251
|
Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90:537-48. [PMID: 9267033 DOI: 10.1016/s0092-8674(00)80513-9] [Citation(s) in RCA: 1637] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Huntington's disease (HD) is one of an increasing number of human neurodegenerative disorders caused by a CAG/polyglutamine-repeat expansion. The mutation occurs in a gene of unknown function that is expressed in a wide range of tissues. The molecular mechanism responsible for the delayed onset, selective pattern of neuropathology, and cell death observed in HD has not been described. We have observed that mice transgenic for exon 1 of the human HD gene carrying (CAG)115 to (CAG)156 repeat expansions develop pronounced neuronal intranuclear inclusions, containing the proteins huntingtin and ubiquitin, prior to developing a neurological phenotype. The appearance in transgenic mice of these inclusions, followed by characteristic morphological change within neuronal nuclei, is strikingly similar to nuclear abnormalities observed in biopsy material from HD patients.
Collapse
Affiliation(s)
- S W Davies
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Svenningsson P, Nomikos GG, Ongini E, Fredholm BB. Antagonism of adenosine A2A receptors underlies the behavioural activating effect of caffeine and is associated with reduced expression of messenger RNA for NGFI-A and NGFI-B in caudate-putamen and nucleus accumbens. Neuroscience 1997; 79:753-64. [PMID: 9219939 DOI: 10.1016/s0306-4522(97)00046-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Caffeine, the most widely consumed of all psychostimulant drugs, exerts its action by antagonizing adenosine receptors. To study the arousing properties of caffeine, we injected rats intraperitoneally with vehicle, caffeine (7.5, 15 or 30mg/kg), the selective adenosine A2A receptor antagonist, SCH 58261 (3.75 mg/kg) or the selective adenosine A1 receptor selective antagonist DPCPX (7.5 mg/kg). In a behavioural test it was found that administration of caffeine and SCH 58261 significantly increased locomotion and rearing, whereas DPCPX did not alter locomotion and reduced rearing. After the behavioural session the rats were killed, their brains were cut at several levels along a rostrocaudal axis and in situ hybridization against NGFI-A messenger RNA and NGFI-B messenger RNA was performed. A reduction of NGFI-A messenger RNA was found in several subregions of both caudate putamen and nucleus accumbens in caffeine-treated animals. Similarly, animals that had received SCH 58261 showed significant decreases of NGFI-A messenger RNA in the rostral part of caudate putamen and in the shell part of nucleus accumbens. By contrast, DPCPX treatment caused an increase in the expression of NGFI-A messenger RNA and a smaller increase in NGFI-B messenger RNA in the lateral parts of caudate putamen. In addition, it was found that caffeine, but not SCH 58261 or DPCPX, elevated the expression of NGFI-A and NGFI-B messenger RNA in the cerebral cortex, especially in its parietal part. Thus, these results provide evidence that endogenous adenosine, via adenosine A2A receptors, causes a tonic activation of striatopallidal neurons. By blocking this adenosine effect, caffeine causes behavioural activation.
Collapse
Affiliation(s)
- P Svenningsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
253
|
Maqbool A, McWilliam PN, Batten TF. Co-localization of c-Fos and neurotransmitter immunoreactivities in the cat brain stem after carotid sinus nerve stimulation. J Chem Neuroanat 1997; 13:189-200. [PMID: 9315968 DOI: 10.1016/s0891-0618(97)00045-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To reveal neurones in the cat medulla oblongata involved in carotid baroreceptor/chemoreceptor reflexes, the distribution of c-Fos oncoprotein immunoreactivity was studied following electrical stimulation of the right carotid sinus nerve. The neurochemistry of the activated neurones was investigated using antisera to tyrosine hydroxylase, neuropeptide Y, somatostatin, and glutamate. Nitric oxide containing neurones were identified using antiserum to nitric oxide synthase (NOS) and by the histochemical localization of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase. Following sinus nerve stimulation numerous c-Fos-IR cells were detected both ipsilaterally and contralaterally in the nucleus tractus solitarii, the area postrema and throughout the ventrolateral medulla. Dual labelling studies revealed that 3.3% of c-Fos-immunoreactive cells in the nucleus tractus solitarii were also immunoreactive for tyrosine hydroxylase. The double labelled cells were scattered within the medial and ventrolateral subnuclei, predominantly rostral to obex. A higher proportion (10.3%) of c-Fos-IR cells in the ventrolateral medulla also showed tyrosine hydroxylase immunoreactivity. Caudal to obex, these were scattered in the reticular formation between the spinal trigeminal nucleus and the lateral reticular nucleus, while more rostrally they were found within the lateral reticular nucleus, the nucleus ambiguus and the lateral tegmental field. Cells expressing c-fos and reactive for glutamate, neuropeptide Y or NADPH-diaphorase (or NOS) were only rarely seen, and co-localization of c-Fos and somatostatin immunoreactivities was not seen. These results suggest that of the neurones forming pathways within the medulla activated on carotid sinus nerve stimulation, presumably mediating baro- and chemoreceptor reflexes, relatively few utilize catecholamines, glutamate, neuropeptide Y or nitric oxide as their transmitter substance.
Collapse
Affiliation(s)
- A Maqbool
- Institute for Cardiovascular Research, School of Medicine, University of Leeds, UK
| | | | | |
Collapse
|
254
|
Kato A, Ozawa F, Saitoh Y, Hirai K, Inokuchi K. vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 1997; 412:183-9. [PMID: 9257717 DOI: 10.1016/s0014-5793(97)00775-8] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated a novel cDNA, vesl, that was induced during convulsive seizure in the rat hippocampus. The vesl gene encodes a protein of 186 amino acids that has significant homology to the EVH1 domain of the VASP/Ena family of proteins implicated in the control of microfilament dynamics. The expression of vesl mRNA was induced in the granule cell layer during persistent long-term potentiation (LTP) of the dentate gyrus in an NMDA receptor-dependent manner. Furthermore, vesl mRNA was expressed at a high level during hippocampal synaptogenesis. We suggest that the Vesl protein may be involved in the structural changes that occur at synapses during long-lasting neuronal plasticity and development.
