201
|
Ohi K, Nishizawa D, Shimada T, Kataoka Y, Hasegawa J, Shioiri T, Kawasaki Y, Hashimoto R, Ikeda K. Polygenetic Risk Scores for Major Psychiatric Disorders Among Schizophrenia Patients, Their First-Degree Relatives, and Healthy Participants. Int J Neuropsychopharmacol 2020; 23:157-164. [PMID: 31900488 PMCID: PMC7171929 DOI: 10.1093/ijnp/pyz073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The genetic etiology of schizophrenia (SCZ) overlaps with that of other major psychiatric disorders in samples of European ancestry. The present study investigated transethnic polygenetic features shared between Japanese SCZ or their unaffected first-degree relatives and European patients with major psychiatric disorders by conducting polygenic risk score (PRS) analyses. METHODS To calculate PRSs for 5 psychiatric disorders (SCZ, bipolar disorder [BIP], major depressive disorder, autism spectrum disorder, and attention-deficit/hyperactivity disorder) and PRSs differentiating SCZ from BIP, we utilized large-scale European genome-wide association study (GWAS) datasets as discovery samples. PRSs derived from these GWASs were calculated for 335 Japanese target participants [SCZ patients, FRs, and healthy controls (HCs)]. We took these PRSs based on GWASs of European psychiatric disorders and investigated their effect on risk in Japanese SCZ patients and unaffected first-degree relatives. RESULTS The PRSs obtained from European SCZ and BIP patients were higher in Japanese SCZ patients than in HCs. Furthermore, PRSs differentiating SCZ patients from European BIP patients were higher in Japanese SCZ patients than in HCs. Interestingly, PRSs related to European autism spectrum disorder were lower in Japanese first-degree relatives than in HCs or SCZ patients. The PRSs of autism spectrum disorder were positively correlated with a young onset age of SCZ. CONCLUSIONS These findings suggest that polygenic factors related to European SCZ and BIP and the polygenic components differentiating SCZ from BIP can transethnically contribute to SCZ risk in Japanese people. Furthermore, we suggest that reduced levels of an ASD-related genetic factor in unaffected first-degree relatives may help protect against SCZ development.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takamitsu Shimada
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Yuzuru Kataoka
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuhiro Kawasaki
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
202
|
Abstract
Genotype imputation infers missing genotypes in silico using haplotype information from reference samples with genotypes from denser genotyping arrays or sequencing. This approach can confer a number of improvements on genome-wide association studies: it can improve statistical power to detect associations by reducing the number of missing genotypes; it can simplify data harmonization for meta-analyses by improving overlap of genomic variants between differently-genotyped sample sets; and it can increase the overall number and density of genomic variants available for association testing. This article reviews the general concepts behind imputation, describes imputation approaches and methods for various types of genotype data, including family-based data, and identifies web-based resources that can be used in different steps of the imputation process. For practical application, it provides a step-by-step guide to implementation of a two-step imputation process consisting of phasing of the study genotypes and the imputation of reference panel genotypes into the study haplotypes. In addition, this review describes recently developed haplotype reference panel resources and online imputation servers that are capable of remotely and securely implementing an imputation workflow on uploaded genotype array data. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Adam C Naj
- Department of Biostatistics, Epidemiology, and Informatics and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
203
|
Uren C, Hoal EG, Möller M. Putting RFMix and ADMIXTURE to the test in a complex admixed population. BMC Genet 2020; 21:40. [PMID: 32264823 PMCID: PMC7140372 DOI: 10.1186/s12863-020-00845-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background Global and local ancestry inference in admixed human populations can be performed using computational tools implementing distinct algorithms. The development and resulting accuracy of these tools has been tested largely on populations with relatively straightforward admixture histories but little is known about how well they perform in more complex admixture scenarios. Results Using simulations, we show that RFMix outperforms ADMIXTURE in determining global ancestry proportions even in a complex 5-way admixed population, in addition to assigning local ancestry with an accuracy of 89%. The ability of RFMix to determine global and local ancestry to a high degree of accuracy, particularly in admixed populations provides the opportunity for more accurate association analyses. Conclusion This study highlights the utility of the extension of computational tools to become more compatible to genetically structured populations, as well as the need to expand the sampling of diverse world-wide populations. This is particularly noteworthy as modern-day societies are becoming increasingly genetically complex and some genetic tools and commonly used ancestral populations are less appropriate. Based on these caveats and the results presented here, we suggest that RFMix be used for both global and local ancestry estimation in world-wide complex admixture scenarios particularly when including these estimates in association studies.
Collapse
Affiliation(s)
- Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Room 4036, 4th Floor Education Building, Francie van Zijl Drive, Cape Town, 8000, South Africa.
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Room 4036, 4th Floor Education Building, Francie van Zijl Drive, Cape Town, 8000, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Room 4036, 4th Floor Education Building, Francie van Zijl Drive, Cape Town, 8000, South Africa
| |
Collapse
|
204
|
Oldoni E, Smets I, Mallants K, Vandebergh M, Van Horebeek L, Poesen K, Dupont P, Dubois B, Goris A. CHIT1 at Diagnosis Reflects Long-Term Multiple Sclerosis Disease Activity. Ann Neurol 2020; 87:633-645. [PMID: 31997416 PMCID: PMC7187166 DOI: 10.1002/ana.25691] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Evidence for a role of microglia in the pathogenesis of multiple sclerosis (MS) is growing. We investigated association of microglial markers at time of diagnostic lumbar puncture (LP) with different aspects of disease activity (relapses, disability, magnetic resonance imaging parameters) up to 6 years later in a cohort of 143 patients. METHODS In cerebrospinal fluid (CSF), we measured 3 macrophage and microglia-related proteins, chitotriosidase (CHIT1), chitinase-3-like protein 1 (CHI3L1 or YKL-40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2), as well as a marker of neuronal damage, neurofilament light chain (NfL), using enzyme-linked immunosorbent assay and electrochemiluminescence. We investigated the same microglia-related markers in publicly available RNA expression data from postmortem brain tissue. RESULTS CHIT1 levels at diagnostic LP correlated with 2 aspects of long-term disease activity after correction for multiple testing. First, CHIT1 increased with reduced tissue integrity in lesions at a median 3 years later (p = 9.6E-04). Second, CHIT1 reflected disease severity at a median 5 years later (p = 1.2E-04). Together with known clinical covariates, CHIT1 levels explained 12% and 27% of variance in these 2 measures, respectively, and were able to distinguish slow and fast disability progression (area under the curve = 85%). CHIT1 was the best discriminator of chronic active versus chronic inactive lesions and the only marker correlated with NfL (r = 0.3, p = 0.0019). Associations with disease activity were, however, independent of NfL. INTERPRETATION CHIT1 CSF levels measured during the diagnostic LP reflect microglial activation early on in MS and can be considered a valuable prognostic biomarker for future disease activity. ANN NEUROL 2020;87:633-645.
Collapse
Affiliation(s)
- Emanuela Oldoni
- KU Leuven ‐ Department of Neurosciences, Laboratory for NeuroimmunologyLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Ide Smets
- KU Leuven ‐ Department of Neurosciences, Laboratory for NeuroimmunologyLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Department of Neurology, University Hospitals LeuvenLeuvenBelgium
| | - Klara Mallants
- KU Leuven ‐ Department of Neurosciences, Laboratory for NeuroimmunologyLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Marijne Vandebergh
- KU Leuven ‐ Department of Neurosciences, Laboratory for NeuroimmunologyLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Lies Van Horebeek
- KU Leuven ‐ Department of Neurosciences, Laboratory for NeuroimmunologyLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Koen Poesen
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
- KU Leuven ‐ Department of Neurosciences, Laboratory for Molecular Neurobiomarker ResearchLeuvenBelgium
| | - Patrick Dupont
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
- KU Leuven ‐ Department of Neurosciences, Laboratory for Cognitive NeurologyLeuvenBelgium
| | - Bénédicte Dubois
- KU Leuven ‐ Department of Neurosciences, Laboratory for NeuroimmunologyLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Department of Neurology, University Hospitals LeuvenLeuvenBelgium
| | - An Goris
- KU Leuven ‐ Department of Neurosciences, Laboratory for NeuroimmunologyLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| |
Collapse
|
205
|
Hosgood Iii HD, Díaz-Peña R, Blansky D, Jaime S, Parra V, Boekstegers F, Bermejo JL, García-Valero J, Montes JF, Valdivia G, Miravitlles M, Agustí À, Silva RS, Olloquequi J. PRDM15 Is Associated with Risk of Chronic Obstructive Pulmonary Disease in a Rural Population in Chile. Respiration 2020; 99:307-315. [PMID: 32222710 DOI: 10.1159/000506649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have accelerated our understanding of the genetic underpinnings of chronic obstructive pulmonary disease (COPD); however, GWAS populations have typically consisted of European descent, with ∼1% of Latin American ancestry. OBJECTIVE To overcome this limitation, we conducted a GWAS in a rural Chilean population with increased COPD risk to investigate genetic variation of COPD risk in this understudied minority population. METHOD We carried out a case-control study of 214 COPD patients (defined by the GOLD criteria) and 193 healthy controls in Talca, Chile. DNA was extracted from venous blood and genotyped on the Illumina Global Screening Array (n = 754,159 markers). After exclusion based on Hardy-Weinberg equilibrium (p ≤ 0.001), call rates (<95%), and minor allele frequencies (<0.5%) in controls, 455,564 markers were available for logistic regression. RESULTS PRDM15 rs1054761 C allele (p = 2.22 × 10-7) was associated with decreased COPD risk. Three PRDM15 SNPs located on chromosome 21 were significantly associated with COPD risk (p < 10-6). Two of these SNPs, rs1054761 and rs4075967, were located on a noncoding transcript variant region of the gene. CONCLUSION PRDM15 overexpression may play a role in the B-cell dysregulation in COPD pathogenesis. To the best of our knowledge, the association between PRDM15 and COPD risk was not previously found in GWAS studies in largely European populations, highlighting the importance of investigating novel variants associated with COPD risk among ethnically diverse populations.
Collapse
Affiliation(s)
- H Dean Hosgood Iii
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Roberto Díaz-Peña
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Deanna Blansky
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sergio Jaime
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - Viviana Parra
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - Felix Boekstegers
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - José García-Valero
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Juan F Montes
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gonzalo Valdivia
- Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Àlvar Agustí
- Respiratory Institute, Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rafael S Silva
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile,
| |
Collapse
|
206
|
Mas-Sandoval A, Arauna LR, Gouveia MH, Barreto ML, Horta BL, Lima-Costa MF, Pereira AC, Salzano FM, Hünemeier T, Tarazona-Santos E, Bortolini MC, Comas D. Reconstructed Lost Native American Populations from Eastern Brazil Are Shaped by Differential Jê/Tupi Ancestry. Genome Biol Evol 2020; 11:2593-2604. [PMID: 31328768 PMCID: PMC6756188 DOI: 10.1093/gbe/evz161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 01/19/2023] Open
Abstract
After the colonization of the Americas by Europeans and the consequent Trans-Atlantic Slave Trade, most Native American populations in eastern Brazil disappeared or went through an admixture process that configured a population composed of three main genetic components: the European, the sub-Saharan African, and the Native American. The study of the Native American genetic history is challenged by the lack of availability of genome-wide samples from Native American populations, the technical difficulties to develop ancient DNA studies, and the low proportions of the Native American component in the admixed Brazilian populations (on average 7%). We analyzed genome-wide data of 5,825 individuals from three locations of eastern Brazil: Salvador (North-East), Bambui (South-East), and Pelotas (South) and we reconstructed populations that emulate the Native American groups that were living in the 16th century around the sampling locations. This genetic reconstruction was performed after local ancestry analysis of the admixed Brazilian populations, through the rearrangement of the Native American haplotypes into reconstructed individuals with full Native American ancestry (51 reconstructed individuals in Salvador, 45 in Bambui, and 197 in Pelotas). We compared the reconstructed populations with nonadmixed Native American populations from other regions of Brazil through haplotype-based methods. Our results reveal a population structure shaped by the dichotomy of Tupi-/Jê-speaking ancestry related groups. We also show evidence of a decrease of the diversity of nonadmixed Native American groups after the European contact, in contrast with the reconstructed populations, suggesting a reservoir of the Native American genetic diversity within the admixed Brazilian population.
Collapse
Affiliation(s)
- Alex Mas-Sandoval
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lara R Arauna
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Mateus H Gouveia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Research on Genomics and Global Health, National Institutes of Health, Bethesda, Maryland
| | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Center for Data and Knowledge Integration for Health, Institute Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Bernardo L Horta
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | | | | | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tábita Hünemeier
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Eduardo Tarazona-Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
207
|
Diaz-Peña R, Mondelo-Macía P, Molina de la Torre AJ, Sanz-Pamplona R, Moreno V, Martín V. Analysis of Killer Immunoglobulin-Like Receptor Genes in Colorectal Cancer. Cells 2020; 9:cells9020514. [PMID: 32102404 PMCID: PMC7072752 DOI: 10.3390/cells9020514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
Natural killer cells (NK cells) play a major role in the immune response to cancer. An important element of NK target recognition is the binding of human leucocyte antigen (HLA) class I molecules by killer immunoglobulin-like receptors (KIRs). Colorectal carcinoma (CRC) is one of the most common types of inflammation-based cancer. The purpose of the present study was to investigate the presence of KIR genes and HLA class I and II alleles in 1074 CRC patients and 1272 controls. We imputed data from single-nucleotide polymorphism (SNP) Illumina OncoArray to identify associations at HLA (HLA–A, B, C, DPB1, DQA1, DQB1, and DRB1) and KIRs (HIBAG and KIR*IMP, respectively). For association analysis, we used PLINK (v1.9), the PyHLA software, and R version 3.4.0. Only three SNP markers showed suggestive associations (p < 10−3; rs16896742, rs28367832, and rs9277952). The frequency of KIR2DS3 was significantly increased in the CRC patients compared to healthy controls (p < 0.005). Our results suggest that the implication of NK cells in CRC may not act through allele combinations in KIR and HLA genes. Much larger studies in ethnically homogeneous populations are needed to rule out the possible role of allelic combinations in KIR and HLA genes in CRC risk.
Collapse
Affiliation(s)
- Roberto Diaz-Peña
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain;
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
- Correspondence: or ; Tel.: +34-981-955-073 (ext. 15706)
| | - Patricia Mondelo-Macía
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - Antonio José Molina de la Torre
- Instituto de Biomedicina (IBIOMED), CIBERESP, 24071 León, Spain; (A.J.M.d.l.T.); (V.M.)
- Group of Research on Gene-Environment-Health Interactions (GIIGAS), Universidad de León, 24071 León, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain (V.M.)
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain (V.M.)
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Vicente Martín
- Instituto de Biomedicina (IBIOMED), CIBERESP, 24071 León, Spain; (A.J.M.d.l.T.); (V.M.)
