251
|
Yang HY, Pu XP, Liu Y. Chronic morphine treatment induces over-expression of HSP70 in mice striatum related with abnormal ubiquitin-proteasome degradation. Drug Alcohol Depend 2014; 139:53-9. [PMID: 24685564 DOI: 10.1016/j.drugalcdep.2014.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND It has been shown that opioid dependence-related neuronal plasticity may rely not only on protein synthesis, but also on protein degradation, mainly mediated by ubiquitin-proteasome system (UPS). The aim of the present study was to determine the effect of morphine on the regulation of protein degradation in the brain and to determine which proteins are involved in the underlying mechanism. METHODS Mice were given chronic morphine administration and the state of morphine dependence was confirmed by induction of naloxone-precipitated withdrawal jumping. The level of ubiquitinated proteins in the striatum and spinal cord of morphine-dependent mice was detected by Western blotting. One of the abnormal-ubiquitinated proteins in mice striatum was identified by electrospray ionization quadrupole time-of-flight tandem mass spectrometry and the result was further confirmed by Western blotting and immunofluorescence method. RESULTS We found that the expression of some ubiquitinated proteins was clearly decreased in the striatum of morphine-depnendent mice, but not in the spinal cord. And we identified a ubiquitinated protein (>79 kDa) decreased in the striatum as heat shock cognate 70 protein, one member of the 70 kDa family of heat shock proteins (HSP70). Moreover, we confirmed the level of HSP70 protein was significantly increased in mice striatum. CONCLUSIONS These data strongly suggest morphine-induced HSP70 overexpression in the striatum is closely related with its abnormal degradation by UPS and it seems to be an important mechanism associated with morphine dependence.
Collapse
Affiliation(s)
- Hai-Yu Yang
- Institute of Clinical Medicial Sciences, Jiangxi Province People's Hospital, Nanchang 330006, P. R. China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science, Peking University, Beijing 100191, P. R. China.
| | - Xiao-Ping Pu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science, Peking University, Beijing 100191, P. R. China
| | - Yong Liu
- Department of Pathology, Jiangxi Province People's Hospital, Nanchang 330006, P. R. China
| |
Collapse
|
252
|
Zheng MQ, Kim SJ, Holden D, Lin SF, Need A, Rash K, Barth V, Mitch C, Navarro A, Kapinos M, Maloney K, Ropchan J, Carson RE, Huang Y. An Improved Antagonist Radiotracer for the κ-Opioid Receptor: Synthesis and Characterization of (11)C-LY2459989. J Nucl Med 2014; 55:1185-91. [PMID: 24854795 DOI: 10.2967/jnumed.114.138701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/25/2014] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The κ-opioid receptors (KORs) are implicated in several neuropsychiatric diseases and addictive disorders. PET with radioligands provides a means to image the KOR in vivo and investigate its function in health and disease. The purpose of this study was to develop the selective KOR antagonist (11)C-LY2459989 as a PET radioligand and characterize its imaging performance in nonhuman primates. METHODS LY2459989 was synthesized and assayed for in vitro binding to opioid receptors. Ex vivo studies in rodents were conducted to assess its potential as a tracer candidate. (11)C-LY2459989 was synthesized by reaction of its iodophenyl precursor with (11)C-cyanide, followed by partial hydrolysis of the resulting (11)C-cyanophenyl intermediate. Imaging experiments with (11)C-LY2459989 were performed in rhesus monkeys with arterial input function measurement. Imaging data were analyzed with kinetic models to derive in vivo binding parameters. RESULTS LY2459989 is a full antagonist with high binding affinity and selectivity for KOR (0.18, 7.68, and 91.3 nM, respectively, for κ, μ, and δ receptors). Ex vivo studies in rats indicated LY2459989 as an appropriate tracer candidate with high specific binding signals and confirmed its KOR binding selectivity in vivo. (11)C-LY2459989 was synthesized in high radiochemical purity and good specific activity. In rhesus monkeys, (11)C-LY2459989 displayed a fast rate of peripheral metabolism. Similarly, (11)C-LY2459989 displayed fast uptake kinetics in the brain and an uptake pattern consistent with the distribution of KOR in primates. Pretreatment with naloxone (1 mg/kg, intravenously) resulted in a uniform distribution of radioactivity in the brain. Further, specific binding of (11)C-LY2459989 was dose-dependently reduced by the selective KOR antagonist LY2456302 and the unlabeled LY2459989. Regional binding potential values derived from the multilinear analysis-1 (MA1) method, as a measure of in vivo specific binding signal, were 2.18, 1.39, 1.08, 1.04, 1.03, 0.59, 0.51, and 0.50, respectively, for the globus pallidus, cingulate cortex, insula, caudate, putamen, frontal cortex, temporal cortex, and thalamus. CONCLUSION The novel PET radioligand (11)C-LY2459989 displayed favorable pharmacokinetic properties, a specific and KOR-selective binding profile, and high specific binding signals in vivo, thus making it a promising PET imaging agent for KOR.
Collapse
Affiliation(s)
- Ming-Qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Su Jin Kim
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Daniel Holden
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Shu-fei Lin
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Anne Need
- Eli Lilly & Company, Indianapolis, Indiana
| | - Karen Rash
- Eli Lilly & Company, Indianapolis, Indiana
| | | | | | | | - Michael Kapinos
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Kathleen Maloney
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Jim Ropchan
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Richard E Carson
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Yiyun Huang
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| |
Collapse
|
253
|
Santos FM, Grecco LH, Pereira MG, Oliveira ME, Rocha PA, Silva JT, Martins DO, Miyabara EH, Chacur M. The neural mobilization technique modulates the expression of endogenous opioids in the periaqueductal gray and improves muscle strength and mobility in rats with neuropathic pain. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2014; 10:19. [PMID: 24884961 PMCID: PMC4050394 DOI: 10.1186/1744-9081-10-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/15/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. METHODS The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. RESULTS An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. CONCLUSION These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation.
Collapse
Affiliation(s)
- Fabio Martinez Santos
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
- Special Laboratory of Pain and Signaling, Butantan Institute, University of São Paulo, Av. Vital Brasil, 1500, Butantã 05503-900 SP, Brazil
- Department of Anatomy, Laboratory of Skeletal Muscle Plasticity, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, 05508-000 São Paulo, SP, Brazil
- Department of Health Sciences, University Nove de Julho, São Paulo, SP, Brazil
| | - Leandro Henrique Grecco
- Special Laboratory of Pain and Signaling, Butantan Institute, University of São Paulo, Av. Vital Brasil, 1500, Butantã 05503-900 SP, Brazil
| | - Marcelo Gomes Pereira
- Department of Anatomy, Laboratory of Skeletal Muscle Plasticity, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, 05508-000 São Paulo, SP, Brazil
| | - Mara Evany Oliveira
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| | - Priscila Abreu Rocha
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| | - Joyce Teixeira Silva
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| | - Daniel Oliveira Martins
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| | - Elen Haruka Miyabara
- Department of Anatomy, Laboratory of Skeletal Muscle Plasticity, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, 05508-000 São Paulo, SP, Brazil
| | - Marucia Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| |
Collapse
|
254
|
Funk D, Coen K, Lê AD. The role of kappa opioid receptors in stress-induced reinstatement of alcohol seeking in rats. Brain Behav 2014; 4:356-67. [PMID: 24944865 PMCID: PMC4055186 DOI: 10.1002/brb3.222] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/09/2014] [Accepted: 01/18/2014] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Stress is related to heavy alcohol use and relapse in alcoholics. Using the reinstatement model, we have shown that corticotropin-releasing factor (CRF) underlies stress-induced relapse to alcohol seeking in laboratory rodents. Little is known about how other neurotransmitters interact with CRF in these effects. Dynorphin and its receptor (kappa opioid receptor, KOR) are involved in stress responses and in alcohol seeking. KOR and CRF receptors (CRF R) may interact in the production of stress-related behaviors but it is not known whether this interaction is involved in reinstatement of alcohol seeking. METHODS Male Long Evans rats were trained to self-administer alcohol (12% w/v). After extinction of responding, we determined the effects of the KOR agonist, U50,488 (2.5, 5 mg/kg) on reinstatement of alcohol seeking, and their sensitivity to the selective KOR antagonist nor-binaltorphimine dihydrochloride (nor-BNI) (10 mg/kg) administered at different times before U50,488. We then examined the effects of nor-BNI on reinstatement induced by the stressor yohimbine (1.25 mg/kg) and on reinstatement induced by exposure to alcohol-associated cues. Finally, we determined whether CRF R1 blockade with antalarmin (10, 20 mg/kg) attenuates alcohol seeking induced by U50,488. RESULTS U50,488 reinstated alcohol seeking. Prior treatment with nor-BNI 2, but not 24 h before administration of U50,488 or yohimbine blocked reinstatement induced by these drugs. Cue-induced reinstatement was blocked by nor-BNI administered 2 h prior to testing. Finally, U50,488-induced reinstatement was blocked by antalarmin. CONCLUSIONS These data further support a role for KOR in reinstatement of alcohol seeking under nonstress and stressful conditions and that KOR and CRF R interact in these effects.