Collapse
Affiliation(s)
- A Kato
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo, Japan
| | | | | | | | | |
Collapse
|
255
|
Hicks A, Davis S, Rodger J, Helme-Guizon A, Laroche S, Mallet J. Synapsin I and syntaxin 1B: key elements in the control of neurotransmitter release are regulated by neuronal activation and long-term potentiation in vivo. Neuroscience 1997; 79:329-40. [PMID: 9200718 DOI: 10.1016/s0306-4522(96)00700-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The messenger RNAs encoding proteins of the exocytotic machinery were measured at different times following the induction of long-term potentiation or increasing neuronal activity in the dentate gyrus of the rat in vivo. In situ hybridization revealed that from the many messenger RNAs that encode proteins involved in regulated exocytosis, only those encoding synapsin I and syntaxin 1B were specifically increased. The levels of messenger RNA encoding both synapsin I and syntaxin 1B were increased on the ipsilateral side of the dorsal dentate gyrus 2 and 5 h following the induction of long-term potentiation. Syntaxin 1B was also increased in the ventral dentate gyrus at the same time-points. On the contralateral side of the dentate gyrus there was an increase in both synapsin I and syntaxin 1B at 5 h only. All of these long-term potentiation-induced changes were prevented when the tetanus was delivered in the presence of the N-methyl-D-aspartate receptor antagonist. (D(-)-2-amino-5-phosphonopentanoic acid. Immunocytochemical staining revealed that protein levels for both synapsin I and syntaxin 1B were elevated in the mossy fibre terminal zone of CA3 5 h after the induction of long-term potentiation. In addition to these plasticity-induced changes, a transient increase in the messenger RNA encoding syntaxin 1B was observed at 2 h in conditions of high intensity stimulation of the perforant path to increase the level of cellular activation, but this change was not maintained even when high intensity stimulation was sustained for 5 h. No changes in either of the messenger RNAs were observed under low frequency stimulation and pseudotetanus at either time-points. These results show that an overall increase in neuronal excitation within a neuronal network can be differentiated from a change in synaptic strength at a specific subset of the synapses, where only synaptic plasticity leads to long-term changes in the expression of selective members of the exocytotic machinery. Altered concentrations of key vesicle proteins may thus provide the means for modulation of neurotransmitter release over long time-periods. The persistent long-term potentiation-induced postsynaptic increase in messenger RNAs encoding these presynaptic proteins has important implications for the propagation of signals downstream from the site of long-term potentiation induction in hippocampal neural networks, and highlights a candidate molecular mechanism for mediating the propagation of synaptic plasticity in such networks.
Collapse
Affiliation(s)
- A Hicks
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, CNRS UMR C9923, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
256
|
Xing G, Zhang L, Zhang L, Heynen T, Li XL, Smith MA, Weiss SR, Feldman AN, Detera-Wadleigh S, Chuang DM, Post RM. Rat nurr1 is prominently expressed in perirhinal cortex, and differentially induced in the hippocampal dentate gyrus by electroconvulsive vs. kindled seizures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:251-61. [PMID: 9221923 DOI: 10.1016/s0169-328x(97)00056-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We isolated a rat orphan nuclear hormone receptor from a brain cortex cDNA library. The sequence of the cDNA insert was 2154 bp with an open reading frame of 1794 bp encoding a putative protein of 598 amino acids and predicted molecular mass of 65 kDa. The deduced amino acid sequence showed a strong homology to the mouse nurr1 and human NOT1 orphan nuclear hormone receptors of the NGFI-B/nur77/NAK1 gene subfamily. We refer to this rat clone as r-nurr1. Northern blot analysis showed that r-nurr1 mRNA was highly expressed in the brain and moderately in the lung as a 4.0 kb transcript. A smaller transcript of 2.5 kb was also detected in the testes. The level of r-nurr1 transcript in the heart, skeletal muscle, liver, kidney and spleen was marginal. In situ hybridization showed that r-nurr1 mRNA was constitutively expressed in various regions of the CNS, particularly in the deeper layers (IV to VI) of the perirhinal cortex and area 2 of parietal cortex. We further evaluated the modulation of r-nurr1 expression in CNS by an electroconvulsive seizure (ECS) and by an amgydala-kindled seizure. A single ECS administered via earclip electrodes induced a rapid and transient increase of r-nurr1 mRNA in the granule cells of the dentate gyrus, being significant at 15 min after the seizure, maximal approximately 1 h and back to baseline at 4 h. The amygdala kindled seizure revealed a less robust and restricted nurr-1 induction in the CNS, as only two of the four kindled animals showed a unilateral induction of nurr1 mRNA in the dentate gyrus. These results suggest that r-nurr1 is an immediate-early gene that is differentially induced by ECS vs. kindled seizures. In addition, as r-nurr1 is prominently expressed in the specific brain sites associated with memory acquisition and consolidation, it may play a role in memory processing.