- Group of Research on Gene-Environment-Health Interactions (GIIGAS), Universidad de León, 24071 León, Spain
| |
Collapse
|
208
|
Serra EG, Schwerd T, Moutsianas L, Cavounidis A, Fachal L, Pandey S, Kammermeier J, Croft NM, Posovszky C, Rodrigues A, Russell RK, Barakat F, Auth MKH, Heuschkel R, Zilbauer M, Fyderek K, Braegger C, Travis SP, Satsangi J, Parkes M, Thapar N, Ferry H, Matte JC, Gilmour KC, Wedrychowicz A, Sullivan P, Moore C, Sambrook J, Ouwehand W, Roberts D, Danesh J, Baeumler TA, Fulga TA, Carrami EM, Ahmed A, Wilson R, Barrett JC, Elkadri A, Griffiths AM, Snapper SB, Shah N, Muise AM, Wilson DC, Uhlig HH, Anderson CA. Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nat Commun 2020; 11:995. [PMID: 32081864 PMCID: PMC7035382 DOI: 10.1038/s41467-019-14275-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Very-early-onset inflammatory bowel disease (VEO-IBD) is a heterogeneous phenotype associated with a spectrum of rare Mendelian disorders. Here, we perform whole-exome-sequencing and genome-wide genotyping in 145 patients (median age-at-diagnosis of 3.5 years), in whom no Mendelian disorders were clinically suspected. In five patients we detect a primary immunodeficiency or enteropathy, with clinical consequences (XIAP, CYBA, SH2D1A, PCSK1). We also present a case study of a VEO-IBD patient with a mosaic de novo, pathogenic allele in CYBB. The mutation is present in ~70% of phagocytes and sufficient to result in defective bacterial handling but not life-threatening infections. Finally, we show that VEO-IBD patients have, on average, higher IBD polygenic risk scores than population controls (99 patients and 18,780 controls; P < 4 × 10-10), and replicate this finding in an independent cohort of VEO-IBD cases and controls (117 patients and 2,603 controls; P < 5 × 10-10). This discovery indicates that a polygenic component operates in VEO-IBD pathogenesis.
Collapse
Affiliation(s)
| | - Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig Maximilians University, Munich, Germany
| | | | - Athena Cavounidis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Laura Fachal
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Nicholas M Croft
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- The Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | - Farah Barakat
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- The Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | - Krzysztof Fyderek
- Department of Paediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, UK
| | - Miles Parkes
- IBD Research Unit, Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Helen Ferry
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Julie C Matte
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Andrzej Wedrychowicz
- Department of Paediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Peter Sullivan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carmel Moore
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jennifer Sambrook
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Willem Ouwehand
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David Roberts
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant - Oxford Centre, Level 2, John Radcliffe Hospital, Oxford, UK
- Biomedical Research Centre, Oxford - Haematology Theme, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Toni A Baeumler
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Eli M Carrami
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ahmed Ahmed
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, Surgical Innovation and Evaluation and Molecular Diagnostics Themes, University of Oxford, Oxford, UK
| | - Rachel Wilson
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Abdul Elkadri
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Anne M Griffiths
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Neil Shah
- Great Ormond Street Hospital, London, UK
| | - Aleixo M Muise
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - David C Wilson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Carl A Anderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
209
|
Bhattacharya A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI. A framework for transcriptome-wide association studies in breast cancer in diverse study populations. Genome Biol 2020; 21:42. [PMID: 32079541 PMCID: PMC7033948 DOI: 10.1186/s13059-020-1942-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The relationship between germline genetic variation and breast cancer survival is largely unknown, especially in understudied minority populations who often have poorer survival. Genome-wide association studies (GWAS) have interrogated breast cancer survival but often are underpowered due to subtype heterogeneity and clinical covariates and detect loci in non-coding regions that are difficult to interpret. Transcriptome-wide association studies (TWAS) show increased power in detecting functionally relevant loci by leveraging expression quantitative trait loci (eQTLs) from external reference panels in relevant tissues. However, ancestry- or race-specific reference panels may be needed to draw correct inference in ancestrally diverse cohorts. Such panels for breast cancer are lacking. RESULTS We provide a framework for TWAS for breast cancer in diverse populations, using data from the Carolina Breast Cancer Study (CBCS), a population-based cohort that oversampled black women. We perform eQTL analysis for 406 breast cancer-related genes to train race-stratified predictive models of tumor expression from germline genotypes. Using these models, we impute expression in independent data from CBCS and TCGA, accounting for sampling variability in assessing performance. These models are not applicable across race, and their predictive performance varies across tumor subtype. Within CBCS (N = 3,828), at a false discovery-adjusted significance of 0.10 and stratifying for race, we identify associations in black women near AURKA, CAPN13, PIK3CA, and SERPINB5 via TWAS that are underpowered in GWAS. CONCLUSIONS We show that carefully implemented and thoroughly validated TWAS is an efficient approach for understanding the genetics underpinning breast cancer outcomes in diverse populations.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Andrew F. Olshan
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Melissa A. Troester
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Michael I. Love
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| |
Collapse
|
210
|
Sinclair-Waters M, Ødegård J, Korsvoll SA, Moen T, Lien S, Primmer CR, Barson NJ. Beyond large-effect loci: large-scale GWAS reveals a mixed large-effect and polygenic architecture for age at maturity of Atlantic salmon. Genet Sel Evol 2020; 52:9. [PMID: 32050893 PMCID: PMC7017552 DOI: 10.1186/s12711-020-0529-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 01/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding genetic architecture is essential for determining how traits will change in response to evolutionary processes such as selection, genetic drift and/or gene flow. In Atlantic salmon, age at maturity is an important life history trait that affects factors such as survival, reproductive success, and growth. Furthermore, age at maturity can seriously impact aquaculture production. Therefore, characterizing the genetic architecture that underlies variation in age at maturity is of key interest. RESULTS Here, we refine our understanding of the genetic architecture for age at maturity of male Atlantic salmon using a genome-wide association study of 11,166 males from a single aquaculture strain, using imputed genotypes at 512,397 single nucleotide polymorphisms (SNPs). All individuals were genotyped with a 50K SNP array and imputed to higher density using parents genotyped with a 930K SNP array and pedigree information. We found significant association signals on 28 of 29 chromosomes (P-values: 8.7 × 10-133-9.8 × 10-8), including two very strong signals spanning the six6 and vgll3 gene regions on chromosomes 9 and 25, respectively. Furthermore, we identified 116 independent signals that tagged 120 candidate genes with varying effect sizes. Five of the candidate genes found here were previously associated with age at maturity in other vertebrates, including humans. DISCUSSION These results reveal a mixed architecture of large-effect loci and a polygenic component that consists of multiple smaller-effect loci, suggesting a more complex genetic architecture of Atlantic salmon age at maturity than previously thought. This more complex architecture will have implications for selection on this key trait in aquaculture and for management of wild salmon populations.
Collapse
Affiliation(s)
- Marion Sinclair-Waters
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland. .,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Jørgen Ødegård
- AquaGen, Trondheim, Norway.,Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicola J Barson
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
211
|
Yan Z, Zhu X, Wang Y, Nie Y, Guan S, Kuo Y, Chang D, Li R, Qiao J, Yan L. scHaplotyper: haplotype construction and visualization for genetic diagnosis using single cell DNA sequencing data. BMC Bioinformatics 2020; 21:41. [PMID: 32007105 PMCID: PMC6995221 DOI: 10.1186/s12859-020-3381-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Haplotyping reveals chromosome blocks inherited from parents to in vitro fertilized (IVF) embryos in preimplantation genetic diagnosis (PGD), enabling the observation of the transmission of disease alleles between generations. However, the methods of haplotyping that are suitable for single cells are limited because a whole genome amplification (WGA) process is performed before sequencing or genotyping in PGD, and true haplotype profiles of embryos need to be constructed based on genotypes that can contain many WGA artifacts. RESULTS Here, we offer scHaplotyper as a genetic diagnosis tool that reconstructs and visualizes the haplotype profiles of single cells based on the Hidden Markov Model (HMM). scHaplotyper can trace the origin of each haplotype block in the embryo, enabling the detection of carrier status of disease alleles in each embryo. We applied this method in PGD in two families affected with genetic disorders, and the result was the healthy live births of two children in the two families, demonstrating the clinical application of this method. CONCLUSION Next generation sequencing (NGS) of preimplantation embryos enable genetic screening for families with genetic disorders, avoiding the birth of affected babies. With the validation and successful clinical application, we showed that scHaplotyper is a convenient and accurate method to screen out embryos. More patients with genetic disorder will benefit from the genetic diagnosis of embryos. The source code of scHaplotyper is available at GitHub repository: https://github.com/yzqheart/scHaplotyper.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China
| | - Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China
| | - Yanli Nie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China
| | - Shuo Guan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China
| | - Di Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China.
| |
Collapse
|
212
|
Blackburn AN, Blondell L, Kos MZ, Blackburn NB, Peralta JM, Stevens PT, Lehman DM, Blangero J, Göring HHH. Genotype phasing in pedigrees using whole-genome sequence data. Eur J Hum Genet 2020; 28:790-803. [PMID: 31996801 DOI: 10.1038/s41431-020-0574-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Phasing is the process of inferring haplotypes from genotype data. Efficient algorithms and associated software for accurate phasing in pedigrees are needed, especially for populations lacking reference panels of sequenced individuals. We present a novel method for phasing genotypes from whole-genome sequence data in pedigrees, called PULSAR (Phasing Using Lineage Specific Alleles/Rare variants). The method is based on the property that alleles specific to a single founding chromosome within a pedigree are highly informative for identifying haplotypes that are shared identical by descent. Simulation studies are used to assess the performance of PULSAR with various pedigree sizes and structures, and the effect of genotyping errors and the presence of nonsequenced individuals is investigated. In pedigrees with complete sequencing and realistic genotyping error rates, PULSAR correctly phases >99.9% of heterozygous genotypes, excluding sites at which all individuals are heterozygous, and does so with a switch error rate frequently below 10-4. PULSAR is highly accurate, capable of genotype error correction and imputation, and computationally competitive with alternative phasing software applicable to pedigrees. Our method has the significant advantage of not requiring reference panels that are essential for other population-based phasing algorithms. A software implementation of PULSAR is freely available.
Collapse
Affiliation(s)
- August N Blackburn
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA.,Department of Biological Sciences, St. Mary's University, San Antonio, TX, USA
| | - Lucy Blondell
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| | - Mark Z Kos
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Nicholas B Blackburn
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Peter T Stevens
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Harald H H Göring
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
213
|
Hsieh AR, Huang YC, Yang YF, Lin HJ, Lin JM, Chang YW, Wu CM, Liao WL, Tsai FJ. Lack of association of genetic variants for diabetic retinopathy in Taiwanese patients with diabetic nephropathy. BMJ Open Diabetes Res Care 2020; 8:8/1/e000727. [PMID: 31958309 PMCID: PMC7039583 DOI: 10.1136/bmjdrc-2019-000727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 01/04/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN) and diabetic retinopathy (DR) comprise major microvascular complications of diabetes that occur with a high concordance rate in patients and are considered to potentially share pathogeneses. In this case-control study, we sought to investigate whether DR-related single nucleotide polymorphisms (SNPs) exert pleiotropic effects on renal function outcomes among patients with diabetes. RESEARCH DESIGN AND METHODS A total of 33 DR-related SNPs were identified by replicating published SNPs and via a genome-wide association study. Furthermore, we assessed the cumulative effects by creating a weighted genetic risk score and evaluated the discriminatory and prediction ability of these genetic variants using DN cases according to estimated glomerular filtration rate (eGFR) status along with a cohort with early renal functional decline (ERFD). RESULTS Multivariate logistic regression models revealed that the DR-related SNPs afforded no individual or cumulative genetic effect on the nephropathy risk, eGFR status or ERFD outcome among patients with type two diabetes in Taiwan. CONCLUSION Our findings indicate that larger studies would be necessary to clearly ascertain the effects of individual genetic variants and further investigation is also required to identify other genetic pathways underlying DN.
Collapse
Affiliation(s)
- Ai-Ru Hsieh
- Department of Statistics, Tamkang University, Taipei, Taiwan
| | - Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Human Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Fei Yang
- Kidney Institute and Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
| | - Jane-Ming Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Wen Chang
- Human Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Wu
- Human Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Human Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
214
|
Tilot AK, Vino A, Kucera KS, Carmichael DA, van den Heuvel L, den Hoed J, Sidoroff-Dorso AV, Campbell A, Porteous DJ, St Pourcain B, van Leeuwen TM, Ward J, Rouw R, Simner J, Fisher SE. Investigating genetic links between grapheme-colour synaesthesia and neuropsychiatric traits. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190026. [PMID: 31630655 PMCID: PMC6834005 DOI: 10.1098/rstb.2019.0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Synaesthesia is a neurological phenomenon affecting perception, where triggering stimuli (e.g. letters and numbers) elicit unusual secondary sensory experiences (e.g. colours). Family-based studies point to a role for genetic factors in the development of this trait. However, the contributions of common genomic variation to synaesthesia have not yet been investigated. Here, we present the SynGenes cohort, the largest genotyped collection of unrelated people with grapheme-colour synaesthesia (n = 723). Synaesthesia has been associated with a range of other neuropsychological traits, including enhanced memory and mental imagery, as well as greater sensory sensitivity. Motivated by the prior literature on putative trait overlaps, we investigated polygenic scores derived from published genome-wide scans of schizophrenia and autism spectrum disorder (ASD), comparing our SynGenes cohort to 2181 non-synaesthetic controls. We found a very slight association between schizophrenia polygenic scores and synaesthesia (Nagelkerke's R2 = 0.0047, empirical p = 0.0027) and no significant association for scores related to ASD (Nagelkerke's R2 = 0.00092, empirical p = 0.54) or body mass index (R2 = 0.00058, empirical p = 0.60), included as a negative control. As sample sizes for studying common genomic variation continue to increase, genetic investigations of the kind reported here may yield novel insights into the shared biology between synaesthesia and other traits, to complement findings from neuropsychology and brain imaging. This article is part of a discussion meeting issue 'Bridging senses: novel insights from synaesthesia'.