Collapse
Affiliation(s)
- Douglas Funk
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health Toronto, Canada
| | - Kathleen Coen
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health Toronto, Canada
| | - A D Lê
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health Toronto, Canada ; Department of Pharmacology, University of Toronto Toronto, Canada ; Department of Psychiatry, University of Toronto Toronto, Canada
| |
Collapse
|
255
|
Oude Ophuis RJA, Boender AJ, van Rozen AJ, Adan RAH. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum. Front Neuroanat 2014; 8:14. [PMID: 24723856 PMCID: PMC3972466 DOI: 10.3389/fnana.2014.00014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/10/2014] [Indexed: 01/28/2023] Open
Abstract
The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1) and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2) and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive, and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in situ hybridization to quantify the percentage of striatal cells that (co)express dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R) is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection.
Collapse
Affiliation(s)
- Ralph J A Oude Ophuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands ; Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht Utrecht, Netherlands
| | - Arjen J Boender
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Andrea J van Rozen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
256
|
Urbano M, Guerrero M, Rosen H, Roberts E. Antagonists of the kappa opioid receptor. Bioorg Med Chem Lett 2014; 24:2021-32. [PMID: 24690494 DOI: 10.1016/j.bmcl.2014.03.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 01/26/2023]
Abstract
The research community has increasingly focused on the development of OPRK antagonists as pharmacotherapies for the treatment of depression, anxiety, addictive disorders and other psychiatric conditions produced or exacerbated by stress. Short-acting OPRK antagonists have been recently developed as a potential improvement over long-acting prototypic ligands including nor-BNI and JDTic. Remarkably the short-acting LY2456302 is undergoing phase II clinical trials for the augmentation of the antidepressant therapy in treatment-resistant depression. This Letter reviews relevant chemical and pharmacological advances in the identification and development of OPRK antagonists.
Collapse
Affiliation(s)
- Mariangela Urbano
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Miguel Guerrero
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States; The Scripps Research Institute Molecular Screening Center, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States; Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States.
| |
Collapse
|
257
|
Casal-Dominguez JJ, Furkert D, Ostovar M, Teintang L, Clark MJ, Traynor JR, Husbands SM, Bailey SJ. Characterization of BU09059: a novel potent selective κ-receptor antagonist. ACS Chem Neurosci 2014; 5:177-84. [PMID: 24410326 DOI: 10.1021/cn4001507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Kappa-opioid receptor (κ) antagonists are potential therapeutic agents for a range of psychiatric disorders. The feasibility of developing κ-antagonists has been limited by the pharmacodynamic properties of prototypic κ-selective antagonists; that is, they inhibit receptor signaling for weeks after a single administration. To address this issue, novel trans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl) piperidine derivatives, based on JDTic, were designed using soft-drug principles. The aim was to determine if the phenylpiperidine-based series of κ-antagonists was amenable to incorporation of a potentially metabolically labile group, while retaining good affinity and selectivity for the κ-receptor. Opioid receptor binding affinity and selectivity of three novel compounds (BU09057, BU09058, and BU09059) were tested. BU09059, which most closely resembles JDTic, had nanomolar affinity for the κ-receptor, with 15-fold and 616-fold selectivity over μ- and δ-receptors, respectively. In isolated tissues, BU09059 was a potent and selective κ-antagonist (pA2 8.62) compared with BU09057 (pA2 6.87) and BU09058 (pA2 6.76) which were not κ-selective. In vivo, BU09059 (3 and 10 mg/kg) significantly blocked U50,488-induced antinociception and was as potent as, but shorter acting than, the prototypic selective κ-antagonist norBNI. These data show that a new JDTic analogue, BU09059, retains high affinity and selectivity for the κ-receptor and has a shorter duration of κ-antagonist action in vivo.
Collapse
Affiliation(s)
| | - Daniel Furkert
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Mehrnoosh Ostovar
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Linnea Teintang
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Mary J. Clark
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen. M. Husbands
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sarah J. Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
258
|
Fu CY, Xia RL, Zhang TF, Lu Y, Zhang SF, Yu ZQ, Jin T, Mou XZ. Hemokinin-1(4-11)-induced analgesia selectively up-regulates δ-opioid receptor expression in mice. PLoS One 2014; 9:e90446. [PMID: 24587368 PMCID: PMC3938741 DOI: 10.1371/journal.pone.0090446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/30/2014] [Indexed: 12/01/2022] Open
Abstract
Our previous studies have shown that an active fragment of human tachykinins (hHK-1(4-11)) produced an opioid-independent analgesia after intracerebroventricular (i.c.v.) injection in mice, which has been markedly enhanced by a δ OR antagonist, naltrindole hydrochloride (NTI). In this study, we have further characterized the in vivo analgesia after i.c.v. injection of hHK-1(4-11) in mouse model. Our qRT-PCR results showed that the mRNA levels of several ligands and receptors (e.g. PPT-A, PPT-C, KOR, PDYN and PENK) have not changed significantly. Furthermore, neither transcription nor expression of NK1 receptor, MOR and POMC have changed noticeably. In contrast, both mRNA and protein levels of DOR have been up-regulated significantly, indicating that the enhanced expression of δ opioid receptor negatively modulates the analgesia induced by i.c.v. injection of hHK-1(4-11). Additionally, the combinatorial data from our previous and present experiments strongly suggest that the discriminable distribution sites in the central nervous system between hHK-1(4-11) and r/mHK-1 may be attributed to their discriminable analgesic effects. Altogether, our findings will not only contribute to the understanding of the complicated mechanisms regarding the nociceptive modulation of hemokinin-1 as well as its active fragments at supraspinal level, but may also lead to novel pharmacological interventions.
Collapse
MESH Headings
- Analgesia
- Animals
- Blotting, Western
- Female
- Gene Expression/drug effects
- Humans
- Injections, Intraventricular
- Male
- Mice, Inbred ICR
- Peptide Fragments/administration & dosage
- Peptide Fragments/pharmacology
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tachykinins/administration & dosage
- Tachykinins/chemistry
- Tachykinins/genetics
- Tachykinins/metabolism
- Tachykinins/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Cai-Yun Fu
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China
- * E-mail: (CF); (XM); (ZY)
| | - Rui-Long Xia
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Teng-Fei Zhang
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Lu
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shi-Fu Zhang
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhi-Qiang Yu
- Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
- * E-mail: (CF); (XM); (ZY)
| | - Tao Jin
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiao-Zhou Mou
- Zhejiang Provincial People’s Hospital, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China
- * E-mail: (CF); (XM); (ZY)
| |
Collapse
|
259
|
Bardoni R, Tawfik VL, Wang D, François A, Solorzano C, Shuster SA, Choudhury P, Betelli C, Cassidy C, Smith K, de Nooij JC, Mennicken F, O'Donnell D, Kieffer BL, Woodbury CJ, Basbaum AI, MacDermott AB, Scherrer G. Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 2014; 81:1312-1327. [PMID: 24583022 DOI: 10.1016/j.neuron.2014.01.044] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 11/24/2022]
Abstract
Cutaneous mechanosensory neurons detect mechanical stimuli that generate touch and pain sensation. Although opioids are generally associated only with the control of pain, here we report that the opioid system in fact broadly regulates cutaneous mechanosensation, including touch. This function is predominantly subserved by the delta opioid receptor (DOR), which is expressed by myelinated mechanoreceptors that form Meissner corpuscles, Merkel cell-neurite complexes, and circumferential hair follicle endings. These afferents also include a small population of CGRP-expressing myelinated nociceptors that we now identify as the somatosensory neurons that coexpress mu and delta opioid receptors. We further demonstrate that DOR activation at the central terminals of myelinated mechanoreceptors depresses synaptic input to the spinal dorsal horn, via the inhibition of voltage-gated calcium channels. Collectively our results uncover a molecular mechanism by which opioids modulate cutaneous mechanosensation and provide a rationale for targeting DOR to alleviate injury-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Carlos Solorzano
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott A Shuster
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Papiya Choudhury
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Chiara Betelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Colleen Cassidy
- Graduate Program in Neuroscience, University of Wyoming, Laramie, WY 82071, USA; Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Kristen Smith
- Graduate Program in Neuroscience, University of Wyoming, Laramie, WY 82071, USA; Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Joriene C de Nooij
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Françoise Mennicken
- AstraZeneca R&D Montreal, Department of Translational Science, Montreal, QC H4S 1Z9, Canada
| | - Dajan O'Donnell
- AstraZeneca R&D Montreal, Department of Translational Science, Montreal, QC H4S 1Z9, Canada
| | - Brigitte L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR7104 CNRS/Université de Strasbourg, U964 INSERM, 67400 Illkirch, France
| | - C Jeffrey Woodbury
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amy B MacDermott
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
260
|
Atwood BK, Kupferschmidt DA, Lovinger DM. Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum. Nat Neurosci 2014; 17:540-8. [PMID: 24561996 DOI: 10.1038/nn.3652] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/20/2014] [Indexed: 11/09/2022]
Abstract
As prescription opioid analgesic abuse rates rise, so does the need to understand the long-term effects of opioid exposure on brain function. The dorsal striatum is an important site for drug-induced neuronal plasticity. We found that exogenously applied and endogenously released opioids induced long-term depression (OP-LTD) of excitatory inputs to the dorsal striatum in mice and rats. Mu and delta OP-LTD, although both being presynaptically expressed, were dissociable in that they summated, differentially occluded endocannabinoid-LTD and inhibited different striatal inputs. Kappa OP-LTD showed a unique subregional expression in striatum. A single in vivo exposure to the opioid analgesic oxycodone disrupted mu OP-LTD and endocannabinoid-LTD, but not delta or kappa OP-LTD. These data reveal previously unknown opioid-mediated forms of long-term striatal plasticity that are differentially affected by opioid analgesic exposure and are likely important mediators of striatum-dependent learning and behavior.