Collapse
Affiliation(s)
- G Xing
- Biological Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Goodwin GA, Bliven T, Kuhn C, Francis R, Spear LP. Immediate early gene expression to examine neuronal activity following acute and chronic stressors in rat pups: examination of neurophysiological alterations underlying behavioral consequences of prenatal cocaine exposure. Physiol Behav 1997; 61:895-902. [PMID: 9177564 DOI: 10.1016/s0031-9384(96)00615-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Altered behavioral responses to stressors have been observed in animals exposed to cocaine prenatally. In the present study, both behavioral and physiological responses to repeated and single stressor exposure were measured in animals prenatally exposed to cocaine. Offspring were derived from 3 prenatal treatment groups: dams that were administered 40 mg/kg cocaine from gestational day 8-20 (C40); dams that were pair-fed and -watered to weight-matched C40 dams (PF); and untreated dams (LCC). Starting on postnatal day 16-17 (P16-17), offspring from the 3 prenatal treatment groups were exposed to either footshock or isolation daily for 5 days. Two days after the last day of stressor exposure (P21-22), subjects were given 1 final exposure to the stressor to which they were previously exposed. In addition, at P21-22, littermates of animals given repeated exposure to stressors were exposed to either footshock or isolation for the first and only time. During all footshock sessions, the duration of freezing behavior was recorded. Plasma adrenocorticotrophin (ACTH) and corticosterone levels were determined from blood samples taken immediately following the final stressor session and brains were processed for C-FOS immunoreactivity (FOS-IR). Plasma corticosterone was increased following either single or repeated exposure to either stressor compared to homecage control animals. Plasma ACTH was increased by exposure to both repeated and single footshock exposure, but the increase was not as great following repeated footshock exposure, suggesting adaptation to repeated exposure to this stressor. Following both single and repeated footshock exposure, FOS-IR was increased relative to baseline levels in the paraventricular nucleus of the hypothalamus (PVN) and in the supraoptic nucleus (SON), but not the locus coeruleus (LC). Repeatedly footshocked animals exhibited more time freezing than animals given a single footshock session. Prenatal exposure to cocaine resulted in more time spent freezing in C40 than LCC animals during the chronic footshock exposure period; however, no differences were seen in any of the physiological measures taken from these 2 groups on the final test day. The implications of these findings are discussed in the context of other research examining the effects of prenatal cocaine exposure on stress responses.
Collapse
Affiliation(s)
- G A Goodwin
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | |
Collapse
|
258
|
Lam W, Gundlach AL, Verberne AJ. Neuronal activation in the forebrain following electrical stimulation of the cuneiform nucleus in the rat: hypothalamic expression of c-fos and NGFI-A messenger RNA. Neuroscience 1997; 78:1069-85. [PMID: 9174075 DOI: 10.1016/s0306-4522(96)00527-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Forebrain neuronal connections associated with the cardiovascular response to unilateral, low-intensity, electrical stimulation of the mesencephalic cuneiform nucleus were examined in the halothane-anesthetized and paralysed rat by in situ hybridization histochemistry using specific 35S-labelled oligonucleotides for detection of c-fos and nerve growth factor inducible-A gene (NGFI-A) messenger RNAs. Stimulation of the cuneiform nucleus led to increases in mean arterial pressure and heart rate, whereas no cardiovascular response was observed in animals stimulated in the inferior colliculus or in sham-operated animals [see concurrent mid- and hindbrain study [Lam W. et al. (1996) Neuroscience 71, 193-211]. Cuneiform nucleus stimulation was associated with increased c-fos and NGFI-A messenger RNA levels bilaterally in the ventromedial, dorsomedial and lateroanterior hypothalamic nuclei, lateral and anterior hypothalamic areas, and ipsilaterally in the medial amygdaloid nucleus, at levels significantly greater than those in inferior colliculus-stimulated, sham-operated and naive, unoperated animals. C-fos, but not NGFI-A, messenger RNA expression was increased bilaterally in the piriform cortex and subparafascicular thalamic nucleus. These results are consistent with the existence of direct and indirect projections between the cuneiform nucleus and the aforementioned activated areas, the functions of which may include the control of reproduction and metabolism, as well as cardiovascular regulation. The ipsilateral nature of responses in certain brain areas may be explained by the absence of decussating pathways and/or the presence of multisynaptic connections which attenuate bilateral signal transmission. The existence of structures that are known to receive afferent projections from the cuneiform nucleus, but that were not activated, may be explained by synaptic depolarization not reaching the threshold for immediate early gene expression or by a net inhibitory effect on innervated neurons. Characterization of these activated forebrain regions using other compatible labelling techniques should further elucidate the mechanisms by which these central nervous system structures are integrated in the response to stimulation of the cuneiform nucleus.
Collapse
Affiliation(s)
- W Lam
- University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
259
|
Da Costa AP, Broad KD, Kendrick KM. Olfactory memory and maternal behaviour-induced changes in c-fos and zif/268 mRNA expression in the sheep brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:63-76. [PMID: 9191079 DOI: 10.1016/s0169-328x(96)00272-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In sheep maternal behaviour and the formation of the selective olfactory, ewe/lamb bond are induced by feedback to the brain from stimulation of the vagina and cervix during parturition. In the present study, we have used in situ hybridization histochemistry to quantify changes in cellular expression of two immediately-early genes, c-fos and zif/268, in order to identify activated brain regions during the induction of maternal behaviour and olfactory bonding as well as regions where plastic changes are occurring during with the formation of the olfactory memory associated with bonding. Three different treatment groups were used. One group gave birth normally, became maternal and were allowed to interact with their lambs for 30 min. A second group received exogenous treatment with oestradiol and progesterone to induce lactation and then received a 5-min period of artificial stimulation of the vagina and cervix (VCS) which reliably induces maternal behaviour but could not interact with lambs. A final control group received exogenous hormone treatment but no VCS or interaction with lambs. Compared to the control group, post-partum animals and animals that had received VCS showed increased c-fos expression in a number of cortical regions (cingulate, entorhinal and somatosensory), the mediodorsal thalamic nucleus and the lateral habenula, the limbic system (bed nucleus of the stria terminalis, lateral septum, medial arnygdala, dentate gyrus and the CA3 region of the hippocampus) and the hypothalamus (medial preoptic area, mediobasal hypothalamus, paraventricular nucleus, supraoptic nucleus and periventricular complex). The group that gave birth and had contact with their lambs for 30 min had significantly enhanced c-fos mRNA expression in the cingulate cortex compared to those receiving VCS and additionally showed significantly increased c-fos mRNA expression in olfactory processing regions (olfactory bulb, piriform cortex and orbitofrontal cortex). Expression of zif/268 was significantly increased in the entorhinal cortex, orbitofrontal cortex and dentate gyrus of the parturition group compared to either the control or the VCS alone groups. These results show a clear differentiation between neural substrates controlling the expression of maternal behaviour and those involved in the olfactory memory process associated with selective recognition of offspring although at the level of the hippocampus and cingulate cortex there may be some degree of overlap. Alterations in zif/268 at tertiary processing sites for olfactory information (orbitofrontal cortex) and the entorhinal cortex and dentate gyrus may reflect plastic changes occurring during the early stages of olfactory memory formation.
