251
|
Luo R, Cheng Z, Wang H, Yang Q, Zeng Y, Yang Y, Chen Y, Li W, Liu X. CRISPR/Cas13a-based rapid detection method for porcine deltacoronavirus. Front Microbiol 2024; 15:1429486. [PMID: 39119142 PMCID: PMC11306182 DOI: 10.3389/fmicb.2024.1429486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background Porcine deltacoronavirus (PDCoV) is a newly discovered porcine intestinal pathogenic coronavirus with a single-stranded positive-sense RNA genome and an envelope. PDCoV infects pigs of different ages and causes acute diarrhea and vomiting in newborn piglets. In severe cases, infection leads to dehydration, exhaustion, and death in sick piglets, entailing great economic losses on pig farms. The clinical symptoms of PDCoV infection are very similar to those of other porcine enteroviruses. Although it is difficult to distinguish these viral infections without testing, monitoring PDCoV is very important because it can spread in populations. The most commonly used methods for the detection of PDCoV is qPCR, which is time-consuming and require skilled personnel and equipment. Many farms cannot meet the conditions required for detection. Therefore, it is necessary to establish a faster and more convenient method for detecting PDCoV. Aims To establish a rapid and convenient detection method for PDCoV by combining RPA (Recombinase Polymerase Isothermal Amplification) with CRISPR/Cas13a. Methods Specific RPA primers and crRNA for PDCoV were designed, and the nucleic acids in the samples were amplified with RPA. Fluorescent CRISPR/Cas13a detection was performed. We evaluated the sensitivity and specificity of the RPA-CRISPR/Cas13a assay using qPCR as the control method. Results CRISPR/Cas13a-assisted detection was completed within 90 min. The minimum detection limit of PDCoV was 5.7 × 101 copies/μL. A specificity analysis showed that the assay did not cross-react with three other porcine enteroviruses. Conclusion The RPA-CRISPR/Cas13a method has the advantages of high sensitivity, strong specificity, fast response, and readily accessible results, and can be used for the detection of PDCoV.
Collapse
Affiliation(s)
- Ran Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhimeng Cheng
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qiyue Yang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yongping Zeng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuankun Chen
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| |
Collapse
|
252
|
Zhao F, Ma X, Yang J, Wei Z, Li J, Jiang Y, Cui W, Shan Z, Tang L. Investigation of Transmission and Evolution of PEDV Variants and Co-Infections in Northeast China from 2011 to 2022. Animals (Basel) 2024; 14:2168. [PMID: 39123693 PMCID: PMC11311072 DOI: 10.3390/ani14152168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a rapidly evolving virus that causes outbreaks in pig herds worldwide. Mutations in the S protein of PEDV have led to the emergence of new viral variants, which can reduce vaccine immunity against prevalent strains. To understand the infection and variation pattern of PEDV in China, an extensive epidemiological survey was conducted in northeast China from 2015 to 2022. The genetic diversity of enteroviruses co-infected with PEDV and the PEDV S gene was analyzed, common mutation patterns that may have led to changes in PEDV virulence and infectivity in recent years were identified, and structural changes in the surface of the S protein resulting from mutations in the PEDV S gene from 2011 to 2022 were reviewed. Of note, two distinct mutations in the emerging 2022 HEB strain were identified. These findings provide a basis for a better understanding of PEDV co-infection and genetic evolution in northeast China.
Collapse
Affiliation(s)
- Feipeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Xin’ao Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Jianfeng Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Zhiying Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
253
|
Sharma S, Caputi M, Asghar W. Development of a Diagnostic Microfluidic Chip for SARS-CoV-2 Detection in Saliva and Nasopharyngeal Samples. Viruses 2024; 16:1190. [PMID: 39205164 PMCID: PMC11360425 DOI: 10.3390/v16081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
The novel coronavirus SARS-CoV-2 was first isolated in late 2019; it has spread to all continents, infected over 700 million people, and caused over 7 million deaths worldwide to date. The high transmissibility of the virus and the emergence of novel strains with altered pathogenicity and potential resistance to therapeutics and vaccines are major challenges in the study and treatment of the virus. Ongoing screening efforts aim to identify new cases to monitor the spread of the virus and help determine the danger connected to the emergence of new variants. Given its sensitivity and specificity, nucleic acid amplification tests (NAATs) such as RT-qPCR are the gold standard for SARS-CoV-2 detection. However, due to high costs, complexity, and unavailability in low-resource and point-of-care (POC) settings, the available RT-qPCR assays cannot match global testing demands. An alternative NAAT, RT-LAMP-based SARS-CoV-2 detection offers scalable, low-cost, and rapid testing capabilities. We have developed an automated RT-LAMP-based microfluidic chip that combines the RNA isolation, purification, and amplification steps on the same device and enables the visual detection of SARS-CoV-2 within 40 min from saliva and nasopharyngeal samples. The entire assay is executed inside a uniquely designed, inexpensive disposable microfluidic chip, where assay components and reagents have been optimized to provide precise and qualitative results and can be effectively deployed in POC settings. Furthermore, this technology could be easily adapted for other novel emerging viruses.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
254
|
Italiya J, Knauf-Witzens T, Weigold A, Černý J. Serological Screening of SARS-CoV-2 Infection in Several Mammalian Species in Wilhelma Zoo, Stuttgart, Germany. Pathogens 2024; 13:612. [PMID: 39204213 PMCID: PMC11357026 DOI: 10.3390/pathogens13080612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) affects both humans and a wide range of mammalian species globally. Between July 2022 and January 2023, fifteen blood samples were collected from twelve different animal species during veterinary examinations, as well as for health control at Wilhelma Zoo, Germany. These samples were later analyzed for the presence of SARS-CoV-2 antibodies. The serum analysis from two gorillas indicated the presence of antibodies specific to the nucleocapsid protein of SARS-CoV-2, suggesting previous infection. These gorillas were sampled in August and September 2022, during which time they exhibited symptoms such as apathy, anorexia, vomiting, and moderate diarrhea-symptoms not typically associated with COVID-19. Given that several periods of other unusual signs have been observed in the gorillas kept in Wilhelma Zoo since the onset of the COVID-19 pandemic, it remains uncertain whether these symptoms were directly related to SARS-CoV-2 infection or if these gorillas underwent clinically inapparent infection before. Nonetheless, this study underscores the importance of ongoing animal screening in zoos to better understand the spread of SARS-CoV-2 among different animal species.
Collapse
Affiliation(s)
- Jignesh Italiya
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic;
| | - Tobias Knauf-Witzens
- Wilhelma Zoological-Botanical Garden, 70376 Stuttgart, Germany; (T.K.-W.); (A.W.)
| | - Annika Weigold
- Wilhelma Zoological-Botanical Garden, 70376 Stuttgart, Germany; (T.K.-W.); (A.W.)
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic;
| |
Collapse
|
255
|
Samsunder N, Sivro A, Hassan-Moosa R, Lewis L, Kara Z, Baxter C, Karim QA, Karim SA, Kharsany ABM, Naidoo K, Ngcapu S. Evaluating diagnostic accuracy of an RT-PCR test for the detection of SARS-CoV-2 in saliva. Diagn Progn Res 2024; 8:9. [PMID: 39044271 PMCID: PMC11267770 DOI: 10.1186/s41512-024-00176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Saliva has been proposed as a potential more convenient, cost-effective, and easier sample for diagnosing SARS-CoV-2 infections, but there is limited knowledge of the impact of saliva volumes and stages of infection on its sensitivity and specificity. METHODS In this study, we assessed the performance of SARS-CoV-2 testing in 171 saliva samples from 52 mostly mildly symptomatic patients (aged 18 to 70 years) with a positive reference standard result at screening. The samples were collected at different volumes (50, 100, 300, and 500 µl of saliva) and at different stages of the disease (at enrollment, day 7, 14, and 28 post SARS-CoV-2 diagnosis). Imperfect nasopharyngeal (NP) swab nucleic acid amplification testing was used as a reference. We used a logistic regression with generalized estimating equations to estimate sensitivity, specificity, PPV, and NPV, accounting for the correlation between repeated observations. RESULTS The sensitivity and specificity values were consistent across saliva volumes. The sensitivity of saliva samples ranged from 70.2% (95% CI, 49.3-85.0%) for 100 μl to 81.0% (95% CI, 51.9-94.4%) for 300 μl of saliva collected. The specificity values ranged between 75.8% (95% CI, 55.0-88.9%) for 50 μl and 78.8% (95% CI, 63.2-88.9%) for 100 μl saliva compared to NP swab samples. The overall percentage of positive results in NP swabs and saliva specimens remained comparable throughout the study visits. We observed no significant difference in cycle number values between saliva and NP swab specimens, irrespective of saliva volume tested. CONCLUSIONS The saliva collection offers a promising approach for population-based testing.
Collapse
Affiliation(s)
- Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Razia Hassan-Moosa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
- SAMRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
| | - Zahra Kara
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
| | - Cheryl Baxter
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Ayesha B M Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa
- SAMRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 719 Umbilo Road, Durban, 4001, South Africa.
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
256
|
Shi J, Hu S, Wei H, Zhang L, Lan Y, Guan J, Zhao K, Gao F, He W, Li Z. Dipeptidyl peptidase 4 interacts with porcine coronavirus PHEV spikes and mediates host range expansion. J Virol 2024; 98:e0075324. [PMID: 38829136 PMCID: PMC11265280 DOI: 10.1128/jvi.00753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV), a neurotropic betacoronavirus, is prevalent in natural reservoir pigs and infects mice. This raises concerns about host jumping or spillover, but little is known about the cause of occurrence. Here, we revealed that dipeptidyl peptidase 4 (DPP4) is a candidate binding target of PHEV spikes and works as a broad barrier to overcome. Investigations of the host breadth of PHEV confirmed that cells derived from pigs and mice are permissive to virus propagation. Both porcine DPP4 and murine DPP4 have high affinity for the viral spike receptor-binding domain (RBD), independent of their catalytic activity. Loss of DPP4 expression results in limited PHEV infection. Structurally, PHEV spike protein binds to the outer surface of blades IV and V of the DPP4 β-propeller domain, and the DPP4 residues N229 and N321 (relative to human DPP4 numbering) participate in RBD binding via its linked carbohydrate entities. Removal of these N-glycosylations profoundly enhanced the RBD-DPP4 interaction and viral invasion, suggesting they act as shielding in PHEV infection. Furthermore, we found that glycosylation, rather than structural differences or surface charges, is more responsible for DPP4 recognition and species barrier formation. Overall, our findings shed light on virus-receptor interactions and highlight that PHEV tolerance to DPP4 orthologs is a putative determinant of its cross-species transmission or host range expansion.IMPORTANCEPHEV is a neurotropic betacoronavirus that is circulating worldwide and has raised veterinary and economic concerns. In addition to being a reservoir species of pigs, PHEV can also infect wild-type mice, suggesting a "host jump" event. Understanding cross-species transmission is crucial for disease prevention and control but remains to be addressed. Herein, we show that the multifunctional receptor DPP4 plays a pivotal role in the host tropism of PHEV and identifies the conserved glycosylation sites in DPP4 responsible for this restriction. These findings highlight that the ability of PHEV to utilize DPP4 orthologs potentially affects its natural host expansion.