Collapse
Affiliation(s)
- Brady K Atwood
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland, USA
| | - David A Kupferschmidt
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
261
|
Rorick-Kehn LM, Witkin JM, Statnick MA, Eberle EL, McKinzie JH, Kahl SD, Forster BM, Wong CJ, Li X, Crile RS, Shaw DB, Sahr AE, Adams BL, Quimby SJ, Diaz N, Jimenez A, Pedregal C, Mitch CH, Knopp KL, Anderson WH, Cramer JW, McKinzie DL. LY2456302 is a novel, potent, orally-bioavailable small molecule kappa-selective antagonist with activity in animal models predictive of efficacy in mood and addictive disorders. Neuropharmacology 2014; 77:131-44. [DOI: 10.1016/j.neuropharm.2013.09.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
|
262
|
Kupchik YM, Scofield MD, Rice KC, Cheng K, Roques BP, Kalivas PW. Cocaine dysregulates opioid gating of GABA neurotransmission in the ventral pallidum. J Neurosci 2014; 34:1057-66. [PMID: 24431463 PMCID: PMC3891949 DOI: 10.1523/jneurosci.4336-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022] Open
Abstract
The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol and Alcoholism, Rockville, Maryland 20892, Pharmaleads SAS, 75013 Paris, France, and Université Paris-Descartes, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
263
|
Shim I, Stratford TR, Wirtshafter D. Dopamine is differentially involved in the locomotor hyperactivity produced by manipulations of opioid, GABA and glutamate receptors in the median raphe nucleus. Behav Brain Res 2013; 261:65-70. [PMID: 24333380 DOI: 10.1016/j.bbr.2013.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 12/24/2022]
Abstract
The median raphe nucleus (MR) has been shown to exert a powerful influence on behavioral arousal and marked locomotor hyperactivity can be produced by intra-MR injections of a variety of drugs including GABAA and GABAB agonists, excitatory amino acid antagonists, and μ- and δ-opioid agonists. Other studies have indicated that the MR exerts an inhibitory influence on ascending dopamine systems, suggesting that MR induced alterations in activity may be mediated through changes in dopaminergic transmission. In the present study, we explored this possibility by examining whether systemic administration of the preferential D2 dopamine antagonist haloperidol is able to antagonize the hyperactivity produced by intra-MR injections of various drugs. We found that haloperidol completely blocked the locomotor response to intra-MR injections of the μ-opioid receptor agonist DAMGO and the δ-opioid receptor agonist DPDPE. In marked contrast, at doses which abolished the locomotor response to systemic amphetamine, haloperidol had no effect on the hyperactivity induced by intra-MR injections of GABAA agonist muscimol, the GABAB agonist baclofen, or the kainate/quisqualate antagonist pBB-PZDA, even though it suppressed baseline activity in these same animals. These results indicate that there must be at least two mechanisms capable of influencing behavioral arousal within the MR region, one of which is dependent on D2 dopamine receptors and the other is not.
Collapse
Affiliation(s)
- Insop Shim
- Department of Psychology, University of Illinois at Chicago M/C 285 1007 W. Harrison St., Chicago 60607-7137, IL, U.S.A; AMSRC, Department of Basic Science College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Thomas R Stratford
- Department of Psychology, University of Illinois at Chicago M/C 285 1007 W. Harrison St., Chicago 60607-7137, IL, U.S.A
| | - David Wirtshafter
- Department of Psychology, University of Illinois at Chicago M/C 285 1007 W. Harrison St., Chicago 60607-7137, IL, U.S.A.
| |
Collapse
|
264
|
Zhou L, Lovell KM, Frankowski KJ, Slauson SR, Phillips AM, Streicher JM, Stahl E, Schmid CL, Hodder P, Madoux F, Cameron MD, Prisinzano TE, Aubé J, Bohn LM. Development of functionally selective, small molecule agonists at kappa opioid receptors. J Biol Chem 2013; 288:36703-16. [PMID: 24187130 DOI: 10.1074/jbc.m113.504381] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The kappa opioid receptor (KOR) is widely expressed in the CNS and can serve as a means to modulate pain perception, stress responses, and affective reward states. Therefore, the KOR has become a prominent drug discovery target toward treating pain, depression, and drug addiction. Agonists at KOR can promote G protein coupling and βarrestin2 recruitment as well as multiple downstream signaling pathways, including ERK1/2 MAPK activation. It has been suggested that the physiological effects of KOR activation result from different signaling cascades, with analgesia being G protein-mediated and dysphoria being mediated through βarrestin2 recruitment. Dysphoria associated with KOR activation limits the therapeutic potential in the use of KOR agonists as analgesics; therefore, it may be beneficial to develop KOR agonists that are biased toward G protein coupling and away from βarrestin2 recruitment. Here, we describe two classes of biased KOR agonists that potently activate G protein coupling but weakly recruit βarrestin2. These potent and functionally selective small molecule compounds may prove to be useful tools for refining the therapeutic potential of KOR-directed signaling in vivo.
Collapse
Affiliation(s)
- Lei Zhou
- From the Departments of Molecular Therapeutics and Neuroscience and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Silva ML, Silva JR, Prado WA. Analgesia induced by 2- or 100-Hz electroacupuncture in the rat tail-flick test depends on the anterior pretectal nucleus. Life Sci 2013; 93:742-54. [DOI: 10.1016/j.lfs.2013.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/14/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022]
|
266
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
267
|
Lunden JW, Kirby LG. Opiate exposure and withdrawal dynamically regulate mRNA expression in the serotonergic dorsal raphe nucleus. Neuroscience 2013; 254:160-72. [PMID: 24055683 DOI: 10.1016/j.neuroscience.2013.08.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/22/2013] [Accepted: 08/31/2013] [Indexed: 12/15/2022]
Abstract
Previous results from our lab suggest that hypofunctioning of the serotonergic (5-HT) dorsal raphe nucleus (DRN) is involved in stress-induced opiate reinstatement. To further investigate the effects of morphine dependence and withdrawal on the 5-HT DRN system, we measured gene expression at the level of mRNA in the DRN during a model of morphine dependence, withdrawal and post withdrawal stress exposure in rats. Morphine pellets were implanted for 72h and then either removed or animals were injected with naloxone to produce spontaneous or precipitated withdrawal, respectively. Animals exposed to these conditions exhibited withdrawal symptoms including weight loss, wet dog shakes and jumping behavior. Gene expression for brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB), corticotrophin releasing-factor (CRF)-R1, CRF-R2, alpha 1 subunit of the GABAA receptor (GABAA-α1), μ-opioid receptor (MOR), 5-HT1A receptor, tryptophan hydroxylase2 (TPH2) and the 5-HT transporter was then measured using quantitative real-time polymerase chain reaction at multiple time-points across the model of morphine exposure, withdrawal and post withdrawal stress. Expression levels of BDNF, TrkB and CRF-R1 mRNA were decreased during both morphine exposure and following 7days of withdrawal. CRF-R2 mRNA expression was elevated after 7days of withdrawal. 5-HT1A receptor mRNA expression was decreased following 3h of morphine exposure, while TPH2 mRNA expression was decreased after 7days of withdrawal with swim stress. There were no changes in the expression of GABAA-α1, MOR or 5-HT transporter mRNA. Collectively these results suggest that alterations in neurotrophin support, CRF-dependent stress signaling, 5-HT synthesis and release may underlie 5-HT DRN hypofunction that can potentially lead to stress-induced opiate relapse.