Collapse
Affiliation(s)
- A P Da Costa
- Department of Neurobiology, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
260
|
Dragunow M, Hughes P, Mason-Parker SE, Lawlor P, Abraham WC. TrkB expression in dentate granule cells is associated with a late phase of long-term potentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:274-80. [PMID: 9191102 DOI: 10.1016/s0169-328x(97)00021-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies have demonstrated that the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are induced in hippocampal neurons following the induction of long-term potentiation (LTP), a model of memory, and that BDNF and NT-3 (but not NGF) can induce LTP-like increases in synaptic efficacy. Receptors for these neurotrophins have been cloned and characterized and we investigated whether LTP alters the expression of two neurotrophin receptors, trkB (BDNF receptor) and trkC (NT-3 receptor) in dentate granule neurons of the hippocampus using in situ hybridization analysis. Results show that trkB is strongly induced in these neurons in an N-methyl-D-aspartate (NMDA) receptor-dependent manner. Moreover, the induction of trkB and trkC mRNAs was attenuated by sodium pentobarbital, which interferes with the durability of LTP. Low-frequency stimulation of the perforant path had no effect on trkB mRNA levels but significantly reduced trkC mRNA in dentate granule cells. Thus, both BDNF and its receptor trkB are induced in granule cells by stimulation that produces durable LTP, suggesting that this neurotrophin and its receptor play an important role in memory formation and may be suitable targets for the development of cognitive-enhancing drugs in the treatment of diseases, such as Alzheimer's.
Collapse
Affiliation(s)
- M Dragunow
- Department of Pharmacology, School of Medicine, University of Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
261
|
Abstract
Ca2+ is an important signal-transduction molecule that plays a role in many intracellular signaling pathways. Recent advances have indicated that in neurons, Ca2+-controlled signaling mechanisms cooperate in order to discriminate amongst incoming cellular inputs. Ca2+-dependent transcriptional events can thereby be made selectively responsive to bursts of synaptic activity of specific intensity or duration.
Collapse
Affiliation(s)
- H Bito
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-01, Japan.
| | | | | |
Collapse
|
262
|
Pompeiano M, Cirelli C, Ronca-Testoni S, Tononi G. NGFI-A expression in the rat brain after sleep deprivation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:143-53. [PMID: 9191088 DOI: 10.1016/s0169-328x(96)00295-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of total sleep deprivation (SD) on the expression of the immediate-early gene NGFI-A were studied in the rat brain by in situ hybridization. Rats were manually sleep-deprived for 3, 6, 12 and 24 h starting at light onset (08:00 h) and for 12 h starting at dark onset (20:00 h). SD performed during the day induced a marked increase in NGFI-A mRNA levels with respect to sleep controls in many cerebrocortical areas and caudate-putamen, which was most evident after 6 h SD. A decrease was seen in hippocampus and thalamus, particularly after 12 h SD. Rats sleep-deprived for 12 h during the night showed an increase in NGFI-A expression in some cortical areas while rats sleep-deprived for 24 h showed few changes with respect to controls. The pattern of NGFI-A expression after forced wakefulness showed some differences from that observed after spontaneous wakefulness [M. Pompeiano, C. Cirelli and G. Tononi, Immediate early genes in spontaneous wakefulness and sleep: expression of c-fos and NGFI-A mRNA and protein, J. Sleep Res., 3 (1994) 80-96]. These observations are discussed with respect to the functional consequences of wakefulness in specific brain areas.
Collapse
Affiliation(s)
- M Pompeiano
- Istituto di Chimica Biologica, Universita di Pisa, Italy.
| | | | | | | |
Collapse
|
263
|
Jarvis ED, Schwabl H, Ribeiro S, Mello CV. Brain gene regulation by territorial singing behavior in freely ranging songbirds. Neuroreport 1997; 8:2073-7. [PMID: 9223104 PMCID: PMC2528959 DOI: 10.1097/00001756-199705260-00052] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To investigate the ecological relevance of brain gene regulation associated with singing behavior in songbirds, we challenged freely ranging song sparrows with conspecific song playbacks within their breeding territories. Males responded by approaching the speaker, searching for an intruder and actively singing. In situ hybridization of brain sections revealed significantly higher expression of the transcriptional regulator ZENK in challenged birds than in unstimulated controls in several auditory structures and song control nuclei. We conclude that singing behavior in the context of territorial defense is associated with gene regulation in brain centers that control song perception and production, and that behaviorally regulated gene expression can be used to investigate brain areas involved in the natural behaviors of freely ranging animals.