Collapse
Affiliation(s)
- Junchao Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Jilin University, Changchun, China
| | - Shiyu Hu
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Hanlu Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Le Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
257
|
Hu Y, Hao C, Wang D, Guo M, Chu H, Jin X, Zu S, Ding X, Zhang H, Hu H. Porcine deltacoronavirus nucleocapsid protein antagonizes JAK-STAT signaling pathway by targeting STAT1 through KPNA2 degradation. J Virol 2024; 98:e0033424. [PMID: 38829137 PMCID: PMC11264599 DOI: 10.1128/jvi.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric pathogenic coronavirus that causes acute and severe watery diarrhea in piglets and has the ability of cross-species transmission, posing a great threat to swine production and public health. The interferon (IFN)-mediated signal transduction represents an important component of virus-host interactions and plays an essential role in regulating viral infection. Previous studies have suggested that multifunctional viral proteins encoded by coronaviruses antagonize the production of IFN via various means. However, the function of these viral proteins in regulating IFN-mediated signaling pathways is largely unknown. In this study, we demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I IFN-mediated JAK-STAT signaling pathway. We identified that PDCoV infection stimulated but delayed the production of IFN-stimulated genes (ISGs). In addition, PDCoV inhibited JAK-STAT signal transduction by targeting the nuclear translocation of STAT1 and ISGF3 formation. Further evidence showed that PDCoV N is the essential protein involved in the inhibition of type I IFN signaling by targeting STAT1 nuclear translocation via its C-terminal domain. Mechanistically, PDCoV N targets STAT1 by interacting with it and subsequently inhibiting its nuclear translocation. Furthermore, PDCoV N inhibits STAT1 nuclear translocation by specifically targeting KPNA2 degradation through the lysosomal pathway, thereby inhibiting the activation of downstream sensors in the JAK-STAT signaling pathway. Taken together, our results reveal a novel mechanism by which PDCoV N interferes with the host antiviral response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a novel enteropathogenic coronavirus that receives increased attention and seriously threatens the pig industry and public health. Understanding the underlying mechanism of PDCoV evading the host defense during infection is essential for developing targeted drugs and effective vaccines against PDCoV. This study demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I interferon signaling by targeting STAT1, which is a crucial signal sensor in the JAK-STAT signaling pathway. Further experiments suggested that PDCoV N-mediated inhibition of the STAT1 nuclear translocation involves the degradation of KPNA2, and the lysosome plays a role in KPNA2 degradation. This study provides new insights into the regulation of PDCoV N in the JAK-STAT signaling pathway and reveals a novel mechanism by which PDCoV evades the host antiviral response. The novel findings may guide us to discover new therapeutic targets and develop live attenuated vaccines for PDCoV infection.
Collapse
Affiliation(s)
- Yating Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Donghan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongyan Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Xueyan Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
258
|
Caohuy H, Eidelman O, Chen T, Mungunsukh O, Yang Q, Walton NI, Pollard BS, Khanal S, Hentschel S, Florez C, Herbert AS, Pollard HB. Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by the SARS-CoV-2 spike protein. Sci Rep 2024; 14:16895. [PMID: 39043712 PMCID: PMC11266487 DOI: 10.1038/s41598-024-66473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2-contributes to sickness and death in COVID-19 patients partly by inducing a hyper-proinflammatory immune response in the host airway. This hyper-proinflammatory state involves activation of signaling by NFκB, and unexpectedly, ENaC, the epithelial sodium channel. Post-infection inflammation may also contribute to "Long COVID"/PASC. Enhanced signaling by NFκB and ENaC also marks the airway of patients suffering from cystic fibrosis, a life-limiting proinflammatory genetic disease due to inactivating mutations in the CFTR gene. We therefore hypothesized that inflammation in the COVID-19 airway might similarly be due to inhibition of CFTR signaling by SARS-CoV-2 spike protein, and therefore activation of both NFκB and ENaC signaling. We used western blot and electrophysiological techniques, and an organoid model of normal airway epithelia, differentiated on an air-liquid-interface (ALI). We found that CFTR protein expression and CFTR cAMP-activated chloride channel activity were lost when the model epithelium was exposed to SARS-CoV-2 spike proteins. As hypothesized, the absence of CFTR led to activation of both TNFα/NFκB signaling and α and γ ENaC. We had previously shown that the cardiac glycoside drugs digoxin, digitoxin and ouabain blocked interaction of spike protein and ACE2. Consistently, addition of 30 nM concentrations of the cardiac glycoside drugs, prevented loss of both CFTR protein and CFTR channel activity. ACE2 and CFTR were found to co-immunoprecipitate in both basal cells and differentiated epithelia. Thus spike-dependent CFTR loss might involve ACE2 as a bridge between Spike and CFTR. In addition, spike exposure to the epithelia resulted in failure of endosomal recycling to return CFTR to the plasma membrane. Thus, failure of CFTR recovery from endosomal recycling might be a mechanism for spike-dependent loss of CFTR. Finally, we found that authentic SARS-CoV-2 virus infection induced loss of CFTR protein, which was rescued by the cardiac glycoside drugs digitoxin and ouabain. Based on experiments with this organoid model of small airway epithelia, and comparisons with 16HBE14o- and other cell types expressing normal CFTR, we predict that inflammation in the COVID-19 airway may be mediated by inhibition of CFTR signaling by the SARS-CoV-2 spike protein, thus inducing a cystic fibrosis-like clinical phenotype. To our knowledge this is the first time COVID-19 airway inflammation has been experimentally traced in normal subjects to a contribution from SARS-CoV-2 spike-dependent inhibition of CFTR signaling.
Collapse
Affiliation(s)
- Hung Caohuy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tinghua Chen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ognoon Mungunsukh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Qingfeng Yang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Center for the Study of Traumatic Stress (CSTS), and Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan I Walton
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Sara Khanal
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- The Geneva Foundation, Tacoma, WA, 98402, USA
| | - Shannon Hentschel
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- Cherokee Nation Assurance, Catoosa, OK, 74015, USA
| | - Catalina Florez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- The Geneva Foundation, Tacoma, WA, 98402, USA
| | - Andrew S Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
259
|
Fernández-Bastit L, Cano-Terriza D, Caballero-Gómez J, Beato-Benítez A, Fernández A, García-Párraga D, Domingo M, Sierra C, Canales R, Borragan S, de la Riva-Fraga M, Molina-López R, Cabezón Ó, Puig-Ribas M, Espunyes J, Vázquez-Calero DB, Vergara-Alert J, García-Bocanegra I, Segalés J. Survey of severe acute respiratory syndrome coronavirus 2 in captive and free-ranging wildlife from Spain. Vet Res 2024; 55:90. [PMID: 39030652 PMCID: PMC11264983 DOI: 10.1186/s13567-024-01348-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), considered a zoonotic agent of wildlife origin, can infect various animal species, including wildlife in free-range and captive environments. Detecting susceptible species and potential reservoirs is crucial for preventing the transmission, spread, genetic evolution, and further emergence of viral variants that are major threats to global health. This study aimed to detect exposure or acute infection by SARS-CoV-2 in 420 animals from 40 different wildlife species, including terrestrial and aquatic mammals, from different regions of Spain during the 2020-2023 coronavirus disease 19 (COVID-19) pandemic. In total, 8/137 animals were positive for SARS-CoV-2 antibodies against the receptor binding domain and/or viral nucleoprotein according to independent ELISAs. However, only one ELISA-positive sample of a captive bottlenose dolphin (Tursiops truncatus) tested positive for SARS-CoV-2 neutralizing antibodies with a low titre (SNT50 38.15) according to a virus neutralization test. Cetaceans are expected to have a high risk of infection with SARS-CoV-2 according to early predictive studies due to the similarity of their angiotensin converting enzyme 2 cell receptor to that of humans. Moreover, of 283 animals analysed for SARS-CoV-2 RNA using RT-qPCR, none tested positive. Our results reinforce the importance of considering cetaceans at risk for SARS-CoV-2 infection and support taking preventive biosecurity measures when interacting with them, especially in the presence of individuals with suspected or confirmed COVID-19. Although most animals in this study tested negative for acute infection or viral exposure, ongoing surveillance of wildlife species and potentially susceptible animals is important to prevent future spillover events and detect potential novel reservoirs.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Caballero-Gómez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Maimonides Institute for Biomedical Research of Cordoba, Reina Sofía University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - Adrián Beato-Benítez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Antonio Fernández
- Atlantic Cetacean Research Center, Institute of Animal Health, University of Las Palmas de Gran Canaria, 35001, Las Palmas, Trasmontaña, Spain
| | - Daniel García-Párraga
- Research Department, Fundación Oceanografic de la Comunitat Valenciana, Ciudad de las Artes y las Ciencias, 46013, Valencia, Spain
| | - Mariano Domingo
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- Veterinary Pathology Diagnostic Service, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
- Departament de Sanitat I Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Cecilia Sierra
- Selwo Aventura, 29680, Estepona, Málaga, Spain
- Selwo Marina, 29630, Benalmádena, Málaga, Spain
| | | | - Santiago Borragan
- Parque de la Naturaleza de Cabárceno, 39690, Obregón, Cantabria, Spain
| | | | - Rafael Molina-López
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna I Flora, Forestal Catalana, 08130, Santa Perpètua de Mogoda, Barcelona, Spain
| | - Óscar Cabezón
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina I Cirugia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Maria Puig-Ribas
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina I Cirugia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Johan Espunyes
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina I Cirugia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014, Córdoba, Spain.