Collapse
Affiliation(s)
- Amanda K. Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Katerina S. Kucera
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Duncan A. Carmichael
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Loes van den Heuvel
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | | | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Tessa M. van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HE Nijmegen, The Netherlands
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | - Romke Rouw
- Department of Psychology, University of Amsterdam, 1018 WT Amsterdam, The Netherlands
| | - Julia Simner
- School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
215
|
Zhang L, Zhou X, Weng Z, Sidow A. De novo diploid genome assembly for genome-wide structural variant detection. NAR Genom Bioinform 2019; 2:lqz018. [PMID: 33575568 PMCID: PMC7671403 DOI: 10.1093/nargab/lqz018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Detection of structural variants (SVs) on the basis of read alignment to a reference genome remains a difficult problem. De novo assembly, traditionally used to generate reference genomes, offers an alternative for SV detection. However, it has not been applied broadly to human genomes because of fundamental limitations of short-fragment approaches and high cost of long-read technologies. We here show that 10× linked-read sequencing supports accurate SV detection. We examined variants in six de novo 10× assemblies with diverse experimental parameters from two commonly used human cell lines: NA12878 and NA24385. The assemblies are effective for detecting mid-size SVs, which were discovered by simple pairwise alignment of the assemblies’ contigs to the reference (hg38). Our study also shows that the base-pair level SV breakpoint accuracy is high, with a majority of SVs having precisely correct sizes and breakpoints. Setting the ancestral state of SV loci by comparing to ape orthologs allows inference of the actual molecular mechanism (insertion or deletion) causing the mutation. In about half of cases, the mechanism is the opposite of the reference-based call. We uncover 214 SVs that may have been maintained as polymorphisms in the human lineage since before our divergence from chimp. Overall, we show that de novo assembly of 10× linked-read data can achieve cost-effective SV detection for personal genomes.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Department of Pathology, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA.,Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Xin Zhou
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ziming Weng
- Department of Pathology, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Arend Sidow
- Department of Pathology, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA.,Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
216
|
Vicente M, Priehodová E, Diallo I, Podgorná E, Poloni ES, Černý V, Schlebusch CM. Population history and genetic adaptation of the Fulani nomads: inferences from genome-wide data and the lactase persistence trait. BMC Genomics 2019; 20:915. [PMID: 31791255 PMCID: PMC6888939 DOI: 10.1186/s12864-019-6296-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/15/2019] [Indexed: 01/13/2023] Open
Abstract
Background Human population history in the Holocene was profoundly impacted by changes in lifestyle following the invention and adoption of food-production practices. These changes triggered significant increases in population sizes and expansions over large distances. Here we investigate the population history of the Fulani, a pastoral population extending throughout the African Sahel/Savannah belt. Results Based on genome-wide analyses we propose that ancestors of the Fulani population experienced admixture between a West African group and a group carrying both European and North African ancestries. This admixture was likely coupled with newly adopted herding practices, as it resulted in signatures of genetic adaptation in contemporary Fulani genomes, including the control element of the LCT gene enabling carriers to digest lactose throughout their lives. The lactase persistence (LP) trait in the Fulani is conferred by the presence of the allele T-13910, which is also present at high frequencies in Europe. We establish that the T-13910 LP allele in Fulani individuals analysed in this study lies on a European haplotype background thus excluding parallel convergent evolution. We furthermore directly link the T-13910 haplotype with the Lactase Persistence phenotype through a Genome Wide Association study (GWAS) and identify another genomic region in the vicinity of the SPRY2 gene associated with glycaemic measurements after lactose intake. Conclusions Our findings suggest that Eurasian admixture and the European LP allele was introduced into the Fulani through contact with a North African population/s. We furthermore confirm the link between the lactose digestion phenotype in the Fulani to the MCM6/LCT locus by reporting the first GWAS of the lactase persistence trait. We also explored other signals of recent adaptation in the Fulani and identified additional candidates for selection to adapt to herding life-styles.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Edita Priehodová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Issa Diallo
- Département de Linguistique et Langues Nationales, Institut des Sciences des Sociétés, CNRST, Ouagadougou, Burkina Faso
| | - Eliška Podgorná
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Estella S Poloni
- Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden. .,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa. .,SciLifeLab Uppsala, Uppsala, Sweden.
| |
Collapse
|
217
|
Lam M, Chen CY, Li Z, Martin AR, Bryois J, Ma X, Gaspar H, Ikeda M, Benyamin B, Brown BC, Liu R, Zhou W, Guan L, Kamatani Y, Kim SW, Kubo M, Kusumawardhani AAAA, Liu CM, Ma H, Periyasamy S, Takahashi A, Xu Z, Yu H, Zhu F, Chen WJ, Faraone S, Glatt SJ, He L, Hyman SE, Hwu HG, McCarroll SA, Neale BM, Sklar P, Wildenauer DB, Yu X, Zhang D, Mowry BJ, Lee J, Holmans P, Xu S, Sullivan PF, Ripke S, O'Donovan MC, Daly MJ, Qin S, Sham P, Iwata N, Hong KS, Schwab SG, Yue W, Tsuang M, Liu J, Ma X, Kahn RS, Shi Y, Huang H. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet 2019; 51:1670-1678. [PMID: 31740837 PMCID: PMC6885121 DOI: 10.1038/s41588-019-0512-x] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder with approximately 1% lifetime risk globally. Large-scale schizophrenia genetic studies have reported primarily on European ancestry samples, potentially missing important biological insights. Here, we report the largest study to date of East Asian participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide-significant associations in 19 genetic loci. Common genetic variants that confer risk for schizophrenia have highly similar effects between East Asian and European ancestries (genetic correlation = 0.98 ± 0.03), indicating that the genetic basis of schizophrenia and its biology are broadly shared across populations. A fixed-effect meta-analysis including individuals from East Asian and European ancestries identified 208 significant associations in 176 genetic loci (53 novel). Trans-ancestry fine-mapping reduced the sets of candidate causal variants in 44 loci. Polygenic risk scores had reduced performance when transferred across ancestries, highlighting the importance of including sufficient samples of major ancestral groups to ensure their generalizability across populations.
Collapse
Affiliation(s)
- Max Lam
- Bio-X Institutes, Shanghai Jiao Tong University and Research Division, Institute of Mental Health Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- Division of Psychiatry Research, the Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Research Division, Institute of Mental Health Singapore, Singapore, Singapore
| | - Chia-Yen Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Biogen, Cambridge, MA, USA
| | - Zhiqiang Li
- Biomedical Sciences Institute of Qingdao University, Qingdao Branch of Shanghai Jiao Tong University Bio-X Institutes and the Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xixian Ma
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Helena Gaspar
- Social Genetic and Developmental Psychiatry, King's College London, London, UK
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Beben Benyamin
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia Cancer Research Institute, Adelaide, South Australia, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Brielin C Brown
- Data Science Institute, Columbia University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wei Zhou
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Guan
- Peking University Sixth Hospital and Institute of Mental Health, Beijing, China
- National Health Commission Key Laboratory of Mental Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Agung A A A Kusumawardhani
- Department of Psychiatry, Cipto Mangunkusumo General Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong Ma
- Peking University Sixth Hospital and Institute of Mental Health, Beijing, China
- National Health Commission Key Laboratory of Mental Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Sathish Periyasamy
- Queensland Brain Institute The University of Queensland, Brisbane, Queensland, Australia
- Queensland Center for Mental Health Research, The University of Queensland, Wacol, Queensland, Australia
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Zhida Xu
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hao Yu
- Peking University Sixth Hospital and Institute of Mental Health, Beijing, China
- National Health Commission Key Laboratory of Mental Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Feng Zhu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei J Chen
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | - Stephen J Glatt
- Psychiatric Genetic Epidemiology and Neurobiology Laboratory (PsychGENe lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Women and Children's Health, Shanghai, China
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, China
| | - Steven E Hyman
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pamela Sklar
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Xin Yu
- Peking University Sixth Hospital and Institute of Mental Health, Beijing, China
- National Health Commission Key Laboratory of Mental Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Dai Zhang
- Peking University Sixth Hospital and Institute of Mental Health, Beijing, China
- National Health Commission Key Laboratory of Mental Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Bryan J Mowry
- Queensland Brain Institute The University of Queensland, Brisbane, Queensland, Australia
- Queensland Center for Mental Health Research, The University of Queensland, Wacol, Queensland, Australia
| | - Jimmy Lee
- Institute of Mental Health, Singapore, Singapore
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine , Cardiff University, Cardiff, UK
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Patrick F Sullivan
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy Charité - Universitätsmedizin, Berlin, Germany
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine , Cardiff University, Cardiff, UK
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Shengying Qin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Center, Jining Medical University, Jining, China
| | - Pak Sham
- State Key Laboratory of Brain and Cognitive Sciences, Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kyung S Hong
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Sibylle G Schwab
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Weihua Yue
- Peking University Sixth Hospital and Institute of Mental Health, Beijing, China.
- National Health Commission Key Laboratory of Mental Health (Peking University), Beijing, China.
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, China.
| | - Ming Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, San Diego, CA, USA.
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Clinical Research Center for Mental Disease of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, the Netherlands.
| | - Yongyong Shi
- Bio-X Institutes, Shanghai Jiao Tong University and Research Division, Institute of Mental Health Singapore, Singapore, Singapore.
- Biomedical Sciences Institute of Qingdao University, Qingdao Branch of Shanghai Jiao Tong University Bio-X Institutes and the Affiliated Hospital of Qingdao University, Qingdao, China.
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Ürümqi, China.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
218
|
Raffington L, Czamara D, Mohn JJ, Falck J, Schmoll V, Heim C, Binder EB, Shing YL. Stable longitudinal associations of family income with children's hippocampal volume and memory persist after controlling for polygenic scores of educational attainment. Dev Cogn Neurosci 2019; 40:100720. [PMID: 31678692 PMCID: PMC6974918 DOI: 10.1016/j.dcn.2019.100720] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 12/26/2022] Open
Abstract
Despite common notion that the correlation of socioeconomic status with child cognitive performance may be driven by both environmentally- and genetically-mediated transactional pathways, there is a lack of longitudinal and genetically informed research that examines these postulated associations. The present study addresses whether family income predicts associative memory growth and hippocampal development in middle childhood and tests whether these associations persist when controlling for DNA-based polygenic scores of educational attainment. Participants were 142 6-to-7-year-old children, of which 127 returned when they were 8-to-9 years old. Longitudinal analyses indicated that the association of family income with children's memory performance and hippocampal volume remained stable over this age range and did not predict change. On average, children from economically disadvantaged background showed lower memory performance and had a smaller hippocampal volume. There was no evidence to suggest that differences in memory performance were mediated by differences in hippocampal volume. Further exploratory results suggested that the relationship of income with hippocampal volume and memory in middle childhood is not primarily driven by genetic variance captured by polygenic scores of educational attainment, despite the fact that polygenic scores significantly predicted family income.
Collapse
Affiliation(s)
- Laurel Raffington
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Psychology, University of Texas at Austin, TX, USA
| | - Darina Czamara
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Johannes Julius Mohn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Falck
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Vanessa Schmoll
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Christine Heim
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany; Pennsylvania State University, Department of Biobehavioral Health, University Park, PA, USA
| | - Elisabeth B Binder
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany; Dept. of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Yee Lee Shing
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Institute of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
219
|
Blue EE, Horimoto ARVR, Mukherjee S, Wijsman EM, Thornton TA. Local ancestry at APOE modifies Alzheimer's disease risk in Caribbean Hispanics. Alzheimers Dement 2019; 15:1524-1532. [PMID: 31606368 PMCID: PMC6925639 DOI: 10.1016/j.jalz.2019.07.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Although the relationship between APOE and Alzheimer's disease (AD) is well established in populations of European descent, the effects of APOE and ancestry on AD risk in diverse populations is not well understood. METHODS Logistic mixed model regression and survival analyses were performed in a sample of 3067 Caribbean Hispanics and 3028 individuals of European descent to assess the effects of APOE genotype, local ancestry, and genome-wide ancestry on AD risk and age at onset. RESULTS Among the Caribbean Hispanics, individuals with African-derived ancestry at APOE had 39% lower odds of AD than individuals with European-derived APOE, after adjusting for APOE genotype, age, and genome-wide ancestry. While APOE E2 and E4 effects on AD risk and age at onset were significant in the Caribbean Hispanics, they were substantially attenuated compared with those in European ancestry individuals. DISCUSSION These results suggest that additional genetic variation in the APOE region influences AD risk beyond APOE E2/E3/E4.
Collapse
Affiliation(s)
- Elizabeth E Blue
- Division of Medical Genetics, University of Washington, Seattle, WA, USA.
| | | | | | - Ellen M Wijsman
- Division of Medical Genetics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, USA; Department of Statistics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
220
|
Karavani E, Zuk O, Zeevi D, Barzilai N, Stefanis NC, Hatzimanolis A, Smyrnis N, Avramopoulos D, Kruglyak L, Atzmon G, Lam M, Lencz T, Carmi S. Screening Human Embryos for Polygenic Traits Has Limited Utility. Cell 2019; 179:1424-1435.e8. [PMID: 31761530 PMCID: PMC6957074 DOI: 10.1016/j.cell.2019.10.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/11/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
Abstract
The increasing proportion of variance in human complex traits explained by polygenic scores, along with progress in preimplantation genetic diagnosis, suggests the possibility of screening embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo screening are unclear, which undermines discussion of associated ethical concerns. Here, we use theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the difference in trait value between the top-scoring embryo and the average embryo. The gain increases very slowly with the number of embryos but more rapidly with the variance explained by the score. Given current technology, the average gain due to screening would be ≈2.5 cm for height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide prediction intervals, and indeed, in large nuclear families, the majority of children top-scoring for height are not the tallest.
Collapse
Affiliation(s)
- Ehud Karavani
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Or Zuk
- Department of Statistics, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Danny Zeevi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nikos C Stefanis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 115 28 Athens, Greece; University Mental Health Research Institute, 115 27 Athens, Greece; Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, 115 21 Athens, Greece
| | - Alex Hatzimanolis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 115 28 Athens, Greece; Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, 115 21 Athens, Greece
| | - Nikolaos Smyrnis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 115 28 Athens, Greece; University Mental Health Research Institute, 115 27 Athens, Greece
| | - Dimitrios Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Max Lam
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, NY 11030, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Todd Lencz
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, NY 11030, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
221
|
Xiong Z, Dankova G, Howe LJ, Lee MK, Hysi PG, de Jong MA, Zhu G, Adhikari K, Li D, Li Y, Pan B, Feingold E, Marazita ML, Shaffer JR, McAloney K, Xu SH, Jin L, Wang S, de Vrij FMS, Lendemeijer B, Richmond S, Zhurov A, Lewis S, Sharp GC, Paternoster L, Thompson H, Gonzalez-Jose R, Bortolini MC, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Uitterlinden AG, Ikram MA, Wolvius E, Kushner SA, Nijsten TEC, Palstra RJTS, Boehringer S, Medland SE, Tang K, Ruiz-Linares A, Martin NG, Spector TD, Stergiakouli E, Weinberg SM, Liu F, Kayser M. Novel genetic loci affecting facial shape variation in humans. eLife 2019; 8:e49898. [PMID: 31763980 PMCID: PMC6905649 DOI: 10.7554/elife.49898] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
The human face represents a combined set of highly heritable phenotypes, but knowledge on its genetic architecture remains limited, despite the relevance for various fields. A series of genome-wide association studies on 78 facial shape phenotypes quantified from 3-dimensional facial images of 10,115 Europeans identified 24 genetic loci reaching study-wide suggestive association (p < 5 × 10-8), among which 17 were previously unreported. A follow-up multi-ethnic study in additional 7917 individuals confirmed 10 loci including six unreported ones (padjusted < 2.1 × 10-3). A global map of derived polygenic face scores assembled facial features in major continental groups consistent with anthropological knowledge. Analyses of epigenomic datasets from cranial neural crest cells revealed abundant cis-regulatory activities at the face-associated genetic loci. Luciferase reporter assays in neural crest progenitor cells highlighted enhancer activities of several face-associated DNA variants. These results substantially advance our understanding of the genetic basis underlying human facial variation and provide candidates for future in-vivo functional studies.
