201
|
De Sousa Peixoto RA, Turban S, Battle JH, Chapman KE, Seckl JR, Morton NM. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo. Endocrinology 2008; 149:1861-8. [PMID: 18174284 DOI: 10.1210/en.2007-1028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.
Collapse
Affiliation(s)
- R A De Sousa Peixoto
- C3.08, Endocrinology Unit, Center for Cardiovascular Sciences, The Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, New Royal Infirmary, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
202
|
Shapiro A, Matheny M, Zhang Y, Tümer N, Cheng KY, Rogrigues E, Zolotukhin S, Scarpace PJ. Synergy between leptin therapy and a seemingly negligible amount of voluntary wheel running prevents progression of dietary obesity in leptin-resistant rats. Diabetes 2008; 57:614-22. [PMID: 18086903 DOI: 10.2337/db07-0863] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We examined whether chronic leptin treatment of diet-induced obese rats promotes or alleviates the susceptibility to continued high-fat feeding. Second, we examined if voluntary wheel running is beneficial in reducing the trajectory of weight gain in high-fat-raised leptin-resistant rats. RESEARCH DESIGN AND METHODS Sprague-Dawley rats were fed a standard diet or a high-fat diet for 5 months, and then hypothalamic leptin overexpression was induced through central administration of adeno-associated virus-encoding leptin while continuing either the standard or high-fat diet. Two weeks later, half of the rats in each group were provided access to running wheels for 38 days while being maintained on either a standard or high-fat diet. RESULTS; In standard diet-raised rats, either wheel running or leptin reduced the trajectory of weight gain, and the combined effect of both treatments was additive. In high-fat-raised leptin-resistant rats, leptin overexpression first transiently reduced weight gain but then accelerated the weight gain twofold over controls. Wheel running in high-fat-raised rats was sixfold less than in standard diet-raised rats and did not affect weight gain. Surprisingly, wheel running plus leptin completely prevented weight gain. This synergy was associated with enhanced hypothalamic signal transducer and activator of transcription (STAT) 3 phosphorylation and suppressor of cytokine signaling 3 expression in wheel running plus leptin compared with leptin-treated sedentary high-fat counterparts. This enhanced STAT3 signaling associated with the combination treatment occurred only in high-fat-raised, leptin-resistant rats and not in standard diet-raised, leptin-responsive rats. CONCLUSIONS Chronic leptin treatment in diet-induced obese rats accelerates dietary obesity. However, leptin combined with wheel running prevents further dietary weight gain. Thus, this combination therapy may be a viable antiobesity treatment.
Collapse
Affiliation(s)
- Alexandra Shapiro
- Department of Pharmacology and Therapeutics, Box 100267, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Shinozuka T, Yamamoto Y, Hasegawa T, Saito K, Naito S. First total synthesis of sterenins A, C and D. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
204
|
Liu Y, Park F, Pietrusz JL, Jia G, Singh RJ, Netzel BC, Liang M. Suppression of 11β-hydroxysteroid dehydrogenase type 1 with RNA interference substantially attenuates 3T3-L1 adipogenesis. Physiol Genomics 2008; 32:343-51. [DOI: 10.1152/physiolgenomics.00067.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), which regulates the local level of glucocorticoids, has been suggested to be involved in the development of obesity. A definitive functional role for 11β-HSD1 in adipogenesis, however, remains to be established. We developed 3T3-L1 cell lines stably transfected with a small hairpin RNA (shRNA) targeting 11β-HSD1. A shRNA containing two nucleotide substitutions was used as a control. Silencing of 11β-HSD1 substantially attenuated the accumulation of lipid droplets and the expression of adipogenesis marker genes, which was induced by a mixture containing either corticosterone or dexamethasone. Silencing of 11β-HSD1 increased the concentration of 11-dehydrocorticosterone in the culture supernatant but did not significantly affect the levels of corticosterone or dexamethasone. Translocation of glucocorticoid receptors to the nucleus in response to glucocorticoids was significantly attenuated by silencing 11β-HSD1. The number of cells entering the S phase of the cell cycle following the induction of adipogenesis was significantly reduced by silencing 11β-HSD1. 11β-HSD1 shRNA delivered by lentiviral vectors after the induction of differentiation, however, did not affect the progression of adipogenesis. These results indicate that 11β-HSD1 plays a significant functional role in the initiation of 3T3-L1 adipogenesis and provide new mechanistic insights into the role of 11β-HSD1 in the development of obesity and related diseases.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Frank Park
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Guangfu Jia
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ravinder J. Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian C. Netzel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
205
|
Inada M, Iwasaki K, Imai C, Hashimoto S. Spironolactone effective hypertension in the elderly due to 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) impairment: contributory role of determining serum cortisol/cortisone ratio as a marker of 11beta-HSD2 activity. Intern Med 2008; 47:2157-64. [PMID: 19075542 DOI: 10.2169/internalmedicine.47.1165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two elderly patients with mineralocorticoid excess state due to 11 beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) impairment are described. Moreover, the role of the precursor-product ratios of the steroids reflecting 11beta-HSD2 activity was estimated in 5 patients, including 3 patients reported previously by us. Significant elevations of urinary cortisol/cortisone ratios were observed, whereas urinary tetrahydrocortisol (THF)+allo-THF/tetrahydrocortisone (THE) ratios were not elevated significantly. Furthermore, an even more distinct elevation of serum cortisol/cortisone ratio was evident in all instances of 5 patients, suggesting a significant clinical role of the serum cortisol/cortisone ratio in the diagnosis of 11beta-HSD2 impairment.
Collapse
Affiliation(s)
- Mitsuo Inada
- Department of Internal Medicine, Kizuyabashi Takeda Hospital, Kyoto.
| | | | | | | |
Collapse
|
206
|
Abstract
The endothelium is characterized by a wide range of important homeostatic functions. It participates in the control of hemostasis, blood coagulation and fibrinolysis, platelet and leukocyte interactions with the vessel wall, regulation of vascular tone, and of blood pressure. Many crucial vasoactive endogenous compounds are produced by the endothelial cells to control the functions of vascular smooth muscle cells and of circulating blood cells. These complex systems determine a fine equilibrium which regulates the vascular tone. Impairments in endothelium-dependent vasodilation lead to the so called endothelial dysfunction. Endothelial dysfunction is then characterized by unbalanced concentrations of vasodilating and vasoconstricting factors, the most important being represented by nitric oxide (NO) and angiotensin II (AT II). High angiotensin-converting enzyme (ACE) activity leads to increased AT II generation, reduced NO levels with subsequent vasoconstriction. The net acute effect results in contraction of vascular smooth muscle cells and reduced lumen diameter. Furthermore, when increased ACE activity is chronically sustained, increase in growth, proliferation and differentiation of the vascular smooth muscle cells takes place; at the same time, a decrease in the anti-proliferative action by NO, a decrease in fibinolysis and an increase in platelets aggregation may be observed. AT II is then involved not only in the regulation of blood pressure, but also in vascular inflammation, permeability, smooth muscle cells remodelling, and oxidative stress which in turn lead to atherosclerosis and increased cardiovascular risk. Given the pivotal role exerted by AT II in contributing to alteration of endothelial function, treatment with ACE inhibitors or angiotensin receptor blockers (ARBs) may be of particular interest to restore a physiological activity of endothelial cells. In this view, the blockade of the renin-angiotensin system (RAS), has been shown to positively affect the endothelial function, beyond the antihypertensive action displayed by these compounds. In this review, attention has been specifically focused on an ARB, irbesartan, to examine its effects on endothelial function.
Collapse
Affiliation(s)
- Roberto Negro
- Department of Endocrinology, V Fazzi Hospital Lecce Italy.