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain.
- Veterinary Pathology Diagnostic Service, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
- Departament de Sanitat I Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
260
|
Wu H, Sun X, Li C, Xie S, Chen Z. Preparation and Epitope Identification of Monoclonal Antibodies against the NS6 Protein of Porcine Deltacoronavirus (PDCoV). Int J Mol Sci 2024; 25:7645. [PMID: 39062886 PMCID: PMC11276995 DOI: 10.3390/ijms25147645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric pathogen that causes substantial economic losses in the swine industry worldwide. The PDCoV NS6 protein is an accessory protein that plays a pivotal role in the viral life cycle and immune evasion. However, the functions of NS6 and its role in PDCoV pathogenesis remain largely unknown. In this study, we prepared a monoclonal antibody (mAb) 5-A11 that specifically recognizes the PDCoV NS6 protein. The mAb 5-A11 exhibited high specificity for PDCoV, with no cross-reactivity with several major porcine pathogenic viruses. Furthermore, the epitope recognized by mAb 5-A11 was precisely mapped to residues 70EYGSIYGKDFI80 of the NS6 protein using Western blot analysis. Notably, this epitope is highly conserved among different PDCoV isolates. Substantial variations were observed when comparing this epitope with the corresponding regions in the NS6 proteins of other δ coronaviruses, suggesting potential differences in the structure, function, and antigenicity of their NS6 proteins. Our findings provide valuable tools and insights for further elucidating the functions of the NS6 protein and its role in PDCoV pathogenesis, as well as for developing diagnostic and therapeutic strategies against PDCoV infection.
Collapse
Affiliation(s)
- Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Sihan Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
261
|
Li X, Hu H, Zhu Y, Wang T, Lu Y, Wang X, Peng Z, Sun M, Chen H, Zheng J, Tan C. Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China. Nat Commun 2024; 15:5811. [PMID: 38987310 PMCID: PMC11237156 DOI: 10.1038/s41467-024-50268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.
Collapse
Affiliation(s)
- Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huifeng Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yongwei Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Taiquan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youlan Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
262
|
SINGH MAIREMBAMSTELIN, YELLABOINA SAILU, ANSARI MAIRAJAHMED. A COMPREHENSIVE REVIEW ON THE MULTIFACETED INTERACTIONS BETWEEN HOST IMMUNITY AND VIRAL PATHOGENESIS IN COVID-19. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2024:37-45. [DOI: 10.22159/ijap.2024v16i4.50576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The Corona Virus Disease (COVID-19) pandemic has presented unparalleled challenges, marked by a wide array of clinical presentations spanning from asymptomatic carriage to severe respiratory compromise and multi-organ dysfunction. It is crucial to comprehend the intricate interplay between host immunity and viral pathogenesis to elucidate disease mechanisms and guide therapeutic strategies. This review delves into the multifaceted interactions between host immunity and viral pathogenesis in COVID-19, with a particular focus on the impact of host factors such as age, sex, comorbidities, and genetic predisposition on disease severity. Utilizing state-of-the-art methodologies, including multiomics approaches, has yielded an expansive molecular portrayal of COVID-19, furnishing innovative perspectives on host immune reactions, viral pathogenicity, and disease advancement. Establishing standardized methodologies for data analysis and interpretation while concurrently addressing ethical considerations and promoting interdisciplinary collaboration are crucial steps in advancing our comprehension of COVID-19 pathogenesis. Despite obstacles like complexities in data integration, this review highlights the imperative of persistent endeavors in deciphering the complex interactions between hosts and pathogens to alleviate the global health ramifications of COVID-19.
Collapse
|
263
|
Robb AR, Ure R, Chaput DL, Foster G. Emergence of novel methicillin resistant Staphylococcus pseudintermedius lineages revealed by whole genome sequencing of isolates from companion animals and humans in Scotland. PLoS One 2024; 19:e0305211. [PMID: 38968222 PMCID: PMC11226068 DOI: 10.1371/journal.pone.0305211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/24/2024] [Indexed: 07/07/2024] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen in dogs, and infection in humans is increasingly found, often linked to contact with dogs. We conducted a retrospective genotyping and antimicrobial susceptibility testing study of 406 S. pseudintermedius isolates cultured from animals (dogs, cats and an otter) and humans across Scotland, from 2007 to 2020. Seventy-five sequence types (STs) were identified, among the 130 isolates genotyped, with 59 seen only once. We observed the emergence of two methicillin resistant Staphylococcus pseudintermedius (MRSP) clones in Scotland: ST726, a novel locally-evolving clone, and ST551, first reported in 2015 in Poland, possibly linked to animal importation to Scotland from Central Europe. While ST71 was the most frequent S. pseudintermedius strain detected, other lineages that have been replacing ST71 in other countries, in addition to ST551, were detected. Multidrug resistance (MDR) was detected in 96.4% of MRSP and 8.4% of MSSP. A single MRSP isolate was resistant to mupirocin. Continuous surveillance for the emergence and dissemination of novel MDR MRSP in animals and humans and changes in antimicrobial susceptibility in S. pseudintermedius is warranted to minimise the threat to animal and human health.
Collapse
Affiliation(s)
- Andrew R. Robb
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | - Roisin Ure
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | | | | |
Collapse
|
264
|
Shen Z, Zhang CY, Gull T, Zhang S. Comparison of genotypic and phenotypic antimicrobial resistance profiles of Salmonella enterica isolates from poultry diagnostic specimens. J Vet Diagn Invest 2024; 36:529-537. [PMID: 38571400 PMCID: PMC11185115 DOI: 10.1177/10406387241242118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids.
Collapse
Affiliation(s)
- Zhenyu Shen
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College Veterinary Medicine, University of Missouri–Columbia, Columbia, MO, USA
| | - C. Y. Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College Veterinary Medicine, University of Missouri–Columbia, Columbia, MO, USA
| | - Tamara Gull
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College Veterinary Medicine, University of Missouri–Columbia, Columbia, MO, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College Veterinary Medicine, University of Missouri–Columbia, Columbia, MO, USA
| |
Collapse
|
265
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024; 61:609-620. [PMID: 38323378 DOI: 10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Between September and November 2021, 5 snow leopards (Panthera uncia) and 1 lion (Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska-Lincoln, Lincoln, NE
| | - Jana M Ritter
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai'i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
266
|
Yang XY, Huang JS, Gong QL, Sun JM, Li YJ, Liu B, Zhang YM, Shi CW, Yang GL, Yang WT, Wang CF. SARS-CoV-2 prevalence in wildlife 2020-2022: a worldwide systematic review and meta-analysis. Microbes Infect 2024; 26:105350. [PMID: 38723999 DOI: 10.1016/j.micinf.2024.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
The widespread transmission of SARS-CoV-2 in humans poses a serious threat to public health security, and a growing number of studies have discovered that SARS-CoV-2 infection in wildlife and mutate over time. This article mainly reports the first systematic review and meta-analysis of the prevalence of SARS-CoV-2 in wildlife. The pooled prevalence of the 29 included articles was calculated by us using a random effects model (22.9%) with a high heterogeneity (I2 = 98.7%, p = 0.00). Subgroup analysis and univariate regression analysis found potential risk factors contributing to heterogeneity were country, wildlife species, sample type, longitude, and precipitation. In addition, the prevalence of SARS-CoV-2 in wildlife increased gradually over time. Consequently, it is necessary to comprehensively analyze the risk factors of SARS-CoV-2 infection in wildlife and develop effective control policies, as well as to monitor the mutation of SARS-CoV-2 in wildlife at all times to reduce the risk of SARS-CoV-2 transmission among different species.
Collapse
Affiliation(s)
- Xue-Yao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing-Shu Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jin-Mei Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Bing Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Meng Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
267
|
Fomenko A, Dähne T, Weibel S, Panning M, Grummich K, Schlesinger S, Rücker G, Hengel H. Test accuracy of rapid diagnostic tests and reverse-transcription polymerase chain reaction against virus isolation in cell culture for assessing SARS-CoV-2 infectivity: Systematic review and meta-analysis. Rev Med Virol 2024; 34:e2569. [PMID: 38986606 DOI: 10.1002/rmv.2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
We aimed to assess the performance of Ag-RDT and RT-qPCR with regard to detecting infectious SARS-CoV-2 in cell cultures, as their diagnostic test accuracy (DTA) compared to virus isolation remains largely unknown. We searched three databases up to 15 December 2021 for DTA studies. The bivariate model was used to synthesise the estimates. Risk of bias was assessed using QUADAS-2/C. Twenty studies (2605 respiratory samples) using cell culture and at least one molecular test were identified. All studies were at high or unclear risk of bias in at least one domain. Three comparative DTA studies reported results on Ag-RDT and RT-qPCR against cell culture. Two studies evaluated RT-qPCR against cell culture only. Fifteen studies evaluated Ag-RDT against cell culture as reference standard in RT-qPCR-positive samples. For Ag-RDT, summary sensitivity was 93% (95% CI 78; 98%) and specificity 87% (95% CI 70; 95%). For RT-qPCR, summary sensitivity (continuity-corrected) was 98% (95% CI 95; 99%) and specificity 45% (95% CI 28; 63%). In studies relying on RT-qPCR-positive subsamples (n = 15), the summary sensitivity of Ag-RDT was 93% (95% CI 92; 93%) and specificity 63% (95% CI 63; 63%). Ag-RDT show moderately high sensitivity, detecting most but not all samples demonstrated to be infectious based on virus isolation. Although RT-qPCR exhibits high sensitivity across studies, its low specificity to indicate infectivity raises the question of its general superiority in all clinical settings. Study findings should be interpreted with caution due to the risk of bias, heterogeneity and the imperfect reference standard for infectivity.
