of this gene family was further analysed. The expression patterns of soybean CYP707A genes under dehydration and salt stress were analysed via quantitative real-time PCR. KEY RESULTS Over-expression of GmCYP707A1a in the atcyp707a2 T-DNA insertion mutant decreased its sensitivity to ABA, indicating that GmCYP707A1a indeed functions as an ABA 8'-hydroxylase in higher plants. The soybean genome contains ten CYP707A genes. Gene structure and phylogenetic analysis showed high conservation of ten GmCYP707A genes to the other CYP707A genes from monocots and dicots. Seed imbibition induced expression of A1a, A1b, A2a, A2b, A2c, A3a and A5 in embryo, and expression of A1a, A1b, A2a and A2b in cotyledon. Dehydration induced expression of A1a, A1b, A2b, A2c, A3a, A3b, A4a, A4b and A5 both in roots and in leaves, whereas rehydration stimulated transcription of A2a, A2b, A3b, A4a and A5 in roots, and only A3b and A5 in leaves. Expression of all soybean CYP707A genes was induced either by short- or by long-term salt stress. CONCLUSIONS The first biological evidence is provided that GmCYP7071a encodes an ABA 8'-hydroxylase through transgenic studies. Ten soybean GmCYP707A genes were identified, most of them expressed in multiple soybean tissues, and were induced by imbibition, dehydration and salinity.
Collapse
Affiliation(s)
| | | | | | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
234
|
P Rez-P Rez JG, Dodd IC, Bot A P. Partial rootzone drying increases water-use efficiency of lemon Fino 49 trees independently of root-to-shoot ABA signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:366-378. [PMID: 32480789 DOI: 10.1071/fp11269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/12/2012] [Indexed: 06/11/2023]
Abstract
To determine whether irrigation strategy altered the sensitivity of Citrus leaf gas exchange to soil, plant and atmospheric variables, mature (16-year-old) Fino 49 lemon trees (Citrus limon (L.) Burm. fil. grafted on Citrus macrophylla Wester) were exposed to three irrigation treatments: control (irrigated with 100% of crop potential evapotranspiration, ETc), deficit irrigation (DI) and partial rootzone drying (PRD) treatments,which received 75% ETc during the period of highest evaporative demand and 50% ETc otherwise. Furthermore, to assess the physiological significance of root-to-shoot ABA signalling, the seasonal dynamics of leaf xylem ABA concentration ([X-ABA]leaf) were evaluated over two soil wetting-drying cycles during a 2-week period in summer. Although stomatal conductance (gs) declined with increased leaf-to-air vapour pressure deficit (LAVPD), lower leaf water potential and soil water availability, [X-ABA]leaf was only related to stomatal closure in well irrigated trees under moderate (<2.5kPa) atmospheric vapour pressure deficit (VPD). Differences in [X-ABA]leaf were not detected between treatments either before or immediately after (<12h) rewatering the dry side of PRD trees. Leaf water potential was higher in control trees, but decreased similarly in all irrigation treatments as daily LAVPD increased. In contrast, DI and PRD trees showed lower stomatal sensitivity to LAVPD than control trees. Although DI and PRD decreased stomatal conductance and photosynthesis, these treatments did not significantly decrease yield, but PRD increased crop water use efficiency (WUE) by 83% compared with control trees. Thus PRD-induced enhancement of crop WUE in a semiarid environment seems to involve physiological mechanisms other than increased [X-ABA]leaf.