| |
Collapse
|
207
|
Webster SP, Pallin TD. 11β-Hydroxysteroid dehydrogenase type 1 inhibitors as therapeutic agents. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.12.1407] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
208
|
Nuotio-Antar AM, Hachey DL, Hasty AH. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab 2007; 293:E1517-28. [PMID: 17878220 DOI: 10.1152/ajpendo.00522.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids, which are well established to regulate body fat mass distribution, adipocyte lipolysis, hepatic gluconeogenesis, and hepatocyte VLDL secretion, are speculated to play a role in the pathology of metabolic syndrome. Recent focus has been on the activity of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which is capable of regenerating, and thus amplifying, glucocorticoids in key metabolic tissues such as liver and adipose tissue. To determine the effects of global 11beta-HSD1 inhibition on metabolic syndrome risk factors, we subcutaneously injected "Western"-type diet-fed hyperlipidemic mice displaying moderate or severe obesity [LDL receptor (LDLR)-deficient (LDLR(-/-)) mice and mice derived from heterozygous agouti (A(y)/a) and homozygous LDLR(-/-) breeding pairs (A(y)/a;LDLR(-/-) mice)] with the nonselective 11beta-HSD inhibitor carbenoxolone for 4 wk. Body composition throughout the study, end-point fasting plasma, and extent of hepatic steatosis and atherosclerosis were assessed. This route of treatment led to detection of high levels of carbenoxolone in liver and fat and resulted in decreased weight gain due to reduced body fat mass in both mouse models. However, only A(y)/a;LDLR(-/-) mice showed an effect of 11beta-HSD1 inhibition on fasting insulin and plasma lipids, coincident with a reduction in VLDL due to mildly increased VLDL clearance and dramatically decreased hepatic triglyceride production. A(y)/a;LDLR(-/-) mice also showed a greater effect of the drug on reducing atherosclerotic lesion formation. These findings indicate that subcutaneous injection of an 11beta-HSD1 inhibitor allows for the targeting of the enzyme in not only liver, but also adipose tissue, and attenuates many metabolic syndrome risk factors, with more pronounced effects in cases of severe obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Alli M Nuotio-Antar
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
209
|
Tomlinson JW, Stewart PM. Modulation of glucocorticoid action and the treatment of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 2007; 21:607-19. [PMID: 18054738 DOI: 10.1016/j.beem.2007.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The global epidemic of obesity and type-2 diabetes has heightened the need to understand the mechanisms that contribute to its pathogenesis and also to design and trial novel treatments. Patients with glucocorticoid (GC) excess--'Cushing's syndrome'--are phenotypically similar to patients with simple obesity. As such, much research has focused on the manipulation of local GC action as a therapeutic strategy. The majority of the classical actions of GCs are mediated via activation of the glucocorticoid receptor (GR). 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts inactive cortisone to cortisol and therefore amplifies local GC action. There is now a wealth of data from rodent and clinical studies implicating this conversion in the pathogenesis of obesity, type-2 diabetes, and the metabolic syndrome. Selective 11beta-HSD1 inhibitors (selective in that they block the activity of 11beta-HSD1 and not 11beta-HSD2 which inactivates cortisone to cortisol in mineralocorticoid target tissues) are currently in development although not yet available for use in clinical studies. Rodent studies utilizing these compounds have shown dramatic improvements in insulin sensitivity as well as improvements in lipid profiles and atherogenesis. A further experimental approach has been to design drugs that antagonize GR activation, and again these compounds appear to improve insulin sensitivity and lower glucose production rates. The key test for both of these research strategies is whether they will translate into clinical studies, and results from these trials are now eagerly awaited.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- Division of Medical Sciences, Institute of Biomedical Research, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
210
|
Arai N, Masuzaki H, Tanaka T, Ishii T, Yasue S, Kobayashi N, Tomita T, Noguchi M, Kusakabe T, Fujikura J, Ebihara K, Hirata M, Hosoda K, Hayashi T, Sawai H, Minokoshi Y, Nakao K. Ceramide and adenosine 5'-monophosphate-activated protein kinase are two novel regulators of 11beta-hydroxysteroid dehydrogenase type 1 expression and activity in cultured preadipocytes. Endocrinology 2007; 148:5268-77. [PMID: 17702848 DOI: 10.1210/en.2007-0349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increased activity of intracellular glucocorticoid reactivating enzyme, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in obese adipose tissue contributes to adipose dysfunction. As recent studies have highlighted a potential role of preadipocytes in adipose dysfunction, we tested the hypothesis that a variety of metabolic stress mediated by ceramide or AMP-activated protein kinase (AMPK) would regulate 11beta-HSD1 in preadipocytes. The present study is the first to show that 1) expression of 11beta-HSD1 in 3T3-L1 preadipocytes was robustly induced when cells were treated with cell-permeable ceramide analogue C(2) ceramide, bacterial sphingomyelinase, and sphingosine 1-phosphate, 2) 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-induced activation of AMPK augmented the expression and enzyme activity of 11beta-HSD1, and 3) these results were reproduced in human preadipocytes. We demonstrate for the first time that C(2) ceramide and AICAR markedly induced the expression of CCAAT/enhancer-binding protein (C/EBP) beta and its binding to 11beta-HSD1 promoter. Transient knockdown of C/EBPbeta protein by small interfering RNA markedly attenuated the expression of 11beta-HSD1 induced by C(2) ceramide or AICAR. The present study provides novel evidence that ceramide- and AMPK-mediated signaling pathways augment the expression and activity of 11beta-HSD1 in preadipocytes by way of C/EBPbeta, thereby highlighting a novel, metabolic stress-related regulation of 11beta-HSD1 in a cell-specific manner.
Collapse
Affiliation(s)
- N Arai
- Division of Endocrinology and Metabolism, Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Espíndola-Antunes D, Kater CE. Adipose tissue expression of 11beta-Hydroxysteroid dehydrogenase type 1 in cushing's syndrome and in obesity. ACTA ACUST UNITED AC 2007; 51:1397-403. [DOI: 10.1590/s0004-27302007000800027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 08/10/2007] [Indexed: 11/22/2022]
Abstract
Glucocorticoids have a major role in determining adipose tissue metabolism and distribution. 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) is a NADPH-dependent enzyme highly expressed in the liver and adipose tissue. In most intact cells and tissues it functions as a reductase (to convert inactive cortisone to active cortisol). It has been hypothesized that tissue-specific deregulation of cortisol metabolism may be involved in the complex pathophysiology of the metabolic syndrome (MS) and obesity. Transgenic mice overexpressing 11betaHSD1 in adipose tissue develop obesity with all features of the MS, whereas 11betaHSD1-knockout mice are protected from both. The bulk of evidences points to an overexpression and increased activity of 11betaHSD1 also in human adipose tissue. However, 11betaHSD1 seems to adjust local cortisol concentrations independently of its plasma levels. In Cushing's syndrome, 11betaHSD1 is downregulated and may not be responsible for the abdominal fat depots; it also undergoes downregulation in response to weight loss in human obesity. The nonselective 11betaHSD1 inhibitor carbenoxolone improves insulin sensitivity in humans, and selective inhibitors enhance insulin action in diabetic mice liver, thereby lowering blood glucose. Thus, 11betaHSD1 is now emerging as a modulator of energy partitioning and a promising pharmacological target to treat the MS and diabetes.
Collapse
|
212
|
Chapman KE, Seckl JR. 11beta-HSD1, inflammation, metabolic disease and age-related cognitive (dys)function. Neurochem Res 2007; 33:624-36. [PMID: 17963039 DOI: 10.1007/s11064-007-9504-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2007] [Indexed: 01/06/2023]
Abstract
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is an intracellular amplifier of glucocorticoid action. By converting intrinsically inert glucocorticoids (cortisone, 11-dehydrocorticosterone) into their active forms (cortisol, corticosterone), 11beta-HSD1 increases glucocorticoid access to receptors. Glucocorticoid hormones modulate diverse physiological processes, linking circadian rhythms to food seeking, motivational and cognitive behaviours, as well as intermediary metabolism and immune responses. They are a key component of pathways that buffer the organism against stressful challenges. Here we review the part played in these processes by 11beta-HSD1, and discuss the promise of inhibitors of 11beta-HSD1 in alleviating disorders associated with cumulative stress.
Collapse
Affiliation(s)
- Karen E Chapman
- Endocrinology Unit, Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | | |
Collapse
|
213
|
Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 2007; 275:43-61. [PMID: 17624658 DOI: 10.1016/j.mce.2007.05.015] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 12/14/2022]
Abstract
Since the discovery of the beneficial effects of adrenocortical extracts for treating adrenal insufficiency more than 80 years ago, glucocorticoids (GC) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical components of the delicate hormonal control system that determines energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, excessive GC action has been tied to a variety of pandemic metabolic diseases, such as type II diabetes and obesity. Highlighted by its importance for human health, the investigation of molecular mechanisms of GC/GR action has become a major focus in biomedical research. In particular, the understanding of tissue-specific functions of the GC-GR pathway has been proven to be of substantial value for the identification of novel therapeutic options in the treatment of severe metabolic disorders. Therefore, this review focuses on the role of the GC-GR axis for metabolic homeostasis and dysregulation, emphasizing tissue-specific functions of GCs in the control of energy metabolism.
Collapse
|
214
|
Paulsen SK, Pedersen SB, Fisker S, Richelsen B. 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization. Obesity (Silver Spring) 2007; 15:1954-60. [PMID: 17712112 DOI: 10.1038/oby.2007.233] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Pre-receptor amplification of glucocorticoids is, in part, determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a part in features of the metabolic syndrome. Our objective was to compare 11beta-HSD1 gene expression in different fat depots (visceral, subcutaneous abdominal, and subcutaneous gluteal) in lean and obese men and women. RESEARCH METHODS AND PROCEDURES A cross-sectional study design was used for healthy patients undergoing minor abdominal surgery (lean men, 10), minor gynecological surgery (lean woman, 10), or gastric banding operations (obese men, 10; and obese women, 10). Gene expressions of 11beta-HSD1 in adipose tissue samples were determined by real-time reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS Lean women had lower 11beta-HSD1 gene expression in subcutaneous adipose tissue compared with men (62% lower, p < 0.01), whereas no significant difference was found between obese men and women. 11Beta-HSD1 mRNA in human adipose tissue was higher in obese subjects compared with lean subjects in both women and men and in both subcutaneous and visceral adipose tissue. No difference in mRNA expression of 11beta-HSD1 between visceral and subcutaneous adipose tissue or between subcutaneous adipose tissue from different depots was found. CONCLUSIONS 11Beta-HSD1 in adipose tissue is increased in obesity in both women and men, and may contribute to the associated metabolic syndrome. As 11beta-HSD1 expression in lean women was found to be significantly lower than in lean males, the up-regulation associated with obesity may be relatively more devastating in women than in men, and may help explain the higher relative risk of cardiovascular disease in women suffering from the metabolic syndrome.