Collapse
Affiliation(s)
- Alexey Fomenko
- Institute of Virology, Medical Center, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department Clinical Medicine, Institute of General Practice and Health Services Research, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Theo Dähne
- Institute of Virology, Medical Center, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Stephanie Weibel
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Kathrin Grummich
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DDZ), Partner Düsseldorf, Munich-Neuherberg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
268
|
Madewell Z, Major C, Graff N, Adams C, Rodriguez D, Morales T, Medina Lopes N, Tosado R, Sánchez‐González L, Perez‐Padilla J, Volkman H, Bertrán‐Pasarell J, Sainz de la Peña D, Munoz‐Jordan J, Santiago G, Lorenzi O, Rivera‐Amill V, Rolfes M, Paz‐Bailey G, Adams L, Wong J. Diagnostic Accuracy of the Abbott BinaxNOW COVID-19 Antigen Card Test, Puerto Rico. Influenza Other Respir Viruses 2024; 18:e13305. [PMID: 39053895 PMCID: PMC11300111 DOI: 10.1111/irv.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic underscored the need for rapid and accurate diagnostic tools. In August 2020, the Abbott BinaxNOW COVID-19 Antigen Card test became available as a timely and affordable alternative for SARS-CoV-2 molecular testing, but its performance may vary due to factors including timing and symptomatology. This study evaluates BinaxNOW diagnostic performance in diverse epidemiological contexts. METHODS Using RT-PCR as reference, we assessed performance of the BinaxNOW COVID-19 test for SARS-CoV-2 detection in anterior nasal swabs from participants of two studies in Puerto Rico from December 2020 to May 2023. Test performance was assessed by days post symptom onset, collection strategy, vaccination status, symptomatology, repeated testing, and RT-PCR cycle threshold (Ct) values. RESULTS BinaxNOW demonstrated an overall sensitivity of 84.1% and specificity of 98.8%. Sensitivity peaked within 1-6 days after symptom onset (93.2%) and was higher for symptomatic (86.3%) than asymptomatic (67.3%) participants. Sensitivity declined over the course of infection, dropping from 96.3% in the initial test to 48.4% in testing performed 7-14 days later. BinaxNOW showed 99.5% sensitivity in participants with low Ct values (≤ 25) but lower sensitivity (18.2%) for participants with higher Cts (36-40). CONCLUSIONS BinaxNOW demonstrated high sensitivity and specificity, particularly in early-stage infections and symptomatic participants. In situations where test sensitivity is crucial for clinical decision-making, nucleic acid amplification tests are preferred. These findings highlight the importance of considering clinical and epidemiological context when interpreting test results and emphasize the need for ongoing research to adapt testing strategies to emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Zachary J. Madewell
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Chelsea G. Major
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Nathan Graff
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Cameron Adams
- Department of Microbiology and ImmunologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Dania M. Rodriguez
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Tatiana Morales
- Ponce Research InstitutePonce Health Sciences UniversityPoncePuerto Rico
| | - Nicole A. Medina Lopes
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Rafael Tosado
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | | | - Janice Perez‐Padilla
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Hannah R. Volkman
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | | | | | - Jorge Munoz‐Jordan
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Gilberto A. Santiago
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Olga Lorenzi
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | | | - Melissa A. Rolfes
- Influenza DivisionCenters for Disease Control and PreventionAtlantaGAUSA
| | - Gabriela Paz‐Bailey
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Laura E. Adams
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| | - Joshua M. Wong
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPuerto Rico
| |
Collapse
|
269
|
McLelland DJ, Lynch M, Vogelnest L, Eden P, Wallace A, Weller J, Young S, Vaughan-Higgins R, Antipov A, Honda-Okubo Y, Petrovsky N. Safety and immunogenicity of an adjuvanted recombinant spike protein-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, SpikeVet™, in selected Carnivora, Primates and Artiodactyla in Australian zoos. J Vet Pharmacol Ther 2024; 47:308-321. [PMID: 38345094 DOI: 10.1111/jvp.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 07/09/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect a broad range of animal species and has been associated with severe disease in some taxa. Few studies have evaluated optimal strategies to mitigate the risk to susceptible zoo animals. This study evaluated the safety and immunogenicity of a protein-based veterinary SARS-CoV-2 vaccine (SpikeVet™) in zoo animals. Two to three doses of SpikeVet™ were administered intramuscularly or subcutaneously 3-4 weeks apart to 354 zoo animals representing 38 species. SpikeVet™ was very well tolerated across all species. Minor adverse effects were observed in 1.69% of animals vaccinated, or 1.04% of vaccine doses administered. Preliminary immunogenicity analyses in representative carnivores (meerkats, lions) and an artiodactylid (domestic goat) showed SpikeVet™-immunized animals developed serum antibodies able to neutralize a range of SARS-CoV-2 variants, including the vaccine-homologous Wuhan and Mu variants, as well as vaccine-heterologous Omicron BA.2 and XBB.1 strains. Prior to vaccination, all eight lions were seropositive for Wuhan strain by surrogate viral neutralization testing, suggesting past infection with SARS-CoV-2 or cross-reactive antibodies generated by another closely related coronavirus. These results from a range of zoo species support the ongoing development of SpikeVet™ as a safe and effective veterinary SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- David J McLelland
- Zoos South Australia, Adelaide, South Australia, Australia
- Zoo and Aquarium Association, Mosman, New South Wales, Australia
| | | | | | - Paul Eden
- Werribee Open Range Zoo, Werribee, Victoria, Australia
| | - Alisa Wallace
- Taronga Western Plains Zoo, Dubbo, New South Wales, Australia
| | - Jayne Weller
- National Zoo and Aquarium, Canberra, Australian Capital Territory, Australia
| | - Sam Young
- Australia Zoo, Beerwah, Queensland, Australia
| | | | - Anna Antipov
- Vaxine Pty Ltd, Bedford Park, South Australia, Australia
| | | | | |
Collapse
|
270
|
Bedsted AE, Rasmussen TB, Martinenghi LD, Bøtner A, Nauwynck H, Belsham GJ. Porcine respiratory coronavirus genome sequences; comparisons and relationships to transmissible gastroenteritis viruses. Virology 2024; 595:110072. [PMID: 38599031 DOI: 10.1016/j.virol.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.
Collapse
Affiliation(s)
- Amalie Ehlers Bedsted
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Laura D Martinenghi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark; Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
271
|
Fan L, Wang W, Yi X, Yuan X, Chen Z, Xiao L, Lu C, Guo R, Fan B, Ma J, Zha Y, Shu J, Li J, Li B. An inactivated PDCoV vaccine induces robust neutralizing antibodies and immune protection in pigs lasting for three months. Microb Pathog 2024; 192:106714. [PMID: 38801864 DOI: 10.1016/j.micpath.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
Porcine deltacoronavirus (PDCoV), a novel enteropathogenic coronavirus, causes diarrhea mainly in suckling piglets and has the potential to infect humans. Whereas, there is no commercially available vaccine which can effectively prevent this disease. In this study, to ascertain the duration of immune protection of inactivated PDCoV vaccine, suckling piglets were injected subcutaneously with inactivated PDCoV vaccine using a prime/boost strategy at 3 and 17-day-old. Neutralizing antibody assay showed that the level of the inactivated PDCoV group was still ≥1:64 at three months after prime vaccination. The three-month-old pigs were orally challenged with PDCoV strain CZ2020. Two pigs in challenge control group showed mild to severe diarrhea at 10-11 day-post-challenge (DPC), while the inactivated PDCoV group had no diarrhea. High levels of viral shedding, substantial intestinal villus atrophy, and positive straining of viral antigens in ileum were detected in challenge control group, while the pigs in inactivated PDCoV group exhibited significantly reduced viral load, minor intestinal villi damage and negative straining of viral antigens. These results demonstrated that PDCoV was pathogenic against three-month-old pigs and inactivated PDCoV vaccine can provide effective protection in pigs lasting for three months.
Collapse
Affiliation(s)
- Liyuan Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Xin Yi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Xuesong Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuoqi Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Chunyu Lu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinhe Zha
- Zhejiang Hongsheng Biotechnology CO. LTD, Shaoxing, 312000, China
| | - Jianhong Shu
- Zhejiang Hongsheng Biotechnology CO. LTD, Shaoxing, 312000, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
272
|
Esmaeili S, Owens K, Wagoner J, Polyak SJ, White JM, Schiffer JT. A unifying model to explain frequent SARS-CoV-2 rebound after nirmatrelvir treatment and limited prophylactic efficacy. Nat Commun 2024; 15:5478. [PMID: 38942778 PMCID: PMC11213957 DOI: 10.1038/s41467-024-49458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
In a pivotal trial (EPIC-HR), a 5-day course of oral ritonavir-boosted nirmatrelvir, given early during symptomatic SARS-CoV-2 infection (within three days of symptoms onset), decreased hospitalization and death by 89.1% and nasal viral load by 0.87 log relative to placebo in high-risk individuals. Yet, nirmatrelvir/ritonavir failed as post-exposure prophylaxis in a trial, and frequent viral rebound has been observed in subsequent cohorts. We develop a mathematical model capturing viral-immune dynamics and nirmatrelvir pharmacokinetics that recapitulates viral loads from this and another clinical trial (PLATCOV). Our results suggest that nirmatrelvir's in vivo potency is significantly lower than in vitro assays predict. According to our model, a maximally potent agent would reduce the viral load by approximately 3.5 logs relative to placebo at 5 days. The model identifies that earlier initiation and shorter treatment duration are key predictors of post-treatment rebound. Extension of treatment to 10 days for Omicron variant infection in vaccinated individuals, rather than increasing dose or dosing frequency, is predicted to lower the incidence of viral rebound significantly.
Collapse
Affiliation(s)
- Shadisadat Esmaeili
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Katherine Owens
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jessica Wagoner
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
273
|
Wang Q, Heo W, Choi S, Jang W, Lim CS, Jung HI. Hand-held all-in-one (HAO) self-test kit for rapid and on-site detection of SARS-CoV-2 with colorimetric LAMP. LAB ON A CHIP 2024; 24:3265-3275. [PMID: 38847067 DOI: 10.1039/d4lc00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Throughout the COVID-19 pandemic, individuals potentially infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were forcibly recalled to local or central hospitals, where the diagnostic results were obtained a couple of days after the liquid biopsies were subjected to conventional polymerase chain reaction (PCR). This slow output of such a complex and time-consuming laboratory procedure hindered its widespread application. To overcome the limitations associated with such a centralized diagnostic system, we developed a hand-held and all-in-one type test kit in which the analytical results can be obtained in only 30 min. The test kit consists of three major steps for on-site SARS-CoV-2 RNA detection: 1) virus lysis by heat, 2) RNA enrichment by membrane, and 3) real-time detection by colorimetric loop-mediated isothermal amplification (c-LAMP). The proposed device operates in a sample-to-answer format, is fully automated, and reduces dependence on traditional laboratory settings, facilitating large-scale population screening.