Collapse
Affiliation(s)
- J G P Rez-P Rez
- Department of Citriculture, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca, Murcia, Spain
| | - I C Dodd
- Centre for Sustainable Agriculture, Lancaster Environment Centre, University of Lancaster, LA1 4YQ, UK
| | - P Bot A
- Department of Citriculture, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca, Murcia, Spain
| |
Collapse
|
235
|
Abstract
Research on the degree to which carbon (C) availability limits growth in trees, as well as recent trends in climate change and concurrent increases in drought-related tree mortality, have led to a renewed focus on the physiological mechanisms associated with tree growth responses to current and future climate. This has led to some dispute over the role of stored non-structural C compounds as indicators of a tree's current demands for photosynthate. Much of the uncertainty surrounding this issue could be resolved by developing a better understanding of the potential functions of non-structural C stored within trees. In addition to functioning as a buffer to reconcile temporal asynchrony between C demand and supply, the storage of non-structural C compounds may be under greater regulation than commonly recognized. We propose that in the face of environmental stochasticity, large, long-lived trees may require larger C investments in storage pools as safety margins than previously recognized, and that an important function of these pools may be to maintain hydraulic transport, particularly during episodes of severe stress. If so, survival and long-term growth in trees remain a function of C availability. Given that drought, freeze-thaw events and increasing tree height all impose additional constraints on vascular transport, the common trend of an increase in non-structural carbohydrate concentrations with tree size, drought or cold is consistent with our hypothesis. If the regulated maintenance of relatively large constitutive stored C pools in trees serves to maintain hydraulic integrity, then the minimum thresholds are expected to vary depending on the specific tissues, species, environment, growth form and habit. Much research is needed to elucidate the extent to which allocation of C to storage in trees is a passive vs. an active process, the specific functions of stored C pools, and the factors that drive active C allocation to storage.
Collapse
Affiliation(s)
- Anna Sala
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | |
Collapse
|
236
|
Romero P, Dodd IC, Martinez-Cutillas A. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4071-83. [PMID: 22451721 PMCID: PMC3398444 DOI: 10.1093/jxb/ers088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/26/2012] [Accepted: 02/22/2012] [Indexed: 05/08/2023]
Abstract
Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year(-1)); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year(-1)); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year(-1)). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling.
Collapse
Affiliation(s)
- Pascual Romero
- Viticulture Department, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), c/mayor s/n, 30150, La Alberca, Murcia, Spain.
| | | | | |
Collapse
|
237
|
Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A 2012; 109:9653-8. [PMID: 22645333 DOI: 10.1073/pnas.1203567109] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Movement of the plant hormone abscisic acid (ABA) within plants has been documented; however, the molecular mechanisms that regulate ABA transport are not fully understood. By using a modified yeast two-hybrid system, we screened Arabidopsis cDNAs capable of inducing interactions between the ABA receptor PYR/PYL/RCAR and PP2C protein phosphatase under low ABA concentrations. By using this approach, we identified four members of the NRT1/PTR family as candidates for ABA importers. Transport assays in yeast and insect cells demonstrated that at least one of the candidates ABA-IMPORTING TRANSPORTER (AIT) 1, which had been characterized as the low-affinity nitrate transporter NRT1.2, mediates cellular ABA uptake. Compared with WT, the ait1/nrt1.2 mutants were less sensitive to exogenously applied ABA during seed germination and/or postgermination growth, whereas overexpression of AIT1/NRT1.2 resulted in ABA hypersensitivity in the same conditions. Interestingly, the inflorescence stems of ait1/nrt1.2 had a lower surface temperature than those of the WT because of excess water loss from open stomata. We detected promoter activities of AIT1/NRT1.2 around vascular tissues in inflorescence stems, leaves, and roots. These data suggest that the function of AIT1/NRT1.2 as an ABA importer at the site of ABA biosynthesis is important for the regulation of stomatal aperture in inflorescence stems.