Collapse
Affiliation(s)
- E D Jarvis
- Rockerfeller University, Laboratory of Animal Behavior, New York, NY 10021, USA
| | | | | | | |
Collapse
|
264
|
Roberts LA, Large CH, O'Shaughnessy CT, Morris BJ. Long-term potentiation in perforant path/granule cell synapses is associated with a post-synaptic induction of proenkephalin gene expression. Neurosci Lett 1997; 227:205-8. [PMID: 9185686 DOI: 10.1016/s0304-3940(97)00349-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Enkephalin peptides released from hippocampal mossy fibres lower the threshold for the generation of long-term potentiation (LTP) at the mossy fibre synapses. High frequency stimulation of the hippocampal dentate gyrus, sufficient to induce mossy fibre LTP, is associated with increased expression of the proenkephalin gene in the granule cells. We show here that a similar elevation in proenkephalin mRNA levels is observed, in anaesthetised rats, following stimulation of the perforant path sufficient to induce LTP in the perforant path/granule cell synapses. This strengthens the evidence implicating granule cell enkephalins as mediators of functional plasticity in the hippocampus. Furthermore. the results hint at a form of 'domino plasticity', where potentiation of transmission at the perforant path/granule cell synapses is subsequently followed by an enkephalin-mediated potentiation of transmission at the mossy fibre synapses.
Collapse
Affiliation(s)
- L A Roberts
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, Glasgow University, UK
| | | | | | | |
Collapse
|
265
|
Urayama O, Murakoshi T, Kubota M, Hara Y, Chihara J, Ikawa Y. Coincident induction of K rev-1/rap 1A, rap 1B and H-ras mRNAs in the rat spinal cord by noxious stimulation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 45:331-4. [PMID: 9149109 DOI: 10.1016/s0169-328x(97)00024-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two cDNA fragments, K rev-1/rap 1A and rap 1B, were amplified from total cellular RNA of the rat spinal cord by reverse transcription-polymerase chain reaction with a set of oligonucleotide primers specific for the human rap 1A cDNA. We report here using Northern blot analysis with these cDNA probes that noxious stimulation causes a marked and coincident increase in rap 1A, rap 1B and H-ras mRNAs in the rat spinal cord. This suggests that Rap 1 participates in sensory processing in spinal neurons in parallel with Ras.
Collapse
Affiliation(s)
- O Urayama
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
266
|
Hou YN, Cebers G, Terenius L, Liljequist S. Characterization of NMDA- and AMPA-induced enhancement of AP-1 DNA binding activity in rat cerebellar granule cells. Brain Res 1997; 754:79-87. [PMID: 9134962 DOI: 10.1016/s0006-8993(97)00049-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Effects of the glutamate receptor agonists, N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), on the activator protein-1 (AP-1) DNA binding activity were studied in primary cultures of rat cerebellar granule cells. Application of NMDA as well as of AMPA produced a concentration-dependent enhancement of AP-1 binding. Further examination revealed that only a brief exposure (10 min) to NMDA or AMPA was required for the initiation of a significant, four- to sixfold enhancement of AP-1 DNA binding activity. Blockade of the desensitization of AMPA receptors by cyclothiazide further reduced the exposure time needed to activate the AP-1 complex. The time needed to achieve a maximal increase of AP-1 binding activity varied depending on the glutamate receptor agonist used. NMDA gave maximal AP-1 stimulation after 60 min exposure, whereas stimulation with AMPA alone reached a maximum after 240 min exposure. When AMPA was applied together with cyclothiazide the maximal enhancement of AP-1 binding was reached much faster, within 120 min. Supershift analysis with specific antibodies against the members of Fos and Jun protein families (c-Fos, Fos B, c-Jun, Jun B, Jun D) revealed that the NMDA-induced AP-1 complex was composed predominantly of Jun D and c-Fos. The composition of the AP-1 complex activated by AMPA alone was similar to that produced by NMDA, but with an additional contribution of Fos B. In contrast, application of AMPA plus cyclothiazide induced an AP-1 transcription with contribution of Jun D, c-Fos, Fos B, c-Jun and Jun B proteins. These findings indicate that glutamate is able to enhance AP-1 DNA binding activity in cerebellar granule cells through both NMDA and AMPA glutamate receptors.
Collapse
Affiliation(s)
- Y N Hou
- Bethune International Peace Hospital, Shijiazhuang, China
| | | | | | | |
Collapse
|
267
|
Grimm R, Tischmeyer W. Complex patterns of immediate early gene induction in rat brain following brightness discrimination training and pseudotraining. Behav Brain Res 1997; 84:109-16. [PMID: 9079777 DOI: 10.1016/s0166-4328(97)83330-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Following training of rats on a footshock-motivated brightness discrimination task in a Y-maze, different sets of transcription factor encoding immediate early genes (IEGs) were induced in anatomically distinct brain regions. As revealed by Northern analysis, mRNA levels of c-fos, jun-B and zif/268 increased in the hippocampus, while the expression of c-jun remained unchanged over a period of 7 h. In the cerebral cortex, c-jun was induced in addition to the other genes examined. In contrast, only c-fos, but not c-jun or zif/268 mRNAs were increased in the cerebellum. The induction of IEGs was rapid and transient, reaching maximal levels immediately after training and returning to basal levels within 2 h. Similar spatiotemporal expression patterns were observed in rats that received identical, but unpaired, stimuli in a pseudotraining procedure. Our results suggest that the initial prerequisites of learning, such as stimulus novelty, lead to an increased expression of IEG mRNAs after training and pseudotraining as an early necessary but not sufficient precondition for memory consolidation. Additional converging inputs might control at the transcriptional, translational or post-translational level the synthesis and biological effectiveness of proteins necessary to complete the formation of the memory trace in trained animals.
Collapse
Affiliation(s)
- R Grimm
- Federal Institute for Neurobiology, Magdeburg, Germany
| | | |
Collapse
|
268
|
Abstract
In this review, we compare the neural basis of olfactory learning in three specialized contexts that occur during sensitive periods of enhanced neural plasticity. Although they involve very different behavioural contexts, they share several common features, including a dependence on noradrenergic transmission in the olfactory bulb. The most extensively characterized of these examples is the learning of pheromonal information by female mice during mating. While this form of learning is unusual in that the neural changes underlying the memory occur in the accessory olfactory bulb at the first stage of sensory processing, it involves similar neural mechanisms to other forms of learning and synaptic plasticity. The learning of newborn lamb odours after parturition in sheep, and the olfactory conditioning in neonatal animals such as rats and rabbits, are mediated by the main olfactory system. Although the neural mechanisms for learning in the main olfactory system are more distributed, they also involve changes occurring in the olfactory bulb. In each case, odour learning induces substantial structural and functional changes, including increases in inhibitory neurotransmission. In the main olfactory bulb, this probably represents a sharpening of the odour-induced pattern of activity, due to increases in lateral inhibition. In contrast, the different morphology of mitral cells in the accessory olfactory bulb results in increased self-inhibition, disrupting the transmission of pheromonal information. Although these examples occur in highly specialized contexts, comparisons among them can enhance our understanding of the general neural mechanisms of olfactory learning.