Collapse
Affiliation(s)
- Qingyang Wang
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Woong Heo
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Seoyeon Choi
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- The DABOM Inc., Seoul, 03722, Republic of Korea
| | - Woongsik Jang
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- The DABOM Inc., Seoul, 03722, Republic of Korea
| |
Collapse
|
274
|
Selyemová D, Antolová D, Mangová B, Jarošová J, Ličková M, Havlíková SF, Sláviková M, Tarageľová VR, Derdáková M. Cats as a sentinel species for human infectious diseases - toxoplasmosis, trichinellosis, and COVID-19. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100196. [PMID: 39055483 PMCID: PMC11269282 DOI: 10.1016/j.crpvbd.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
In this study, serological screening for Toxoplasma gondii, Trichinella spp., and SARS-CoV-2 in domestic cats was conducted, aiming to identify their exposure to the mentioned pathogens and to assess the risk of potential human infection. In total, serum samples from 481 (310 owned and 171 shelter cats) were collected in Bratislava from September 2020 to September 2021, a period that included the initial outbreak wave of the COVID-19 pandemic. The study showed a 37.4% (135/441) seroprevalence of T. gondii with a slightly lower seropositivity in shelter cats (35.9%; 61/170) than in owned cats (38.4%; 104/271), but this difference was not statistically significant. Overall, the seroprevalence of Trichinella spp. was 2.0% (9/441), with animals from shelters being positive but not significantly more often (2.9%; 5/170) than owned cats (1.5%; 4/271). SARS-CoV-2 antibodies were detected in 2.7% (13/481) of cat sera (2.9% in shelter cats; 2.6% in owned cats). Among ten samples positive by virus neutralisation assay, two were positive for the B.1 variant. The presence of the SARS-CoV-2 virus in buccal and rectal swabs (n = 239) was not detected. The seroprevalence of almost 40% for T. gondii in cats suggests a non-negligible risk of human infection. The study confirmed the possibility of Trichinella spp. infection in cats, and thus the possibility of infection spreading between the sylvatic and synanthropic cycle via this animal species. The presented results also showed that the SARS-CoV-2 virus is likely to circulate in cat populations in Slovakia, not only in cats that may have been in contact with infected persons, but also in shelter cats.
Collapse
Affiliation(s)
- Diana Selyemová
- Institute of Zoology, SAS, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia
| | - Daniela Antolová
- Institute of Parasitology, SAS, Hlinkova 3, 040 01, Košice, Slovakia
| | - Barbara Mangová
- Institute of Zoology, SAS, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia
| | - Júlia Jarošová
- Institute of Parasitology, SAS, Hlinkova 3, 040 01, Košice, Slovakia
| | - Martina Ličková
- Biomedical Research Center, SAS, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Sabína Fumačová Havlíková
- Biomedical Research Center, SAS, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, SAS, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | | | - Markéta Derdáková
- Institute of Zoology, SAS, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia
| |
Collapse
|
275
|
Iyer M, Das D, Baugh AG, Shah P, Nakamura B, Sedighi S, Reed M, Jang J, Chow F, Torres ER, Neman J. Targeting MDSC-HTR2B to Improve Immune Checkpoint Inhibitors in Breast to Brain Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599939. [PMID: 38979224 PMCID: PMC11230248 DOI: 10.1101/2024.06.20.599939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Myeloid Derived Suppressor Cells (MDSCs) support breast cancer growth via immune suppression and non-immunological mechanisms. Although 15% of patients with breast cancer will develop brain metastasis, there is scant understanding of MDSCs' contribution within the breast-to-brain metastatic microenvironment. Utilizing co-culture models mimicking a tumor-neuron-immune microenvironment and patient tissue arrays, we identified serotonergic receptor, HTR2B, on MDSCs to upregulate pNF-κB and suppress T cell proliferation, resulting in enhanced tumor growth. In vivo murine models of metastatic and intracranial breast tumors treated with FDA-approved, anti-psychotic HTR2B antagonist, clozapine, combined with immunotherapy anti-PD-1 demonstrated a significant increase in survival and increased T cell infiltration. Collectively, these findings reveal a previously unknown role of MDSC-HTR2B in breast-to-brain metastasis, suggesting a novel and immediate therapeutic approach using neurological drugs to treat patients with metastatic breast cancer.
Collapse
|
276
|
Noel A, Zhang J, Shen H, Saxena A, Groeltz-Thrush J, Li G, Rahe MC. Bovine Rhinitis B Virus Variant as the Putative Cause of Bronchitis in Goat Kids. Viruses 2024; 16:1023. [PMID: 39066186 PMCID: PMC11281505 DOI: 10.3390/v16071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
A diagnostic investigation into an outbreak of fatal respiratory disease among young goats in Iowa, USA revealed bronchitis lesions of unknown etiology and secondary bacterial bronchopneumonia. Hypothesis-free metagenomics identified a previously unreported picornavirus (USA/IA26017/2023), and further phylogenetic analysis classified USA/IA26017/2023 as an aphthovirus related to bovine rhinitis B virus. Viral nucleic acid was localized to lesions of bronchitis using in situ hybridization. This marks the first report of a picornavirus putatively causing respiratory disease in goats and highlights the potential for cross-species transmission of aphthoviruses.
Collapse
Affiliation(s)
- Andrew Noel
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.N.)
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.N.)
| | - Huigang Shen
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.N.)
| | - Anugrah Saxena
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.N.)
| | - Jennifer Groeltz-Thrush
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.N.)
| | - Ganwu Li
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.N.)
| | - Michael C. Rahe
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.N.)
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
277
|
Du W, Debski-Antoniak O, Drabek D, van Haperen R, van Dortmondt M, van der Lee J, Drulyte I, van Kuppeveld FJM, Grosveld F, Hurdiss DL, Bosch BJ. Neutralizing antibodies reveal cryptic vulnerabilities and interdomain crosstalk in the porcine deltacoronavirus spike protein. Nat Commun 2024; 15:5330. [PMID: 38909062 PMCID: PMC11193727 DOI: 10.1038/s41467-024-49693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric pathogen that has recently been detected in humans. Despite this zoonotic concern, the antigenic structure of PDCoV remains unknown. The virus relies on its spike (S) protein for cell entry, making it a prime target for neutralizing antibodies. Here, we generate and characterize a set of neutralizing antibodies targeting the S protein, shedding light on PDCoV S interdomain crosstalk and its vulnerable sites. Among the four identified antibodies, one targets the S1A domain, causing local and long-range conformational changes, resulting in partial exposure of the S1B domain. The other antibodies bind the S1B domain, disrupting binding to aminopeptidase N (APN), the entry receptor for PDCoV. Notably, the epitopes of these S1B-targeting antibodies are concealed in the prefusion S trimer conformation, highlighting the necessity for conformational changes for effective antibody binding. The binding footprint of one S1B binder entirely overlaps with APN-interacting residues and thus targets a highly conserved epitope. These findings provide structural insights into the humoral immune response against the PDCoV S protein, potentially guiding vaccine and therapeutic development for this zoonotic pathogen.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Oliver Debski-Antoniak
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Harbour BioMed, Rotterdam, The Netherlands
| | - Rien van Haperen
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Harbour BioMed, Rotterdam, The Netherlands
| | - Melissa van Dortmondt
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joline van der Lee
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ieva Drulyte
- Thermo Fisher Scientific, Materials and Structural Analysis, Eindhoven, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Harbour BioMed, Rotterdam, The Netherlands
| | - Daniel L Hurdiss
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
278
|
Sha W, Beshir Ata E, Yan M, Zhang Z, Fan H. Swine Colibacillosis: Analysis of the Gut Bacterial Microbiome. Microorganisms 2024; 12:1233. [PMID: 38930615 PMCID: PMC11205844 DOI: 10.3390/microorganisms12061233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to evaluate the disruption of the swine gut microbiota and histopathological changes caused by infection with enterotoxigenic E. coli. Fecal samples were collected from piglets suffering from diarrhea post-recovery and healthy animals. Intestinal tissues were collected for histopathological changes. The results revealed histopathological changes mainly in the ileum of the infected animals compared to those in the ileum of the control and recovered animals. The operational taxonomic units (OTUs) revealed that the E. coli diarrheal group exhibited the highest bacterial richness. Principal coordinate analysis (PCoA) corroborated the presence of dysbiosis in the gut microbiota following E. coli-induced diarrhea. While the normal control and infected groups displayed slight clustering, the recovery group formed a distinct cluster with a distinct flora. Bacteroidetes, Firmicutes, and Fusobacteria were the dominant phyla in both the healthy and recovered piglets and in the diarrheal group. LEfSe and the associated LDA score analysis revealed that the recovered group exhibited dominance of the phyla Euryarchaeota and Bacteroidota, while groups N and I showed dominance of the phyla Firmicutes and Fusobacteriota, respectively. The LDA scores highlighted a significant expression of the Muribaculacea family in group R. The obtained findings will help in understanding the microbiome during swine colibacillosis, which will support control of the outbreaks.
Collapse
Affiliation(s)
- Wanli Sha
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
- Technology Innovation Center of Pig Ecological Breeding and Disease Prevention and Control, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Emad Beshir Ata
- Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Man Yan
- Technology Innovation Center of Pig Ecological Breeding and Disease Prevention and Control, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Zhijie Zhang
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China;
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
279
|
Moses IB, Santos INM, Ribeiro ÁCDS, Santos FF, Cayô R, Gales AC. Co-resistance to methicillin and clindamycin among coagulase-negative staphylococci isolates recovered from pet food in Brazil. Int J Food Microbiol 2024; 418:110726. [PMID: 38704995 DOI: 10.1016/j.ijfoodmicro.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Pet food have been considered as possible vehicles of bacterial pathogens. The sudden boom of the pet food industry due to the worldwide increase in companion animal ownership calls for pet food investigations. Herein, this study aimed to determine the frequency, antimicrobial susceptibility profile, and molecular characteristics of coagulase-negative staphylococci (CoNS) in different pet food brands in Brazil. Eighty-six pet food packages were screened for CoNS. All isolates were identified at species level by MALDI-TOF MS and species-specific PCR. Antimicrobial susceptibility testing was performed by disc diffusion and broth microdilution (vancomycin and teicoplanin only) methods. The D-test was used to screen for inducible clindamycin phenotype (MLS-B). SCCmec typing and detection of mecA, vanA, vanB, and virulence-encoding genes were done by PCR. A total of 16 (18.6 %) CoNS isolates were recovered from pet food samples. Isolates were generally multidrug-resistant (MDR). All isolates were completely resistant (100 %) to penicillin. Resistances (12.5 % - 75 %) were also observed for fluoroquinolones, sulfamethoxazole-trimethoprim, tetracycline, rifampicin, erythromycin, and tobramycin. Isolates were susceptible to vancomycin (MICs <0.25-1 μg/mL) and teicoplanin (MICs <0.25-4 μg/mL). Intriguingly, 3/8 (37.5 %) CoNS isolates with the ERYRCLIS antibiotype expressed MLS-B phenotype. All isolates harboured blaZ gene. Seven (43.8 %) isolates carried mecA; and among them, the SCCmec Type III was the most frequent (n = 5/7; 71.4 %). Isolates also harboured seb, see, seg, sej, sem, etb, tsst, pvl, and hla toxin virulence-encoding genes (6.3 % - 25 %). A total of 12/16 (75 %) isolates were biofilm producers, while the icaAB gene was detected in an S. pasteuri isolate. Herein, it is shown that pet food is a potential source of clinically important Gram-positive bacterial pathogens. To the best of our knowledge, this is the first report of MLS-B phenotype and MR-CoNS in pet food in Latin America.