Collapse
|
238
|
Asensio D, Rapparini F, Peñuelas J. AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. PHYTOCHEMISTRY 2012; 77:149-61. [PMID: 22296838 DOI: 10.1016/j.phytochem.2011.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/16/2011] [Accepted: 12/22/2011] [Indexed: 05/14/2023]
Abstract
Previous studies have shown that root colonization by arbuscular mycorrhiza (AM) fungi enhances plant resistance to abiotic and biotic stressors and finally plant growth. However, little is known about the effect of AM on isoprenoid foliar and root content. In this study we tested whether the AM symbiosis affects carbon resource allocation to different classes of isoprenoids such as the volatile nonessential isoprenoids (monoterpenes and sesquiterpenes) and the non-volatile essential isoprenoids (abscisic acid, chlorophylls and carotenoids). By subjecting the plants to stressors such as drought and to exogenous application of JA, we wanted to test their interaction with AM symbiosis in conditions where isoprenoids usually play a role in resistance to stress and in plant defence. Root colonization by AM fungi favoured the leaf production of essential isoprenoids rather than nonessential ones, especially under drought stress conditions or after JA application. The increased carbon demand brought on by AM fungi might thus influence not only the amount of carbon allocated to isoprenoids, but also the carbon partitioning between the different classes of isoprenoids, thus explaining the not previously shown decrease of root volatile isoprenoids in AM plants. We propose that since AM fungi are a nutrient source for the plant, other carbon sinks normally necessary to increase nutrient uptake can be avoided and therefore the plant can devote more resources to synthesize essential isoprenoids for plant growth.
Collapse
Affiliation(s)
- Dolores Asensio
- Global Ecology Unit CREAF-CEAB-CSIC, Center for Ecological Research and Forestry Applications, Edifici C, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | |
Collapse
|
239
|
Bartlett MK, Scoffoni C, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 2012; 15:393-405. [DOI: 10.1111/j.1461-0248.2012.01751.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
240
|
Wang Y, Liu F, Jensen CR. Comparative effects of deficit irrigation and alternate partial root-zone irrigation on xylem pH, ABA and ionic concentrations in tomatoes. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1907-17. [PMID: 22162869 PMCID: PMC3295386 DOI: 10.1093/jxb/err370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/30/2011] [Accepted: 10/21/2011] [Indexed: 05/24/2023]
Abstract
Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on xylem pH, ABA, and ionic concentrations of tomato (Lycopersicon esculentum L.) plants were investigated in two split-root pot experiments. Results showed that PRI plants had similar or significantly higher xylem pH, which was increased by 0.2 units relative to DI plants. Nitrate and total ionic concentrations (cations+anions), and the proportion of cations influenced xylem pH such that xylem pH increases as nitrate and total ionic concentrations decrease, and the proportion of cations increases. In most cases, the xylem ABA concentration was similar for PRI and DI plants, and a clear association between increases in xylem pH with increasing xylem ABA concentration was only found when the soil water content was relatively low. The concentrations of anions, cations, and the sum of anions and cations in PRI were higher than in the DI treatment when soil water content was relatively high in the wetted soil compartment. However, when water content in both soil compartments of the PRI pots were very low before the next irrigation, the acquisition of nutrients by roots was reduced, resulting in lower concentrations of anions and cations in the PRI than in the DI treatment. It is therefore essential that the soil water content in the wet zone should be maintained relatively high while that in the drying soil zone should not be very low, both conditions are crucial to maintain high soil and plant water status while sustaining ABA signalling of the plants.
Collapse
Affiliation(s)
- Yaosheng Wang
- Department of Agriculture and Ecology, University of Copenhagen, Taastrup, Denmark.