Collapse
Affiliation(s)
- P A Brennan
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, U.K.
| | | |
Collapse
|
269
|
Zimmer L, Ennis M, El-Etri M, Shipley M. Anatomical localization and time course of Fos expression following soman-induced seizures. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970224)378:4<468::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
270
|
Olsson T, Hakånsson A, Seckl JR. Ketanserin selectively blocks acute stress-induced changes in NGFI-A and mineralocorticoid receptor gene expression in hippocampal neurons. Neuroscience 1997; 76:441-8. [PMID: 9015328 DOI: 10.1016/s0306-4522(96)00432-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Serotonin and glucocorticoids interact at the hippocampus to alter neuronal function. Serotonin and antidepressant drugs increase glucocorticoid receptor and mineralocorticoid receptor gene expression in hippocampal neurons over a few days. The effects of serotonin are mediated via ketanserin-sensitive "serotonin-2 type" receptors and induction of cyclic AMP, although the subsequent molecular mechanisms are unclear. Recently, we have shown that chronic environmental manipulations which induce glucocorticoid receptor gene expression in specific hippocampal subfields of the rat are associated with congruent induction of the transcription factor NGFI-A (zif268, krox24, egr-1) and repression of AP-2; both factors may bind to the glucocorticoid receptor gene promoter. However, any relationship between serotonin and these transcription factors is unknown. Here, we show that acute restraint stress, which causes serotonin release at the hippocampus, induces hipppocampal NGFI-A, but represses activator protein-2 and mineralocorticoid receptor gene expression within 90 min. These changes are sustained for 4 h, but not 12 h. Ketanserin attenuates the stress-induced rise in NGFI-A and fall in mineralocorticoid receptor gene expression, and partly also the fall in AP-2 messenger RNA expression. These data suggest that restraint stress, acting via serotonin release and ketanserin-sensitive serotonin receptors, produces rapid, transient and specific changes in transcription factor gene expression in hippocampal neurons. Any link between these effects and the control of glucocorticoid and mineralocorticoid receptor expression with chronic serotonin or antidepressant treatment remains to be elucidated.
Collapse
Affiliation(s)
- T Olsson
- Department of Medicine, Umeå University Hospital, Sweden
| | | | | |
Collapse
|
271
|
Desjardins S, Mayo W, Vallée M, Hancock D, Le Moal M, Simon H, Abrous DN. Effect of aging on the basal expression of c-Fos, c-Jun, and Egr-1 proteins in the hippocampus. Neurobiol Aging 1997; 18:37-44. [PMID: 8983031 DOI: 10.1016/s0197-4580(96)00206-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study the effect of aging on the basal expression of three different immediate early genes (IEGs) was investigated. The protein products of c-fos, c-jun, and egr-1 genes were visualized immunohistochemically in the rat hippocampus of young adult (4-month-old) and old rats (20-month-old). Astrocytes were quantified by GFAp immunostaining to determine whether changes in the expression of IEGs were correlated with modifications in this marker of degenerative changes. In the young adult rat brain, basal levels of c-Jun and Egr-1 but not c-Fos were detected within the hippocampal formation. Whereas very high basal levels of c-Jun were found in the dentate granule cells and in the pyramidal cells of the ventral hippocampus, Egr-1 was highly expressed in the CA1 pyramidal cells of the dorsal hippocampus. Aging was accompanied by a decrease in Egr-1 expression, by a decrease in total cell density, as well as by a loss of astrocytes in CA1 subfields. In contrast, basal expression of c-Fos and c-Jun as well as astrocyte density within the dentate gyrus were not affected by aging. No difference in these markers was observed in aged rats with or without impairment in spatial learning in a water maze. It was concluded that although these changes may reflect senescence-induced decline of brain function, they do not constitute the defect underlying the age-associated reduction in mnesic capability.
Collapse
|
272
|
Cellular Mechanisms Of Long-Term Potentiation: Late Maintenance. NEURAL-NETWORK MODELS OF COGNITION - BIOBEHAVIORAL FOUNDATIONS 1997. [DOI: 10.1016/s0166-4115(97)80092-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
273
|
Burazin TC, Gundlach AL. Rapid and transient increases in cellular immediate early gene and neuropeptide mRNAs in cortical and limbic areas after amygdaloid kindling seizures in the rat. Epilepsy Res 1996; 26:281-93. [PMID: 8985707 DOI: 10.1016/s0920-1211(96)00060-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Changes in transcription factor and neuropeptide gene expression are likely to be involved in the cascade of genetic and molecular events leading to permanent changes in neuronal activity associated with kindling and epilepsy. Both acute-transient and delayed-sustained changes in transcription factor or immediate early gene (IEG) activity have previously been reported in response to different stimuli. In the present study in situ hybridization was used to investigate the possible time course (30 min-8 week) of IEG and neuropeptide mRNA induction in forebrain in a kindling model of epilepsy. Kindling was produced by daily unilateral stimulation of the amygdala. IEG mRNAs were detected using [35S]-labelled oligonucleotide probes specific for c-fos, c-jun, NGFI-A (PC1) and PC3 transcripts. Possible changes in the level of mRNAs encoding the neuropeptides somatostatin (SOM) and neuropeptide Y (NPY) were also studied. Stimulation-induced seizures produced dramatic bilateral increases in all IEG mRNAs in the dentate gyrus after 30 min to 1 h. Ipsilateral or bilateral increases in c-fos and PC3 mRNA were observed in the piriform cortex of individual animals at 30 min post-stimulation. While the distribution and apparent basal expression of the different IEGs varied (NGFI-A and c-jun > c-fos and PC3), the degree of induction in the dentate gyrus was similar for all IEGs studied (i.e. 200-300%). No long-term changes in IEG mRNA expression were detected beyond 2 h and up to 8 week after the last seizure. Increased levels of preproSOM and preproNPY mRNAs were consistently observed in hilar interneurons, but not in pyramidal or granule cells of the hippocampus, after 1-2 h. These increases were not maintained at later times. The short-term effects on IEG and neuropeptide mRNAs observed suggest that these changes are consequence of seizure activity with the development of kindling. In contrast, no evidence was found of any substantial, long-lasting effects on these parameters associated with the established kindled state.