Collapse
Affiliation(s)
- Ikechukwu Benjamin Moses
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Department of Applied Microbiology, Faculty of Sciences, Ebonyi State University, Abakaliki, Ebonyi, Nigeria; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil.
| | - Ingrid Nayara Marcelino Santos
- Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Ághata Cardoso da Silva Ribeiro
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| |
Collapse
|
280
|
Middleton C, Larremore DB. Modeling the transmission mitigation impact of testing for infectious diseases. SCIENCE ADVANCES 2024; 10:eadk5108. [PMID: 38875334 PMCID: PMC11177932 DOI: 10.1126/sciadv.adk5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
A fundamental question of any program focused on the testing and timely diagnosis of a communicable disease is its effectiveness in reducing transmission. Here, we introduce testing effectiveness (TE)-the fraction by which testing and post-diagnosis isolation reduce transmission at the population scale-and a model that incorporates test specifications and usage, within-host pathogen dynamics, and human behaviors to estimate TE. Using TE to guide recommendations, we show that today's rapid diagnostics should be used immediately upon symptom onset to control influenza A and respiratory syncytial virus but delayed by up to two days to control omicron-era severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, while rapid tests are superior to reverse transcription quantitative polymerase chain reaction (RT-qPCR) to control founder-strain SARS-CoV-2, omicron-era changes in viral kinetics and rapid test sensitivity cause a reversal, with higher TE for RT-qPCR despite longer turnaround times. Last, we illustrate the model's flexibility by quantifying trade-offs in the use of post-diagnosis testing to shorten isolation times.
Collapse
Affiliation(s)
- Casey Middleton
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel B. Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
281
|
Sobczak JM, Barkovska I, Balke I, Rothen DA, Mohsen MO, Skrastina D, Ogrina A, Martina B, Jansons J, Bogans J, Vogel M, Bachmann MF, Zeltins A. Identifying Key Drivers of Efficient B Cell Responses: On the Role of T Help, Antigen-Organization, and Toll-like Receptor Stimulation for Generating a Neutralizing Anti-Dengue Virus Response. Vaccines (Basel) 2024; 12:661. [PMID: 38932390 PMCID: PMC11209419 DOI: 10.3390/vaccines12060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.
Collapse
Affiliation(s)
- Jan M. Sobczak
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Irena Barkovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Ina Balke
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Dominik A. Rothen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Mona O. Mohsen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Anete Ogrina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Byron Martina
- Artemis Bioservices, 2629 JD Delft, The Netherlands;
- Protinhi Therapeutics, 6534 AT Nijmegen, The Netherlands
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Monique Vogel
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| |
Collapse
|
282
|
Abay Z, Sadikaliyeva S, Nurpeisova A, Jekebekov K, Shorayeva K, Yespembetov B, Nurabayev S, Kerimbayev A, Khairullin B, Yoo H, Kutumbetov L, Kassenov M, Zakarya K. Breaking the Barrier: SARS-CoV-2 Infections in Wild and Companion Animals and Their Implications for Public Health. Viruses 2024; 16:956. [PMID: 38932248 PMCID: PMC11209598 DOI: 10.3390/v16060956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of the novel coronavirus SARS-CoV-2 has led to significant interest in its potential transmission between animals and humans, especially pets. This review article summarises the literature on coronavirus infections in domestic animals, emphasising epidemiology, transmission dynamics, clinical manifestations, and public health implications. This article highlights current understandings of the relationship between infections in companion animals and humans, identifies research gaps, and suggests directions for future research. Cases of disease in cats, dogs, and other domestic animals, often occurring through close contact with infected owners, are reviewed, raising concerns about possible zoonotic and reverse zoonotic transmission. Precautions and recommendations for pet owners and healthcare workers are also discussed. The scientific evidence presented in the article highlights the need for a One Health approach that considers the health of people, animals, and the environment to combat future pandemics.
Collapse
Affiliation(s)
- Zhandos Abay
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | | | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kuanysh Jekebekov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kamshat Shorayeva
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Bolat Yespembetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Berik Khairullin
- MVA Group Scientific-Research Production Center Ltd., Almaty 050046, Kazakhstan
| | - Hansang Yoo
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| |
Collapse
|
283
|
Podolska MJ, Grützmann R, Pilarsky C, Bénard A. IL-3: key orchestrator of inflammation. Front Immunol 2024; 15:1411047. [PMID: 38938573 PMCID: PMC11208316 DOI: 10.3389/fimmu.2024.1411047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Interleukin (IL)-3 has long been known for its hematopoietic properties. However, recent evidence has expanded our understanding of IL-3 function by identifying IL-3 as a critical orchestrator of inflammation in a wide array of diseases. Depending on the type of disease, the course of inflammation, the cell or the tissue involved, IL-3 promotes either pathologic inflammation or its resolution. Here, we describe the cell-specific functions of IL-3 and summarize its role in diseases. We discuss the current treatments targeting IL-3 or its receptor, and highlight the potential and the limitations of targeting IL-3 in clinics.
Collapse
Affiliation(s)
| | | | | | - Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
284
|
Tian Y, Yu T, Wang J, Zhang H, Jian Y, Li X, Wang G, Wang G, Hu Y, Lu C, Zhou J, Ma L, Liao M. Genetic characterization of the first Deltacoronavirus from wild birds around Qinghai Lake. Front Microbiol 2024; 15:1423367. [PMID: 38933020 PMCID: PMC11199898 DOI: 10.3389/fmicb.2024.1423367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Deltacoronavirus, widely distributed among pigs and wild birds, pose a significant risk of cross-species transmission, including potential human epidemics. Metagenomic analysis of bird samples from Qinghai Lake, China in 2021 reported the presence of Deltacoronavirus. A specific gene fragment of Deltacoronavirus was detected in fecal samples from wild birds at a positive rate of 5.94% (6/101). Next-generation sequencing (NGS) identified a novel Deltacoronavirus strain, which was closely related to isolates from the United Arab Emirates (2018), China (2022), and Poland (2023). Subsequently the strain was named A/black-headed gull/Qinghai/2021(BHG-QH-2021) upon confirmation of the Cytochrome b gene of black-headed gull in the sample. All available genome sequences of avian Deltacoronavirus, including the newly identified BHG-QH-2021 and 5 representative strains of porcine Deltacoronavirus (PDCoV), were classified according to ICTV criteria. In contrast to Coronavirus HKU15, which infects both mammals and birds and shows the possibility of cross-species transmission from bird to mammal host, our analysis revealed that BHG-QH-2021 is classified as Putative species 4. Putative species 4 has been reported to infect 5 species of birds but not mammals, suggesting that cross-species transmission of Putative species 4 is more prevalent among birds. Recombination analysis traced BHG-QH-2021 origin to dut148cor1 and MW01_1o strains, with MW01_1o contributing the S gene. Surprisingly, SwissModle prediction showed that the optimal template for receptor-binding domain (RBD) of BHG-QH-2021 is derived from the human coronavirus 229E, a member of the Alphacoronavirus, rather than the anticipated RBD structure of PDCoV of Deltacoronavirus. Further molecular docking analysis revealed that substituting the loop 1-2 segments of HCoV-229E significantly enhanced the binding capability of BHG-QH-2021 with human Aminopeptidase N (hAPN), surpassing its native receptor-binding domain (RBD). Most importantly, this finding was further confirmed by co-immunoprecipitation experiment that loop 1-2 segments of HCoV-229E enable BHG-QH-2021 RBD binding to hAPN, indicating that the loop 1-2 segment of the RBD in Putative species 4 is a probable key determinant for the virus ability to spill over into humans. Our results summarize the phylogenetic relationships among known Deltacoronavirus, reveal an independent putative avian Deltacoronavirus species with inter-continental and inter-species transmission potential, and underscore the importance of continuous surveillance of wildlife Deltacoronavirus.
Collapse
Affiliation(s)
- Ye Tian
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Tianqi Yu
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Animal Husbandry and Veterinary Workstation of the Third Division, Xinjiang Production and Construction Corps, Tumushuke, China
| | - Haoxiang Zhang
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yingna Jian
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Xiuping Li
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Geping Wang
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Guanghua Wang
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Yong Hu
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Chenhe Lu
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Liqing Ma
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Min Liao
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
285
|
Alfano F, Lucibelli MG, Serra F, Levante M, Rea S, Gallo A, Petrucci F, Pucciarelli A, Picazio G, Monini M, Di Bartolo I, d’Ovidio D, Santoro M, De Carlo E, Fusco G, Amoroso MG. Identification of Aichivirus in a Pet Rat ( Rattus norvegicus) in Italy. Animals (Basel) 2024; 14:1765. [PMID: 38929384 PMCID: PMC11200523 DOI: 10.3390/ani14121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
We investigated the occurrence of eight potential zoonotic viruses in 91 exotic companion mammals from pet shops in southern Italy via real-time PCR and end-point PCR. The animals were screened for aichivirus, sapovirus, astrovirus, hepatitis A, noroviruses (GI and GII), rotavirus, circovirus, and SARS-CoV-2. Among the nine species of exotic pets studied, only one rat tested positive for aichivirus. The high sequence similarity to a murine kobuvirus-1 strain previously identified in China suggests that the virus may have been introduced into Italy through the importation of animals from Asia. Since exotic companion mammals live in close contact with humans, continuous sanitary monitoring is crucial to prevent the spread of new pathogens among domestic animals and humans. Further investigations on detecting and typing zoonotic viruses are needed to identify emerging and re-emerging viruses to safeguard public health.