Collapse
Affiliation(s)
- Ziyi Xiong
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamNetherlands
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of GenomicsUniversity of Chinese Academy of Sciences (CAS)BeijingChina
| | - Gabriela Dankova
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Laurence J Howe
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
| | - Pirro G Hysi
- Department of Twin Research and Genetic EpidemiologyKing’s College LondonLondonUnited Kingdom
| | - Markus A de Jong
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and OrthodonticsErasmus MC University Medical Center RotterdamRotterdamNetherlands
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenNetherlands
| | - Gu Zhu
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kaustubh Adhikari
- Department of Genetics, Evolution, and EnvironmentUniversity College LondonLondonUnited Kingdom
| | - Dan Li
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Yi Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of GenomicsUniversity of Chinese Academy of Sciences (CAS)BeijingChina
| | - Bo Pan
- Department of Auricular ReconstructionPlastic Surgery HospitalBeijingChina
| | - Eleanor Feingold
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
- Department of Human GeneticsUniversity of PittsburghPittsburghUnited States
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
- Department of Human GeneticsUniversity of PittsburghPittsburghUnited States
| | | | - Shu-Hua Xu
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Li Jin
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life SciencesFudan UniversityShanghaiChina
| | - Sijia Wang
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Femke MS de Vrij
- Department of PsychiatryErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Bas Lendemeijer
- Department of PsychiatryErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Stephen Richmond
- Applied Clinical Research and Public Health, University Dental SchoolCardiff UniversityCardiffUnited Kingdom
| | - Alexei Zhurov
- Applied Clinical Research and Public Health, University Dental SchoolCardiff UniversityCardiffUnited Kingdom
| | - Sarah Lewis
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Gemma C Sharp
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
- School of Oral and Dental SciencesUniversity of BristolBristolUnited Kingdom
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Holly Thompson
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Rolando Gonzalez-Jose
- Instituto Patagonico de Ciencias Sociales y Humanas, CENPAT-CONICETPuerto MadrynArgentina
| | | | - Samuel Canizales-Quinteros
- UNAM-Instituto Nacional de Medicina Genomica, Facultad de QuımicaUnidad de Genomica de Poblaciones Aplicada a la SaludMexico CityMexico
| | - Carla Gallo
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y FilosofıaUniversidad Peruana Cayetano HerediaLimaPeru
| | - Giovanni Poletti
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y FilosofıaUniversidad Peruana Cayetano HerediaLimaPeru
| | - Gabriel Bedoya
- GENMOL (Genetica Molecular)Universidad de AntioquiaMedellınColombia
| | | | - André G Uitterlinden
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamNetherlands
- Department of Internal MedicineErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - M Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Eppo Wolvius
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and OrthodonticsErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Steven A Kushner
- Department of PsychiatryErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Tamar EC Nijsten
- Department of DermatologyErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Robert-Jan TS Palstra
- Department of BiochemistryErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Stefan Boehringer
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenNetherlands
| | | | - Kun Tang
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Andres Ruiz-Linares
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life SciencesFudan UniversityShanghaiChina
- Aix-Marseille Université, CNRS, EFS, ADESMarseilleFrance
| | | | - Timothy D Spector
- Department of Twin Research and Genetic EpidemiologyKing’s College LondonLondonUnited Kingdom
| | - Evie Stergiakouli
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
- School of Oral and Dental SciencesUniversity of BristolBristolUnited Kingdom
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
- Department of Human GeneticsUniversity of PittsburghPittsburghUnited States
- Department of AnthropologyUniversity of PittsburghPittsburghUnited States
| | - Fan Liu
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of GenomicsUniversity of Chinese Academy of Sciences (CAS)BeijingChina
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
| |
Collapse
|
222
|
Abney M, ElSherbiny A. Kinpute: using identity by descent to improve genotype imputation. Bioinformatics 2019; 35:4321-4326. [PMID: 30918937 PMCID: PMC6821425 DOI: 10.1093/bioinformatics/btz221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/21/2019] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Genotype imputation, though generally accurate, often results in many genotypes being poorly imputed, particularly in studies where the individuals are not well represented by standard reference panels. When individuals in the study share regions of the genome identical by descent (IBD), it is possible to use this information in combination with a study-specific reference panel (SSRP) to improve the imputation results. Kinpute uses IBD information-due to recent, familial relatedness or distant, unknown ancestors-in conjunction with the output from linkage disequilibrium (LD) based imputation methods to compute more accurate genotype probabilities. Kinpute uses a novel method for IBD imputation, which works even in the absence of a pedigree, and results in substantially improved imputation quality. RESULTS Given initial estimates of average IBD between subjects in the study sample, Kinpute uses a novel algorithm to select an optimal set of individuals to sequence and use as an SSRP. Kinpute is designed to use as input both this SSRP and the genotype probabilities output from other LD-based imputation software, and uses a new method to combine the LD imputed genotype probabilities with IBD configurations to substantially improve imputation. We tested Kinpute on a human population isolate where 98 individuals have been sequenced. In half of this sample, whose sequence data was masked, we used Impute2 to perform LD-based imputation and Kinpute was used to obtain higher accuracy genotype probabilities. Measures of imputation accuracy improved significantly, particularly for those genotypes that Impute2 imputed with low certainty. AVAILABILITY AND IMPLEMENTATION Kinpute is an open-source and freely available C++ software package that can be downloaded from. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mark Abney
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Aisha ElSherbiny
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
223
|
Serra-Vidal G, Lucas-Sanchez M, Fadhlaoui-Zid K, Bekada A, Zalloua P, Comas D. Heterogeneity in Palaeolithic Population Continuity and Neolithic Expansion in North Africa. Curr Biol 2019; 29:3953-3959.e4. [DOI: 10.1016/j.cub.2019.09.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/02/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023]
|
224
|
Zhang L, Zhou X, Weng Z, Sidow A. Assessment of human diploid genome assembly with 10x Linked-Reads data. Gigascience 2019; 8:giz141. [PMID: 31769805 PMCID: PMC6879002 DOI: 10.1093/gigascience/giz141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/07/2019] [Accepted: 11/07/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Producing cost-effective haplotype-resolved personal genomes remains challenging. 10x Linked-Read sequencing, with its high base quality and long-range information, has been demonstrated to facilitate de novo assembly of human genomes and variant detection. In this study, we investigate in depth how the parameter space of 10x library preparation and sequencing affects assembly quality, on the basis of both simulated and real libraries. RESULTS We prepared and sequenced eight 10x libraries with a diverse set of parameters from standard cell lines NA12878 and NA24385 and performed whole-genome assembly on the data. We also developed the simulator LRTK-SIM to follow the workflow of 10x data generation and produce realistic simulated Linked-Read data sets. We found that assembly quality could be improved by increasing the total sequencing coverage (C) and keeping physical coverage of DNA fragments (CF) or read coverage per fragment (CR) within broad ranges. The optimal physical coverage was between 332× and 823× and assembly quality worsened if it increased to >1,000× for a given C. Long DNA fragments could significantly extend phase blocks but decreased contig contiguity. The optimal length-weighted fragment length (W${\mu _{FL}}$) was ∼50-150 kb. When broadly optimal parameters were used for library preparation and sequencing, ∼80% of the genome was assembled in a diploid state. CONCLUSIONS The Linked-Read libraries we generated and the parameter space we identified provide theoretical considerations and practical guidelines for personal genome assemblies based on 10x Linked-Read sequencing.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Computer Science, Hong Kong Baptist University
- Department of Pathology, 300 Pasteur Dr, Stanford University, Stanford, CA 94305 USA
- Department of Computer Science, Stanford University, Stanford, CA 94305 USA
| | - Xin Zhou
- Department of Computer Science, Stanford University, Stanford, CA 94305 USA
| | - Ziming Weng
- Department of Pathology, 300 Pasteur Dr, Stanford University, Stanford, CA 94305 USA
| | - Arend Sidow
- Department of Pathology, 300 Pasteur Dr, Stanford University, Stanford, CA 94305 USA
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
225
|
Gurdasani D, Carstensen T, Fatumo S, Chen G, Franklin CS, Prado-Martinez J, Bouman H, Abascal F, Haber M, Tachmazidou I, Mathieson I, Ekoru K, DeGorter MK, Nsubuga RN, Finan C, Wheeler E, Chen L, Cooper DN, Schiffels S, Chen Y, Ritchie GRS, Pollard MO, Fortune MD, Mentzer AJ, Garrison E, Bergström A, Hatzikotoulas K, Adeyemo A, Doumatey A, Elding H, Wain LV, Ehret G, Auer PL, Kooperberg CL, Reiner AP, Franceschini N, Maher D, Montgomery SB, Kadie C, Widmer C, Xue Y, Seeley J, Asiki G, Kamali A, Young EH, Pomilla C, Soranzo N, Zeggini E, Pirie F, Morris AP, Heckerman D, Tyler-Smith C, Motala AA, Rotimi C, Kaleebu P, Barroso I, Sandhu MS. Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa. Cell 2019; 179:984-1002.e36. [PMID: 31675503 PMCID: PMC7202134 DOI: 10.1016/j.cell.2019.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/03/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.
Collapse
Affiliation(s)
- Deepti Gurdasani
- William Harvey Research Institute, Queen Mary's University of London, London, UK
| | | | - Segun Fatumo
- London School of Hygiene and Tropical Medicine, London, UK; Uganda Medical Informatics Centre (UMIC), MRC/UVRI and LSHTM (Uganda Research Unit), Entebbe, Uganda; H3Africa Bioinformatics Network (H3ABioNet) Node, Center for Genomics Research and Innovation (CGRI)/National Biotechnology Development Agency CGRI/NABDA, Abuja, Nigeria
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Institute of Health, Bethesda, MD, USA
| | | | | | | | | | - Marc Haber
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Ioanna Tachmazidou
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY, UK
| | - Iain Mathieson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth Ekoru
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marianne K DeGorter
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca N Nsubuga
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Chris Finan
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Eleanor Wheeler
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Li Chen
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Yuan Chen
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Alex J Mentzer
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Konstantinos Hatzikotoulas
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Institute of Health, Bethesda, MD, USA
| | - Ayo Doumatey
- Center for Research on Genomics and Global Health, National Institute of Health, Bethesda, MD, USA
| | | | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Georg Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Charles L Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Dermot Maher
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Stephen B Montgomery
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Yali Xue
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Janet Seeley
- London School of Hygiene and Tropical Medicine, London, UK; Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Gershim Asiki
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Anatoli Kamali
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Elizabeth H Young
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cristina Pomilla
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicole Soranzo
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fraser Pirie
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew P Morris
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Department of Biostatistics, University of Liverpool, Liverpool, UK
| | | | | | - Ayesha A Motala
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, Durban, South Africa.
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Institute of Health, Bethesda, MD, USA.
| | - Pontiano Kaleebu
- London School of Hygiene and Tropical Medicine, London, UK; Uganda Medical Informatics Centre (UMIC), MRC/UVRI and LSHTM (Uganda Research Unit), Entebbe, Uganda; Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda.
| | - Inês Barroso
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Manj S Sandhu
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
226
|
Willems EL, Wan JY, Norden-Krichmar TM, Edwards KL, Santorico SA. Transethnic meta-analysis of metabolic syndrome in a multiethnic study. Genet Epidemiol 2019; 44:16-25. [PMID: 31647587 DOI: 10.1002/gepi.22267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023]
Abstract
Genome-wide association studies (GWAS) have been used to establish thousands of genetic associations across numerous phenotypes. To improve the power of GWAS and generalize associations across ethnic groups, transethnic meta-analysis methods are used to combine the results of several GWAS from diverse ancestries. The goal of this study is to identify genetic associations for eight quantitative metabolic syndrome (MetS) traits through a meta-analysis across four ethnic groups. Traits were measured in the GENetics of Noninsulin dependent Diabetes Mellitus (GENNID) Study which consists of African-American (families = 73, individuals = 288), European-American (families = 79, individuals = 519), Japanese-American (families = 17, individuals = 132), and Mexican-American (families = 113, individuals = 610) samples. Genome-wide association results from these four ethnic groups were combined using four meta-analysis methods: fixed effects, random effects, TransMeta, and MR-MEGA. We provide an empirical comparison of the four meta-analysis methods from the GENNID results, discuss which types of loci (characterized by allelic heterogeneity) appear to be better detected by each of the four meta-analysis methods in the GENNID Study, and validate our results using previous genetic discoveries. We specifically compare the two transethnic methods, TransMeta and MR-MEGA, and discuss how each transethnic method's framework relates to the types of loci best detected by each method.
Collapse
Affiliation(s)
- Emileigh L Willems
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, Colorado
| | - Jia Y Wan
- Department of Epidemiology, University of California Irvine, Irvine, California
| | | | - Karen L Edwards
- Department of Epidemiology, University of California Irvine, Irvine, California
| | - Stephanie A Santorico
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, Colorado.,Human Medical Genetics and Genomics Program, School of Medicine, University of Colorado Denver, Denver, Colorado.,Department of Biostatistics & Informatics, University of Colorado Denver, Denver, Colorado
| |
Collapse
|
227
|
Interval breast cancer is associated with other types of tumors. Nat Commun 2019; 10:4648. [PMID: 31641120 PMCID: PMC6805891 DOI: 10.1038/s41467-019-12652-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/20/2019] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) patients diagnosed between two screenings (interval cancers) are more likely than screen-detected patients to carry rare deleterious mutations in cancer genes potentially leading to increased risk for other non-breast cancer (non-BC) tumors. In this study, we include 14,846 women diagnosed with BC of which 1,772 are interval and 13,074 screen-detected. Compared to women with screen-detected cancers, interval breast cancer patients are more likely to have a non-BC tumor before (Odds ratio (OR): 1.43 [1.19–1.70], P = 9.4 x 10−5) and after (OR: 1.28 [1.14–1.44], P = 4.70 x 10−5) breast cancer diagnosis, are more likely to report a family history of non-BC tumors and have a lower genetic risk score based on common variants for non-BC tumors. In conclusion, interval breast cancer is associated with other tumors and common cancer variants are unlikely to be responsible for this association. These findings could have implications for future screening and prevention programs. Interval cancer patients are more likely to carry rare gene mutations than screen-detected breast cancer patients. Here, the authors report that interval cancer patients are more likely cancer survivors and are at a greater risk of developing other non-breast tumors.
Collapse
|
228
|
Inter-individual genomic heterogeneity within European population isolates. PLoS One 2019; 14:e0214564. [PMID: 31596857 PMCID: PMC6785074 DOI: 10.1371/journal.pone.0214564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
A number of studies carried out since the early ‘70s has investigated the effects of isolation on genetic variation within and among human populations in diverse geographical contexts. However, no extensive analysis has been carried out on the heterogeneity among genomes within isolated populations. This issue is worth exploring since events of recent admixture and/or subdivision could potentially disrupt the genetic homogeneity which is to be expected when isolation is prolonged and constant over time. Here, we analyze literature data relative to 87,815 autosomal single-nucleotide polymorphisms, which were obtained from a total of 28 European populations. Our results challenge the traditional paradigm of population isolates as structured as genetically (and genomically) uniform entities. In fact, focusing on the distribution of variance of intra-population diversity measures across individuals, we show that the inter-individual heterogeneity of isolated populations is at least comparable to the open ones. More in particular, three small and highly inbred isolates (Sappada, Sauris and Timau in Northeastern Italy) were found to be characterized by levels of inter-individual heterogeneity largely exceeding that of all other populations, possibly due to relatively recent events of genetic introgression. Finally, we propose a way to monitor the effects of inter-individual heterogeneity in disease-gene association studies.