Collapse
Affiliation(s)
- J W Lunden
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
268
|
Gago B, Fuxe K, Brené S, Díaz-Cabiale Z, Reina-Sánchez MD, Suárez-Boomgaard D, Roales-Buján R, Valderrama-Carvajal A, de la Calle A, Rivera A. Early modulation by the dopamine D4receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen. J Neurosci Res 2013; 91:1533-40. [DOI: 10.1002/jnr.23277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Belén Gago
- Department of Cell Biology; School of Science, University of Málaga; Málaga Spain
| | - Kjell Fuxe
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| | - Stefan Brené
- Department of Neurobiology; Care Sciences and Society, Karolinska Institutet; Stockholm Sweden
| | - Zaida Díaz-Cabiale
- Department of Physiology; School of Medicine, University of Málaga; Málaga Spain
| | | | | | - Ruth Roales-Buján
- Department of Cell Biology; School of Science, University of Málaga; Málaga Spain
| | | | - Adelaida de la Calle
- Department of Cell Biology; School of Science, University of Málaga; Málaga Spain
| | - Alicia Rivera
- Department of Cell Biology; School of Science, University of Málaga; Málaga Spain
| |
Collapse
|
269
|
Kaufman MJ, Janes AC, Frederick BD, Brimson-Théberge M, Tong Y, McWilliams SB, Bear A, Gillis TE, Schrode KM, Renshaw PF, Negus SS. A method for conducting functional MRI studies in alert nonhuman primates: initial results with opioid agonists in male cynomolgus monkeys. Exp Clin Psychopharmacol 2013; 21:323-31. [PMID: 23773004 PMCID: PMC3916219 DOI: 10.1037/a0033062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functional MRI (fMRI) has emerged as a powerful technique for assessing neural effects of psychoactive drugs and other stimuli. Several experimental approaches have been developed to use fMRI in anesthetized and awake animal subjects, each of which has its advantages and complexities. We sought to assess whether one particular method to scan alert postanesthetized animals can be used to assess fMRI effects of opioid agonists. To date, the use of fMRI as a method to compare pharmacological effects of opioid drugs has been limited. Such studies are important because mu and kappa opioid receptor agonists produce distinct profiles of behavioral effects related both to clinically desirable endpoints (e.g., analgesia) and to undesirable effects (e.g., abuse potential). This study sought to determine whether we could use our fMRI approach to compare acute effects of behaviorally equipotent (3.2 μg/kg) intravenous doses of fentanyl and U69,593 (doses that do not affect cardiorespiratory parameters). Scans were acquired in alert male cynomolgus macaques acclimated to undergo fMRI scans under restraint, absent excessive stress hormone increases. These opioid agonists activated bilateral striatal and nucleus accumbens regions of interest. At the dose tested, U69,593 induced greater left nucleus accumbens BOLD activation than fentanyl, while fentanyl activated left dorsal caudate nucleus more than U69,593. Our results suggest that our fMRI approach could be informative for comparing effects of opioid agonists.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Benzeneacetamides/administration & dosage
- Benzeneacetamides/pharmacology
- Caudate Nucleus/drug effects
- Caudate Nucleus/metabolism
- Conditioning, Psychological
- Fentanyl/administration & dosage
- Fentanyl/pharmacology
- Hydrocortisone/blood
- Injections, Intravenous
- Macaca fascicularis/physiology
- Magnetic Resonance Imaging/adverse effects
- Magnetic Resonance Imaging/veterinary
- Male
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Pyrrolidines/administration & dosage
- Pyrrolidines/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Restraint, Physical/adverse effects
- Restraint, Physical/veterinary
- Stress, Physiological
- Stress, Psychological/blood
- Stress, Psychological/etiology
- Wakefulness
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Neuroscience 2013; 250:599-613. [PMID: 23912034 DOI: 10.1016/j.neuroscience.2013.07.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/03/2023]
Abstract
Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo-medullary pathway may represent the anatomical substrate by which hcrt-1/L-Enk neurons function in the coordination of autonomic-cardiovascular responses during different behavioral states.
Collapse
|
271
|
Normandin A, Luccarini P, Molat JL, Gendron L, Dallel R. Spinal μ and δ opioids inhibit both thermal and mechanical pain in rats. J Neurosci 2013; 33:11703-14. [PMID: 23843537 PMCID: PMC3855450 DOI: 10.1523/jneurosci.1631-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/21/2022] Open
Abstract
The expression and contribution of μ (MOPR) and δ opioid receptors (DOPR) in polymodal nociceptors have been recently challenged. Indeed, MOPR and DOPR were shown to be expressed in distinct subpopulation of nociceptors where they inhibit pain induced by noxious heat and mechanical stimuli, respectively. In the present study, we used electrophysiological measurements to assess the effect of spinal MOPR and DOPR activation on heat-induced and mechanically induced diffuse noxious inhibitory controls (DNICs). We recorded from wide dynamic range neurons in the spinal trigeminal nucleus of anesthetized rats. Trains of 105 electrical shocks were delivered to the excitatory cutaneous receptive field. DNICs were triggered either by immersion of the hindpaw in 49°C water or application of 300 g of mechanical pressure. To study the involvement of peptidergic primary afferents in the activation of DNIC by noxious heat and mechanical stimulations, substance P release was measured in the spinal cord by visualizing neurokinin type 1 receptor internalization. We found that the activation of spinal MOPR and DOPR similarly attenuates the DNIC and neurokinin type 1 receptor internalization induced either by heat or mechanical stimuli. Our results therefore reveal that the activation of spinal MOPR and DOPR relieves both heat-induced and mechanically induced pain with similar potency and suggest that these receptors are expressed on polymodal, substance P-expressing neurons.
Collapse
Affiliation(s)
- Audrey Normandin
- Département de physiologie et biophysique, Faculté de médecine et des sciences de la santé
| | - Philippe Luccarini
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| | - Jean-Louis Molat
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| | - Louis Gendron
- Département de physiologie et biophysique, Faculté de médecine et des sciences de la santé
- Institut de pharmacologie de Sherbrooke, and
- Centre de recherche clinique Étienne-Le Bel, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada, and
| | - Radhouane Dallel
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| |
Collapse
|
272
|
Pharmacological traits of delta opioid receptors: pitfalls or opportunities? Psychopharmacology (Berl) 2013; 228:1-18. [PMID: 23649885 PMCID: PMC3679311 DOI: 10.1007/s00213-013-3129-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR-selective drugs are in clinical trials, but no DOR-selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid-based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. OBJECTIVE This review will discuss the existing literature focusing on four aspects: (1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands. (2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. (3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. (4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. CONCLUSION The reviewed features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands.
Collapse
|
273
|
Kelm-Nelson CA, Riters LV. Curvilinear relationships between mu-opioid receptor labeling and undirected song in male European starlings (Sturnus vulgaris). Brain Res 2013; 1527:29-39. [PMID: 23774651 DOI: 10.1016/j.brainres.2013.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/22/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
Female-directed communication in male songbirds has been reasonably well studied; yet, relatively little is known about communication in other social contexts. Songbirds also produce song that is not clearly directed towards another individual (undirected song) when alone or in flocks. Although the precise functions of undirected song may differ across species, this type of song is considered important for flock maintenance, song learning or practice. Past studies show that undirected song is tightly coupled to analgesia and positive affective state, which are both mediated by opioid activity. Furthermore, labeling for the opioid met-enkephalin in the medial preoptic nucleus (POM) correlates positively with undirected song production. We propose that undirected song is facilitated and maintained by opioid receptor activity in the POM and other brain regions involved in affective state, analgesia, and social behavior. To provide insight into this hypothesis, we used immunohistochemistry to examine relationships between undirected song and mu-opioid receptors in male starlings. Polynomial regression analyses revealed significant inverted-U shaped relationships between measures of undirected song and mu-opioid receptor labeling in the POM, medial bed nucleus of the stria terminalis (BSTm), and periaqueductal gray (PAG). These results suggest that low rates of undirected song may stimulate and/or be maintained by mu-opioid receptor activity; however, it may be that sustained levels of mu-opioid receptor activity associated with high rates of undirected song cause mu-opioid receptor down-regulation. The results indicate that mu-opioid receptor activity in POM, BSTm, and PAG may underlie previous links identified between undirected song, analgesia, and affective state.
Collapse
Affiliation(s)
- Cynthia A Kelm-Nelson
- Department of Zoology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
274
|
Abstract
The opioid system is well recognized as an important regulator of appetite and energy balance. We now hypothesized that the hypothalamic opioid system might modulate the orexigenic effect of ghrelin. Using pharmacological and gene silencing approaches, we demonstrate that ghrelin utilizes a hypothalamic κ-opioid receptor (KOR) pathway to increase food intake in rats. Pharmacological blockade of KOR decreases the acute orexigenic effect of ghrelin. Inhibition of KOR expression in the hypothalamic arcuate nucleus is sufficient to blunt ghrelin-induced food intake. By contrast, the specific inhibition of KOR expression in the ventral tegmental area does not affect central ghrelin-induced feeding. This new pathway is independent of ghrelin-induced AMP-activated protein kinase activation, but modulates the levels of the transcription factors and orexigenic neuropeptides triggered by ghrelin to finally stimulate feeding. Our novel data implicate hypothalamic KOR signaling in the orexigenic action of ghrelin.
Collapse
|
275
|
Boxwell AJ, Yanagawa Y, Travers SP, Travers JB. The μ-opioid receptor agonist DAMGO presynaptically suppresses solitary tract-evoked input to neurons in the rostral solitary nucleus. J Neurophysiol 2013; 109:2815-26. [PMID: 23486207 PMCID: PMC3680801 DOI: 10.1152/jn.00711.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/11/2013] [Indexed: 01/24/2023] Open
Abstract
Taste processing in the rostral nucleus of the solitary tract (rNST) is subject to modulatory influences including opioid peptides. Behavioral pharmacological studies suggest an influence of μ-opioid receptors in rNST, but the underlying mechanism is unknown. To determine the cellular site of action, we tested the effects of the μ-opioid receptor agonist DAMGO in vitro. Whole cell patch-clamp recordings were made in brain stem slices from GAD67-GFP knockin mice expressing enhanced green fluorescent protein (EGFP) under the control of the endogenous promoter for GAD67, a synthetic enzyme for GABA. Neuron counts showed that ∼36% of rNST neurons express GABA. We recorded monosynaptic solitary tract (ST)-evoked currents (jitter ≤ 300 μs) in both GAD67-EGFP-positive (GAD67+) and GAD67-EGFP-negative (GAD67-) neurons with equal frequency (25/31; 22/28), but the inputs to the GAD67+ neurons had significantly smaller paired-pulse ratios compared with GAD67- neurons. DAMGO (0.3 μM) significantly suppressed ST-evoked currents in both cell types (mean suppression = 46 ± 3.3% SE), significantly increased the paired-pulse ratio of these currents, and reduced the frequency of spontaneous miniature excitatory postsynaptic currents but did not diminish their amplitude, indicating a presynaptic site of action. Under inhibitory amino acid receptor blockade, DAMGO was significantly more suppressive in GAD67+ neurons (59% reduction) compared with GAD67- neurons (35% reduction), while the reverse was true in normal artificial cerebrospinal fluid (GAD67+: 35% reduction; GAD67-: 57% reduction). These findings suggest that DAMGO suppresses activity in rNST neurons predominantly via a presynaptic mechanism, and that this effect may interact significantly with tonic or evoked inhibitory activity.