Collapse
Affiliation(s)
- T C Burazin
- Department of Medicine, University of Melbourne, Austin, Victoria, Australia
| | | |
Collapse
|
274
|
Yau JL, Olsson T, Morris RG, Noble J, Seckl JR. Decreased NGFI-A gene expression in the hippocampus of cognitively impaired aged rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:354-7. [PMID: 9013794 DOI: 10.1016/s0169-328x(96)00220-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hippocampal NGFI-A gene expression is increased following the induction of long-term potentiation, a form of activity-dependent synaptic plasticity that has been implicated in learning. In this study, we show a positive correlation between spatial learning and the constitutive expression of NGFI-A mRNA, selectively in CA1 pyramidal neurons. NGFI-A mRNA expression decreased with age in CA1, CA2 and neocortex. Long-term amitriptyline treatment, which improved spatial learning in young rats, had no significant effects on NGFI-A mRNA levels. Whether hippocampal NGFI-A plays a direct role in the mechanism of learning and memory remains to be determined.
Collapse
Affiliation(s)
- J L Yau
- University of Edinburgh, Molecular Medicine Centre, Western General Hospital, UK.
| | | | | | | | | |
Collapse
|
275
|
Guido ME, Rusak B, Robertson HA. Expression of fosB mRNA in the hamster suprachiasmatic nucleus is induced at only selected circadian phases. Brain Res 1996; 739:132-8. [PMID: 8955933 DOI: 10.1016/s0006-8993(96)00816-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have studied the expression of fosB mRNA in the suprachiasmatic nucleus (SCN) of hamsters by in situ hybridization using oligonucleotides with sequences complementary to the C-terminal of the fosB mRNA sequence. In animals exposed for 48 h to darkness, there was little or no background expression in SCN cells of fosB mRNA at any circadian phase. Light pulses (30 min) were able to induce fosB expression only during the subjective night. Transcripts of fosB increased rapidly to peak by the end of a 30-min light pulse. Light-induced increases gradually declined in darkness, but levels were still elevated for up to 150 min after the light pulse. Induction in response to a light pulse was largely restricted to the ventrolateral portion of the nucleus which receives the heaviest retinal projection. The temporal and anatomical pattern of fosB mRNA expression in the hamster SCN therefore resembles that reported previously for other immediate-early genes, such as c-fos.
Collapse
Affiliation(s)
- M E Guido
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
276
|
Cymborowski B, King V. Circadian regulation of Fos-like expression in the brain of the blow fly Calliphora vicina. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1996; 115:239-46. [PMID: 9375362 DOI: 10.1016/s0742-8413(96)00103-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of Fos-like immunoreactivity (FOS-lir) was examined in the brains of the blow fly Calliphora vicina for evidence of circadian regulation by photic stimuli. Fos-lir in various parts of the brain was investigated as a function of light and time of day. Immunohistochemistry demonstrated that photic stimuli have an inductive effect on c-fos expression in the various parts of the brain, but only in the neurons of the pars intercerebralis did the clear photic induction of c-fos expression occur at times when light was capable of phase-shifting circadian locomotor activity rhythms. This suggests that the c-fos gene may play a role in the photic pathway for circadian entrainment and that these neurons may be involved in the transduction of photic signals. Whether changes in c-fos expression are essential components of this pathway remains to be determined.
Collapse
Affiliation(s)
- B Cymborowski
- Department of Invertebrate Physiology, Warsaw University, Poland.
| | | |
Collapse
|
277
|
Roberts LA, Higgins MJ, O'Shaughnessy CT, Stone TW, Morris BJ. Changes in hippocampal gene expression associated with the induction of long-term potentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:123-7. [PMID: 8915588 DOI: 10.1016/s0169-328x(96)00148-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of four genes: zif/268, c-fos, tubulin and alpha Ca2+/calmodulin-dependent protein kinase II (alpha CAMKII) was studied following the induction of LTP in Schaffer collateral CA1 neurone synapses in rat hippocampal slices maintained in vitro. Levels of c-fos mRNA and tubulin (T26) mRNA in area CA1 were unchanged after induction of LTP, however, zif/268 and alpha CAMKII mRNA levels showed a significant increase compared to non-potentiated controls. It is possible, therefore, to measure changes in gene expression using in situ hybridisation following induction of LTP in vitro and these results strengthen the theory that zif/268 and alpha CAMKII are involved in some aspect of the induction or maintenance of hippocampal LTP.