Collapse
|
229
|
Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Dalvie S, Duncan LE, Gelernter J, Levey DF, Logue MW, Polimanti R, Provost AC, Ratanatharathorn A, Stein MB, Torres K, Aiello AE, Almli LM, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegovic E, Babić D, Bækvad-Hansen M, Baker DG, Beckham JC, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Børglum AD, Bradley B, Brashear M, Breen G, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Calabrese JR, Caldas-de-Almeida JM, Dale AM, Daly MJ, Daskalakis NP, Deckert J, Delahanty DL, Dennis MF, Disner SG, Domschke K, Dzubur-Kulenovic A, Erbes CR, Evans A, Farrer LA, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Geuze E, Gillespie C, Uka AG, Gordon SD, Guffanti G, Hammamieh R, Harnal S, Hauser MA, Heath AC, Hemmings SMJ, Hougaard DM, Jakovljevic M, Jett M, Johnson EO, Jones I, Jovanovic T, Qin XJ, Junglen AG, Karstoft KI, Kaufman ML, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kranzler HR, Kremen WS, Lawford BR, Lebois LAM, Lewis CE, Linnstaedt SD, Lori A, Lugonja B, Luykx JJ, Lyons MJ, Maples-Keller J, Marmar C, Martin AR, et alNievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Dalvie S, Duncan LE, Gelernter J, Levey DF, Logue MW, Polimanti R, Provost AC, Ratanatharathorn A, Stein MB, Torres K, Aiello AE, Almli LM, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegovic E, Babić D, Bækvad-Hansen M, Baker DG, Beckham JC, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Børglum AD, Bradley B, Brashear M, Breen G, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Calabrese JR, Caldas-de-Almeida JM, Dale AM, Daly MJ, Daskalakis NP, Deckert J, Delahanty DL, Dennis MF, Disner SG, Domschke K, Dzubur-Kulenovic A, Erbes CR, Evans A, Farrer LA, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Geuze E, Gillespie C, Uka AG, Gordon SD, Guffanti G, Hammamieh R, Harnal S, Hauser MA, Heath AC, Hemmings SMJ, Hougaard DM, Jakovljevic M, Jett M, Johnson EO, Jones I, Jovanovic T, Qin XJ, Junglen AG, Karstoft KI, Kaufman ML, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kranzler HR, Kremen WS, Lawford BR, Lebois LAM, Lewis CE, Linnstaedt SD, Lori A, Lugonja B, Luykx JJ, Lyons MJ, Maples-Keller J, Marmar C, Martin AR, Martin NG, Maurer D, Mavissakalian MR, McFarlane A, McGlinchey RE, McLaughlin KA, McLean SA, McLeay S, Mehta D, Milberg WP, Miller MW, Morey RA, Morris CP, Mors O, Mortensen PB, Neale BM, Nelson EC, Nordentoft M, Norman SB, O'Donnell M, Orcutt HK, Panizzon MS, Peters ES, Peterson AL, Peverill M, Pietrzak RH, Polusny MA, Rice JP, Ripke S, Risbrough VB, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero K, Rung A, Rutten BPF, Saccone NL, Sanchez SE, Schijven D, Seedat S, Seligowski AV, Seng JS, Sheerin CM, Silove D, Smith AK, Smoller JW, Sponheim SR, Stein DJ, Stevens JS, Sumner JA, Teicher MH, Thompson WK, Trapido E, Uddin M, Ursano RJ, van den Heuvel LL, Van Hooff M, Vermetten E, Vinkers CH, Voisey J, Wang Y, Wang Z, Werge T, Williams MA, Williamson DE, Winternitz S, Wolf C, Wolf EJ, Wolff JD, Yehuda R, Young RM, Young KA, Zhao H, Zoellner LA, Liberzon I, Ressler KJ, Haas M, Koenen KC. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun 2019; 10:4558. [PMID: 31594949 PMCID: PMC6783435 DOI: 10.1038/s41467-019-12576-w] [Show More Authors] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.
Collapse
Affiliation(s)
- Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Torsten Klengel
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- University Medical Center Goettingen, Department of Psychiatry, Göttingen, DE, Germany
| | - Elizabeth G Atkinson
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Chia-Yen Chen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Karmel W Choi
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Jonathan R I Coleman
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, GB, USA
- King's College London, NIHR BRC at the Maudsley, London, GB, USA
| | - Shareefa Dalvie
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Cape Town, Western Cape, ZA, USA
| | - Laramie E Duncan
- Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | - Joel Gelernter
- US Department of Veterans Affairs, Department of Psychiatry, West Haven, CT, USA
- Yale University School of Medicine, Department of Genetics and Neuroscience, New Haven, CT, USA
- VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Daniel F Levey
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Mark W Logue
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | | | | | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Million Veteran Program, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Katy Torres
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Allison E Aiello
- Gillings School of Global Public Health, Department of Epidemiology, Chapel Hill, NC, USA
| | - Lynn M Almli
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Ananda B Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | - Søren B Andersen
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Sjaelland, Denmark
| | - Ole A Andreassen
- University of Oslo, Institute of Clinical Medicine, Oslo, NO, Norway
| | - Paul A Arbisi
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
| | | | - S Bryn Austin
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- Boston Children's Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, USA
- Harvard School of Public Health, Department of Social and Behavioral Sciences, Boston, MA, USA
| | - Esmina Avdibegovic
- University Clinical Center of Tuzla, Department of Psychiatry, Tuzla, BA, Bosnia and Herzegovina
| | - Dragan Babić
- University Clinical Center of Mostar, Department of Psychiatry, Mostar, BA, Bosnia and Herzegovina
| | - Marie Bækvad-Hansen
- Statens Serum Institut, Department for Congenital Disorders, Copenhagen, DK, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Jean C Beckham
- Durham VA Medical Center, Research, Durham, NC, USA
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Laura J Bierut
- Washington University in Saint Louis School of Medicine, Department of Psychiatry, Saint Louis, MO, USA
| | - Jonathan I Bisson
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Marco P Boks
- UMC Utrecht Brain Center Rudolf Magnus, Department of Translational Neuroscience, Utrecht, Utrecht, NL, Netherlands
| | - Elizabeth A Bolger
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, DK, Denmark
- Aarhus University, Department of Biomedicine - Human Genetics, Aarhus, DK, Denmark
| | - Bekh Bradley
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
- Atlanta VA Health Care System, Mental Health Service Line, Decatur, GA, USA
| | - Megan Brashear
- Louisiana State University Health Sciences Center, School of Public Health and Department of Epidemiology, New Orleans, LA, USA
| | - Gerome Breen
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, GB, USA
- King's College London, NIHR BRC at the Maudsley, London, GB, USA
| | - Richard A Bryant
- University of New South Wales, Department of Psychology, Sydney, NSW, Australia
| | - Angela C Bustamante
- University of Michigan Medical School, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, MI, USA
| | - Jonas Bybjerg-Grauholm
- Statens Serum Institut, Department for Congenital Disorders, Copenhagen, DK, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
| | | | - José M Caldas-de-Almeida
- CEDOC -Chronic Diseases Research Centre, Lisbon Institute of Global Mental Health, Lisbon, PT, Portugal
| | - Anders M Dale
- University of California San Diego, Department of Radiology, Department of Neurosciences, La Jolla, CA, USA
| | - Mark J Daly
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Nikolaos P Daskalakis
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Cohen Veterans Bioscience, Cambridge, MA, USA
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Jürgen Deckert
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, DE, Germany
| | - Douglas L Delahanty
- Kent State University, Department of Psychological Sciences, Kent, OH, USA
- Kent State University, Research and Sponsored Programs, Kent, OH, USA
| | - Michelle F Dennis
- Durham VA Medical Center, Research, Durham, NC, USA
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, MN, USA
| | - Katharina Domschke
- Medical Center-University of Freiburg, Faculty of Medicine, Department of Psychiatry and Psychotherapy, Freiburg, DE, Germany
- University of Freiburg, Faculty of Medicine, Centre for Basics in Neuromodulation, Freiburg, DE, Germany
| | - Alma Dzubur-Kulenovic
- University Clinical Center of Sarajevo, Department of Psychiatry, Sarajevo, BA, Bosnia and Herzegovina
| | - Christopher R Erbes
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Center for Care Delivery and Outcomes Research (CCDOR), Minneapolis, MN, USA
| | - Alexandra Evans
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, South Glamorgan, GB, USA
| | - Lindsay A Farrer
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Norah C Feeny
- Case Western Reserve University, Department of Psychological Sciences, Cleveland, OH, USA
| | - Janine D Flory
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - David Forbes
- University of Melbourne, Department of Psychiatry, Melbourne, VIC, AU, USA
| | - Carol E Franz
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Sandro Galea
- Boston University, Department of Psychological and Brain Sciences, Boston, MA, USA
| | - Melanie E Garrett
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Bizu Gelaye
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, Utrecht, NL, Netherlands
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, Utrecht, NL, Netherlands
| | - Charles Gillespie
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Aferdita Goci Uka
- University Clinical Centre of Kosovo, Department of Psychiatry, Prishtina, Kosovo, XK, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
| | - Guia Guffanti
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Rasha Hammamieh
- US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, MD, USA
| | - Supriya Harnal
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Michael A Hauser
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Andrew C Heath
- Washington University in Saint Louis School of Medicine, Department of Genetics, Saint Louis, MO, USA
| | - Sian M J Hemmings
- Stellenbosch University Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA, South Africa
| | - David Michael Hougaard
- Statens Serum Institut, Department for Congenital Disorders, Copenhagen, DK, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
| | - Miro Jakovljevic
- University Hospital Center of Zagreb, Department of Psychiatry, Zagreb, HR, USA
| | - Marti Jett
- US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, MD, USA
| | - Eric Otto Johnson
- RTI International, Behavioral Health and Criminal Justice Division, Research Triangle Park, NC, USA
| | - Ian Jones
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, South Glamorgan, GB, USA
| | - Tanja Jovanovic
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Angela G Junglen
- Kent State University, Department of Psychological Sciences, Kent, OH, USA
| | - Karen-Inge Karstoft
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Sjaelland, Denmark
- University of Copenhagen, Department of Psychology, Copenhagen, DK, Denmark
| | - Milissa L Kaufman
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Ronald C Kessler
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| | - Alaptagin Khan
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Department of Health Care Policy, Boston, MA, USA
| | - Nathan A Kimbrel
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
- Durham VA Medical Center, Research, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Anthony P King
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI, USA
| | - Nastassja Koen
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Cape Town, Western Cape, ZA, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - William S Kremen
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Bruce R Lawford
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU, Australia
| | - Lauren A M Lebois
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Catrin E Lewis
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, South Glamorgan, GB, USA
| | - Sarah D Linnstaedt
- UNC Institute for Trauma Recovery, Department of Anesthesiology, Chapel Hill, NC, USA
| | - Adriana Lori
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Bozo Lugonja
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, South Glamorgan, GB, USA
| | - Jurjen J Luykx
- UMC Utrecht Brain Center Rudolf Magnus, Department of Translational Neuroscience, Utrecht, Utrecht, NL, Netherlands
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, Utrecht, NL, Netherlands
| | | | - Jessica Maples-Keller
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Charles Marmar
- New York University School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Alicia R Martin
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
| | | | | | - Alexander McFarlane
- University of Adelaide, Department of Psychiatry, Adelaide, South Australia, AU, Australia
| | | | | | - Samuel A McLean
- UNC Institute for Trauma Recovery, Department of Anesthesiology, Chapel Hill, NC, USA
- UNC Institute for Trauma Recovery, Department of Emergency Medicine, Chapel Hill, NC, USA
| | - Sarah McLeay
- Gallipoli Medical Research Institute, PTSD Initiative, Greenslopes, Queensland, AU, Australia
| | - Divya Mehta
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Psychology and Counseling, Faculty of Health, Kelvin Grove, QLD, AU, Australia
| | | | - Mark W Miller
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Rajendra A Morey
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Charles Phillip Morris
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Aarhus University Hospital, Psychosis Research Unit, Risskov, DK, Denmark
| | - Preben B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, DK, Denmark
- Aarhus University, Centre for Integrated Register-based Research, Aarhus, DK, Denmark
- Aarhus University, National Centre for Register-Based Research, Aarhus, DK, Denmark
| | - Benjamin M Neale
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Elliot C Nelson
- Washington University in Saint Louis School of Medicine, Department of Psychiatry, Saint Louis, MO, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- University of Copenhagen, Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, Copenhagen, DK, Denmark
| | - Sonya B Norman
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Department of Research and Psychiatry, San Diego, CA, USA
- National Center for Post Traumatic Stress Disorder, Executive Division, White River Junction, San Diego, VT, USA
| | - Meaghan O'Donnell
- University of Melbourne, Department of Psychiatry, Melbourne, VIC, AU, USA
| | - Holly K Orcutt
- Northern Illinois University, Department of Psychology, DeKalb, IL, USA
| | - Matthew S Panizzon
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Edward S Peters
- Louisiana State University Health Sciences Center, School of Public Health and Department of Epidemiology, New Orleans, LA, USA
| | - Alan L Peterson
- University of Texas Health Science Center at San Antonio, Department of Psychiatry, San Antonio, TX, USA
| | - Matthew Peverill
- University of Washington, Department of Psychology, Seattle, WA, USA
| | - Robert H Pietrzak
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, West Haven, CT, USA
| | - Melissa A Polusny
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Department of Mental Health, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Department of Psychology, Minneapolis, MN, USA
| | - John P Rice
- Washington University in Saint Louis School of Medicine, Department of Psychiatry, Saint Louis, MO, USA
| | - Stephan Ripke
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
- Charité - Universitätsmedizin, Department of Psychiatry and Psychotherapy, Berlin, GE, Germany
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Andrea L Roberts
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA
| | - Alex O Rothbaum
- Case Western Reserve University, Department of Psychological Sciences, Cleveland, OH, USA
| | - Barbara O Rothbaum
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Peter Roy-Byrne
- University of Washington, Department of Psychology, Seattle, WA, USA
| | - Ken Ruggiero
- Medical University of South Carolina, Department of Nursing and Department of Psychiatry, Charleston, SC, USA
| | - Ariane Rung
- Louisiana State University Health Sciences Center, School of Public Health and Department of Epidemiology, New Orleans, LA, USA
| | - Bart P F Rutten
- Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht, Limburg, NL, Netherlands
| | - Nancy L Saccone
- Washington University in Saint Louis School of Medicine, Department of Psychiatry, Saint Louis, MO, USA
| | - Sixto E Sanchez
- Universidad Peruana de Ciencias Aplicadas Facultad de Ciencias de la Salud, Department of Medicine, Lima, Lima, PE, USA
| | - Dick Schijven
- UMC Utrecht Brain Center Rudolf Magnus, Department of Translational Neuroscience, Utrecht, Utrecht, NL, Netherlands
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, Utrecht, NL, Netherlands
| | - Soraya Seedat
- Stellenbosch University Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA, South Africa
| | - Antonia V Seligowski
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Julia S Seng
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
| | - Christina M Sheerin
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | - Derrick Silove
- University of New South Wales, Department of Psychiatry, Sydney, NSW, AU, USA
| | - Alicia K Smith
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Jordan W Smoller
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA
| | - Dan J Stein
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Cape Town, Western Cape, ZA, USA
| | - Jennifer S Stevens
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Jennifer A Sumner
- Columbia University Medical Center, Department of Medicine, New York, NY, USA
| | - Martin H Teicher
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Wesley K Thompson
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, DK, Denmark
- Oslo University Hospital, KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo, NO, USA
| | - Edward Trapido
- Louisiana State University Health Sciences Center, School of Public Health and Department of Epidemiology, New Orleans, LA, USA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Robert J Ursano
- Uniformed Services University, Department of Psychiatry, Bethesda, Maryland, USA
| | - Leigh Luella van den Heuvel
- Stellenbosch University Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA, South Africa
| | - Miranda Van Hooff
- University of Adelaide, Department of Psychiatry, Adelaide, South Australia, AU, Australia
| | - Eric Vermetten
- New York University School of Medicine, Department of Psychiatry, New York, NY, USA
- Arq, Psychotrauma Reseach Expert Group, Diemen, NH, Netherlands
- Leiden University Medical Center, Department of Psychiatry, Leiden, ZH, NL, Netherlands
- Netherlands Defense Department, Research Center, Utrecht, UT, Netherlands
| | - Christiaan H Vinkers
- Amsterdam UMC (location VUmc), Department of Anatomy and Neurosciences, Amsterdam, Holland, NL, Netherlands
- Amsterdam UMC (location VUmc), Department of Psychiatry, Amsterdam, Holland, NL, Netherlands
| | - Joanne Voisey
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU, Australia
| | - Yunpeng Wang
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, DK, Denmark
- Oslo University Hospital, KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo, NO, USA
| | - Zhewu Wang
- Ralph H Johnson VA Medical Center, Department of Mental Health, Charleston, SC, USA
- Medical University of South Carolina, Department of Psychiatry and Behavioral Sciences, Charleston, SC, USA
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, DK, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Michelle A Williams
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Douglas E Williamson
- Durham VA Medical Center, Research, Durham, NC, USA
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Sherry Winternitz
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Christiane Wolf
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, DE, Germany
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | | | - Rachel Yehuda
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
- James J Peters VA Medical Center, Department of Mental Health, Bronx, NY, USA
| | - Ross McD Young
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Psychology and Counseling, Faculty of Health, Kelvin Grove, QLD, AU, Australia
| | - Keith A Young
- Baylor Scott and White Central Texas, Department of Psychiatry, Temple, TX, USA
- CTVHCS, COE for Research on Returning War Veterans, Waco, TX, USA
| | - Hongyu Zhao
- Yale University, Department of Biostatistics, New Haven, CT, USA
| | - Lori A Zoellner
- University of Washington, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
| | - Israel Liberzon
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI, USA
| | - Kerry J Ressler
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Magali Haas
- Cohen Veterans Bioscience, Cambridge, MA, USA
| | - Karestan C Koenen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
- Harvard School of Public Health, Department of Epidemiology, Boston, MA, USA
| |
Collapse
|
230
|
Lule SA, Mentzer AJ, Namara B, Muwenzi AG, Nassanga B, kizito D, Akurut H, Lubyayi L, Tumusiime J, Zziwa C, Akello F, Gurdasani D, Sandhu M, Smeeth L, Elliott AM, Webb EL. A genome-wide association and replication study of blood pressure in Ugandan early adolescents. Mol Genet Genomic Med 2019; 7:e00950. [PMID: 31469255 PMCID: PMC6785527 DOI: 10.1002/mgg3.950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genetic association studies of blood pressure (BP) have mostly been conducted in non-African populations. Using the Entebbe Mother and Baby Study (EMaBS), we aimed to identify genetic variants associated with BP among Ugandan adolescents. METHODS Systolic and diastolic BP were measured among 10- and 11-year olds. Whole-genome genotype data were generated using Illumina omni 2.5M arrays and untyped variants were imputed. Genome-wide association study (GWAS) was conducted using linear mixed model regression to account for population structure. Linear regression analysis was used to assess whether variants previously associated with BP (p < 5.0 × 10-8 ) in published BP GWASs were replicated in our study. RESULTS Of the 14 million variants analyzed among 815 adolescents, none reached genome-wide significance (p < 5.0×10-8 ) for association with systolic or diastolic BP. The most strongly associated variants were rs181430167 (p = 6.8 × 10-7 ) for systolic BP and rs12991132 (p = 4.0 × 10-7 ) for diastolic BP. Thirty-three (17 single nucleotide polymorphisms (SNPs) for systolic BP, 15 SNPs for diastolic BP and one SNP for both) of 330 variants previously identified as associated with BP were replicated in this study, but none remained significant after accounting for multiple testing. CONCLUSION Variants showing suggestive associations are worthy of future investigation. Replication results suggest that variants influencing adolescent BP may overlap somewhat with those already established in previous studies, largely based on adults in Western settings.