Collapse
Affiliation(s)
- Alison J Boxwell
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
276
|
Bobko SI, Lotts T, Metze D, Lvov AN, Staender S. Immunohistochemistry detection of kappa-opioid receptors in human skin. VESTNIK DERMATOLOGII I VENEROLOGII 2013. [DOI: 10.25208/vdv585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The imbalance of p- and kappa-opioid receptors in the skin or central nervous system is currently deemed to be one of the reasons of chronic pruritus. A number of studies demonstrated a positive effect of system agonists of kappa-opioid receptors in the treatment of uremic pruritus, nodular pruritus, paraneoplastic and cholestatic pruritus. This research demonstrates an expression of kappa-opioid receptors in human skin (basal keratinocytes, dendritic cells, epidermal melanocytes and fibroblasts of the upper dermis) detected with the use of different immunochemistry methods.
Collapse
|
277
|
Zheng MQ, Nabulsi N, Kim SJ, Tomasi G, Lin SF, Mitch C, Quimby S, Barth V, Rash K, Masters J, Navarro A, Seest E, Morris ED, Carson RE, Huang Y. Synthesis and evaluation of 11C-LY2795050 as a κ-opioid receptor antagonist radiotracer for PET imaging. J Nucl Med 2013; 54:455-63. [PMID: 23353688 DOI: 10.2967/jnumed.112.109512] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Kappa-opioid receptors (KOR) are believed to be involved in the pathophysiology of depression, anxiety disorders, drug abuse, and alcoholism. To date, only 1 tracer, the KOR agonist (11)C-GR103545, has been reported to be able to image KOR in primates. The goal of the present study was to synthesize the selective KOR antagonist (11)C-LY2795050 and evaluate its potential as a PET tracer to image KOR in vivo. METHODS The in vitro binding affinity of LY2795050 was measured in radioligand competition binding assays. Ex vivo experiments were conducted using microdosing of the unlabeled ligand in Sprague-Dawley rats and in wild-type and KOR knockout mice, to assess the ligand's potential as a tracer candidate. Imaging experiments with (11)C-LY2795050 in monkeys were performed on the Focus-220 scanner with arterial blood input function measurement. Binding parameters were determined with kinetic modeling analysis. RESULTS LY2795050 displays full antagonist activity and high binding affinity and selectivity for KOR. Microdosing studies in rodents and ex vivo analysis of tissue concentrations with liquid chromatography-tandem mass spectrometry identified LY2795050 as an appropriate tracer candidate able to provide specific binding signals in vivo. (11)C-LY2795050 was prepared in an average yield of 12% and greater than 99% radiochemical purity. In rhesus monkeys, (11)C-LY2795050 displayed a moderate rate of peripheral metabolism, with approximately 40% of parent compound remaining at 30 min after injection. In the brain, (11)C-LY2795050 displayed fast uptake kinetics (regional activity peak times of <20 min) and an uptake pattern consistent with the distribution of KOR in primates. Pretreatment with naloxone (1 mg/kg, intravenously) resulted in a uniform distribution of radioactivity. Further, specific binding of (11)C-LY2795050 was reduced by the selective KOR antagonist LY2456302 in a dose-dependent manner. CONCLUSION (11)C-LY2795050 displayed favorable pharmacokinetic properties and binding profiles in vivo and therefore is a suitable ligand for imaging the KOR in primates. This newly developed KOR antagonist tracer has since been advanced to PET imaging of KOR in humans and constitutes the first successful KOR antagonist radiotracer.
Collapse
Affiliation(s)
- Ming-Qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Mabrouk OS, Falk T, Sherman SJ, Kennedy RT, Polt R. CNS penetration of the opioid glycopeptide MMP-2200: a microdialysis study. Neurosci Lett 2012; 531:99-103. [PMID: 23127847 DOI: 10.1016/j.neulet.2012.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/19/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022]
Abstract
Endogenous opioid peptides enkephalin and dynorphin are major co-transmitters of striatofugal pathways of the basal ganglia. They are involved in the genesis of levodopa-induced dyskinesia and in the modulation of direct and indirect striatal output pathways that are disrupted in Parkinson's disease. One pharmacologic approach is to develop synthetic glycopeptides closely resembling endogenous peptides to restore their normal functions. Glycosylation promotes penetration of the blood-brain barrier. We investigated CNS penetration of the opioid glycopeptide MMP-2200, a mixed δ/μ-agonist based on leu-enkephalin, as measured by in vivo microdialysis and subsequent mass spectrometric analysis in awake, freely moving rats. The glycopeptide (10 mg/kg) reaches the dorsolateral striatum (DLS) rapidly after systemic (i.p.) administration and is stably detectable for the duration of the experiment (80 min). The detected level at the end of the experiment (around 250 pM) is about 10-fold higher than the level of the endogenous leu-enkephalin, measured simultaneously. This is one of the first studies to directly prove that glycosylation of an endogenous opioid peptide leads to excellent blood-brain barrier penetration after systemic injection, and explains robust behavioral effects seen in previous studies by measuring how much glycopeptide reaches the target structure, in this case the DLS.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
279
|
Jhou TC, Xu SP, Lee MR, Gallen CL, Ikemoto S. Mapping of reinforcing and analgesic effects of the mu opioid agonist endomorphin-1 in the ventral midbrain of the rat. Psychopharmacology (Berl) 2012; 224:303-12. [PMID: 22669129 PMCID: PMC3482303 DOI: 10.1007/s00213-012-2753-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/16/2012] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Agonists at the mu opioid receptor (MOR) are widely recognized for their effects on reward and pain. Although prior studies have attributed some of these effects to MORs on GABA neurons in the ventral tegmental area (VTA), recent studies have identified a region of particularly strong MOR immunostaining residing caudal to the VTA, in a region denoted the rostromedial tegmental nucleus (RMTg). METHODS Hence, we examined whether rats would self-administer small doses (50-250 pmol) of the selective MOR agonist endomorphin-1 (EM1) into the RMTg and adjacent sites. EM1 was chosen due to its short half-life, thus limiting drug spread, and due to its presence endogenously in brain neurons, including some afferents to the RMTg. RESULTS The highest rates of EM1 self-administration occurred within 0.5 mm of the RMTg center, in a region roughly 0.8-1.6 mm caudal to the majority of VTA DA neurons. In contrast, self-administration rates were much lower in the adjacent VTA, interpeduncular nucleus, central linear nucleus, or median raphe nucleus. Furthermore, EM1 infusions into the RMTg, but not surrounding regions, produced conditioned place preference, while EM1 infusions into the RMTg but not anterior VTA markedly reduced formalin-induced pain behaviors. EM1 effects were mimicked by infusions of the GABA agonist muscimol into the same region, consistent with EM1 having inhibitory actions on its target neurons. CONCLUSION These results implicate a novel brain region in modulating MOR influences on both appetitive and aversive behavior.
Collapse
Affiliation(s)
- Thomas C Jhou
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
280
|
Palouzier-Paulignan B, Lacroix MC, Aimé P, Baly C, Caillol M, Congar P, Julliard AK, Tucker K, Fadool DA. Olfaction under metabolic influences. Chem Senses 2012; 37:769-97. [PMID: 22832483 PMCID: PMC3529618 DOI: 10.1093/chemse/bjs059] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis.
Collapse
Affiliation(s)
- Brigitte Palouzier-Paulignan
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
- Equal contribution
| | - Marie-Christine Lacroix
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
- Equal contribution
| | - Pascaline Aimé
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Christine Baly
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Monique Caillol
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Patrice Congar
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - A. Karyn Julliard
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Kristal Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA 15261USAand
| | - Debra Ann Fadool
- Department of Biological Science, Programs in Neuroscience and Molecular Biophysics, The Florida State UniversityTallahassee, FL 32306-4295USA
| |
Collapse
|
281
|
Berner J, Shvarev Y, Zimmer A, Wickstrom R. Hypoxic ventilatory response in Tac1-/- neonatal mice following exposure to opioids. J Appl Physiol (1985) 2012; 113:1718-26. [PMID: 23065762 DOI: 10.1152/japplphysiol.00188.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine is the dominating analgetic drug used in neonates, but opioid-induced respiratory depression limits its therapeutic use. In this study, we examined acute morphine effects on respiration during intermittent hypoxia in newborn Tac1 gene knockout mice (Tac1-/-) lacking substance P and neurokinin A. In vivo, plethysmography revealed a blunted hypoxic ventilatory response (HVR) in Tac1-/- mice. Morphine (10 mg/kg) depressed the HVR in wild-type animals through an effect on respiratory frequency, whereas it increased tidal volumes in Tac1-/- during hypoxia, resulting in increased minute ventilation. Apneas were reduced during the first hypoxic episode in both morphine-exposed groups, but were restored subsequently in Tac1-/- mice. Morphine did not affect ventilation or apnea prevalence during baseline conditions. In vitro, morphine (50 nM) had no impact on anoxic response of brain stem preparations of either strain. In contrast, it suppressed the inspiratory rhythm during normoxia and potentiated development of posthypoxic neuronal arrest, especially in Tac1-/-. Thus this phenotype has a higher sensitivity to the depressive effects of morphine on inspiratory rhythm generation, but morphine does not modify the reactivity to oxygen deprivation. In conclusion, although Tac1-/- mice are similar to wild-type animals during normoxia, they differed by displaying a reversed pattern with an improved HVR during intermittent hypoxia both in vivo and in vitro. These data suggest that opioids and the substance P-ergic system interact in the HVR, and that reducing the activity in the tachykinin system may alter the respiratory effects of opioid treatment in newborns.