Collapse
Affiliation(s)
- Søren Kildeberg Paulsen
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, Aarhus Sygehus, Tage Hansensgade 2, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
215
|
Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 2007; 13:803-11. [PMID: 17603492 DOI: 10.1038/nm1611] [Citation(s) in RCA: 448] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/25/2007] [Indexed: 12/29/2022]
Abstract
The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Lydia E Kuo
- Department of Physiology & Biophysics, Georgetown University Medical Center, 3900 Reservoir Rd. NW, BSB 234, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Michailidou Z, Coll AP, Kenyon CJ, Morton NM, O'Rahilly S, Seckl JR, Chapman KE. Peripheral mechanisms contributing to the glucocorticoid hypersensitivity in proopiomelanocortin null mice treated with corticosterone. J Endocrinol 2007; 194:161-70. [PMID: 17592030 PMCID: PMC1994568 DOI: 10.1677/joe-07-0090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 04/16/2007] [Accepted: 05/01/2007] [Indexed: 12/27/2022]
Abstract
Proopiomelanocortin (POMC) deficiency causes severe obesity through hyperphagia of hypothalamic origin. However, low glucocorticoid levels caused by adrenal insufficiency mitigate against insulin resistance, hyperphagia and fat accretion in Pomc-/- mice. Upon exogenous glucocorticoid replacement, corticosterone-supplemented (CORT) Pomc-/- mice show exaggerated responses, including excessive fat accumulation, hyperleptinaemia and insulin resistance. To investigate the peripheral mechanisms underlying this glucocorticoid hypersensitivity, we examined the expression levels of key determinants and targets of glucocorticoid action in adipose tissue and liver. Despite lower basal expression of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which generates active glucocorticoids within cells, CORT-mediated induction of 11beta-HSD1 mRNA levels was more pronounced in adipose tissues of Pomc-/- mice. Similarly, CORT treatment increased lipoprotein lipase mRNA levels in all fat depots in Pomc-/- mice, consistent with exaggerated fat accumulation. Glucocorticoid receptor (GR) mRNA levels were selectively elevated in liver and retroperitoneal fat of Pomc-/- mice but were corrected by CORT in the latter depot. In liver, CORT increased phosphoenolpyruvate carboxykinase mRNA levels specifically in Pomc-/- mice, consistent with their insulin-resistant phenotype. Furthermore, CORT induced hypertension in Pomc-/- mice, independently of adipose or liver renin-angiotensin system activation. These data suggest that CORT-inducible 11beta-HSD1 expression in fat contributes to the adverse cardiometabolic effects of CORT in POMC deficiency, whereas higher GR levels may be more important in liver.
Collapse
Affiliation(s)
- Zoi Michailidou
- Endocrine Unit, Queen's Medical Research Institute, Centre for Cardiovascular Sciences, University of Edinburgh47 Little France Crescent, Edinburgh EH16 4TJUK
| | - Anthony P Coll
- Departments of Clinical Biochemistry and Medicine, Cambridge Institute for Medical ResearchAddenbrooke's Hospital, Cambridge CB2 2XYUK
| | - Christopher J Kenyon
- Endocrine Unit, Queen's Medical Research Institute, Centre for Cardiovascular Sciences, University of Edinburgh47 Little France Crescent, Edinburgh EH16 4TJUK
| | - Nicholas M Morton
- Endocrine Unit, Queen's Medical Research Institute, Centre for Cardiovascular Sciences, University of Edinburgh47 Little France Crescent, Edinburgh EH16 4TJUK
| | - Stephen O'Rahilly
- Departments of Clinical Biochemistry and Medicine, Cambridge Institute for Medical ResearchAddenbrooke's Hospital, Cambridge CB2 2XYUK
| | - Jonathan R Seckl
- Endocrine Unit, Queen's Medical Research Institute, Centre for Cardiovascular Sciences, University of Edinburgh47 Little France Crescent, Edinburgh EH16 4TJUK
| | - Karen E Chapman
- Endocrine Unit, Queen's Medical Research Institute, Centre for Cardiovascular Sciences, University of Edinburgh47 Little France Crescent, Edinburgh EH16 4TJUK
| |
Collapse
|
217
|
Grün F, Blumberg B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev Endocr Metab Disord 2007; 8:161-71. [PMID: 17657605 DOI: 10.1007/s11154-007-9049-x] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The modern world is plagued with expanding epidemics of diseases related to metabolic dysfunction. The factors that are driving obesity, diabetes, cardiovascular disease, hypertension, and dyslipidemias (collectively termed metabolic syndrome) are usually ascribed to a mismatch between the body's homeostatic nutrient requirements and dietary excess, coupled with insufficient exercise. The environmental obesogen hypothesis proposes that exposure to a toxic chemical burden is superimposed on these conditions to initiate or exacerbate the development of obesity and its associated health consequences. Recent studies have proposed a first set of candidate obesogens (diethylstilbestrol, bisphenol A, phthalates and organotins among others) that target nuclear hormone receptor signaling pathways (sex steroid, RXR-PPARgamma and GR) with relevance to adipocyte biology and the developmental origins of health and disease (DOHaD). Perturbed nuclear receptor signaling can alter adipocyte proliferation, differentiation or modulate systemic homeostatic controls, leading to long-term consequences that may be magnified if disruption occurs during sensitive periods during fetal or early childhood development.
Collapse
Affiliation(s)
- Felix Grün
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| | | |
Collapse
|
218
|
Burén J, Bergström SA, Loh E, Söderström I, Olsson T, Mattsson C. Hippocampal 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression has a diurnal variability that is lost in the obese Zucker rat. Endocrinology 2007; 148:2716-22. [PMID: 17332068 DOI: 10.1210/en.2006-0897] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circulating levels of glucocorticoids show a circadian rhythm. Obesity is associated with a flattening of the diurnal rhythm; plasma cortisol levels are slightly increased during the trough, although they are normal or low in the morning. Studies in humans and in leptin-resistant Zucker rats suggest that tissue-specific alterations in glucocorticoid exposure might play a key role for development of obesity and obesity-associated dysregulation of the hypothalamic-pituitary-adrenal axis. We hypothesized that there is a circadian rhythm in prereceptor metabolism of glucocorticoids exerted by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in brain and/or peripheral tissues (liver, fat, and muscle) that might be abrogated in obesity. The present study demonstrates a circadian rhythm in 11beta-HSD1 mRNA expression (35-45% increase at morning vs. evening, P < 0.05) in dentate gyrus granular layer and CA1 subregions of the hippocampus in lean Zucker rats that was lost in the obese rats. Sprague Dawley rats also revealed a diurnal rhythm in hippocampal 11beta-HSD1 mRNA expression. There was no circadian variation in 11beta-HSD enzyme activity in peripheral tissues, although obese Zucker rats had a decreased enzyme activity in liver and epididymal fat (by approximately 40%, P < 0.05) compared with lean rats. In Sprague Dawley rats, 11beta-HSD activity in adipose tissue was higher in retroperitoneal and epididymal vs. sc fat (P < 0.001). In summary, obese Zucker rats lack a circadian rhythm of 11beta-HSD1 gene expression in the hippocampus, which may contribute to increased activity of the hypothalamic-pituitary-adrenal axis and altered diurnal variation of circulating corticosterone levels.
Collapse
Affiliation(s)
- Jonas Burén
- Department of Public Health and Clinical Medicine, Umeå University Hospital, SE-901 85 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
219
|
Walker BR. Extra-adrenal regeneration of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1: physiological regulator and pharmacological target for energy partitioning. Proc Nutr Soc 2007; 66:1-8. [PMID: 17343766 DOI: 10.1017/s002966510700523x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The major glucocorticoid in man, cortisol, plays important roles in regulating fuel metabolism, energy partitioning and body fat distribution. In addition to the control of cortisol levels in blood by the hypothalamic-pituitary-adrenal axis, intracellular cortisol levels within target tissues can be controlled by local enzymes. 11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyses the regeneration of active cortisol from inert cortisone, thereby amplifying cortisol levels and glucocorticoid receptor activation in adipose tissue, liver and other tissues. 11Beta-HSD1 is under complex tissue-specific regulation and there is evidence that it adjusts local cortisol concentrations independently of the plasma cortisol concentrations, e.g. in response to changes in diet. In obesity 11beta-HSD1 mRNA and activity in adipose tissue are increased. The mechanism of this up-regulation remains uncertain; polymorphisms in the HSD11B1 gene have been associated with metabolic complications of obesity, including hypertension and type 2 diabetes, but not with obesity per se. Extensive data have been obtained in mice with transgenic over-expression of 11beta-HSD1 in liver and adipocytes, targeted deletion of 11beta-HSD1, and using novel selective 11beta-HSD1 inhibitors; these data support the use of 11beta-HSD1 inhibitors to lower intracellular glucocorticoid levels and treat both obesity and its metabolic complications. Moreover, in human subjects the non-selective 'prototype' inhibitor carbenoxolone enhances insulin sensitivity. Results of clinical studies with novel potent selective 11beta-HSD1 inhibitors are therefore eagerly awaited. The present article focuses on the physiological role of glucocorticoids in regulating energy partitioning, and the evidence that this process is modulated by 11beta-HSD1 in human subjects.
Collapse
Affiliation(s)
- Brian R Walker
- University of Edinburgh, Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
220
|
Michailidou Z, Jensen MD, Dumesic DA, Chapman KE, Seckl JR, Walker BR, Morton NM. Omental 11beta-hydroxysteroid dehydrogenase 1 correlates with fat cell size independently of obesity. Obesity (Silver Spring) 2007; 15:1155-63. [PMID: 17495191 DOI: 10.1038/oby.2007.618] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES In ideopathic obesity, there is evidence that enhanced cortisol regeneration within abdominal subcutaneous adipose tissue may contribute to adiposity and metabolic disease. Whether the cortisol regenerating enzyme, 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1), or glucocorticoid receptor (GRalpha) levels are altered in other adipose depots remains uncertain. Our objective was to determine the association between 11betaHSD1 and GRalpha mRNA levels in four distinct adipose depots and measures of obesity and the metabolic syndrome. RESEARCH METHODS AND PROCEDURES Adipose tissue biopsies were collected from subcutaneous (abdominal, thigh, gluteal) and intra-abdominal (omental) adipose depots from 21 women. 11betaHSD1 and GRalpha mRNA levels were measured by real-time polymerase chain reaction. Body composition, fat distribution, fat cell size, and blood lipid, glucose, and insulin levels were measured. RESULTS 11betaHSD1 mRNA was highest in abdominal subcutaneous (p < 0.001) and omental (p < 0.001) depots and was positively correlated with BMI and visceral adiposity in all depots. Omental 11betaHSD1 correlated with percent body fat (R = 0.462, p < 0.05), fat cell size (R = 0.72, p < 0.001), and plasma triglycerides (R = 0.46, p < 0.05). Conversely, GRalpha mRNA was highest in omental fat (p < 0.001). GRalpha mRNA was negatively correlated with BMI in the abdominal subcutaneous (R = -0.589, p < 0.05) and omental depots (R = -0.627, p < 0.05). Omental GRalpha mRNA was inversely associated with visceral adiposity (R = -0.507, p < 0.05), fat cell size (R = -0.52, p < 0.01), and triglycerides (R = -0.50, p < 0.05). DISCUSSION Obesity was associated with elevated 11betaHSD1 mRNA in all adipose compartments. GRalpha mRNA is reduced in the omental depot with obesity. The novel correlation of 11betaHSD1 with omental fat cell size, independent of obesity, suggests that intracellular cortisol regeneration is a strong predictor of hypertrophy in the omentum.