| | | | | |
Collapse
|
241
|
Rogiers SY, Greer DH, Hatfield JM, Hutton RJ, Clarke SJ, Hutchinson PA, Somers A. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. TREE PHYSIOLOGY 2012; 32:249-61. [PMID: 22199014 DOI: 10.1093/treephys/tpr131] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stomatal responsiveness to evaporative demand (air vapour pressure deficit (VPD)) ranges widely between species and cultivars, and mechanisms for stomatal control in response to VPD remain obscure. The interaction of irrigation and soil moisture with VPD on stomatal conductance is particularly difficult to predict, but nevertheless is critical to instantaneous transpiration and vulnerability to desiccation. Stomatal sensitivity to VPD and soil moisture was investigated in Semillon, an anisohydric Vitis vinifera L. variety whose leaf water potential (Ψ(l)) is frequently lower than that of other grapevine varieties grown under similar conditions in the warm grape-growing regions of Australia. A survey of Semillon vines across seven vineyards revealed that, regardless of irrigation treatment, midday Ψ(l) was dependent on not only soil moisture but VPD at the time of measurement. Predawn Ψ(l) was more closely correlated to not only soil moisture in dry vineyards but to night-time VPD in drip-irrigated vineyards, with incomplete rehydration during high night-time VPD. Daytime stomatal conductance was low only under severe plant water deficits, induced by extremes in dry soil. Stomatal response to VPD was inconsistent across irrigation regime; however, in an unirrigated vineyard, stomatal sensitivity to VPD-the magnitude of stomatal response to VPD-was heightened under dry soils. It was also found that stomatal sensitivity was proportional to the magnitude of stomatal conductance at a reference VPD of 1kPa. Exogenous abscisic acid (ABA) applied to roots of Semillon vines growing in a hydroponic system induced stomatal closure and, in field vines, petiole xylem sap ABA concentrations rose throughout the morning and were higher in vines with low Ψ(l). These data indicate that despite high stomatal conductance of this anisohydric variety when grown in medium to high soil moisture, increased concentrations of ABA as a result of very limited soil moisture may augment stomatal responsiveness to low VPD.
Collapse
Affiliation(s)
- Suzy Y Rogiers
- National Wine and Grape Industry Centre, Wagga Wagga, NSW 2678, Australia.
| | | | | | | | | | | | | |
Collapse
|
242
|
Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Cytokinins: metabolism and function in plant adaptation to environmental stresses. TRENDS IN PLANT SCIENCE 2012; 17:172-9. [PMID: 22236698 DOI: 10.1016/j.tplants.2011.12.005] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 05/18/2023]
Abstract
In plants, the cytokinin (CK) phytohormones regulate numerous biological processes, including responses to environmental stresses, via a complex network of CK signaling. By an unknown mechanism, stress signals are perceived and transmitted through the His-Asp phosphorelay, an important component of the CK signal transduction pathway, triggering CK-responsive genes. Because of the intensive crosstalk between CKs and abscisic acid (ABA), modulation of CK levels and their signal transduction affects both ABA-dependent and ABA-independent pathways, enabling plant adaptation to adverse conditions. This review presents our current understanding of the functions of CKs and CK signaling in the regulation of plant adaptation to stress. Biotechnological strategies based on the modulation of CK levels have been examined with the aim of stabilizing agriculture yields.
Collapse
Affiliation(s)
- Sukbong Ha
- Department of Plant Biotechnology, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| | | | | | | | | |
Collapse
|
243
|
Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:336-44. [PMID: 22137606 DOI: 10.1016/j.jplph.2011.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 05/20/2023]
Abstract
Water status is the main factor affecting rice production. In order to understand rice strategies in response to drought condition in the field, the drought-responsive mechanisms at the physiological and molecular levels were studied in two rice genotypes with contrasting susceptibility to drought stress at reproductive stage. After 20 d of drought treatment, the osmotic potential of leaves reduced 78% and 8% in drought susceptible rice cultivar Zhenshan97B and tolerant rice cultivar IRAT109, respectively. The panicle lengths had no obvious changes in drought stressed Zhenshan97B and IRAT109, suggesting that drought stress impose less effect on assimilate translocation from leaf to vegetative growth of panicles. IRAT109 showed more extensive deeper root growth that could be considered a second line of defense against drought stress. The C(i)/C(a) ratio exhibited enhancement over reduction of g(s) in both cultivars, reflecting the non-stomatal limitation to photosynthesis occurred during drought stress. Orthophosphate dikinase, glycine dehydrogenase, ribulose bisphosphate carboxylase (Rubisco), glycine hydroxymethyltransferase and ATP synthase were down-regulated for Zhenshan97B in response to drought stress, suggesting the reduction of capacity of carbon assimilation in this rice cultivar. In drought-stressed IRAT109, transketolase, Rubisco were down-regulated, however, Rubisco activase and peptidyl-prolyl cis-trans isomerase, which might alleviate the damage on Rubisco by drought stress, were up-regulated. The increased abundances of chloroplastic superoxide dismutase [Cu-Zn] and dehydroascorbate reductase might provide antioxidant protection for IRAT109 against damage by dehydration.