Collapse
Affiliation(s)
- Flora Alfano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Maria Gabriella Lucibelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Francesco Serra
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Martina Levante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Simona Rea
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Amalia Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Federica Petrucci
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Alessia Pucciarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Gerardo Picazio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Marina Monini
- Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (I.D.B.)
| | | | | | - Mario Santoro
- Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy;
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| |
Collapse
|
286
|
Tahir I, Alsayeqh AF. Phytochemicals: a promising approach to control infectious bursal disease. Front Vet Sci 2024; 11:1421668. [PMID: 38919155 PMCID: PMC11197927 DOI: 10.3389/fvets.2024.1421668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Infectious bursal disease (IBD) is one of the dangerous diseases of poultry that affects the bursa of Fabricius, which is an important organ of the bird's immune system. IBD virus is resistant to many drugs, making its control difficult. Vaccination of IBD is in practice for a long time worldwide to control IBD, but secondary issues like vaccine failure and lower efficacy lead to their reduced use in the field. Multiple medicines are currently used, but the phytochemicals have emerged as promising agents for controlling IBD. The drugs to be developed should possess direct antiviral properties by targeting viral entry mechanisms, enhancing the host immune response, and inhibiting viral protein synthesis. Phytochemicals have potential to contribute to food security by minimizing the possibility of disease outbreaks and ensuring that consumers worldwide obtain healthy poultry products. It has been now claimed that direct and indirect activities of phytochemicals can be effective in the control of IBDV. Although available evidence suggest that the phytochemicals can contribute in controlling occurrence IBDV, there is a definite need of focused studies to gain more insight and develop rational strategies for their practical use. This review highlights the disease caused by IBDV, inhibition of viral replication, boosting the immune system, disruption of viral membrane, and important phytochemicals showing antiviral activities against IBDV.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah F. Alsayeqh
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
287
|
Bugybayeva D, Dumkliang E, Patil V, Yadagiri G, Suresh R, Singh M, Schrock J, Dolatyabi S, Shekoni OC, Yassine HM, Opanasopit P, HogenEsch H, Renukaradhya GJ. Evaluation of Efficacy of Surface Coated versus Encapsulated Influenza Antigens in Mannose-Chitosan Nanoparticle-Based Intranasal Vaccine in Swine. Vaccines (Basel) 2024; 12:647. [PMID: 38932376 PMCID: PMC11209417 DOI: 10.3390/vaccines12060647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
This study focuses on the development and characterization of an intranasal vaccine platform using adjuvanted nanoparticulate delivery of swine influenza A virus (SwIAV). The vaccine employed whole inactivated H1N2 SwIAV as an antigen and STING-agonist ADU-S100 as an adjuvant, with both surface adsorbed or encapsulated in mannose-chitosan nanoparticles (mChit-NPs). Optimization of mChit-NPs included evaluating size, zeta potential, and cytotoxicity, with a 1:9 mass ratio of antigen to NP demonstrating high loading efficacy and non-cytotoxic properties suitable for intranasal vaccination. In a heterologous H1N1 pig challenge trial, the mChit-NP intranasal vaccine induced cross-reactive sIgA antibodies in the respiratory tract, surpassing those of a commercial SwIAV vaccine. The encapsulated mChit-NP vaccine induced high virus-specific neutralizing antibody and robust cellular immune responses, while the adsorbed vaccine elicited specific high IgG and hemagglutinin inhibition antibodies. Importantly, both the mChit-NP vaccines reduced challenge heterologous viral replication in the nasal cavity higher than commercial swine influenza vaccine. In summary, a novel intranasal mChit-NP vaccine platform activated both the arms of the immune system and is a significant advancement in swine influenza vaccine design, demonstrating its potential effectiveness for pig immunization.
Collapse
Affiliation(s)
- Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Ekachai Dumkliang
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
- Drug Delivery System Excellence Center (DDSEC), Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Songkhla 90110, Thailand
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Mithilesh Singh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Olaitan C. Shekoni
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar;
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| |
Collapse
|
288
|
Cui XY, Xia DS, Luo LZ, An TQ. Recombination of Porcine Reproductive and Respiratory Syndrome Virus: Features, Possible Mechanisms, and Future Directions. Viruses 2024; 16:929. [PMID: 38932221 PMCID: PMC11209122 DOI: 10.3390/v16060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination.
Collapse
Affiliation(s)
- Xing-Yang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Da-Song Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ling-Zhi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
289
|
Chen Y, Song X, Chen W, Zhao X, Yang L, Liu D. Epitope screening and self-assembled nanovaccine molecule design of PDCoV-S protein based on immunoinformatics. Front Microbiol 2024; 15:1402963. [PMID: 38903798 PMCID: PMC11186991 DOI: 10.3389/fmicb.2024.1402963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Based on the whole virus or spike protein of pigs, δ coronavirus (PDCoV) as an immunogen may have unrelated antigenic epitope interference. Therefore, it is essential for screening and identifying advantageous protective antigen epitopes. In addition, immunoinformatic tools are described as an important aid in determining protective antigenic epitopes. In this study, the primary, secondary, and tertiary structures of vaccines were measured using ExPASy, PSIPRED 4.0, and trRosetta servers. Meanwhile, the molecular docking analysis and vector of the candidate nanovaccine were constructed. The immune response of the candidate vaccine was simulated and predicted using the C-ImmSim server. This experiment screened B cell epitopes with strong immunogenicity and high conservation, CTL epitopes, and Th epitopes with IFN-γ and IL-4 positive spike proteins. Ferritin is used as a self-assembled nanoparticle element for designing candidate nanovaccine. After analysis, it has been found to be soluble, stable, non-allergenic, and has a high affinity for its target receptor, TLR-3. The preliminary simulation analysis results show that the candidate nanovaccine has the ability to induce a humoral and cellular immune response. Therefore, it may provide a new theoretical basis for research on coronavirus self-assembled nanovaccines. It may be an effective candidate vaccine for controlling and preventing PDCoV.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongyu Liu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
290
|
Larska M, Tomana J, Krzysiak MK, Pomorska-Mól M, Socha W. Prevalence of coronaviruses in European bison (Bison bonasus) in Poland. Sci Rep 2024; 14:12928. [PMID: 38839918 PMCID: PMC11153543 DOI: 10.1038/s41598-024-63717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Coronaviruses have been confirmed to infect a variety of species, but only one case of associated winter dysentery of European bison has been described. The study aimed to analyze the prevalence, and define the impact on the species conservation, the source of coronavirus infection, and the role of the European bison in the transmission of the pathogen in Poland. Molecular and serological screening was performed on 409 European bison from 6 free-ranging and 14 captive herds over the period of 6 years (2017-2023). Presence of coronavirus was confirmed in one nasal swab by pancoronavirus RT-PCR and in 3 nasal swab samples by bovine coronavirus (BCoV) specific real time RT-PCR. The detected virus showed high (> 98%) homology in both RdRp and Spike genes to BCoV strains characterised recently in Polish cattle and strains isolated from wild cervids in Italy. Antibodies specific to BCoV were found in 6.4% of tested samples, all originating from free-ranging animals. Seroprevalence was higher in adult animals over 5 years of age (p = 0.0015) and in females (p = 0.09). Our results suggest that European bison play only a limited role as reservoirs of bovine-like coronaviruses. Although the most probable source of infections in the European bison population in Poland is cattle, other wild ruminants could also be involved. In addition, the zoonotic potential of bovine coronaviruses is quite low.
Collapse
Affiliation(s)
- Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | | | - Michał K Krzysiak
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznan, Poland
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Puławy, Poland.
| |
Collapse
|
291
|
Xiong H, Ma F, Tang D, Liu D. Measures for preventing norovirus outbreaks on campus in economically underdeveloped areas and countries: evidence from rural areas in Western China. Front Public Health 2024; 12:1406133. [PMID: 38894991 PMCID: PMC11183813 DOI: 10.3389/fpubh.2024.1406133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Background The outbreak of norovirus represents a significant public health emergency within densely populated, impoverished, and underdeveloped areas and countries. Our objective is to conduct an epidemiology study of a norovirus outbreak that occurred in a kindergarten located in rural western China. We aim to raise awareness and garner increased attention towards the prevention and control of norovirus, particularly in economically underdeveloped regions. Methods Retrospective on-site epidemiological investigation results, including data on school layout, case symptoms, onset time, disposal methods and sample testing results, questionnaire surveys, and case-control study were conducted in a kindergarten to analyze the underlying causes of the norovirus outbreak. Results A total of 15 cases were identified, with an attack rate of 44.12% (15/34). Among them, 10 cases were diagnosed through laboratory tests, and 5 cases were diagnosed clinically. Vomiting (100%, 15/15) and diarrhea (93.33%, 14/15) were the most common symptoms in the outbreak. Case control study revealed that cases who had close contact (<1 m) with the patient's vomitus (OR = 5.500) and those who had close contact with similar patients (OR = 8.000) had significantly higher ORs compared to the control participants. The current study demonstrated that improper handling of vomitus is positively associated with norovirus outbreak. The absence of standardized disinfection protocols heightens the risk of norovirus outbreaks. Conclusion To our knowledge, this study represents the first investigation into a norovirus outbreak in rural areas of western China. We aspire that amidst rapid economic development, a greater emphasis will be placed on the prevention and control of infectious diseases in economically underdeveloped areas and countries.