Collapse
Affiliation(s)
- Zoi Michailidou
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | | | |
Collapse
|
221
|
Nakano S, Inada Y, Masuzaki H, Tanaka T, Yasue S, Ishii T, Arai N, Ebihara K, Hosoda K, Maruyama K, Yamazaki Y, Shibata N, Nakao K. Bezafibrate regulates the expression and enzyme activity of 11beta-hydroxysteroid dehydrogenase type 1 in murine adipose tissue and 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2007; 292:E1213-22. [PMID: 17190905 DOI: 10.1152/ajpendo.00340.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A clinically employed antihyperlipidemic drug, bezafibrate, has been characterized as a PPAR(alpha, -gamma, and -delta) pan-agonist in vitro. Recent extended trials have highlighted its antidiabetic properties in humans. However, the underlying molecular mechanism is not fully elucidated. The present study was designed to explore potential regulatory mechanisms of intracellular glucocorticoid reactivating enzyme, 11beta-HSD1 and anti-diabetic hormone, adiponectin by bezafibrate in murine adipose tissue, and cultured adipocytes. Treatment of db/db mice with bezafibrate significantly ameliorated hyperglycemia and insulin resistance, accompanied by a marked reduction of triglyceride and nonesterified fatty acids. Despite equipotent in lipid-lowering effects, another fibrate, fenofibrate, did not show such beneficial effects on glycemic control. Treatment of bezafibrate caused a marked decrease in the mRNA level of 11beta-HSD1 preferentially in adipose tissue of db/db mice (-47%, P<0.05), concomitant with a significant increase in plasma adiponectin level (+37%, P<0.01). Notably, treatment of bezafibrate caused a marked decrease in the mRNA level (-34%, P<0.01) and enzyme activity (-32%, P<0.01) of 11beta-HSD1, whereas the treatment substantially augmented the expression (+71%, P<0.01) and secretion (+27%, P<0.01) of adiponectin in 3T3-L1 adipocytes. Knockdown of 11beta-HSD1 by siRNA confirmed that 11beta-HSD1 acts as a distinct oxoreductase in adipocytes and validated the enzyme activity assays in the present study. Effects of bezafibrate on regulation of 11beta-HSD1 and adiponectin in murine adipocytes were comparable with those in thiazolidinediones. This is the first demonstration that bezafibrate directly regulates 11beta-HSD1 and adiponectin in murine adipocytes, both of which may contribute to metabolically-beneficial effects by bezafibrate.
Collapse
Affiliation(s)
- Shigeru Nakano
- Pharmacology Research Laboratory R and D, Kissei Pharmaceutica, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Tomlinson JW, Sherlock M, Hughes B, Hughes SV, Kilvington F, Bartlett W, Courtney R, Rejto P, Carley W, Stewart PM. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 activity in vivo limits glucocorticoid exposure to human adipose tissue and decreases lipolysis. J Clin Endocrinol Metab 2007; 92:857-64. [PMID: 17200165 PMCID: PMC7611655 DOI: 10.1210/jc.2006-2325] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The pathophysiological importance of glucocorticoids (GCs) is exemplified by patients with Cushing's syndrome who develop hypertension, obesity, and insulin resistance. At a cellular level, availability of GCs to the glucocorticoid and mineralocorticoid receptors is controlled by the isoforms of 11beta-hydroxysteroid dehydrogenase (11beta-HSD). In liver and adipose tissue, 11beta-HSD1 converts endogenous, inactive cortisone to active cortisol but also catalyzes the bioactivation of the synthetic prednisone to prednisolone. OBJECTIVE The objective of the study was to compare markers of 11beta-HSD1 activity and demonstrate that inhibition of 11beta-HSD1 activity limits glucocorticoid availability to adipose tissue. DESIGN AND SETTING This was a clinical study. PATIENTS Seven healthy male volunteers participated in the study. INTERVENTION Intervention included carbenoxolone (CBX) single dose (100 mg) and 72 hr of continuous treatment (300 mg/d). MAIN OUTCOME MEASURES Inhibition of 11beta-HSD1 was monitored using five different mechanistic biomarkers (serum cortisol and prednisolone generation, urinary corticosteroid metabolite analysis by gas chromatography/mass spectrometry, and adipose tissue microdialysis examining cortisol generation and glucocorticoid-mediated glycerol release). RESULTS Each biomarker demonstrated reduced 11beta-HSD1 activity after CBX administration. After both a single dose and 72 hr of treatment with CBX, cortisol and prednisolone generation decreased as did the urinary tetrahydrocortisol+5alpha-tetrahydrocortisol to tetrahydrocortisone ratio. Using adipose tissue microdialysis, we observed decreased interstitial fluid cortisol availability with CBX treatment. Furthermore, a functional consequence of 11beta-HSD1 inhibition was observed, namely decreased prednisone-induced glycerol release into adipose tissue interstitial fluid indicative of inhibition of GC-mediated lipolysis. CONCLUSION CBX is able to inhibit rapidly the generation of active GC in human adipose tissue. Importantly, limiting GC availability in vivo has functional consequences including decreased glycerol release.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- M.R.C.P., Institute of Biomedical Research, Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007; 5:167-79. [PMID: 17339025 DOI: 10.1016/j.cmet.2007.01.002] [Citation(s) in RCA: 938] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 12/12/2006] [Accepted: 01/10/2007] [Indexed: 02/07/2023]
Abstract
Insulin resistance occurs in 20%-25% of the human population, and the condition is a chief component of type 2 diabetes mellitus and a risk factor for cardiovascular disease and certain forms of cancer. Herein, we demonstrate that the sphingolipid ceramide is a common molecular intermediate linking several different pathological metabolic stresses (i.e., glucocorticoids and saturated fats, but not unsaturated fats) to the induction of insulin resistance. Moreover, inhibition of ceramide synthesis markedly improves glucose tolerance and prevents the onset of frank diabetes in obese rodents. Collectively, these data have two important implications. First, they indicate that different fatty acids induce insulin resistance by distinct mechanisms discerned by their reliance on sphingolipid synthesis. Second, they identify enzymes required for ceramide synthesis as therapeutic targets for combating insulin resistance caused by nutrient excess or glucocorticoid therapy.
Collapse
Affiliation(s)
- William L Holland
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Paterson JM, Holmes MC, Kenyon CJ, Carter R, Mullins JJ, Seckl JR. Liver-selective transgene rescue of hypothalamic-pituitary-adrenal axis dysfunction in 11beta-hydroxysteroid dehydrogenase type 1-deficient mice. Endocrinology 2007; 148:961-6. [PMID: 17170103 PMCID: PMC6443039 DOI: 10.1210/en.2006-0603] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) acts as a reductase in vivo, regenerating active glucocorticoids within cells from circulating inert 11-keto forms, thus amplifying local glucocorticoid action. 11beta-HSD1 is predominantly expressed in liver and also adipose tissue and brain. Mice deficient in 11beta-HSD1 (11beta-HSD1(-/-)) exhibit adrenal hyperplasia, raised basal corticosterone levels, and increased hypothalamic-pituitary-adrenal (HPA) axis responses to stress. Whereas reduced peripheral glucocorticoid regeneration may explain adrenal hypertrophy and exaggerated stress responses, elevated basal glucocorticoid levels support a role for 11beta-HSD1 within the brain in amplifying glucocorticoid feedback. To test this hypothesis, apolipoprotein E-HSD1 mice overexpressing 11beta-HSD1 in liver were intercrossed with 11beta-HSD1(-/-) mice to determine whether complementation of hepatic 11beta-HSD1 can restore adrenal and HPA defects. Transgene-mediated delivery of 11beta-HSD1 activity to the liver rescued adrenal hyperplasia and reversed exaggerated HPA stress responses in 11beta-HSD1(-/-) mice. Unexpectedly, elevated nadir plasma corticosterone levels were also restored to control levels. Consistent with this, CYP11B1 mRNA expression in the adrenal cortex of 11beta-HSD1(-/-) mice was increased by 50% but returned to control levels in 11beta-HSD1(-/-) mice bearing the apolipoprotein E-HSD1 transgene. 11beta-HSD1(-/-) mice have lower plasma glucose levels, but the fall in plasma corticosterone with sucrose supplementation was similar in 11beta-HSD1(-/-) and control mice, suggesting glucose deficiency is not the main mechanism whereby basal corticosterone levels are elevated in the null mice. Thus, regeneration of glucocorticoids by 11beta-HSD1 in the liver normalizes all aspects of HPA axis dysregulation in 11beta-HSD1(-/-) mice, without restoration of enzyme activity in key feedback areas of the forebrain. Therefore, hepatic glucocorticoid metabolism influences basal as well as stress-associated functions of the HPA axis.