Collapse
Affiliation(s)
- Kuixian Ji
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
244
|
Wilkinson S, Mills G, Illidge R, Davies WJ. How is ozone pollution reducing our food supply? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:527-36. [PMID: 22016429 DOI: 10.1093/jxb/err317] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ground-level ozone pollution is already decreasing global crop yields (from ∼2.2-5.5% for maize to 3.9-15% and 8.5-14% for wheat and soybean, respectively), to differing extents depending on genotype and environmental conditions, and this problem is predicted to escalate given climate change and increasing ozone precursor emissions in many areas. Here a summary is provided of how ozone pollution affects yield in a variety of crops, thus impacting global food security. Ozone causes visible injury symptoms to foliage; it induces early senescence and abscission of leaves; it can reduce stomatal aperture and thereby carbon uptake, and/or directly reduce photosynthetic carbon fixation; it can moderate biomass growth via carbon availability or more directly; it can decrease translocation of fixed carbon to edible plant parts (grains, fruits, pods, roots) due either to reduced availability at source, redirection to synthesis of chemical protectants, or reduced transport capabilities via phloem; decreased carbon transport to roots reduces nutrient and water uptake and affects anchorage; ozone can moderate or bring forward flowering and induce pollen sterility; it induces ovule and/or grain abortion; and finally it reduces the ability of some genotypes to withstand other stresses such as drought, high vapour pressure deficit, and high photon flux density via effects on stomatal control. This latter point is emphasized here, given predictions that atmospheric conditions conducive to drought formation that also give rise to intense precursor emission events will become more severe over the coming decades.
Collapse
Affiliation(s)
- Sally Wilkinson
- Lancaster Environment Centre, University of Lancaster, Bailrigg, Lancaster LA1 4YQ, UK.
| | | | | | | |
Collapse
|
245
|
Zhang H, Li H, Yuan L, Wang Z, Yang J, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:215-27. [PMID: 21926094 DOI: 10.1093/jxb/err263] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study tested the hypothesis that a post-anthesis moderate soil drying can improve grain filling through regulating the key enzymes in the sucrose-to-starch pathway in the grains of rice (Oryza sativa L.). Two rice cultivars were field grown and two irrigation regimes, alternate wetting and moderate soil drying (WMD) and conventional irrigation (CI, continuously flooded), were imposed during the grain-filling period. The grain-filling rate and activities of four key enzymes in sucrose-to-starch conversion, sucrose synthase (SuSase), adenosine diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (StSase), and starch branching enzyme (SBE), showed no significant difference between WMD and CI regimes for the earlier flowering superior spikelets. However, they were significantly enhanced by the WMD for the later flowering inferior spikelets. The activities of both soluble and insoluble acid invertase in the grains were little affected by the WMD. The two cultivars showed the same tendencies. The activities of SuSase, AGPase, StSase, and SBE in grains were very significantly correlated with the grain-filling rate. The abscisic acid (ABA) concentration in inferior spikelets was remarkably increased in the WMD and very significantly correlated with activities of SuSase, AGPase, StSase, and SBE. Application of ABA on plants under CI produced similar results to those seen in plants receiving WMD. Applying fluridone, an indirect inhibitor of ABA synthesis, produced the opposite effect. The results suggest that post-anthesis WMD could enhance sink strength by regulating the key enzymes involved, and consequently, increase the grain-filling rate and grain weight of inferior spikelets. ABA plays an important role in this process.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