Collapse
Affiliation(s)
- Huali Xiong
- Department of Public Health, Health Commission of Rongchang District, Chongqing, China
- Center for Mental Health of Rongchang District, Chongqing, China
| | - Fengxun Ma
- Department of Public Health, The People's Hospital of Rongchang District, Chongqing, China
| | - Dayi Tang
- First Clinical College, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Daiqiang Liu
- Department of Hospital Information, The People's Hospital of Rongchang District, Chongqing, China
| |
Collapse
|
292
|
Ujike M, Suzuki T. Progress of research on coronaviruses and toroviruses in large domestic animals using reverse genetics systems. Vet J 2024; 305:106122. [PMID: 38641200 DOI: 10.1016/j.tvjl.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
293
|
Ren J, Tan S, Chen X, Wang X, Lin Y, Jin Y, Niu S, Wang Y, Gao X, Liang L, Li J, Zhao Y, Tian WX. Characterization of a novel recombinant NADC30‑like porcine reproductive and respiratory syndrome virus in Shanxi Province, China. Vet Res Commun 2024; 48:1879-1889. [PMID: 38349546 DOI: 10.1007/s11259-024-10319-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/27/2024] [Indexed: 06/04/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens affecting the swine industry. In this report, a novel PRRSV strain SXht2012 was isolated from Shanxi province in China. To identify genetic characteristics of SXht2012, we conducted phylogenetic and homology analyses after sequencing its complete genome. The results revealed that SXht2012 belonged to NADC30-like strain and shared 91.3% nucleotide (nt) identity with strain NADC30. Notably, sequence alignment showed that a distinctive feature in the NSP2 region, where a 131-amino acid (aa) deletion was found in the hypervariable region (HVR). Additionally, variations were also detected in the GP5 protein, specifically in the decoy peptide, T cell peptide, and a potential glycosylation site (aa 32). Furthermore, we also found that SXht2012 was likely a recombination virus originating from NADC30-like and JXA1-like strains, and three recombination breakpoints were identified in the genome at nt positions 1516, 5280 and 6851, which correspond to the NSP2, NSP3, and NSP7 regions. Overall, these findings have significant implications for understanding the genetic variation and evolutionary dynamics of PRRSV strains.
Collapse
Affiliation(s)
- Jianle Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Shanshan Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xinxin Chen
- Beijing Solarbio Science & Technology Co., Ltd, Beijing, China
| | - Xizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yiting Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yi Jin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Sheng Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xiaolong Gao
- Beijing Animal Disease Prevention and Control Center, Beijing, China
| | - Libin Liang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Junping Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yujun Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Wen-Xia Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China.
| |
Collapse
|
294
|
Wu S, Gou F, Meng J, Jin X, Liu W, Ding W, Xu W, Gu C, Hu X, Cheng G, Tao P, Zhang W. Porcine kobuvirus enhances porcine epidemic diarrhea virus pathogenicity and alters the number of intestinal lymphocytes in piglets. Vet Microbiol 2024; 293:110100. [PMID: 38718527 DOI: 10.1016/j.vetmic.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024]
Abstract
Recent epidemiological studies have discovered that a lot of cases of porcine epidemic diarrhea virus (PEDV) infection are frequently accompanied by porcine kobuvirus (PKV) infection, suggesting a potential relationship between the two viruses in the development of diarrhea. To investigate the impact of PKV on PEDV pathogenicity and the number of intestinal lymphocytes, piglets were infected with PKV or PEDV or co-infected with both viruses. Our findings demonstrate that co-infected piglets exhibit more severe symptoms, acute gastroenteritis, and higher PEDV replication compared to those infected with PEDV alone. Notably, PKV alone does not cause significant intestinal damage but enhances PEDV's pathogenicity and alters the number of intestinal lymphocytes. These results underscore the complexity of viral interactions in swine diseases and highlight the need for comprehensive diagnostic and treatment strategies addressing co-infections.
Collapse
Affiliation(s)
- Simin Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Fang Gou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jie Meng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xin Jin
- Hubei Animal Disease Prevention and Control Center, Wuhan 430070, China.
| | - Wanchen Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Weishuai Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Weihang Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Changqin Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Guofu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Pan Tao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
295
|
Zhu H, Wang G, Liu X, Wu W, Yu T, Zhang W, Liu X, Cheng G, Wei L, Ni L, Peng Z, Li X, Xu D, Qian P, Chen P. Establishment and application of a quadruplex real-time RT-qPCR assay for differentiation of TGEV, PEDV, PDCoV, and PoRVA. Microb Pathog 2024; 191:106646. [PMID: 38631414 DOI: 10.1016/j.micpath.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/μL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.
Collapse
Affiliation(s)
- Hechao Zhu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Geng Wang
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Xiangzu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenqing Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Teng Yu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | | | - Xiangdong Liu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guofu Cheng
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liuqing Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lumei Ni
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Zhong Peng
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dequan Xu
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pin Chen
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
296
|
Yarmohammadi H, Aghasadeghi M, Akhavan Sepahi A, Hamidi-fard M, Bahramali G. Designing the fusion protein of rotavirus VP8 and hepatitis A virus VP1 and evaluating the immunological response in BALB/c mice. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:401-410. [PMID: 39005596 PMCID: PMC11245353 DOI: 10.18502/ijm.v16i3.15797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background and Objectives Rotavirus and Hepatitis A virus are responsible for causing gastroenteritis and jaundice. The current vaccination approaches have proven insufficient, especially in low-income countries. In this study, we presented a novel dual-vaccine candidate that combines the rotavirus VP8 protein and the hepatitis A virus VP1. Materials and Methods The VP8*-rotavirus+AAY+HAV-VP1 fusion protein was produced using an Escherichia coli expression system. The recombinant protein had a molecular weight of approximately 45.5 kDa and was purified through affinity chromatography. BALB/c mice were injected subcutaneously with the recombinant protein, VP1, VP8 and vaccines for rotavirus and hepatitis A virus, both with and without ALUM and M720 adjuvants. ELISA assays were used to measure total IgG, IgG1, IgG2, and short-term and long-term IL-5 and IFN-γ responses. Results The fusion protein, when combined with adjuvants, elicited significantly higher total IgG, IgG1, and IgG2 responses compared to VP1 and VP8 alone, as well as the rotavirus and hepatitis A vaccines. Furthermore, it induced a higher short-term IL-5 and IFN-γ response while demonstrating a higher long-term IL-5 response compared to the rotavirus and hepatitis A vaccines. Conclusion This study demonstrates that the VP8*-rotavirus+AAY+HAV-VP1 fusion protein is a promising dual vaccine candidate for immunization against hepatitis A and rotaviruses.
Collapse
Affiliation(s)
- Hassan Yarmohammadi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abbas Akhavan Sepahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
297
|
Yaglom HD, Roth A, Alvarez C, Corbus E, Ghai RR, Ferguson S, Ritter JM, Hecht G, Rekant S, Engelthaler DM, Venkat H, Tygielski S. DETECTION OF SARS-COV-2 IN A SQUIRREL MONKEY ( SAIMIRI SCIUREUS): A ONE HEALTH INVESTIGATION AND RESPONSE. J Zoo Wildl Med 2024; 55:471-478. [PMID: 38875205 PMCID: PMC11247420 DOI: 10.1638/2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 06/16/2024] Open
Abstract
Through collaborative efforts, One Health partners have responded to outbreaks of COVID-19 among animals, including those in human care at zoos. Zoos have been faced with numerous challenges, including the susceptibility of many mammalian species, and therefore the need to heighten biosecurity measures rapidly. Robust One Health collaborations already exist in Arizona to address endemic and emerging zoonoses, but these have rarely included zoos. The pandemic shed light on this, and Arizona subsequently expanded its SARS-CoV-2 surveillance efforts to include zoo animals. Testing and epidemiologic support was provided to expedite the detection of and response to zoonotic SARS-CoV-2 infection in zoo animals, as well as to understand possible transmission events. Resulting from this program, SARS-CoV-2 was detected from a rectal swab collected from an 8-yr-old squirrel monkey (Saimiri sciureus) from a zoo in Southern Arizona. The animal had rapidly become ill with nonrespiratory symptoms and died in July 2022. Genomic sequencing from the swab revealed mutations consistent with the Omicron (BA.2) lineage. An epidemiologic investigation identified an animal caretaker in close proximity to the affected squirrel monkey who tested positive for COVID-19 the same day the squirrel monkey died. Critical One Health partners provided support to the zoo through engagement of local, state, and federal agencies. Necropsy and pathologic evaluation showed significant necrotizing colitis; the overall clinical and histopathological findings did not implicate SARS-CoV-2 infection alone as a causal or contributing factor in the squirrel monkey's illness and death. This report documents the first identification of SARS-CoV-2 in a squirrel monkey and highlights a successful and timely One Health investigation conducted through multisectoral collaboration.
Collapse
Affiliation(s)
- Hayley D Yaglom
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA,
| | | | | | | | - Ria R Ghai
- One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sylvia Ferguson
- Veterinary Diagnostic Pathology Center, Midwestern University, Glendale, AZ 85308, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Gavriella Hecht
- Arizona Department of Health Services, Office of Infectious Disease Control, Phoenix, AZ 85007, USA
| | - Steven Rekant
- Office of Interagency Coordination, United States Department of Agriculture, Animal and Plant Health Inspection Service, Riverdale, MD 20737, USA
| | - David M Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA
| | - Heather Venkat
- Arizona Department of Health Services, Office of Infectious Disease Control, Phoenix, AZ 85007, USA
- Center for Preparedness and Response, Career Epidemiology Field Officer Program, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | |
Collapse
|
298
|
Kandathil AJ, Thomas DL. The Blood Virome: A new frontier in biomedical science. Biomed Pharmacother 2024; 175:116608. [PMID: 38703502 PMCID: PMC11184943 DOI: 10.1016/j.biopha.2024.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Recent advances in metagenomic testing opened a new window into the mammalian blood virome. Comprised of well-known viruses like human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, the virome also includes many other eukaryotic viruses and phages whose medical significance, lifecycle, epidemiology, and impact on human health are less well known and thus regarded as commensals. This review synthesizes available information for the so-called commensal virome members that circulate in the blood of humans considering their restriction to and interaction with the human host, their natural history, and their impact on human health and physiology.
Collapse
Affiliation(s)
- Abraham J Kandathil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David L Thomas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
299
|
Wang C, Lu Y, Yu H, Zhang Y, Savelkoul HFJ, Jansen CA, Liu G. TLR9 mediates IgA production in the porcine small intestine during PEDV infection. Vet Microbiol 2024; 293:110096. [PMID: 38636174 DOI: 10.1016/j.vetmic.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Haoyuan Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
300
|
Antunes P, Novais C, Peixe L, Freitas AR. Pet food safety: emerging bacterial hazards and implications for public health. Curr Opin Food Sci 2024; 57:101165. [DOI: 10.1016/j.cofs.2024.101165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|