Collapse
Affiliation(s)
- J Berner
- Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
282
|
Drastichova Z, Skrabalova J, Jedelsky P, Neckar J, Kolar F, Novotny J. Global changes in the rat heart proteome induced by prolonged morphine treatment and withdrawal. PLoS One 2012; 7:e47167. [PMID: 23056601 PMCID: PMC3467212 DOI: 10.1371/journal.pone.0047167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/10/2012] [Indexed: 12/18/2022] Open
Abstract
Morphine belongs among the most commonly used opioids in medical practice due to its strong analgesic effects. However, sustained administration of morphine leads to the development of tolerance and dependence and may cause long-lasting alterations in nervous tissue. Although proteomic approaches enabled to reveal changes in multiple gene expression in the brain as a consequence of morphine treatment, there is lack of information about the effect of this drug on heart tissue. Here we studied the effect of 10-day morphine exposure and subsequent drug withdrawal (3 or 6 days) on the rat heart proteome. Using the iTRAQ technique, we identified 541 proteins in the cytosol, 595 proteins in the plasma membrane-enriched fraction and 538 proteins in the mitochondria-enriched fraction derived from the left ventricles. Altogether, the expression levels of 237 proteins were altered by morphine treatment or withdrawal. The majority of changes (58 proteins) occurred in the cytosol after a 3-day abstinence period. Significant alterations were found in the expression of heat shock proteins (HSP27, α-B crystallin, HSP70, HSP10 and HSP60), whose levels were markedly up-regulated after morphine treatment or withdrawal. Besides that morphine exposure up-regulated MAPK p38 (isoform CRA_b) which is a well-known up-stream mediator of phosphorylation and activation of HSP27 and α-B crystallin. Whereas there were no alterations in the levels of proteins involved in oxidative stress, several changes were determined in the levels of pro- and anti-apoptotic proteins. These data provide a complex view on quantitative changes in the cardiac proteome induced by morphine treatment or withdrawal and demonstrate great sensitivity of this organ to morphine.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jitka Skrabalova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Jedelsky
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Neckar
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Frantisek Kolar
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
283
|
Smythies J, Edelstein L, Ramachandran V. Hypotheses relating to the function of the claustrum. Front Integr Neurosci 2012; 6:53. [PMID: 22876222 PMCID: PMC3410410 DOI: 10.3389/fnint.2012.00053] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 11/13/2022] Open
Abstract
This paper present a new hypothesis as to the function of the claustrum. Our basic premise is that the claustrum functions as a detector and integrator of synchrony in the axonal trains in its afferent inputs. In the first place an unexpected stimulus sets up a processed signal to the sensory cortex that initiates a focus of synchronized gamma oscillations therein. This focus may then interact with a general alerting signal conveyed from the reticular formation via cholinergic mechanisms, and with other salient activations set up by the stimulus in other sensory pathways that are relayed to the cortex. This activity is relayed from the cortex to the claustrum, which then processes these several inputs by means of multiple competitive intraclaustral synchronized oscillations at different frequencies. Finally it modulates the synchronized outputs that the claustrum distributes to most cortical and many subcortical structures, including the motor cortex. In this way, during multicenter perceptual and cognitive operations, reverberating claustro-cortical loops potentiate weak intracortical synchronizations by means of connected strong intraclaustral synchronizations. These may also occur without a salient stimulus. By this mechanism, the claustrum may play a strong role in the control of interactive processes in different parts of the brain, and in the control of voluntary behavior. These may include the neural correlates of consciousness. We also consider the role of GABAergic mechanisms and deafferentation plasticity.
Collapse
Affiliation(s)
- John Smythies
- Center for Brain and Cognition, University of California San Diego, La Jolla CA, USA
| | | | | |
Collapse
|
284
|
Billet F, Costentin J, Dourmap N. Influence of corticostriatal δ-opioid receptors on abnormal involuntary movements induced by L-DOPA in hemiparkinsonian rats. Exp Neurol 2012; 236:339-50. [DOI: 10.1016/j.expneurol.2012.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/12/2012] [Accepted: 04/23/2012] [Indexed: 12/20/2022]
|
285
|
Kaushik M, Lamberton PHL, Webster JP. The role of parasites and pathogens in influencing generalised anxiety and predation-related fear in the mammalian central nervous system. Horm Behav 2012; 62:191-201. [PMID: 22521209 DOI: 10.1016/j.yhbeh.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 01/15/2023]
Abstract
Behavioural and neurophysiological traits and responses associated with anxiety and predation-related fear have been well documented in rodent models. Certain parasites and pathogens which rely on predation for transmission appear able to manipulate these, often innate, traits to increase the likelihood of their life-cycle being completed. This can occur through a range of mechanisms, such as alteration of hormonal and neurotransmitter communication and/or direct interference with the neurons and brain regions that mediate behavioural expression. Whilst some post-infection behavioural changes may reflect 'general sickness' or a pathological by-product of infection, others may have a specific adaptive advantage to the parasite and be indicative of active manipulation of host behaviour. Here we review the key mechanisms by which anxiety and predation-related fears are controlled in mammals, before exploring evidence for how some infectious agents may manipulate these mechanisms. The protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, is focused on as a prime example. Selective pressures appear to have allowed this parasite to evolve strategies to alter the behaviour in its natural intermediate rodent host. Latent infection has also been associated with a range of altered behavioural profiles, from subtle to severe, in other secondary host species including humans. In addition to enhancing our knowledge of the evolution of parasite manipulation in general, to further our understanding of how and when these potential changes to human host behaviour occur, and how we may prevent or manage them, it is imperative to elucidate the associated mechanisms involved.
Collapse
Affiliation(s)
- Maya Kaushik
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | | | | |
Collapse
|
286
|
Abstract
The prairie vole is a socially monogamous species in which breeder pairs typically show strong and selective pair bonds. The establishment of a pair bond is associated with a behavioral transition from general affiliation to aggressive rejection of novel conspecifics. This "selective aggression" is indicative of mate guarding that is necessary to maintain the initial pair bond. In the laboratory, the neurobiology of this behavior is studied using resident-intruder testing. Although it is well established that social behaviors in other species are mediated by endogenous opioid systems, opiate regulation of pair bond maintenance has never been studied. Here, we used resident-intruder testing to determine whether endogenous opioids within brain motivational circuitry mediate selective aggression in prairie voles. We first show that peripheral blockade of κ-opioid receptors with the antagonist norbinaltorphimine (nor-BNI; 100 mg/kg), but not with the preferential μ-opioid receptor antagonist naloxone (1, 10, or 30 mg/kg), decreased selective aggression in males. We then provide the first comprehensive characterization of κ- and μ-opioid receptors in the prairie vole brain. Finally, we demonstrate that blockade of κ-opioid receptors (500 ng nor-BNI) within the nucleus accumbens (NAc) shell abolishes selective aggression in both sexes, but blockade of these receptors within the NAc core enhances this behavior specifically in females. Blockade of κ-opioid receptors within the ventral pallidum or μ-opioid receptors with the specific μ-opioid receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-PenThr-NH2 (1 ng CTAP) within the NAc shell had no effect in either sex. Thus, κ-opioid receptors within the NAc shell mediate aversive social motivation that is critical for pair bond maintenance.
Collapse
|
287
|
Staub D, Lunden J, Cathel A, Dolben E, Kirby L. Morphine history sensitizes postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats. Psychoneuroendocrinology 2012; 37:859-70. [PMID: 22047957 PMCID: PMC3319501 DOI: 10.1016/j.psyneuen.2011.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 09/02/2011] [Accepted: 10/05/2011] [Indexed: 01/05/2023]
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Previous work has shown that the dorsal raphe nucleus (DR)-5-HT system is inhibited by swim stress via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor (CRF). Additionally, the DR 5-HT system is regulated by opioids. The present study tests the hypothesis that the DR 5-HT system regulates stress-induced opioid relapse. In the first experiment, electrophysiological recordings of GABA synaptic activity in 5-HT DR neurons were conducted in brain slices from Sprague-Dawley rats that were exposed to swim stress-induced reinstatement of previously extinguished morphine conditioned place preference (CPP). Behavioral data indicate that swim stress triggers reinstatement of morphine CPP. Electrophysiology data indicate that 5-HT neurons in the morphine-conditioned group exposed to stress had increased amplitude of inhibitory postsynaptic currents (IPSCs), which would indicate greater postsynaptic GABA receptor density and/or sensitivity, compared to saline controls exposed to stress. In the second experiment, rats were exposed to either morphine or saline CPP and extinction, and then 5-HT DR neurons from both groups were examined for sensitivity to CRF in vitro. CRF induced a greater inward current in 5-HT neurons from morphine-conditioned subjects compared to saline-conditioned subjects. These data indicate that morphine history sensitizes 5-HT DR neurons to the GABAergic inhibitory effects of stress as well as to some of the effects of CRF. These mechanisms may sensitize subjects with a morphine history to the dysphoric effects of stressors and ultimately confer an enhanced vulnerability to stress-induced opioid relapse.