Collapse
Affiliation(s)
- Janice M Paterson
- Centre for Cardiovascular Science, Endocrinology Unit, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
225
|
Achard V, Boullu-Ciocca S, Desbriere R, Nguyen G, Grino M. Renin receptor expression in human adipose tissue. Am J Physiol Regul Integr Comp Physiol 2007; 292:R274-82. [PMID: 17197644 DOI: 10.1152/ajpregu.00439.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adipose tissue synthesizes all components of the renin-angiotensin system. The renin receptor (RenR) is able, on renin binding, to increase its efficiency to generate angiotensin I from angiotensinogen. We demonstrate that RenR is specifically synthesized in the stromal portion of human adipose tissue in both isolated interadipocyte stromal cells and in stromal areas. RenR is expressed at the periphery of cells, strongly suggesting a membranal localization. RenR protein expression in primary cultures of human stromal cells decreased significantly during differentiation, whereas RenR mRNA levels did not change, demonstrating that RenR was expressed in both preadipocyte and nonpreadipocyte cells, and was regulated at a posttranscriptional level. Double-labeling immunohistochemistry of human adipose tissue sections revealed that RenR was colocalized with renin, whereas incubation of 3T3-L1, a preadipocyte cell line, with renin stimulated the phosphorylation state of the intracellular signaling pathway ERK 1/2, and short exposure of human adipose stromal cells in primary culture to renin was followed by a long-lasting dose-dependent increase of angiotensin I generation, indicating that adipose RenR is functional. We show, using a large set of human adipose tissue biopsies, that RenR expression was increased in visceral compared with subcutaneous adipose tissue of lean and obese patients. Taken together with our finding that RenR was colocalized with plasminogen activator inhibitor type 1, the main inhibitor of the fibrinolytic system in visceral adipose tissue, the above-mentioned data suggest that RenR plays a role in obesity-induced visceral adipose tissue accumulation and its accompanying cardiovascular complications.
Collapse
Affiliation(s)
- Vincent Achard
- Inserm UMR 626, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | | | | | | | |
Collapse
|
226
|
Bujalska IJ, Durrani OM, Abbott J, Onyimba CU, Khosla P, Moosavi AH, Reuser TTQ, Stewart PM, Tomlinson JW, Walker EA, Rauz S. Characterisation of 11beta-hydroxysteroid dehydrogenase 1 in human orbital adipose tissue: a comparison with subcutaneous and omental fat. J Endocrinol 2007; 192:279-88. [PMID: 17283228 PMCID: PMC1994563 DOI: 10.1677/joe-06-0042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucocorticoids (GCs) have a profound effect on adipose biology increasing tissue mass causing central obesity. The pre-receptor regulation of GCs by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) that activates cortisol from cortisone has been postulated as a fundamental mechanism underlying the metabolic syndrome mediating adipocyte hyperplasia and hypertrophy in the omental (OM) depot. Orbital adipose tissue (OF) is the site of intense inflammation and tissue remodelling in several orbital inflammatory disease states. In this study, we describe features of the GC metabolic pathways in normal human OF depot and compare it with subcutaneous (SC) and OM depots. Using an automated histological characterisation technique, OF adipocytes were found to be significantly smaller (parameters: area, maximum diameter and perimeter) than OM and SC adipocytes (P<0 x 001). Although immunohistochemical analyses demonstrated resident CD68+ cells in all three whole tissue adipose depots, OF CD68 mRNA and protein expression exceeded that of OM and SC (mRNA, P<0 x 05; protein, P<0 x 001). In addition, there was higher expression of glucocorticoid receptor (GR)alpha mRNA in the OF whole tissue depot (P<0 x 05). Conversely, 11beta-HSD1 mRNA together with the markers of late adipocyte differentiation (FABP4 and G3PDH) were significantly lower in OF. Primary cultures of OF preadipocytes demonstrated predominant 11beta-HSD1 oxo-reductase activity with minimal dehydrogenase activity. Orbital adipocytes are smaller, less differentiated, and express low levels of 11beta-HSD1 but abundant GRalpha compared with SC and OM. OF harbours a large CD68+ population. These characteristics define an orbital microenvironment that has the potential to respond to sight-threatening orbital inflammatory disease.
Collapse
Affiliation(s)
- Iwona J Bujalska
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
| | - Omar M Durrani
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
| | - Joseph Abbott
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
| | - Claire U Onyimba
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
| | - Pamela Khosla
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
| | | | | | - Paul M Stewart
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
| | - Jeremy W Tomlinson
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
| | - Elizabeth A Walker
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
- (Requests for offprints should be addressed to S Rauz Academic; )
| |
Collapse
|
227
|
Abstract
Considerable evidence has suggested that excessive weight gain is the most common cause of arterial hypertension. This association has been observed in several populations, in different regions of the world. Obesity-hypertension, a term that underscores the link between these two deleterious conditions, is an important public health challenge, because of its high frequency and concomitant risk of cardiovascular and kidney diseases. The obesity-hypertension pandemic imposes a considerable economic burden on societies, directly reflecting on healthcare system costs. Increased renal sodium reabsorption and blood volume expansion are central features in the development of obesity-hypertension. Overweight is also associated with increased sympathetic activity. Leptin, a protein expressed in and secreted by adipocytes, is the main factor linking obesity, increased sympathetic nervous system activity and hypertension. The renin-angiotensin-aldosterone system has also been causally implicated in obesity-hypertension, because angiotensinogen is expressed in and secreted by adipose tissue. Hypoadiponectinemia, high circulating levels of free fatty acids and increased vascular production of endothelin-1 (ET-1) have been reported as potential mechanisms for obesity-hypertension. Lifestyle changes are effective in obesity-hypertension control, though pharmacological treatment is frequently necessary. Despite the consistency of the mechanistic approach in explaining the causal relation between hypertension and obesity, there is yet no evidence that one class of drug is superior to the others in controlling obesity-hypertension. In this review, we present the current knowledge and research in obesity-hypertension, exploring the epidemiologic evidence of the association, its probable pathophysiological mechanisms and treatment issues.
Collapse
Affiliation(s)
- E A Francischetti
- Hypertension Clinic, Laboratory of Clinical and Experimental Pathophysiology, CLINEX, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | | |
Collapse
|
228
|
|
229
|
Drolet B, Simard C, Poirier P. Impact of weight-loss medications on the cardiovascular system: focus on current and future anti-obesity drugs. Am J Cardiovasc Drugs 2007; 7:273-88. [PMID: 17696568 DOI: 10.2165/00129784-200707040-00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Overweight and obesity have been rising dramatically worldwide and are associated with numerous co-morbidities such as cardiovascular disease (CVD), type 2 diabetes mellitus, hypertension, certain cancers, and sleep apnea. In fact, obesity is an independent risk factor for CVD and CVD risks have also been documented in obese children. The majority of overweight and obese patients who achieve a significant short-term weight loss do not maintain their lower bodyweight in the long term. This may be due to a lack of intensive counseling and support from a facilitating environment including dedicated healthcare professionals such as nutritionists, kinesiologists, and behavior specialists. As a result, there has been a considerable focus on the role of adjunctive therapy such as pharmacotherapy for long-term weight loss and weight maintenance. Beyond an unfavorable risk factor profile, overweight and obesity also impact upon heart structure and function. Since the beginning, the quest for weight loss drugs has encountered warnings from regulatory agencies and the withdrawal from the market of efficient but unsafe medications. Fenfluramine was withdrawn from the market because of unacceptable pulmonary and cardiac adverse effects. Nevertheless, there is extensive research directed at the development of new anti-obesity compounds. The effect of these molecules on CVD risk factors has been studied and reported but information regarding their impact on the cardiovascular system is sparse. Thus, instead of looking at the benefit of weight loss on metabolism and risk factor management, this article discusses the impact of weight loss medications on the cardiovascular system. The potential interaction of available and potential new weight loss drugs with heart function and structure is reviewed.
Collapse
Affiliation(s)
- Benoit Drolet
- Institut Universitaire de Cardiologie et de Pneumologie, Laval Hospital, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
230
|
Mundt S, Solly K, Thieringer R, Hermanowski-Vosatka A. Development and application of a scintillation proximity assay (SPA) for identification of selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1. Assay Drug Dev Technol 2006; 3:367-75. [PMID: 16180991 DOI: 10.1089/adt.2005.3.367] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pre-receptor metabolism of glucocorticoids by the 11beta-hydroxysteroid dehydrogenase (11betaHSD) enzymes has been implicated in the etiology of the metabolic syndrome. Recent studies have shown that alterations in the activity of the type 1 isozyme can affect many aspects of the disease. This paper describes the optimization and application of a high-throughput scintillation proximity assay (SPA) developed to identify selective specific inhibitors of 11betaHSD1. Microsomes containing 11betaHSD1 were incubated in the presence of NADPH and [3H]cortisone, and the product, [3H]cortisol, was specifically detected in the mixture by a monoclonal antibody coupled to protein A-coated SPA beads with greater than 2 log higher affinity for cortisol than cortisone. Dimethyl sulfoxide and NADPH co-substrate additions were optimized for 11betaHSD1 reductase activity. Titrated test compound, when introduced into the optimized assay, reproducibly inhibited the enzyme and yielded consistent IC50 data in either 96- or 384-well format. An 11betaHSD2 counterscreen was performed by incubating 11betaHSD2 microsomes with [3H]cortisol and NAD+ and monitoring substrate disappearance.
Collapse
Affiliation(s)
- S Mundt
- Department of Cardiovascular Diseases, Merck & Co., Rahway, NJ 07065, USA.
| | | | | | | |
Collapse
|
231
|
Rohde JJ, Pliushchev MA, Sorensen BK, Wodka D, Shuai Q, Wang J, Fung S, Monzon KM, Chiou WJ, Pan L, Deng X, Chovan LE, Ramaiya A, Mullally M, Henry RF, Stolarik DF, Imade HM, Marsh KC, Beno DWA, Fey TA, Droz BA, Brune ME, Camp HS, Sham HL, Frevert EU, Jacobson PB, Link JT. Discovery and Metabolic Stabilization of Potent and Selective 2-Amino-N-(adamant-2-yl) Acetamide 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors. J Med Chem 2006; 50:149-64. [PMID: 17201418 DOI: 10.1021/jm0609364] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Starting from a rapidly metabolized adamantane 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitor 22a, a series of E-5-hydroxy-2-adamantamine inhibitors, exemplified by 22d and (+/-)-22f, was discovered. Many of these compounds are potent inhibitors of 11beta-HSD1 and are selective over 11beta-HSD2 for multiple species (human, mouse, and rat), unlike other reported species-selective series. These compounds have good cellular potency and improved microsomal stability. Pharmacokinetic profiling in rodents indicated moderate to large volumes of distribution, short half-lives, and a pharmacokinetic species difference with the greatest exposure measured in rat with 22d. One hour postdose liver, adipose, and brain tissue 11beta-HSD1 inhibition was confirmed with (+/-)-22f in a murine ex vivo assay. Although 5,7-disubstitued-2-adamantamines provided greater stability, a single, E-5-position, polar functional group afforded inhibitors with the best combination of stability, potency, and selectivity. These results indicate that adamantane metabolic stabilization sufficient to obtain short-acting, potent, and selective 11beta-HSD1 inhibitors has been discovered.