Collapse
Affiliation(s)
- Swaib A. Lule
- London School of Hygiene and Tropical MedicineLondonUK
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | - Alexander J. Mentzer
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
- Big Data Institute, Li Ka Shing Centre for Health Information and DiscoveryUniversity of OxfordOxfordUK
| | | | | | | | | | - Helen Akurut
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | | | | | | | | | - Deept Gurdasani
- Wellcome Trust Sanger InstituteCambridgeUK
- University of CambridgeCambridgeUK
| | - Manjinder Sandhu
- Wellcome Trust Sanger InstituteCambridgeUK
- University of CambridgeCambridgeUK
| | - Liam Smeeth
- London School of Hygiene and Tropical MedicineLondonUK
| | - Alison M. Elliott
- London School of Hygiene and Tropical MedicineLondonUK
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | - Emily L. Webb
- London School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
231
|
Li H, Du B, Jiang F, Guo Y, Wang Y, Zhang C, Zeng X, Xie Y, Ouyang S, Xian Y, Chen M, Liu W, Sun X. Noninvasive prenatal diagnosis of β-thalassemia by relative haplotype dosage without analyzing proband. Mol Genet Genomic Med 2019; 7:e963. [PMID: 31566929 PMCID: PMC6825866 DOI: 10.1002/mgg3.963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND β-thalassemia is one of the most common monogenic diseases in the world. Southeast China is a highly infected area affected by four β-thalassemia mutation types (HBB:c.-78A>G, HBB:c.52A>T, HBB:c.126_129delCTTT, and HBB:c.316-197C>T). Relative haplotype dosage (RHDO), a haplotype-based approach, has shown promise as an application for noninvasive prenatal diagnosis (NIPD); however, additional family members (such as the proband) are required for haplotype construction. The abovementioned circumstances make RHDO-based NIPD cost prohibitive; additionally, the genetic information of the proband is not always available. Thus, it is necessary to find a practical method to solve these problems. METHODS Targeted sequencing was applied to sequence parental genomic DNA and cell-free fetal DNA (cffDNA). Parental haplotypes were constructed with the SHAPEIT software based on the 1000 Genomes Project (1000G) Phase 3 v5 Southern Han Chinese (CHS) haplotype dataset. Single-nucleotide polymorphisms (SNPs) in the target region were called and classified, and the fetal mutation inheritance status was deduced using the RHDO method. RESULTS Construction of the parental haplotypes and detection of the inherited parental mutations were successfully achieved in five families, despite a suspected recombination event. The status of the affected fetuses is consistent with the results of traditional reverse dot blot (RDB) diagnosis. CONCLUSION This research introduced SHAPEIT into the classical RHDO workflow and proved that it is applicable to construct parental haplotypes without information from other family members.
Collapse
Affiliation(s)
- Haoxian Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bole Du
- GuangZhou JingKe Biotech Co., Ltd, Guangzhou, China
| | - Fuman Jiang
- GuangZhou JingKe Biotech Co., Ltd, Guangzhou, China
| | - Yulai Guo
- GuangZhou JingKe Biotech Co., Ltd, Guangzhou, China
| | - Yang Wang
- GuangZhou JingKe Biotech Co., Ltd, Guangzhou, China
| | | | | | - Yuhuan Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuming Ouyang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yexing Xian
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqiang Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
232
|
Secolin R, Mas-Sandoval A, Arauna LR, Torres FR, de Araujo TK, Santos ML, Rocha CS, Carvalho BS, Cendes F, Lopes-Cendes I, Comas D. Distribution of local ancestry and evidence of adaptation in admixed populations. Sci Rep 2019; 9:13900. [PMID: 31554886 PMCID: PMC6761108 DOI: 10.1038/s41598-019-50362-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Admixed American populations have different global proportions of European, Sub-Saharan African, and Native-American ancestry. However, individuals who display the same global ancestry could exhibit remarkable differences in the distribution of local ancestry blocks. We studied for the first time the distribution of local ancestry across the genome of 264 Brazilian admixed individuals, ascertained within the scope of the Brazilian Initiative on Precision Medicine. We found a decreased proportion of European ancestry together with an excess of Native-American ancestry on chromosome 8p23.1 and showed that this is due to haplotypes created by chromosomal inversion events. Furthermore, Brazilian non-inverted haplotypes were more similar to Native-American haplotypes than to European haplotypes, in contrast to what was found in other American admixed populations. We also identified signals of recent positive selection on chromosome 8p23.1, and one gene within this locus, PPP1R3B, is related to glycogenesis and has been associated with an increased risk of type 2 diabetes and obesity. These findings point to a selection event after admixture, which is still not entirely understood in recent admixture events.
Collapse
Affiliation(s)
- Rodrigo Secolin
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Alex Mas-Sandoval
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lara R Arauna
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Fábio R Torres
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Tânia K de Araujo
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Marilza L Santos
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Cristiane S Rocha
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Benilton S Carvalho
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil.
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
233
|
Font-Porterias N, Arauna LR, Poveda A, Bianco E, Rebato E, Prata MJ, Calafell F, Comas D. European Roma groups show complex West Eurasian admixture footprints and a common South Asian genetic origin. PLoS Genet 2019; 15:e1008417. [PMID: 31545809 PMCID: PMC6779411 DOI: 10.1371/journal.pgen.1008417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/07/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
The Roma population is the largest transnational ethnic minority in Europe, characterized by a linguistic, cultural and historical heterogeneity. Comparative linguistics and genetic studies have placed the origin of European Roma in the Northwest of India. After their migration across Persia, they entered into the Balkan Peninsula, from where they spread into Europe, arriving in the Iberian Peninsula in the 15th century. Their particular demographic history has genetic implications linked to rare and common diseases. However, the South Asian source of the proto-Roma remains still untargeted and the West Eurasian Roma component has not been yet deeply characterized. Here, in order to describe both the South Asian and West Eurasian ancestries, we analyze previously published genome-wide data of 152 European Roma and 34 new Iberian Roma samples at a fine-scale and haplotype-based level, with special focus on the Iberian Roma genetic substructure. Our results suggest that the putative origin of the proto-Roma involves a Punjabi group with low levels of West Eurasian ancestry. In addition, we have identified a complex West Eurasian component (around 65%) in the Roma, as a result of the admixture events occurred with non-proto-Roma populations between 1270–1580. Particularly, we have detected the Balkan genetic footprint in all European Roma, and the Baltic and Iberian components in the Northern and Western Roma groups, respectively. Finally, our results show genetic substructure within the Iberian Roma, with different levels of West Eurasian admixture, as a result of the complex historical events occurred in the Peninsula. Human demographic processes and admixture events leave traceable footprints in the genomes of the populations and they can modulate the genetic architecture of complex diseases. Here, we aim to study the Roma people, an admixed population with a particular demographic history recognized as the largest ethnic minority in Europe. Previous studies suggest that they originated in South Asia 1,500 years ago and followed a diaspora towards Europe with extensive admixture with non-Roma West Eurasian groups. However, the genetic components of the Roma have not been deeply characterized. Our study reveals a common South Asian origin of all European Roma, closely related to a Punjabi group from Northwestern India. Through fine-scale haplotype-based methods, we describe a complex West Eurasian genetic component in the Roma groups, identifying a common Balkan ancestry and country-specific admixture footprints consistent with the dispersion through Europe. Our findings provide new insights into the demographic history and recent admixture events that have shaped the genetic composition of European Roma groups and could enable a better genetic characterization of complex disease in this population.
Collapse
Affiliation(s)
- Neus Font-Porterias
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lara R. Arauna
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Erica Bianco
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Rebato
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Maria Joao Prata
- Instituto de Investigacão e Inovacão em Saude/Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Francesc Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
234
|
Scepanovic P, Hodel F, Mondot S, Partula V, Byrd A, Hammer C, Alanio C, Bergstedt J, Patin E, Touvier M, Lantz O, Albert ML, Duffy D, Quintana-Murci L, Fellay J. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. MICROBIOME 2019; 7:130. [PMID: 31519223 PMCID: PMC6744716 DOI: 10.1186/s40168-019-0747-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/04/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND The gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu Intérieur Consortium, a total of 1000 healthy individuals of western European ancestry, with a 1:1 sex ratio and evenly stratified across five decades of life (age 20-69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition. RESULTS Among 110 demographic, clinical, and environmental factors, 11 were identified as significantly correlated with α-diversity, ß-diversity, or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between > 5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics. CONCLUSION In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT01699893.
Collapse
Affiliation(s)
- Petar Scepanovic
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Flavia Hodel
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Valentin Partula
- Sorbonne-Paris-Cité Research Center for Epidemiology and Statistics CRESS, Nutritional Epidemiology Research Team EREN (INSERM U1153/INRA U1125/CNAM/Université Paris-XIII Nord), Bobigny, France
- University of Paris-VII Denis Diderot, Sorbonne-Paris-Cité University, Paris, France
| | - Allyson Byrd
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA 94080 USA
| | - Christian Hammer
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA 94080 USA
- Department of Human Genetics, Genentech Inc., San Francisco, CA 94080 USA
| | - Cécile Alanio
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jacob Bergstedt
- Department of Automatic Control, LTH, Lund University, Lund, Sweden
| | - Etienne Patin
- Unit of Human Evolutionary Genetics, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Mathilde Touvier
- Sorbonne-Paris-Cité Research Center for Epidemiology and Statistics CRESS, Nutritional Epidemiology Research Team EREN (INSERM U1153/INRA U1125/CNAM/Université Paris-XIII Nord), Bobigny, France
| | - Olivier Lantz
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
- Center of Clinical Investigations, CICBT1428 IGR/Curie, 75005 Paris, France
| | - Matthew L. Albert
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA 94080 USA
| | - Darragh Duffy
- Immunobiology of Dendritic Cells laboratory (INSERM U1223/Institut Pasteur), Paris, France
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
235
|
Luo Y, Suliman S, Asgari S, Amariuta T, Baglaenko Y, Martínez-Bonet M, Ishigaki K, Gutierrez-Arcelus M, Calderon R, Lecca L, León SR, Jimenez J, Yataco R, Contreras C, Galea JT, Becerra M, Nejentsev S, Nigrovic PA, Moody DB, Murray MB, Raychaudhuri S. Early progression to active tuberculosis is a highly heritable trait driven by 3q23 in Peruvians. Nat Commun 2019; 10:3765. [PMID: 31434886 PMCID: PMC6704092 DOI: 10.1038/s41467-019-11664-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Of the 1.8 billion people worldwide infected with Mycobacterium tuberculosis, 5-15% will develop active tuberculosis (TB). Approximately half will progress to active TB within the first 18 months after infection, presumably because they fail to mount an effective initial immune response. Here, in a genome-wide genetic study of early TB progression, we genotype 4002 active TB cases and their household contacts in Peru. We quantify genetic heritability ([Formula: see text]) of early TB progression to be 21.2% (standard error 0.08). This suggests TB progression has a strong genetic basis, and is comparable to traits with well-established genetic bases. We identify a novel association between early TB progression and variants located in a putative enhancer region on chromosome 3q23 (rs73226617, OR = 1.18; P = 3.93 × 10-8). With in silico and in vitro analyses we identify rs73226617 or rs148722713 as the likely functional variant and ATP1B3 as a potential causal target gene with monocyte specific function.
Collapse
Affiliation(s)
- Yang Luo
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Suliman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samira Asgari
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiffany Amariuta
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yuriy Baglaenko
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuyoshi Ishigaki
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | - Jerome T Galea
- School of Social Work, University of South Florida, Tampa, FL, USA
| | - Mercedes Becerra
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan B Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Arthritis Research UK Centre for Genetics and Genomics, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
236
|
Zan Y, Payen T, Lillie M, Honaker CF, Siegel PB, Carlborg Ö. Genotyping by low-coverage whole-genome sequencing in intercross pedigrees from outbred founders: a cost-efficient approach. Genet Sel Evol 2019; 51:44. [PMID: 31412777 PMCID: PMC6694510 DOI: 10.1186/s12711-019-0487-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Experimental intercrosses between outbred founder populations are powerful resources for mapping loci that contribute to complex traits i.e. quantitative trait loci (QTL). Here, we present an approach and its accompanying software for high-resolution reconstruction of founder mosaic genotypes in the intercross offspring from such populations using whole-genome high-coverage sequence data on founder individuals (~ 30×) and very low-coverage sequence data on intercross individuals (< 0.5×). Sets of founder-line informative markers were selected for each full-sib family and used to infer the founder mosaic genotypes of the intercross individuals. The application of this approach and the quality of the estimated genome-wide genotypes are illustrated in a large F2 pedigree between two divergently selected lines of chickens. RESULTS We describe how we obtained whole-genome genotype data for hundreds of individuals in a cost- and time-efficient manner by using a Tn5-based library preparation protocol and an imputation algorithm that was optimized for this application. In total, 7.6 million markers segregated in this pedigree and, within each full-sib family, between 10.0 and 13.7% of these were fully informative, i.e. fixed for alternative alleles in the founders from the divergent lines, and were used for reconstruction of the offspring mosaic genotypes. The genotypes that were estimated based on the low-coverage sequence data were highly consistent (> 95% agreement) with those obtained using individual single nucleotide polymorphism (SNP) genotyping. The estimated resolution of the inferred recombination breakpoints was relatively high, with 50% of them being defined on regions shorter than 10 kb. CONCLUSIONS A method and software for inferring founder mosaic genotypes in intercross offspring from low-coverage whole-genome sequencing in pedigrees from heterozygous founders are described. They provide high-quality, high-resolution genotypes in a time- and cost-efficient manner. The software is freely available at https://github.com/CarlborgGenomics/Stripes .