Collapse
Affiliation(s)
| | | | | | | | - L.G. Kirby
- Corresponding Author: Lynn G. Kirby, Ph.D., Center for Substance Abuse Research, Temple University School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, (215) 707-8566 (phone), (215) 707-9468 (fax)
| |
Collapse
|
288
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
289
|
Dias MB, Nucci TB, Branco LGS, Gargaglioni LH. Opioid μ-receptors in the rostral medullary raphe modulate hypoxia-induced hyperpnea in unanesthetized rats. Acta Physiol (Oxf) 2012; 204:435-42. [PMID: 21827637 DOI: 10.1111/j.1748-1716.2011.02345.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM It has been suggested that the medullary raphe (MR) plays a key role in the physiological responses to hypoxia. As opioid μ-receptors have been found in the MR, we studied the putative role of opioid μ-receptors in the rostral MR (rMR) region on ventilation in normal and 7% hypoxic conditions. METHODS We measured pulmonary ventilation (VE) and the body temperatures (Tb) of male Wistar rats before and after the selective opioid μ-receptor antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, cyclic, 0.1 μg per 0.1 μL) was microinjected into the rMR during normoxia or after 60 min of hypoxia. RESULTS The animals treated with intra-rMR CTAP exhibited an attenuation of the ventilatory response to hypoxia (430 ± 86 mL kg(-1) min(-1)) compared with the control group (790 ± 82 mL kg(-1) min(-1) ) (P < 0.05). No differences in the Tb were observed between groups during hypoxia. CONCLUSION These data suggest that opioids acting on μ-receptors in the rMR exert an excitatory modulation of hyperventilation induced by hypoxia.
Collapse
Affiliation(s)
- M B Dias
- Department of Physiological Sciences, Federal University of Goias, Goiania, GO, Brazil
| | | | | | | |
Collapse
|
290
|
Sniffing out pharmacology: interactions of drugs with human olfaction. Trends Pharmacol Sci 2012; 33:193-9. [PMID: 22361590 DOI: 10.1016/j.tips.2012.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/22/2012] [Accepted: 01/24/2012] [Indexed: 11/23/2022]
Abstract
Advances in the understanding of the sense of smell have increased awareness of the role of olfaction in human life. Odors are perceived via specific G protein-coupled receptors (GPCRs) with cAMP as the second messenger. Drugs that interact with this signaling cascade, such as opioids, cannabinoids and sildenafil, are known to reduce olfactory function. Drugs that are active in the central nervous system (CNS) may also hinder the complex processing of olfactory information to distinguish, via pattern recognition, thousands of odors from the signals of only ∼400 distinct olfactory receptors. Many other interactions with drug targets expressed at the olfactory bulb are also likely to occur. However, olfactory drug effects have rarely been explored in controlled studies. In the current activities of drug development and re-purposing, olfaction could become highly important because it can impact significantly upon the enjoyment of food. With an established molecular basis and using available tools, the assessment of olfaction in drug development and approval is advised.
Collapse
|
291
|
Banghart MR, Sabatini BL. Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 2012; 73:249-59. [PMID: 22284180 PMCID: PMC3282187 DOI: 10.1016/j.neuron.2011.11.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 12/19/2022]
Abstract
Neuropeptides activate G protein-coupled receptors to acutely modulate cellular excitability and synaptic transmission. However, due to the lack of reagents for precise delivery of peptides within dense brain tissue, the spatiotemporal scale over which neuropeptides act is unknown. To achieve rapid and spatially delimited delivery of neuropeptides in mammalian brain tissue, we developed photoactivatable analogs of two opioids: [Leu⁵]-enkephalin (LE) and the 8 amino acid form of Dynorphin A (Dyn-8). These peptides are functionally inactive prior to photolysis, and exposure to ultraviolet (UV) light causes clean release of LE and Dyn-8. Recordings from acute slices of rat locus coeruleus (LC) demonstrated that photorelease of LE activates mu opioid receptor-coupled K+ channels with kinetics that approach the limits imposed by G protein-mediated signaling. Temporally precise and spatially delimited photorelease revealed the kinetics and ionic nature of the mu opioid response and the mechanisms that determine the spatial profile of enkephalinergic volume transmission in LC.
Collapse
Affiliation(s)
- Matthew R. Banghart
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
292
|
Tanahashi S, Ueda Y, Nakajima A, Yamamura S, Nagase H, Okada M. Novel δ1-receptor agonist KNT-127 increases the release of dopamine and L-glutamate in the striatum, nucleus accumbens and median pre-frontal cortex. Neuropharmacology 2012; 62:2057-67. [PMID: 22266218 DOI: 10.1016/j.neuropharm.2012.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/02/2012] [Accepted: 01/09/2012] [Indexed: 11/29/2022]
Abstract
The effects of systemic δ1-agonist on neurotransmission remains obscure, since no selective δ1-agonist exists that can penetrate the blood-brain barrier. Recently, we succeeded in synthesizing a putative δ1-receptor agonist, KNT-127, which has been demonstrated the effectiveness of systemic administration against anxiety and depressive-like behavior. To clarify the functional selectivity of KNT-127 and neurotransmission regulating system of δ1-receptor, the present study investigated the interaction between KNT-127 and δ-receptor antagonists on the release of dopamine, L-glutamate and GABA in nucleus accumbens (NAc), striatum and median pre-frontal cortex (mPFC) using multi-probe microdialysis. Intraperitoneal administration of KNT-127 increased the release of dopamine and L-glutamate in three regions, but decreased and increased GABA releases in respective NAc and mPFC without affecting that in striatum. The effects of KNT-127 in the three regions were abrogated by δ1-antagonist but not by δ2-antagonist. MK801 inhibited KNT-127-induced dopamine release in striatum and NAc, but enhanced that in mPFC, inhibited KNT-127-induced mPFC GABA release without affecting KNT-127-induced GABA reduction in NAc. Muscimol enhanced KNT-127-induced dopamine release in mPFC. Sulpiride inhibited KNT-127-induced reduction of GABA release in NAc. The results indicated that KNT-127 is a selective δ1-agonist, and suggested that δ1-receptor directly activates the release of dopamine and L-glutamate in the striatum, NAc and mPFC, but not that of GABA in the three regions. δ1-receptor indirectly inhibited GABA release in NAc via activated dopaminergic transmission, while δ1-receptor indirectly enhanced GABA release in mPFC via activated glutamatergic transmission.
Collapse
Affiliation(s)
- Shunsuke Tanahashi
- Department of Psychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | |
Collapse
|
293
|
Nogueiras R, Romero-Picó A, Vazquez MJ, Novelle MG, López M, Diéguez C. The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts 2012; 5:196-207. [PMID: 22647302 DOI: 10.1159/000338163] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/09/2011] [Indexed: 12/23/2022] Open
Abstract
Opioids are important in reward processes leading to addictive behavior such as self-administration of opioids and other drugs of abuse including nicotine and alcohol. Opioids are also involved in a broadly distributed neural network that regulates eating behavior, affecting both homeostatic and hedonic mechanisms. In this sense, opioids are particularly implicated in the modulation of highly palatable foods, and opioid antagonists attenuate both addictive drug taking and appetite for palatable food. Thus, craving for palatable food could be considered as a form of opioid-related addiction. There are three main families of opioid receptors (µ, ĸ, and δ) of which µ-receptors are most strongly implicated in reward. Administration of selective µ-agonists into the NAcc of rodents induces feeding even in satiated animals, while administration of µ-antagonists reduces food intake. Pharmacological studies also suggest a role for ĸ- and δ-opioid receptors. Preliminary data from transgenic knockout models suggest that mice lacking some of these receptors are resistant to high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Department of Physiology, School of Medicine, University of Santiago de Compostela - Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
294
|
Dietis N, McDonald J, Molinari S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. Pharmacological characterization of the bifunctional opioid ligand H-Dmt-Tic-Gly-NH-Bzl (UFP-505). Br J Anaesth 2011; 108:262-70. [PMID: 22194444 DOI: 10.1093/bja/aer377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND While producing good-quality analgesia, µ-opioid (MOP) receptor activation produces a number of side-effects including tolerance. Simultaneous blockade of δ-opioid (DOP) receptors has been shown to reduce tolerance to morphine. Here, we characterize a prototype bifunctional opioid H-Dmt-Tic-Gly-NH-Bzl (UFP-505). METHODS We measured receptor binding affinity in Chinese hamster ovary (CHO) cells expressing recombinant human MOP, DOP, k-opioid (KOP), nociceptin/orphanin (NOP) receptors. For activation, we measured the binding of GTPγ(35)S to membranes from CHO(hMOP), CHO(hDOP), rat cerebrocortex, and rat spinal cord. In addition, we assessed 'end organ' responses in the guinea pig ileum and mouse vas deferens. RESULTS UFP-505 bound to CHO(hMOP) and CHO(hDOP) with (binding affinity) pK(i) values of 7.79 and 9.82, respectively. There was a weak interaction at KOP and NOP (pK(i) 6.29 and 5.86). At CHO(hMOP), UFP-505 stimulated GTPγ(35)S binding with potency (pEC(50)) of 6.37 and in CHO(hDOP) reversed the effects of a DOP agonist with affinity (pK(b)) of 9.81 (in agreement with pK(i) at DOP). UFP-505 also stimulated GTPγ(35)S binding in rat cerebrocortex and spinal cord with pEC(50) values of 6.11-6.53. In the guinea pig ileum (MOP-rich preparation), UFP-505 inhibited contractility with pEC(50) of 7.50 and in the vas deferens (DOP-rich preparation) reversed the effects of a DOP agonist with an affinity (pA(2)) of 9.15. CONCLUSIONS We have shown in a range of preparations and assays that UFP-505 behaves as a potent MOP agonist and DOP antagonist; a MOP/DOP bifunctional opioid. Further studies in dual expression systems and whole animals with this prototype are warranted.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular Sciences, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK.
| | | | | | | | | | | | | |
Collapse
|
295
|
Abstract
The opioid system plays a crucial role in the neural modulation of anxiety. The involvement of opioid ligands and receptors in physiological and dysfunctional forms of anxiety is supported by findings from a wide range of preclinical and clinical studies, including clinical trials, experimental research, and neuroimaging, genetic, and epidemiological data. In this review we provide a summary of studies from a variety of research disciplines to elucidate the role of the opioid system in the neurobiology of anxiety. First, we report data from preclinical studies using animal models to examine the modulatory role of central opioid system on defensive responses conducive to fear and anxiety. Second, we summarize the human literature providing evidence that clinical and experimental human studies are consistent with preclinical models. The implication of these data is that activation of the opioid system leads to anxiolytic responses both in healthy subjects and in patients suffering from anxiety disorders. The role of opioids in suppressing anxiety may serve as an adaptive mechanism, collocated in the general framework of opioid neurotransmission blunting acute negative and distressing affective responses.