Collapse
Affiliation(s)
- Jeffrey J Rohde
- Metabolic Disease Research, Abbott Laboratories, Department R4CB, Building AP52, Abbott Park, Illinois 60064-3500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Odermatt A, Gumy C, Atanasov AG, Dzyakanchuk AA. Disruption of glucocorticoid action by environmental chemicals: potential mechanisms and relevance. J Steroid Biochem Mol Biol 2006; 102:222-31. [PMID: 17045799 DOI: 10.1016/j.jsbmb.2006.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, "glucocorticoid disruptors" can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) pre-receptor enzymes, by direct inhibition of 11beta-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.
Collapse
Affiliation(s)
- Alex Odermatt
- Department of Nephrology and Hypertension, Department of Clinical Research, University of Berne, Freiburgstrasse 15, 3010 Berne, Switzerland.
| | | | | | | |
Collapse
|
233
|
Abstract
Adipose tissue secretes factors that control various physiological systems. The fall in leptin during fasting mediates hyperphagia and suppresses thermogenesis, thyroid and reproductive hormones, and immune system. On the other hand, rising leptin levels in the fed state stimulate fatty acid oxidation, decrease appetite, and limit weight gain. These divergent effects of leptin occur through neuronal circuits in the hypothalamus and other brain areas. Leptin also regulates the activities of enzymes involved in lipid metabolism, e.g., AMP-activated protein kinase and stearoyl-CoA desaturase-1, and also interacts with insulin signaling in the brain. Adiponectin enhances fatty acid oxidation and insulin sensitivity, in part by stimulating AMP-activated protein kinase phosphorylation and activity in liver and muscle. Moreover, adiponectin decreases body fat by increasing energy expenditure and lipid catabolism. These effects involve peripheral and possibly central mechanisms. Adipose tissue mediates interconversion of steroid hormones and secretes proinflammatory cytokines, vasoactive peptides, and coagulation and complement proteins. Understanding the actions of these "adipocytokines" will provide insight into the pathogenesis and treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Rexford S Ahima
- University of Pennsylvania School of Medicine, Division of Endocrinology, Diabetes and Metabolism, 764 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
234
|
Vinson GP. Angiotensin II, corticosteroids, type II diabetes and the metabolic syndrome. Med Hypotheses 2006; 68:1200-7. [PMID: 17134848 DOI: 10.1016/j.mehy.2006.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/04/2006] [Indexed: 11/23/2022]
Abstract
Syndrome X, the Metabolic Syndrome, and type II diabetes are closely related diseases that share risk factors and symptoms, notably insulin resistance. Several factors have been proposed either to mediate the disease(s) or to be their causes, and most converge on the endocrine/paracrine functions of the adipocyte. A common feature of such systems is their relative autonomy from systemic negative feedback regulation, for example by the HPA axis. We draw particular attention to two such mechanisms, both of which are associated with, and can cause, insulin resistance: the extra-adrenal production of corticosteroids, and the tissue renin angiotensin system of the adipocyte. These show another feature: the inter-regulation of glucocorticoid action and the RAS by positive feedback. Cortisol enhances the expression of 11 beta-HSD 1, and also of angiotensinogen and angiotensin type 1 receptors. In turn, angiotensin can stimulate further corticosteroid production, from the adrenal and perhaps from extra-adrenal sources. The instability inherent in such positive loops could account for the progressive nature of the disease(s), suggesting ways to break the circle.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
235
|
Ishii T, Masuzaki H, Tanaka T, Arai N, Yasue S, Kobayashi N, Tomita T, Noguchi M, Fujikura J, Ebihara K, Hosoda K, Nakao K. Augmentation of 11beta-hydroxysteroid dehydrogenase type 1 in LPS-activated J774.1 macrophages--role of 11beta-HSD1 in pro-inflammatory properties in macrophages. FEBS Lett 2006; 581:349-54. [PMID: 17239856 DOI: 10.1016/j.febslet.2006.11.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/03/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Macrophage infiltration in obese adipose tissue provokes local inflammation and insulin resistance. Evidence has accumulated that activation of 11beta-HSD1 in adipocytes is critically involved in dysfunction of adipose tissue. However, the potential role of 11beta-HSD1 in macrophages still remains unclear. We here demonstrate that a murine macrophage cell line, J774.1 cells expressed 11beta-HSD1 mRNA and reductase activity, both of which were augmented by lipopolysaccharide (LPS)-induced cell activation. Three kinds of pharmacological inhibition of 11beta-HSD1 in LPS-treated macrophages significantly suppressed the expression and secretion of interleukin 1beta, tumor necrosis factor alpha or monocyte chemoattractant protein 1, thereby highlighting a novel role of 11beta-HSD1 in pro-inflammatory properties of activated macrophages.
Collapse
Affiliation(s)
- Takako Ishii
- Division of Endocrinology and Metabolism, Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Witchel SF, DeFranco DB. Mechanisms of Disease: regulation of glucocorticoid and receptor levels—impact on the metabolic syndrome. ACTA ACUST UNITED AC 2006; 2:621-31. [PMID: 17082809 DOI: 10.1038/ncpendmet0323] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 06/12/2006] [Indexed: 12/18/2022]
Abstract
Glucocorticoids exert their effects in target tissues predominantly through their interaction with the glucocorticoid receptor, a member of the nuclear receptor superfamily of transcription factors. Over the years many studies have linked hormone responsiveness, both in vitro and in vivo, to the levels of both glucocorticoid and glucocorticoid receptor; furthermore, an impact of glucocorticoid receptor subcellular trafficking on hormone response has been revealed. This review will focus on the molecular mechanisms responsible for the regulation of glucocorticoid receptor trafficking and expression, and will highlight work that revealed selective physiological effects of altered glucocorticoid receptor expression. The role of alterations in glucocorticoid levels and glucocorticoid receptor function in the metabolic syndrome will also be discussed.
Collapse
Affiliation(s)
- Selma F Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh, and University of Pittsburgh School of Medicine, Pittsburg, PA 15261, USA
| | | |
Collapse
|
237
|
Basu R, Edgerton DS, Singh RJ, Cherrington A, Rizza RA. Splanchnic cortisol production in dogs occurs primarily in the liver: evidence for substantial hepatic specific 11beta hydroxysteroid dehydrogenase type 1 activity. Diabetes 2006; 55:3013-9. [PMID: 17065337 DOI: 10.2337/db06-0601] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eight dogs underwent combined hepatic/portal vein catheterization and infusion of D4-cortisol in order to determine the relative contributions of the viscera and liver to splanchnic cortisol production. D4-cortisol concentrations progressively decreased from 2.6 +/- 0.1 to 2.4 +/- 0.1 to 1.7 +/- 0.1 microg/dl (P < 0.001 by ANOVA) from hepatic artery to portal vein to hepatic vein, respectively, indicating 8 +/- 3 and 28 +/- 3% extraction across the viscera and liver, respectively. On the other hand, hepatic artery, portal vein, and hepatic vein cortisol concentrations did not differ (0.31 +/- 0.12 vs. 0.28 +/- 0.11 vs. 0.27 +/- 0.10 microg/dl, respectively), indicating zero net cortisol balance. This meant that 1.0 +/- 0.1 microg/min of cortisol was produced within the splanchnic bed, all of which occurred within the liver (1.2 +/- 0.1 microg/min). On the other hand, visceral cortisol production did not differ from zero (-0.2 +/- 0.2 microg/min; P < 0.001 vs. liver). Flux through the 11beta hydroxysteroid dehydrogenase (HSD) type 1 pathway can be measured by determining the rate of conversion of D4-cortisol to D3-cortisol. D3-cortisol concentrations were lower in the portal vein than hepatic artery (0.45 +/- 0.03 vs. 0.48 +/- 0.02, respectively; P < 0.01) but did not differ in the portal vein and hepatic vein, indicating net uptake across the viscera but zero balance across the liver. D3-cortisol production with the viscera and liver averaged 0.2 +/- 0.1 microg/min (P = NS vs. zero production) and 0.6 +/- 0.1 microg/min (P < 0.001 vs. zero production; P < 0.001 vs. viscera production), respectively. We conclude that most, if not all, of splanchnic cortisol production occurs within the liver. Taken together, these data suggest that the high local cortisol concentrations generated via the 11beta HSD type 1 pathway within the liver likely contribute to the regulation of hepatic glucose, fat, and protein metabolism.