246
|
Szota C, Farrell C, Koch JM, Lambers H, Veneklaas EJ. Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. TREE PHYSIOLOGY 2011; 31:1052-1066. [PMID: 21908435 DOI: 10.1093/treephys/tpr085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study describes the physiological response of two co-occurring tree species (Eucalyptus marginata and Corymbia calophylla) to seasonal drought at low- and high-quality restored bauxite mine sites in south-western Australia. Seasonal changes in photosynthesis (A), stomatal conductance (g(s)), leaf water potential (ψ), leaf osmotic potential (ψ), leaf relative water content (RWC) and pressure-volume analysis were captured over an 18-month field study to (i) determine the nature and severity of physiological stress in relation to site quality and (ii) identify any physiological differences between the two species. Root system restriction at the low-quality site reduced maximum rates of gas exchange (g(s) and A) and increased water stress (midday ψ and daily RWC) in both species during drought. Both species showed high stomatal sensitivity during drought; however, E. marginata demonstrated a higher dehydration tolerance where ψ and RWC fell to -3.2 MPa and 73% compared with -2.4 MPa and 80% for C. calophylla. Corymbia calophylla showed lower g(s) and higher ψ and RWC during drought, indicating higher drought tolerance. Pressure-volume curves showed that cell-wall elasticity of E. marginata leaves increased in response to drought, while C. calophylla leaves showed lower osmotic potential at zero turgor in summer than in winter, indicating osmotic adjustment. Both species are clearly able to tolerate seasonal drought at hostile sites; however, by C. calophylla closing stomata earlier in the drought cycle, maintaining a higher water status during drought and having the additional mechanism of osmotic adjustment, it may have a greater capacity to survive extended periods of drought.
Collapse
Affiliation(s)
- Christopher Szota
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
247
|
Mahdid M, Kameli A, Ehlert C, Simonneau T. Rapid changes in leaf elongation, ABA and water status during the recovery phase following application of water stress in two durum wheat varieties differing in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1077-83. [PMID: 21868244 DOI: 10.1016/j.plaphy.2011.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/03/2011] [Indexed: 05/25/2023]
Abstract
This study aims to investigate the role of Abscisic acid (ABA) in water potential and turgor variations as well as growth recovery during the first phase of a rapid water stress induced by PEG6000. Two wheat varieties (Triticum durum L.), MBB (more tolerant) and OZ (less productive under drought), were grown in aerated nutrient solutions. Leaf elongation kinetics of the growing leaf 3 was estimated using LVDT. Water potential was measured using a pressure chamber; osmotic potential was estimated from expressed sap of elongation zone, turgor pressure of the same zone of leaf three was estimated directly by pressure probe. Growth rapidly ceased for a period of about one hour after the addition of PEG, gradual recovery was then observed for about 2 h. A significant difference was found in the % recovery of Leaf Elongation Rate (LER) and ABA between the two varieties, leading to better water status in MBB compared to OZ. The results of this study showed the possible role of ABA on growth resumption by the increase of relative water content and turgor via osmotic adjustment during the stress period in the leaves, which indicates the importance of OA in the resumption of LER even in the short term under conditions of water deficit. Full recovery of turgor but not of LER at the end stress period suggested the possible effect on cell wall extensibility (hardening) even at short term resulting from the rapid accumulation of ABA.