Collapse
Affiliation(s)
- Yanjun Zan
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Thibaut Payen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mette Lillie
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Christa F Honaker
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Örjan Carlborg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
237
|
Grassmann F, Harsch S, Brandl C, Kiel C, Nürnberg P, Toliat MR, Fleckenstein M, Pfau M, Schmitz-Valckenberg S, Holz FG, Chew EY, Swaroop A, Ratnapriya R, Klein ML, Mulyukov Z, Zamiri P, Weber BHF. Assessment of Novel Genome-Wide Significant Gene Loci and Lesion Growth in Geographic Atrophy Secondary to Age-Related Macular Degeneration. JAMA Ophthalmol 2019; 137:867-876. [PMID: 31120506 DOI: 10.1001/jamaophthalmol.2019.1318] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Importance Age-related macular degeneration (AMD) is a common threat to vision loss in individuals older than 50 years. While neovascular complications in AMD are treatable, there is currently no therapy for geographic atrophy secondary to AMD. Geographic atrophy lesion progression over time shows considerable interindividual variability, but little is known about prognostic factors. Objective To elucidate the contribution of common genetic variants to geographic atrophy lesion growth. Design, Setting, and Participants This pooled analysis combined 4 independent studies: the Fundus Autofluorescence Imaging in Age-Related Macular Degeneration (FAM) study, the Directional Spread in Geographic Atrophy (DSGA) study, the Age-Related Eye Disease Study (AREDS), and the Geographic Atrophy Treatment Evaluation (GATE) study. Each provided data for geographic atrophy lesion growth in specific designs. Patients with geographic atrophy secondary to AMD were recruited to these studies. Genotypes were retrieved through the database of Genotypes and Phenotypes (for AREDS) or generated at the Cologne Center for Genomics (for FAM, DSGA, and GATE). Main Outcomes The correlation between square root-transformed geographic atrophy growth rate and 7 596 219 genetic variants passing quality control was estimated using linear regression. The calculations were adjusted for known factors influencing geographic atrophy growth, such as the presence of bilateral geographic atrophy as well as the number of lesion spots and follow-up times. Main Outcomes and Measures Slopes per allele, 95% CIs, and P values of genetic variants correlated with geographic atrophy lesion growth. Results A total of 935 patients (mean [SD] age, 74.7 [7.8] years; 547 female participants [59.0%]) were included. Two gene loci with conservative genome-wide significance were identified. Each minor allele of the genome-wide associated variants increased the geographic atrophy growth rate by a mean of about 15% or 0.05 mm per year. Gene prioritization within each locus suggests the protein arginine methyltransferase 6 gene (PRMT6; chromosome 1; slope, 0.046 [95% CI, 0.026-0.066]; P = 4.09 × 10-8) and the lanosterol synthase gene (LSS; chromosome 21; slope, 0.105 [95% CI, 0.068-0.143]; P = 4.07 × 10-7) as the most likely progression-associated genes. Conclusions and Relevance These data provide further insight into the genetic architecture of geographic atrophy lesion growth. Geographic atrophy is a clinical outcome with a high medical need for effective therapy. The genes PRMT6 and LSS are promising candidates for future studies aimed at understanding functional aspects of geographic atrophy progression and also for designing novel and targeted treatment options.
Collapse
Affiliation(s)
- Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Harsch
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany.,Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mohammad R Toliat
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | | | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Anand Swaroop
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Rinki Ratnapriya
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael L Klein
- Casey Eye Institute, Oregon Health & Science University, Portland
| | | | - Parisa Zamiri
- Novartis Pharmaceutical Inc, Cambridge, Massachusetts
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
238
|
An actionable KCNH2 Long QT Syndrome variant detected by sequence and haplotype analysis in a population research cohort. Sci Rep 2019; 9:10964. [PMID: 31358886 PMCID: PMC6662790 DOI: 10.1038/s41598-019-47436-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Viking Health Study Shetland is a population-based research cohort of 2,122 volunteer participants with ancestry from the Shetland Isles in northern Scotland. The high kinship and detailed phenotype data support a range of approaches for associating rare genetic variants, enriched in this isolate population, with quantitative traits and diseases. As an exemplar, the c.1750G > A; p.Gly584Ser variant within the coding sequence of the KCNH2 gene implicated in Long QT Syndrome (LQTS), which occurred once in 500 whole genome sequences from this population, was investigated. Targeted sequencing of the KCNH2 gene in family members of the initial participant confirmed the presence of the sequence variant and identified two further members of the same family pedigree who shared the variant. Investigation of these three related participants for whom single nucleotide polymorphism (SNP) array genotypes were available allowed a unique shared haplotype of 1.22 Mb to be defined around this locus. Searching across the full cohort for this haplotype uncovered two additional apparently unrelated individuals with no known genealogical connection to the original kindred. All five participants with the defined haplotype were shown to share the rare variant by targeted Sanger sequencing. If this result were verified in a healthcare setting, it would be considered clinically actionable, and has been actioned in relatives ascertained independently through clinical presentation. The General Practitioners of four study participants with the rare variant were alerted to the research findings by letters outlining the phenotype (prolonged electrocardiographic QTc interval). A lack of detectable haplotype sharing between c.1750G > A; p.Gly584Ser chromosomes from previously reported individuals from Finland and those in this study from Shetland suggests that this mutation has arisen more than once in human history. This study showcases the potential value of isolate population-based research resources for genomic medicine. It also illustrates some challenges around communication of actionable findings in research participants in this context.
Collapse
|
239
|
Alshawi A, Essa A, Al-Bayatti S, Hanotte O. Genome Analysis Reveals Genetic Admixture and Signature of Selection for Productivity and Environmental Traits in Iraqi Cattle. Front Genet 2019; 10:609. [PMID: 31379916 PMCID: PMC6646475 DOI: 10.3389/fgene.2019.00609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/11/2019] [Indexed: 01/03/2023] Open
Abstract
The Near East cattle are adapted to different agro-ecological zones including desert areas, mountains habitats, and humid regions along the Tigris and Euphrates rivers system. The region was one of the earliest and most significant areas of cattle husbandry. Currently, four main breeds of Iraqi cattle are recognized. Among these, the Jenoubi is found in the southern more humid part of Iraq, while the Rustaqi is found in the middle and drier region of the country. Despite their importance, Iraqi cattle have up to now been poorly characterized at the genome level. Here, we report at a genome-wide level the diversity and signature of positive selection in these two breeds. Thirty-five unrelated Jenoubi cattle, sampled in the Maysan and Basra regions, and 60 Rustaqi cattle, from around Baghdad and Babylon, were genotyped using the Illumina Bovine HD BeadChip (700K). Genetic population structure and diversity level were studied using principal component analysis (PCA), expected heterozygosity (He), observed heterozygosity (Ho), and admixture. Signatures of selection were studied using extended haplotype homozygosity (EHH) (iHS and Rsb) and inter-population Wright's Fst. The results of PCA and admixture analysis, including European taurine, Asian indicine, African indicine, and taurine indicate that the two breeds are crossbreed zebu × taurine, with more zebu background in Jenoubi cattle compared with Rustaqi. The Rustaqi has the greatest mean heterozygosity (He = 0.37) among all breeds. iHS and Rsb signatures of selection analyses identify 68 candidate genes under positive selection in the two Iraqi breeds, while Fst analysis identifies 220 candidate genes including genes related to the innate and acquired immunity responses, different environmental selection pressures (e.g., tick resistance and heat stress), and genes of commercial interest (e.g., marbling score).
Collapse
Affiliation(s)
- Akil Alshawi
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, Faculty of Medicine and Health Sciences, University Park Campus, University of Nottingham, Nottingham, United Kingdom.,Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Baghdad, Iraqi Ministry of Higher Education and Scientific Research, Baghdad, Iraq
| | - Abdulameer Essa
- Animal Genetics Resources Department, Directorate of Animal Resources, the Ministry of Iraqi Agriculture, Baghdad, Iraq
| | - Sahar Al-Bayatti
- Animal Genetics Resources Department, Directorate of Animal Resources, the Ministry of Iraqi Agriculture, Baghdad, Iraq
| | - Olivier Hanotte
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, Faculty of Medicine and Health Sciences, University Park Campus, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
240
|
Matana A, Popović M, Boutin T, Torlak V, Brdar D, Gunjača I, Kolčić I, Boraska Perica V, Punda A, Polašek O, Hayward C, Barbalić M, Zemunik T. Genome-wide meta-analysis identifies novel gender specific loci associated with thyroid antibodies level in Croatians. Genomics 2019; 111:737-743. [DOI: 10.1016/j.ygeno.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
|
241
|
Schäler J, Hinrichs D, Thaller G. The benefit of native uniqueness in a local red cattle breed from Northern Germany. J Anim Breed Genet 2019; 136:518-525. [DOI: 10.1111/jbg.12421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas Schäler
- Department of Organic Agricultural Sciences University of Kassel Witzenhausen Germany
| | - Dirk Hinrichs
- Department of Organic Agricultural Sciences University of Kassel Witzenhausen Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry Christian‐Albrechts‐University of Kiel Kiel Germany
| |
Collapse
|
242
|
Harpur BA, Guarna MM, Huxter E, Higo H, Moon KM, Hoover SE, Ibrahim A, Melathopoulos AP, Desai S, Currie RW, Pernal SF, Foster LJ, Zayed A. Integrative Genomics Reveals the Genetics and Evolution of the Honey Bee's Social Immune System. Genome Biol Evol 2019; 11:937-948. [PMID: 30768172 PMCID: PMC6447389 DOI: 10.1093/gbe/evz018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Social organisms combat pathogens through individual innate immune responses or through social immunity—behaviors among individuals that limit pathogen transmission within groups. Although we have a relatively detailed understanding of the genetics and evolution of the innate immune system of animals, we know little about social immunity. Addressing this knowledge gap is crucial for understanding how life-history traits influence immunity, and identifying if trade-offs exist between innate and social immunity. Hygienic behavior in the Western honey bee, Apis mellifera, provides an excellent model for investigating the genetics and evolution of social immunity in animals. This heritable, colony-level behavior is performed by nurse bees when they detect and remove infected or dead brood from the colony. We sequenced 125 haploid genomes from two artificially selected highly hygienic populations and a baseline unselected population. Genomic contrasts allowed us to identify a minimum of 73 genes tentatively associated with hygienic behavior. Many genes were within previously discovered QTLs associated with hygienic behavior and were predictive of hygienic behavior within the unselected population. These genes were often involved in neuronal development and sensory perception in solitary insects. We found that genes associated with hygienic behavior have evidence of positive selection within honey bees (Apis), supporting the hypothesis that social immunity contributes to fitness. Our results indicate that genes influencing developmental neurobiology and behavior in solitary insects may have been co-opted to give rise to a novel and adaptive social immune phenotype in honey bees.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Entomology, Purdue University.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Maria Marta Guarna
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | | | - Heather Higo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelley E Hoover
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada.,Alberta Agriculture and Forestry, Agriculture Centre, Lethbridge, Alberta, Canada
| | - Abdullah Ibrahim
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Andony P Melathopoulos
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada.,Department of Horticulture, College of Agricultural Sciences, Oregon State University
| | - Suresh Desai
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W Currie
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
243
|
Kim HK, Anwar MA, Choi S. Association of BUD13-ZNF259-APOA5-APOA1-SIK3 cluster polymorphism in 11q23.3 and structure of APOA5 with increased plasma triglyceride levels in a Korean population. Sci Rep 2019; 9:8296. [PMID: 31165758 PMCID: PMC6549162 DOI: 10.1038/s41598-019-44699-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
In this association study on chromosome 11, the data from 12,537 Korean individuals within the Health Examinee (HEXA) and the Korea Association Resource (KARE) projects were analysed to identify genetic loci correlating with increased and decreased plasma triglyceride (TG) levels. We identified a locus in chromosomal region 11q23.3 that harbours genes BUD13, ZNF259, APOA5, APOA1, and SIK3, which may be associated with plasma TG levels. In this locus, 13 relevant single-nucleotide polymorphisms (SNPs) were found: rs184616707, rs118175510, rs60954647, rs79408961, and rs180373 (near BUD13); rs11604424 (in ZNF259); rs2075291, rs651821, and rs7123666 (in or near APOA5); rs525028 (near APOA1), and rs645258, rs10160754, and rs142395187 (in or near SIK3). All 13 SNPs satisfied the genome-wide significance level (P < 5.0 × 10-8) in both meta-analysis and conditional analysis. Haplotype analysis of six SNPs (rs79408961, rs180373, rs2075291, rs651821, rs525028, and rs10160754) that were selected based on the β coefficient and conditional P values, revealed nine common haplotypes (with frequency 0.02-0.34) associated with both increased and reduced TG levels. Furthermore, to shed light on possible structural implications, we modelled and simulated the G185C variant of APOA5 (corresponding to rs2075291), which showed the strongest association. Molecular dynamics simulation results showed that this polymorphic variant of APOA5 has a different hydrogen bond network, increased average distance between chains, and an ability to form distinct clusters. Owing to the orientation of cysteine, the possibility of disulphide bond formation with other proteins is evident. In summary, our association and modelling analyses provided evidence that genetic variations in chromosomal region 11q23.3 are associated with elevated TG levels.
Collapse
Affiliation(s)
- Han-Kyul Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| |
Collapse
|
244
|
Hwang LD, Lin C, Gharahkhani P, Cuellar-Partida G, Ong JS, An J, Gordon SD, Zhu G, MacGregor S, Lawlor DA, Breslin PAS, Wright MJ, Martin NG, Reed DR. New insight into human sweet taste: a genome-wide association study of the perception and intake of sweet substances. Am J Clin Nutr 2019; 109:1724-1737. [PMID: 31005972 PMCID: PMC6537940 DOI: 10.1093/ajcn/nqz043] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Individual differences in human perception of sweetness are partly due to genetics; however, which genes are associated with the perception and the consumption of sweet substances remains unclear. OBJECTIVE The aim of this study was to verify previous reported associations within genes involved in the peripheral receptor systems (i.e., TAS1R2, TAS1R3, and GNAT3) and reveal novel loci. METHODS We performed genome-wide association scans (GWASs) of the perceived intensity of 2 sugars (glucose and fructose) and 2 high-potency sweeteners (neohesperidin dihydrochalcone and aspartame) in an Australian adolescent twin sample (n = 1757), and the perceived intensity and sweetness and the liking of sucrose in a US adult twin sample (n = 686). We further performed GWASs of the intake of total sugars (i.e., total grams of all dietary mono- and disaccharides per day) and sweets (i.e., handfuls of candies per day) in the UK Biobank sample (n = ≤174,424 white-British individuals). All participants from the 3 independent samples were of European ancestry. RESULTS We found a strong association between the intake of total sugars and the single nucleotide polymorphism rs11642841 within the FTO gene on chromosome 16 (P = 3.8 × 10-8) and many suggestive associations (P < 1.0 × 10-5) for each of the sweet perception and intake phenotypes. We showed genetic evidence for the involvement of the brain in both sweet taste perception and sugar intake. There was limited support for the associations with TAS1R2, TAS1R3, and GNAT3 in all 3 European samples. CONCLUSIONS Our findings indicate that genes additional to those involved in the peripheral receptor system are also associated with the sweet taste perception and intake of sweet-tasting foods. The functional potency of the genetic variants within TAS1R2, TAS1R3, and GNAT3 may be different between ethnic groups and this warrants further investigations.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine
| | - Jue-Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine
| | - Jiyuan An
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Paul A S Breslin
- Monell Chemical Senses Center, Philadelphia, PA
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| | - Margaret J Wright
- Queensland Brain Institute
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | |
Collapse
|
245
|
Flegontov P, Altınışık NE, Changmai P, Rohland N, Mallick S, Adamski N, Bolnick DA, Broomandkhoshbacht N, Candilio F, Culleton BJ, Flegontova O, Friesen TM, Jeong C, Harper TK, Keating D, Kennett DJ, Kim AM, Lamnidis TC, Lawson AM, Olalde I, Oppenheimer J, Potter BA, Raff J, Sattler RA, Skoglund P, Stewardson K, Vajda EJ, Vasilyev S, Veselovskaya E, Hayes MG, O'Rourke DH, Krause J, Pinhasi R, Reich D, Schiffels S. Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 2019; 570:236-240. [PMID: 31168094 PMCID: PMC6942545 DOI: 10.1038/s41586-019-1251-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/25/2019] [Indexed: 11/09/2022]
Abstract
Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik1-3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain4-6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7-9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.