Collapse
Affiliation(s)
- Rita Basu
- Mayo Clinic, 200 1st St. SW, Rm 5-194 Joseph, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
238
|
Li X, Lindquist S, Chen R, Myrnäs T, Angsten G, Olsson T, Hernell O. Depot-specific messenger RNA expression of 11β-hydroxysteroid dehydrogenase type 1 and leptin in adipose tissue of children and adults. Int J Obes (Lond) 2006; 31:820-8. [PMID: 17060929 DOI: 10.1038/sj.ijo.0803470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To compare expression of messenger RNA (mRNA) coding for the cortisol regenerating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), and the adipocytokines leptin and resistin in paired biopsies of subcutaneous adipose tissue (SC) and omental adipose tissue (OM) from children. DESIGN Paired biopsies (SC and OM) were obtained from 54 children (age 0.17-16 years, body mass index (BMI) 12.5-28.3 kg/m(2), BMI standard deviation score (SDS) -2.5-4.5) and 16 adults (age 27-79 years, BMI 19-46 kg/m(2)) undergoing open abdominal surgery. mRNA levels of 11beta-HSD1, leptin and resistin were measured using quantitative real-time polymerase chain reaction (PCR). RESULTS 11beta-HSD1 mRNA level was higher in OM than in SC (P<0.05), whereas leptin mRNA was higher in SC than in OM (P<0.001). There was no difference in the resistin mRNA level between SC and OM. These results were consistent in children and adults. In children, 11beta-HSD1 mRNA in SC was positively associated with BMI SDS (P<0.05), whereas in OM it was positively associated with age (P<0.05). The association between 11beta-HSD1 expression and age remained significant after adjustment for BMI SDS and gender. Leptin mRNA was positively associated with BMI SDS (SC: P<0.001, OM: P<0.001) but not with age in children. In multiple regression analyses, including anthropometric variables and age, BMI SDS was independently associated with mRNA levels of 11beta-HSD1 (P<0.05) and leptin (P<0.001) in SC. When normal weight and overweight children were analyzed separately, 11beta-HSD1 mRNA levels were positively associated with leptin in OM in the overweight group (P<0.05). CONCLUSION There are depot-specific differences in mRNA levels of 11beta-HSD1 and leptin in children and adults. The positive association of 11beta-HSD1 mRNA in OM with age may reflect a causal role in visceral fat accumulation during growth. Increasing 11beta-HSD1 and leptin mRNA in SC with increasing BMI SDS could suggest that the risk of metabolic consequences of obesity may be established early in life.
Collapse
Affiliation(s)
- X Li
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
239
|
Sorensen B, Winn M, Rohde J, Shuai Q, Wang J, Fung S, Monzon K, Chiou W, Stolarik D, Imade H, Pan L, Deng X, Chovan L, Longenecker K, Judge R, Qin W, Brune M, Camp H, Frevert EU, Jacobson P, Link JT. Adamantane sulfone and sulfonamide 11-beta-HSD1 Inhibitors. Bioorg Med Chem Lett 2006; 17:527-32. [PMID: 17070044 DOI: 10.1016/j.bmcl.2006.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/03/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
Potent and selective adamantane sulfone and sulfonamide inhibitors of 11-beta-HSD-1 have been discovered. Selected compounds from these series have robust pharmacokinetic profiles and strongly inhibit liver, fat, and brain HSD1 for extended periods after oral dosing.
Collapse
Affiliation(s)
- Bryan Sorensen
- Abbott, Dept. 47F, Bldg. AP-10, Rm. 301, 100 Abbott Park Road, Abbott Park, IL 60064-6098, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Malouitre SDM, Barker S, Puddefoot JR, Jalili J, Glover HR, Vinson GP. Regulation of hepatic steroid receptors and enzymes by the 3beta-hydroxysteroid dehydrogenase inhibitor trilostane. J Steroid Biochem Mol Biol 2006; 101:97-105. [PMID: 16893643 DOI: 10.1016/j.jsbmb.2006.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Therapies designed to treat hypercortisolism have usually sought to reduce circulating glucocorticoid concentrations, however the local tissue endocrine environment could be an alternative target. The 3beta-hydroxysteroid dehydrogenase Delta5-4 isomerase (3beta-HSD) inhibitor trilostane is of interest, since, although it is only moderately and transiently effective in reducing circulating steroid, it is remarkably effective in alleviating Cushing's symptoms in veterinary applications. To seek alternative modes of action, male Wistar rats were treated with trilostane. Although final circulating corticosteroid concentrations were unaffected, liver 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) transcription and translation was significantly increased, whereas 3beta-HSD was not affected either in liver or adrenal. Glucocorticoid receptor (GR) mRNA was down-regulated, and mineralocorticoid receptor (MR) up-regulated by trilostane treatment: no changes in 11beta-HSD1 mRNA were observed. Trilostane also had no direct effect on GR response element-mediated gene transcription. The results show that the tissue endocrine environment is affected by trilostane treatment in the absence of sustained changes in circulating corticosteroid. The combination of increased 11beta-HSD2 and reduced GR expression in target organs could be expected to ameliorate the effects of excess glucocorticoid, suggesting new therapeutic approaches.
Collapse
Affiliation(s)
- S D M Malouitre
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | |
Collapse
|
241
|
Densmore VS, Morton NM, Mullins JJ, Seckl JR. 11 beta-hydroxysteroid dehydrogenase type 1 induction in the arcuate nucleus by high-fat feeding: A novel constraint to hyperphagia? Endocrinology 2006; 147:4486-95. [PMID: 16763061 DOI: 10.1210/en.2006-0106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
11 beta-Hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) catalyzes regeneration of active intracellular glucocorticoids in fat, liver, and discrete brain regions. Although overexpression of 11 beta-HSD1 in adipose tissue causes hyperphagia and the metabolic syndrome, male 11 beta-HSD1 null (11 beta-HSD1-/-) mice resist metabolic disease on high-fat (HF) diet, but also show hyperphagia. This suggests 11 beta-HSD1 may influence the central actions of glucocorticoids on appetite and perhaps energy balance. We show that 11 beta-HSD1-/- mice express lower hypothalamic mRNA levels of the anorexigenic cocaine and amphetamine-regulated transcript and melanocortin-4 receptor, but higher levels of the orexigenic melanin-concentrating hormone mRNAs than controls (C57BL/6J) on a low-fat diet (11% fat). HF (58% fat) diet promoted transient ( approximately 8 wk) hyperphagia and decreased food efficiency in 11 beta-HSD1-/- mice and decreased melanocortin-4 receptor mRNA expression in control but not 11 beta-HSD1-/- mice. 11 beta-HSD1-/- mice showed a HF-mediated up-regulation of the orexigenic agouti-related peptide (AGRP) mRNA in the arcuate nucleus which paralleled the transient HF hyperphagia. Conversely, control mice showed a rapid (48 h) HF-mediated increase in arcuate 11 beta-HSD1 associated with subsequent down-regulation of AGRP. This regulatory pattern was unexpected because glucocorticoids increase AGRP, suggesting an alternate hyperphagic mechanism despite partial colocalization of 11 beta-HSD1 and AGRP in arcuate nucleus cells. One major alternate mechanism governing selective fat ingestion and the AGRP system is endogenous opioids. Treatment of HF-fed mice with the mu opioid agonist DAMGO recapitulated the HF-induced dissociation of arcuate AGRP expression between control and 11 beta-HSD1-/- mice, whereas the opioid antagonist naloxone given with HF induced a rise in arcuate AGRP and blocked HF-diet induction of 11 beta-HSD1. These data suggest that 11 beta-HSD1 in brain plays a role in the adaptive restraint of excess fat intake, in part by increasing inhibitory opioid tone on AGRP expression in the arcuate nucleus.
Collapse
Affiliation(s)
- Valerie S Densmore
- Endocrinology Unit, Queen's Medical Research Institute, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | | | | | | |
Collapse
|
242
|
Thieringer R, Hermanowski-Vosatka A. Inhibition of 11beta-HSD1 as a novel treatment for the metabolic syndrome: do glucocorticoids play a role? Expert Rev Cardiovasc Ther 2006; 3:911-24. [PMID: 16181035 DOI: 10.1586/14779072.3.5.911] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The metabolic syndrome (syndrome X) is a cluster of risk factors and a common cause of cardiovascular disease in humans. Although the underlying mechanism for metabolic syndrome is still poorly understood, recent clinical data and studies with transgenic animals implicate elevated intracellular glucocorticoid tone in the etiology of metabolic syndrome. Development of selective inhibitors of 11beta-hydroxysteroid dehydrogenase (11beta-HSD)-1 and their use in rodent animal disease models encompassing several aspects of metabolic syndrome indicate the possibility of therapeutic intervention. This review will focus on recent advances in our understanding of the role of 11beta-HSD1 in metabolic disorders and other disease processes.
Collapse
Affiliation(s)
- Rolf Thieringer
- Department of Cardiovascular Diseases, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA.
| | | |
Collapse
|
243
|
Bays H, Ballantyne C. Adiposopathy: why do adiposity and obesity cause metabolic disease? ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.4.389] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
244
|
Abstract
Adipose tissue plays a critical role in energy homeostasis, not only in storing triglycerides, but also responding to nutrient, neural, and hormonal signals and secreting adipokines that control feeding, thermogenesis, immunity, and neuroendocrine function. A rise in leptin signals satiety to the brain through receptors in hypothalamic and brainstem neurons. Leptin activates tyrosine kinase, Janus kinase 2, and signal transducer and activator of transcription 3, leading to increased levels of anorexigenic peptides, e.g., alpha-melanocyte stimulating hormone and cocaine- and amphetamine-regulated transcript, and inhibition of orexigenic peptides, e.g., neuropeptide Y and agouti-related peptide. Obesity is characterized by hyperleptinemia and hypothalamic leptin resistance, partly caused by induction of suppressor of cytokine signaling-3. Leptin falls rapidly during fasting and potently stimulates appetite, reduces thermogenesis, and mediates the inhibition of thyroid and reproductive hormones and activation of the hypothalamic-pituitary-adrenal axis. These actions are integrated by the paraventicular hypothalamic nucleus. Leptin also decreases glucose and stimulates lipolysis through central and peripheral pathways involving AMP-activated protein kinase (AMPK). Adiponectin is secreted exclusively by adipocytes and has been linked to glucose, lipid, and cardiovascular regulation. Obesity, diabetes, and atherosclerosis have been associated with reduced adiponectin levels, whereas adiponectin treatment reverses these abnormalities partly through activation of AMPK in liver and muscle. Administration of adiponectin in the brain recapitulates the peripheral actions to increase fatty acid oxidation and insulin sensitivity and reduce glucose. Although putative adiponectin receptors are widespread in peripheral organs and brain, it is uncertain whether adiponectin acts exclusively through these targets. As with leptin, adiponectin requires the central melanocortin pathway. Furthermore, adiponectin stimulates fatty acid oxidation and reduces glucose and lipids, at least in part, by activating AMPK in muscle and liver.