Collapse
Affiliation(s)
- Mohamed Mahdid
- Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumedienne, BP 32 Bab Ezzouar, Alger, Algeria.
| | | | | | | |
Collapse
|
248
|
Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:747-58. [PMID: 21284800 DOI: 10.1111/j.1467-7652.2010.00584.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Drought is the major environmental factor limiting crop productivity worldwide. We hypothesized that it is possible to enhance drought tolerance by delaying stress-induced senescence through the stress-induced synthesis of cytokinins in crop-plants. We generated transgenic rice (Oryza sativa) plants expressing an isopentenyltransferase (IPT) gene driven by P(SARK) , a stress- and maturation-induced promoter. Plants were tested for drought tolerance at two yield-sensitive developmental stages: pre- and post-anthesis. Under both treatments, the transgenic rice plants exhibited delayed response to stress with significantly higher grain yield (GY) when compared to wild-type plants. Gene expression analysis revealed a significant shift in expression of hormone-associated genes in the transgenic plants. During water-stress (WS), P(SARK)::IPT plants displayed increased expression of brassinosteroid-related genes and repression of jasmonate-related genes. Changes in hormone homeostasis were associated with resource(s) mobilization during stress. The transgenic plants displayed differential expression of genes encoding enzymes associated with hormone synthesis and hormone-regulated pathways. These changes and associated hormonal crosstalk resulted in the modification of source/sink relationships and a stronger sink capacity of the P(SARK)::IPT plants during WS. As a result, the transgenic plants had higher GY with improved quality (nutrients and starch content).
Collapse
Affiliation(s)
- Zvi Peleg
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|
249
|
Seo M, Koshiba T. Transport of ABA from the site of biosynthesis to the site of action. JOURNAL OF PLANT RESEARCH 2011; 124:501-7. [PMID: 21416315 DOI: 10.1007/s10265-011-0411-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/11/2011] [Indexed: 05/18/2023]
Abstract
There is substantial evidence that abscisic acid (ABA) moves within plants. ABA has been considered as a root-derived signaling molecule that induces stomatal closure in response to dry soil conditions. It has been also reported that ABA synthesized in vegetative tissues is translocated to the seeds. The transport of ABA is an important factor in determining the endogenous concentrations of the hormone at the site of action, and hence, it is an important process in physiological responses. However, the molecular mechanisms that regulate ABA transport are not fully understood. Recent studies using Arabidopsis indicate that ABA is actively synthesized in leaf vascular tissues in response to drought, and that ABA is subsequently transported to the guard cells to close stomata. Identification of the transporters that mediate ABA export from the inside to the outside of the cells at the site of ABA biosynthesis (vascular tissues) and ABA uptake into the cells at the site of action (guard cells), respectively, in this species indicates an active mechanism to regulate ABA transport. Although Arabidopsis represents only one model plant, these findings are useful to discuss common or different regulatory mechanisms among different species and to improve our total understanding of the regulation of ABA transport.
Collapse
Affiliation(s)
- Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | |
Collapse
|
250
|
Sengupta D, Reddy AR. Water deficit as a regulatory switch for legume root responses. PLANT SIGNALING & BEHAVIOR 2011; 6:914-7. [PMID: 21849818 PMCID: PMC3218504 DOI: 10.4161/psb.6.6.15340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant roots perceive declining soil water potential as an initial signal which further triggers an array of physiological, morphological and molecular responses in the whole plant. Understanding the root responses with parallel insights on protein level changes has always been an area of interest for stress biologists. In a recent study, we reported drought stress-induced changes among certain structural and functional root proteins involved in reactive oxygen species (ROS) detoxification, primary and secondary metabolite biosynthetic pathways as well as proteins associated with cell signalling in an economically important legume crop Vigna radiata (L.) Wilczek. We also demonstrated photosynthetic gas exchange characteristics and root physiology under varying levels of water-deficit and recovery. In this report, we depict a closer analysis of the expression patterns of the identified proteins which were categorized into five major functional groups. These proteins represent a unique coherence and networking with each other as well as with the overall physiological and metabolic machinery in the plant cell.
Collapse
Affiliation(s)
- Debashree Sengupta
- Photosynthesis and Plant Stress Biology Laboratory, Department of Plant Sciences, School of Life sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|