Collapse
Affiliation(s)
- A Colasanti
- Neuropsychopharmacology Unit, Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
296
|
Lopez CA, Guesdon B, Baraboi ED, Roffarello BM, Hétu M, Richard D. Involvement of the opioid system in the orexigenic and hedonic effects of melanin-concentrating hormone. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1105-11. [DOI: 10.1152/ajpregu.00076.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH) exerts an orexigenic effect that resembles that of opioids, suggesting that the MCH and opioid systems could interact in controlling the food intake behavior. Three series of experiments were conducted in male Wistar rats: 1) to test the ability of the κ-, μ-, and δ-opioid receptor antagonists binaltorphimine (nor-BNI-κ), β-funaltrexamine (β-FNA-μ), and naltrindole (NTI-δ), respectively, to block the stimulating effects of MCH on food intake; 2) to verify the ability of MCH to induce a positive hedonic response to a sweet stimulus when injected into the nucleus accumbens shell (NAcSh) or right lateral ventricle (LV) of the brain; and 3) to assess the ability of nor-BNI, β-FNA, and NTI to block the effects of MCH on the hedonic response to a sweet stimulus. Nor-BNI, NTI (0, 10 and 40 nmol), and β-FNA (0, 10 and 50 nmol) were administered into the LV prior to injecting MCH (2.0 nmol). To assess the hedonic response, rats were implanted with an intraoral cannula allowing for the infusion of a sweet solution into the oral cavity. Food intake was assessed in sated rats during the first 3 h following the MCH or vehicle (i.e., artificial cerebrospinal fluid) injection. The hedonic response to a sweet stimulus was assessed by examining facial mimics, following the intraoral administration of a sucrose solution. Blockade of each of the three opioid receptors by selective antagonists prevented MCH-induced feeding. Furthermore, MCH-injections into the NAcSh and right LV resulted in enhanced hedonic responses. Finally, antagonism of the three opioid receptors blunted the LV-injected, MCH-induced, facial-liking expressions in response to an intraoral sweet stimulus. Overall, the present study provides evidence to link the MCH and opioid systems in the food intake behavior.
Collapse
Affiliation(s)
- Carlos Andres Lopez
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Benjamin Guesdon
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Elena-Dana Baraboi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Boris Monge Roffarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marylène Hétu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
297
|
Bajo M, Roberto M, Madamba SG, Siggins GR. Neuroadaptation of GABAergic transmission in the central amygdala during chronic morphine treatment. Addict Biol 2011; 16:551-64. [PMID: 21182569 PMCID: PMC3117063 DOI: 10.1111/j.1369-1600.2010.00269.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigated possible alterations of pharmacologically-isolated, evoked GABA(A) inhibitory postsynaptic potentials (eIPSPs) and miniature GABA(A) inhibitory postsynaptic currents (mIPSCs) in the rat central amygdala (CeA) elicited by acute application of µ-opioid receptor (MOR) agonists (DAMGO and morphine; 1 µM) and by chronic morphine treatment with morphine pellets. The acute activation of MORs decreased the amplitudes of eIPSPs, increased paired-pulse facilitation (PPF) of eIPSPs and decreased the frequency (but not the amplitude) of mIPSCs in a majority of CeA neurons, suggesting that acute MOR-dependent modulation of this GABAergic transmission is mediated predominantly via presynaptic inhibition of GABA release. We observed no significant changes in the membrane properties, eIPSPs, PPF or mIPSCs of CeA neurons during chronic morphine treatment compared to CeA of naïve or sham rats. Superfusion of the MOR antagonist CTOP (1 µM) increased the mean amplitude of eIPSPs in a majority of CeA neurons to the same degree in both naïve/sham and morphine-treated rats, suggesting a tonic activation of MORs in both conditions. Superfusion of DAMGO decreased eIPSP amplitudes and the frequency of mIPSCs equally in both naïve/sham and morphine-treated rats but decreased the amplitude of mIPSCs only in morphine treated rats, an apparent postsynaptic action. Our combined findings suggest the development of tolerance of the CeA GABAergic system to inhibitory effects of acute activation of MORs on presynaptic GABA release and possible alteration of MOR-dependent postsynaptic mechanisms that may represent important neuroadaptations of the GABAergic and MOR systems during chronic morphine treatment.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/physiology
- Analgesics, Opioid/pharmacology
- Animals
- Drug Tolerance
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Inhibitory Postsynaptic Potentials/drug effects
- Inhibitory Postsynaptic Potentials/physiology
- Male
- Miniature Postsynaptic Potentials/drug effects
- Miniature Postsynaptic Potentials/physiology
- Morphine/pharmacology
- Narcotics/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Michal Bajo
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Samuel G. Madamba
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | - George Robert Siggins
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
298
|
Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 2011; 118:1661-90. [DOI: 10.1007/s00702-011-0698-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
|
299
|
Martin EM, Devidze N, Shelley DN, Westberg L, Fontaine C, Pfaff DW. Molecular and neuroanatomical characterization of single neurons in the mouse medullary gigantocellular reticular nucleus. J Comp Neurol 2011; 519:2574-93. [PMID: 21456014 DOI: 10.1002/cne.22639] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Medullary gigantocellular reticular nucleus (mGi) neurons have been ascribed a variety of behaviors, many of which may fall under the concepts of either arousal or motivation. Despite this, many details of the connectivity of mGi neurons, particularly in reference to those neurons with ascending axons, remain unknown. To provide a neuroanatomical and molecular characterization of these cells, with reference to arousal and level-setting systems, large medullary reticular neurons were characterized with retrograde dye techniques and with real-time reverse transcriptase PCR (RT-PCR) analyses of single-neuron mRNA expression in the mouse. We have shown that receptors consistent with participation in generalized arousal are expressed by single mGi neurons and that receptors from different families of arousal-related neurotransmitters are rarely coexpressed. Through retrograde labeling, we have shown that neurons with ascending axons and neurons with descending axons tend to form like-with-like clusters, a finding that is consistent across age and gender. In comparing the two groups of retrogradely labeled neurons in neonatal animals, those neurons with axons that ascend to the midbrain show markers for GABAergic or coincident GABAergic and glutamatergic function; in contrast, approximately 60% of the neurons with axons that descend to the spinal cord are glutamatergic. We discuss the mGi's relationship to the voluntary and emotional motor systems and speculate that neurons in the mGi may represent a mammalian analogue to Mauthner cells, with a separation of function for neurons with ascending and descending axons.
Collapse
Affiliation(s)
- E M Martin
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | |
Collapse
|
300
|
Bello NT, Patinkin ZW, Moran TH. Opioidergic consequences of dietary-induced binge eating. Physiol Behav 2011; 104:98-104. [PMID: 21539852 PMCID: PMC3190581 DOI: 10.1016/j.physbeh.2011.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 12/30/2022]
Abstract
Endogenous opioids are involved in the hedonic aspects of eating. Opioid impairments and alterations have been implicated in the pathophysiology of bulimia nervosa and binge eating disorder. Specific contributions by Bartley G. Hoebel have furthered the understanding how cyclical caloric restriction and intermittent optional access to sugar solutions result in opioid-like forebrain neural alterations and dependency in rodents. The present study sought to investigate caudal brainstem and nodose ganglion mu-opioid receptor mRNA alterations in a rodent model of dietary-induced binge eating of sweetened fat (vegetable shortening blended with 10% sucrose). Five groups (n=7 or 8) of adult female Sprague Dawley rats were exposed to various dietary conditions for 6 weeks. As measured by in situ hybridization, there was reduced (approximately 25% from naive) mu-opioid receptor mRNA in the nucleus of the solitary tract (NTS) in the binge access group, which had intermittent calorie restriction and optional limited access to the sweetened fat. A similar reduction in expression was demonstrated in the continuous access group, which has unlimited optional sweetened fat and an obese phenotype. In the nodose ganglion, mu-opioid receptor mRNA was increased (approximately 30% from groups with sweetened fat access) in rats with intermittent caloric restriction alone. Our findings and the body of work from the Hoebel laboratory suggest that dietary-induced binge eating can consequentially alter opioidergic forebrain and hindbrain feeding-related neural pathways. Future work is needed to determine whether similar alterations are involved in the maintenance and progression of binge eating and other related eating pathologies.
Collapse
Affiliation(s)
- Nicholas T Bello
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|