Collapse
Affiliation(s)
- Rexford S Ahima
- University of Pennsylvania School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Philadelphia, PA 19104, USA.
| |
Collapse
|
245
|
Schuster D, Maurer EM, Laggner C, Nashev LG, Wilckens T, Langer T, Odermatt A. The discovery of new 11beta-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J Med Chem 2006; 49:3454-66. [PMID: 16759088 DOI: 10.1021/jm0600794] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the conversion of biologically inactive 11-ketosteroids into their active 11beta-hydroxy derivatives and vice versa. Inhibition of 11beta-HSD1 has considerable therapeutic potential for glucocorticoid-associated diseases including obesity, diabetes, wound healing, and muscle atrophy. Because inhibition of related enzymes such as 11beta-HSD2 and 17beta-HSDs causes sodium retention and hypertension or interferes with sex steroid hormone metabolism, respectively, highly selective 11beta-HSD1 inhibitors are required for successful therapy. Here, we employed the software package Catalyst to develop ligand-based multifeature pharmacophore models for 11beta-HSD1 inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed several selective inhibitors. Efficient inhibition of recombinant human 11beta-HSD1 in intact transfected cells as well as endogenous enzyme in mouse 3T3-L1 adipocytes and C2C12 myotubes was demonstrated for compound 27, which was able to block subsequent cortisol-dependent activation of glucocorticoid receptors with only minor direct effects on the receptor itself. Our results suggest that inhibitor-based pharmacophore models for 11beta-HSD1 in combination with suitable cell-based activity assays, including such for related enzymes, can be used for the identification of selective and potent inhibitors.
Collapse
Affiliation(s)
- Daniela Schuster
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 52c, Austria
| | | | | | | | | | | | | |
Collapse
|
246
|
Pausova Z. From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr Opin Nephrol Hypertens 2006; 15:173-8. [PMID: 16481885 DOI: 10.1097/01.mnh.0000214775.42103.a5] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The environment created by modern industrialized societies has caused an unprecedented rise in the prevalence of obesity and obesity-related disorders, including hypertension. Mechanisms that underlie the development of hypertension in obese individuals are not very well understood; they are thought to involve activation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and oxidative stress. RECENT FINDINGS Recent research suggests that obesity-associated hypertension may be causally related to the accumulation of 'dysfunctional' adipose tissue characterized by the presence of 'large' lipid-laden adipocytes. SUMMARY Excess energy-intake leads to an expansion of adipose tissue, a hallmark of obesity. But morphology of the expanded adipose tissue differs across individuals, including the size of adipocytes. The presence of 'large' rather than 'small' adipocytes is associated with functional and structural abnormalities of adipose tissue. These include increased production of bioactive molecules, such as leptin, angiotensinogen, pro-inflammatory cytokines, and reactive oxygen species; insufficient capacity to accommodate excess energy-intake leading to ectopic fat storage in tissues and in turn insulin resistance and hyperinsulinemia; and augmented macrophage infiltration enhancing the production of pro-inflammatory cytokines and reactive oxygen species. Such a 'dysfunctional' adipose tissue may, in turn, induce activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system and oxidative stress and, hence, promote the development of obesity-associated hypertension.
Collapse
Affiliation(s)
- Zdenka Pausova
- Brain and Body Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
247
|
Gout J, Tirard J, Thévenon C, Riou JP, Bégeot M, Naville D. CCAAT/enhancer-binding proteins (C/EBPs) regulate the basal and cAMP-induced transcription of the human 11beta-hydroxysteroid dehydrogenase encoding gene in adipose cells. Biochimie 2006; 88:1115-24. [PMID: 16837116 DOI: 10.1016/j.biochi.2006.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Android obesity is often associated with a metabolic syndrome characterized, in particular, by a type 2 diabetes and cardiovascular problems. This could be induced by an excess of local production of glucocorticoids (GC) by adipose tissue (or other tissues). This production of GC by its target tissues depends on the 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) enzyme. Our aim was to characterize some mechanisms which control the expression of the human 11betaHSD1 gene (hHSD11B1) in preadipocytes. By using different luciferase constructs containing fragments of the hHSD11B1 promoter, we demonstrate that two members of the CCAAT/enhancer-binding protein family, C/EBPalpha and C/EBPbeta, are required for the basal transcriptional activity of HSD11B1 in 3T3-L1 preadipocyte cells. This effect depends on the binding of each isoform to specific binding sites. Mutation of either one of these sites induced a 40-50% decrease of the constitutive activity of the hHSD11B1 promoter. A forskolin treatment of 3T3-L1 preadipocyte cells induced an increased endogenous expression of HSD11B1. By transfection studies using the hHSD11B1 luciferase constructs, it appears that C/EBPbeta was strongly involved in this induction, as the forskolin stimulation was suppressed after mutation of the C/EBPbeta binding site. Part of the mechanism involved the increase of nuclear C/EBPbeta protein levels induced by forskolin and a phosphorylation step associated with an enhanced binding of the transcription factor to its site. These data indicate that members of the C/EBP family control intracellular levels of GC in preadipocytes via the regulation of the constitutive and cAMP-dependent expressions of HSD11B1.
Collapse
Affiliation(s)
- Johann Gout
- Inserm, U449-Inra UMR 1235, faculté de médecine Laennec, 8, rue Guillaume-Paradin, 69372 Lyon, cedex 08, France
| | | | | | | | | | | |
Collapse
|
248
|
Atanasov AG, Dzyakanchuk AA, Schweizer RAS, Nashev LG, Maurer EM, Odermatt A. Coffee inhibits the reactivation of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1: A glucocorticoid connection in the anti-diabetic action of coffee? FEBS Lett 2006; 580:4081-5. [PMID: 16814782 DOI: 10.1016/j.febslet.2006.06.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/12/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Recent epidemiological studies demonstrated a beneficial effect of coffee consumption for the prevention of type 2 diabetes, however, the underlying mechanisms remained unknown. We demonstrate that coffee extract, corresponding to an Italian Espresso, inhibits recombinant and endogenous 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity. The inhibitory component is heat-stable with considerable polarity. Coffee extract blocked 11beta-HSD1-dependent cortisol formation, prevented the subsequent nuclear translocation of the glucocorticoid receptor and abolished glucocorticoid-induced expression of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase. We suggest that at least part of the anti-diabetic effects of coffee consumption is due to inhibition of 11beta-HSD1-dependent glucocorticoid reactivation.
Collapse
Affiliation(s)
- Atanas G Atanasov
- Division of Nephrology and Hypertension, Department of Clinical Research, University of Berne, Freiburgstrasse 15, 3010 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
249
|
Bruley C, Lyons V, Worsley AGF, Wilde MD, Darlington GD, Morton NM, Seckl JR, Chapman KE. A novel promoter for the 11beta-hydroxysteroid dehydrogenase type 1 gene is active in lung and is C/EBPalpha independent. Endocrinology 2006; 147:2879-85. [PMID: 16543369 DOI: 10.1210/en.2005-1621] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) increases intracellular glucocorticoid action by converting inactive to active glucocorticoids (cortisol, corticosterone) within cells. It is highly expressed in glucocorticoid target tissues including liver and lung, and at modest levels in adipose tissue and brain. A selective increase in adipose 11beta-HSD1 expression occurs in obese humans and rodents and is likely to be of pathogenic importance in the metabolic syndrome. Here we have used 5' rapid amplificaiton of cDNA ends (RACE) to identify a novel promoter, P1, of the gene encoding 11beta-HSD1. P1 is located 23 kb 5' to the previously described promoter, P2. Both promoters are active in liver, lung, adipose tissue, and brain. However, P1 (encoding exon 1A) predominates in lung and P2 (encoding exon 1B) predominates in liver, adipose tissue, and brain. Adipose tissue of obese leptin-deficient C57BL/6J-Lepob mice showed higher expression only of the P2-associated exon 1B-containing 11beta-HSD1 mRNA variant. In contrast to P2, which is CAAAT/enhancer binding protein (C/EBP)-alpha inducible in transiently transfected cells, the P1 promoter was unaffected by C/EBPalpha in transfected cells. Consistent with these findings, mice lacking C/EBPalpha had normal 11beta-HSD1 mRNA levels in lung but showed a dramatic reduction in levels of 11beta-HSD1 mRNA in liver and brown adipose tissue. These results therefore demonstrate tissue-specific differential regulation of 11beta-HSD1 mRNA through alternate promoter usage and suggest that increased adipose 11beta-HSD1 expression in obesity is due to a selective increase in activity of the C/EBPalpha-regulated P2 promoter.
Collapse
Affiliation(s)
- Charlotte Bruley
- Endocrinology Unit, Centre for Cardiovascular Sciences, Queen's Institute for Medical Research, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Ailhaud G. Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome. C R Biol 2006; 329:570-7; discussion 653-5. [PMID: 16860275 DOI: 10.1016/j.crvi.2005.12.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/20/2005] [Indexed: 02/07/2023]
Abstract
Adipose tissue contains various types of cells that include preadipocytes and adipocytes. Studies have emphasized that (i) preadipocytes secrete factors involved in their own differentiation and (ii) adipocytes acquire the ability to communicate systemically with other organs (brain, liver, skeletal muscle) and locally with other cells (preadipocytes, endothelial cells and monocytes/macrophages). Adipocytes secrete proteins exhibiting either beneficial (leptin, adiponectin) or deleterious effects (angiotensinogen). Associated to the effect of secretory products from macrophages (cytokines), a disturbance in the balance between these various secreted factors leads to the development of a metabolic syndrome.
Collapse
Affiliation(s)
- Gérard Ailhaud
- ISDBC, centre de biochimie, UMR 6543 CNRS, laboratoire developpement du tissu adipeux, faculté des sciences, parc Valrose, 06108 Nice cedex 2, France.
| |
Collapse
|