Collapse
Affiliation(s)
- Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budĕjovice, Czech Republic.
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | - N Ezgi Altınışık
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Deborah A Bolnick
- Department of Anthropology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca Candilio
- School of Archaeology, University College Dublin, Dublin, Ireland
- Soprintendenza Archeologia, Belle Arti e Paesaggio per la città metropolitana di Cagliari e le province di Oristano e Sud Sardegna, Cagliari, Italy
| | - Brendan J Culleton
- Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA, USA
| | - Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budĕjovice, Czech Republic
| | - T Max Friesen
- Department of Anthropology, University of Toronto, Toronto, ON, Canada
| | - Choongwon Jeong
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Thomas K Harper
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Denise Keating
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Douglas J Kennett
- Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Alexander M Kim
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Anthropology, Harvard University, Cambridge, MA, USA
| | - Thiseas C Lamnidis
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ben A Potter
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Jennifer Raff
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | | | - Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Francis Crick Institute, London, UK
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Edward J Vajda
- Department of Modern and Classical Languages, Western Washington University, Bellingham, WA, USA
| | - Sergey Vasilyev
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | | | - M Geoffrey Hayes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Ron Pinhasi
- Department of Anthropology, University of Vienna, Vienna, Austria
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
246
|
Jahuey-Martínez FJ, Parra-Bracamonte GM, Sifuentes-Rincón AM, Moreno-Medina VR. Signatures of selection in Charolais beef cattle identified by genome-wide analysis. J Anim Breed Genet 2019; 136:378-389. [PMID: 31020734 DOI: 10.1111/jbg.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022]
Abstract
Charolais cattle are one of the most important breeds for meat production worldwide; in México, its selection is mainly made by live weight traits. One strategy for mapping important genomic regions that might influence productive traits is the identification of signatures of selection. This type of genomic features contains loci with extended linkage disequilibrium (LD) and homozygosity patterns that are commonly associated with sites of quantitative trait locus (QTL). Therefore, the objective of this study was to identify the signatures of selection in Charolais cattle genotyped with the GeneSeek Genomic Profiler Bovine HD panel consisting of 77 K single nucleotide polymorphisms (SNPs). A total 61,311 SNPs and 819 samples were used for the analysis. Identification of signatures of selection was carried out using the integrated haplotype score (iHS) methodology implemented in the rehh R package. The top ten SNPs with the highest piHS values were located on BTA 4, 5, 6 and 14. By identifying markers in LD with top ten SNPs, the candidate regions defined were mapped to 52.8-59.3 Mb on BTA 4; 67.5-69.3 on BTA 5; 39.5-41.0 Mb on BTA 6; and 26.4-29.6 Mb on BTA 14. The comparison of these candidate regions with the bovine QTLdb effectively confirmed the association (p < 0.05) with QTL related to growth traits and other important productive traits. The genomic regions identified in this study indicated selection for growth traits on the Charolais population via the conservation of haplotypes on various chromosomes. These genomic regions and their associated genes could serve as the basis for haplotype association studies and for the identification of causal genes related to growth traits.
Collapse
|
247
|
Welsh P, Preiss D, Hayward C, Shah ASV, McAllister D, Briggs A, Boachie C, McConnachie A, Padmanabhan S, Welsh C, Woodward M, Campbell A, Porteous D, Mills NL, Sattar N. Cardiac Troponin T and Troponin I in the General Population. Circulation 2019; 139:2754-2764. [PMID: 31014085 PMCID: PMC6571179 DOI: 10.1161/circulationaha.118.038529] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND There is great interest in widening the use of high-sensitivity cardiac troponins for population cardiovascular disease (CVD) and heart failure screening. However, it is not clear whether cardiac troponin T (cTnT) and troponin I (cTnI) are equivalent measures of risk in this setting. We aimed to compare and contrast (1) the association of cTnT and cTnI with CVD and non-CVD outcomes, and (2) their determinants in a genome-wide association study. METHODS High-sensitivity cTnT and cTnI were measured in serum from 19 501 individuals in Generation Scotland Scottish Family Health Study. Median follow-up was 7.8 years (quartile 1 to quartile 3, 7.1-9.2). Associations of each troponin with a composite CVD outcome (1177 events), CVD death (n=266), non-CVD death (n=374), and heart failure (n=216) were determined by using Cox models. A genome-wide association study was conducted using a standard approach developed for the cohort. RESULTS Both cTnI and cTnT were strongly associated with CVD risk in unadjusted models. After adjusting for classical risk factors, the hazard ratio for a 1 SD increase in log transformed troponin was 1.24 (95% CI, 1.17-1.32) and 1.11 (1.04-1.19) for cTnI and cTnT, respectively; ratio of hazard ratios 1.12 (1.04-1.21). cTnI, but not cTnT, was associated with myocardial infarction and coronary heart disease. Both cTnI and cTnT had strong associations with CVD death and heart failure. By contrast, cTnT, but not cTnI, was associated with non-CVD death; ratio of hazard ratios 0.77 (0.67-0.88). We identified 5 loci (53 individual single-nucleotide polymorphisms) that had genome-wide significant associations with cTnI, and a different set of 4 loci (4 single-nucleotide polymorphisms) for cTnT. CONCLUSIONS The upstream genetic causes of low-grade elevations in cTnI and cTnT appear distinct, and their associations with outcomes also differ. Elevations in cTnI are more strongly associated with some CVD outcomes, whereas cTnT is more strongly associated with the risk of non-CVD death. These findings help inform the selection of an optimal troponin assay for future clinical care and research in this setting.
Collapse
Affiliation(s)
- Paul Welsh
- Institute of Cardiovascular and Medical Sciences (P.W., S.P., C.W., N.S.), University of Glasgow, United Kingdom
| | - David Preiss
- MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit (D. Preiss), University of Oxford, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine (C.H.), University of Edinburgh, United Kingdom
| | - Anoop S V Shah
- BHF Centre for Cardiovascular Science (A.S.V.S., N.L.M.), University of Edinburgh, United Kingdom
| | - David McAllister
- Institute of Cardiovascular and Medical Sciences (P.W., S.P., C.W., N.S.), University of Glasgow, United Kingdom
| | - Andrew Briggs
- Institute of Health and Wellbeing (A.B.), University of Glasgow, United Kingdom
| | - Charles Boachie
- Robertson Centre for Biostatistics (C.B., A.M.), University of Glasgow, United Kingdom
| | - Alex McConnachie
- Robertson Centre for Biostatistics (C.B., A.M.), University of Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences (P.W., S.P., C.W., N.S.), University of Glasgow, United Kingdom
| | - Claire Welsh
- Institute of Cardiovascular and Medical Sciences (P.W., S.P., C.W., N.S.), University of Glasgow, United Kingdom
| | - Mark Woodward
- The George Institute for Global Health (M.W.), University of Oxford, United Kingdom.,The George Institute for Global Health, University of New South Wales, Sydney, Australia (M.W.).,Department of Epidemiology, Johns Hopkins University, Baltimore, MD (M.W.)
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine (A.C., D. Porteous), University of Edinburgh, United Kingdom.,Usher Institute for Population Health Sciences and Informatics (A.C.), University of Edinburgh, United Kingdom
| | - David Porteous
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine (A.C., D. Porteous), University of Edinburgh, United Kingdom
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science (A.S.V.S., N.L.M.), University of Edinburgh, United Kingdom
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences (P.W., S.P., C.W., N.S.), University of Glasgow, United Kingdom
| |
Collapse
|
248
|
Schmid AB, Adhikari K, Ramirez-Aristeguieta LM, Chacón-Duque JC, Poletti G, Gallo C, Rothhammer F, Bedoya G, Ruiz-Linares A, Bennett DL. Genetic components of human pain sensitivity: a protocol for a genome-wide association study of experimental pain in healthy volunteers. BMJ Open 2019; 9:e025530. [PMID: 31005922 PMCID: PMC6500241 DOI: 10.1136/bmjopen-2018-025530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Pain constitutes a major component of the global burden of diseases. Recent studies suggest a strong genetic contribution to pain susceptibility and severity. Whereas most of the available evidence relies on candidate gene association or linkage studies, research on the genetic basis of pain sensitivity using genome-wide association studies (GWAS) is still in its infancy. This protocol describes a proposed GWAS on genetic contributions to baseline pain sensitivity and nociceptive sensitisation in a sample of unrelated healthy individuals of mixed Latin American ancestry. METHODS AND ANALYSIS A GWAS on genetic contributions to pain sensitivity in the naïve state and following nociceptive sensitisation will be conducted in unrelated healthy individuals of mixed ancestry. Mechanical and thermal pain sensitivity will be evaluated with a battery of quantitative sensory tests evaluating pain thresholds. In addition, variation in mechanical and thermal sensitisation following topical application of mustard oil to the skin will be evaluated. ETHICS AND DISSEMINATION This study received ethical approval from the University College London research ethics committee (3352/001) and from the bioethics committee of the Odontology Faculty at the University of Antioquia (CONCEPTO 01-2013). Findings will be disseminated to commissioners, clinicians and service users via papers and presentations at international conferences.
Collapse
Affiliation(s)
- Annina B Schmid
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | | | - Juan-Camilo Chacón-Duque
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Giovanni Poletti
- Unidad de Neurobiologia Molecular y Genética, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carla Gallo
- Unidad de Neurobiologia Molecular y Genética, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellin, Colombia
| | - Andres Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, Shanghai, China
- CNRS, EFS, ADES, Aix-Marseille Université, Marseille, France
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
249
|
Ruth KS, Soares ALG, Borges MC, Eliassen AH, Hankinson SE, Jones ME, Kraft P, Nichols HB, Sandler DP, Schoemaker MJ, Taylor JA, Zeleniuch-Jacquotte A, Lawlor DA, Swerdlow AJ, Murray A. Genome-wide association study of anti-Müllerian hormone levels in pre-menopausal women of late reproductive age and relationship with genetic determinants of reproductive lifespan. Hum Mol Genet 2019; 28:1392-1401. [PMID: 30649302 PMCID: PMC6452199 DOI: 10.1093/hmg/ddz015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/29/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is required for sexual differentiation in the fetus, and in adult females AMH is produced by growing ovarian follicles. Consequently, AMH levels are correlated with ovarian reserve, declining towards menopause when the oocyte pool is exhausted. A previous genome-wide association study identified three genetic variants in and around the AMH gene that explained 25% of variation in AMH levels in adolescent males but did not identify any genetic associations reaching genome-wide significance in adolescent females. To explore the role of genetic variation in determining AMH levels in women of late reproductive age, we carried out a genome-wide meta-analysis in 3344 pre-menopausal women from five cohorts (median age 44-48 years at blood draw). A single genetic variant, rs16991615, previously associated with age at menopause, reached genome-wide significance at P = 3.48 × 10-10, with a per allele difference in age-adjusted inverse normal AMH of 0.26 standard deviations (SD) (95% confidence interval (CI) [0.18,0.34]). We investigated whether genetic determinants of female reproductive lifespan were more generally associated with pre-menopausal AMH levels. Genetically-predicted age at menarche had no robust association but genetically-predicted age at menopause was associated with lower AMH levels by 0.18 SD (95% CI [0.14,0.21]) in age-adjusted inverse normal AMH per one-year earlier age at menopause. Our findings provide genetic support for the well-established use of AMH as a marker of ovarian reserve.
Collapse
Affiliation(s)
- Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ana Luiza G Soares
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria-Carolina Borges
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, and Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan E Hankinson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, and Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hazel B Nichols
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jack A Taylor
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health and Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
250
|
Zhernakova DV, Brukhin V, Malov S, Oleksyk TK, Koepfli KP, Zhuk A, Dobrynin P, Kliver S, Cherkasov N, Tamazian G, Rotkevich M, Krasheninnikova K, Evsyukov I, Sidorov S, Gorbunova A, Chernyaeva E, Shevchenko A, Kolchanova S, Komissarov A, Simonov S, Antonik A, Logachev A, Polev DE, Pavlova OA, Glotov AS, Ulantsev V, Noskova E, Davydova TK, Sivtseva TM, Limborska S, Balanovsky O, Osakovsky V, Novozhilov A, Puzyrev V, O'Brien SJ. Genome-wide sequence analyses of ethnic populations across Russia. Genomics 2019; 112:442-458. [PMID: 30902755 DOI: 10.1016/j.ygeno.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
Abstract
The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country.
Collapse
Affiliation(s)
- Daria V Zhernakova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Vladimir Brukhin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sergey Malov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Department of Mathematics, St. Petersburg Electrotechnical University, St. Petersburg, Russian Federation
| | - Taras K Oleksyk
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Biology Department, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico; Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Klaus Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Anna Zhuk
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg Branch, St. Petersburg, Russian Federation
| | - Pavel Dobrynin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Sergei Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Nikolay Cherkasov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Gaik Tamazian
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Mikhail Rotkevich
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Ksenia Krasheninnikova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Igor Evsyukov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sviatoslav Sidorov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Anna Gorbunova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russian Federation
| | - Ekaterina Chernyaeva
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Andrey Shevchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sofia Kolchanova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Biology Department, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico
| | - Alexei Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Serguei Simonov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Alexey Antonik
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Anton Logachev
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Dmitrii E Polev
- Centre Biobank, Research Park, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Olga A Pavlova
- Centre Biobank, Research Park, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Andrey S Glotov
- Laboratory of biobanking and genomic medicine of Institute of translation biomedicine, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Vladimir Ulantsev
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russian Federation
| | - Ekaterina Noskova
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russian Federation; JetBrains Research, St. Petersburg, Russian Federation
| | - Tatyana K Davydova
- Federal State Budgetary Scietific Institution, "Yakut science center of complex medical problems", Yakutsk, Russian Federation
| | - Tatyana M Sivtseva
- Institute of Health, North-Eastern Federal University, Yakutsk, Russian Federation
| | - Svetlana Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation; Research Centre for Medical Genetics, Moscow, Russian Federation; Biobank of North Eurasia, Moscow, Russian Federation
| | - Vladimir Osakovsky
- Institute of Health, North-Eastern Federal University, Yakutsk, Russian Federation
| | - Alexey Novozhilov
- Department of Ethnography and Anthropology, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Valery Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000 North Ocean Drive, Ft Lauderdale, Florida 33004, USA.
| |
Collapse
|