Collapse
Affiliation(s)
- L A Roberts
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | | | | | |
Collapse
|
278
|
Hiroi N, Graybiel AM. Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum. J Comp Neurol 1996; 374:70-83. [PMID: 8891947 DOI: 10.1002/(sici)1096-9861(19961007)374:1<70::aid-cne5>3.0.co;2-k] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Atypical and typical neuroleptics, when administered chronically, can bring about profound but contrasting changes in schizophrenic symptoms and motor activation and dramatically modulate brain neurochemistry. To explore the transcriptional events that might be involved in this neurochemical regulation, we used immunohistochemistry and immunoblotting to examine the expression patterns of two bZip transcription factors, c-Fos and FosB, in the striatum of rats treated acutely and chronically with neuroleptic drugs of different classes. Typical and atypical neuroleptic drugs produced contrasting regulatory effects on a FosB-like protein of ca. 36-39 kDa, the molecular weight of truncated FosB (delta FosB). Chronic treatments with two typical neuroleptics, haloperidol and metoclopramide, but not with the atypical neuroleptic clozapine, led to markedly enhanced FosB-like immunoreactivity in the caudoputamen. Further, c-Fos-like protein in the striatum, considered a marker for the induction of antipsychotic actions by neuroleptic treatments, was downregulated by chronic treatment with the two potent antipsychotic drugs tested, but not by chronic treatment with metoclopramide, which has low antipsychotic efficacy but induces extrapyramidal side effects. These results suggest that chronic treatments with neuroleptics having different effects on cognitive and motor behavior induce different long-term changes in transcription factor expression in the striatum. Nevertheless, we found that neuroleptics of both classes regulated transcription factor expression in overlapping populations of striatal neurons expressing enkephalin or DARPP-32. Contrasting patterns of transcriptional regulation in these neurons may thus contribute to the distinct neurochemical and behavioral effects that characterize neuroleptics of different classes.
Collapse
Affiliation(s)
- N Hiroi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
279
|
Ma QP, Woolf CJ. Basal and touch-evoked fos-like immunoreactivity during experimental inflammation in the rat. Pain 1996; 67:307-16. [PMID: 8951924 DOI: 10.1016/0304-3959(96)03132-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fos-immunoreactivity can readily be induced in spinal cord neurones by noxious, but to a much more limited extent, by innocuous peripheral stimuli. The present study has investigated whether low intensity stimuli and electrical stimulation of A beta afferents elicit greater c-fos expression during the behavioural sensory hypersensitivity generated by experimental peripheral inflammation. We have examined the time-course of c-fos expression after inflammation produced by either an intra-plantar injection of the irritant turpentine oil or of complete Freund's adjuvant (CFA). In the former case, a significant initial expression in all dorsal horn laminae was followed by a gradual decrease, whereas after CFA injection, an initial expression limited to the superficial laminae subsequently extended into the deep laminae, with a decrease at 24 h and an increase in labelling at later times. Low intensity touch stimuli repeated for 10 min, when applied at 24 h and 48 h after CFA injection, elicited a significant increase in the number of Fos-immunoreactive neurons in both the superficial and deep laminae of the dorsal horn compared to non-inflamed animals. Electrical stimulation of the sciatic nerve 24 h post-CFA injection, at a strength sufficient only to activate A beta-afferents fibres (100 microA, 50 microseconds, 10 min), also elicited a significant increase in labelling relative to the same stimuli applied in control animals, especially in laminae V-VI. The present results demonstrate that low intensity cutaneous stimuli elicit a significantly greater increase in c-fos expression in dorsal horn neurons during peripheral inflammation and that A beta-afferent input contributes to this, a finding that may relate to the allodynia experienced during inflammation.
Collapse
Affiliation(s)
- Q P Ma
- Department of Anatomy and Developmental Biology, University College London, UK
| | | |
Collapse
|
280
|
Buritova J, Honoré P, Besson JM. Ketoprofen produces profound inhibition of spinal c-Fos protein expression resulting from an inflammatory stimulus but not from noxious heat. Pain 1996; 67:379-89. [PMID: 8951933 DOI: 10.1016/0304-3959(96)03138-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study assesses the anti-inflammatory/analgesic effects of ketoprofen a non-steroidal anti-inflammatory drug, using the method of c-Fos immunoreactivity at the spinal cord level in two models of noxious stimulation: carrageenan-induced inflammatory pain or acute noxious heat. Ketoprofen was pre-administered intravenously or orally 25 min before an intraplantar injection of carrageenan (6 mg in 150 microliters of saline) in hindpaw of the non-anaesthetised rat or before a single noxious heat (52 degrees C, 15 sec) stimulation of hindpaw of the anaesthetised rat. Three hours after carrageenan or 2 h after noxious heat, the number of spinal c-Fos protein-like immunoreactive (c-Fos-LI) neurons in L4-L5 segments and both the ankle and paw diameter, the indicator of peripheral oedema, were assessed. Pre-administered ketoprofen (1, 3 and 10 mg/kg i.v.) dose-dependently blocks the development of the carrageenan-induced spinal c-Fos protein expression and peripheral oedema, with the highest dose influencing in parallel both parameters (75 +/- 2% diminution of total number of c-Fos-LI neurons per L4-L5 section; 64 +/- 4% and 82 +/- 6% diminution of paw and ankle oedema, respectively). The effect of ketoprofen was significantly greater on the number of c-Fos-LI neurons in deep, as compared to superficial, laminae. Furthermore, the dose-dependent effects of ketoprofen on the carrageenan-induced spinal c-Fos protein expression and both the paw and ankle oedema were correlated. Oral pre-administration of ketoprofen (20 mg/kg) produced the blockage of development of the carrageenan-induced spinal c-Fos protein expression (65 +/- 3% diminution of total number of c-Fos-LI neurons per L4-L5 section) and peripheral oedema (20 +/- 3% and 59 +/- 10% diminution of paw and ankle oedema, respectively). In contrast, the same doses of both the intravenous and oral pre-administration of ketoprofen did not influence either the spinal c-Fos protein expression nor slightly enhanced paw diameter induced by a single noxious heat stimulation. This study suggests a predominant peripheral site, without excluding a central site of action of ketoprofen in the carrageenan-induced inflammation. The method of c-Fos protein-like immunoreactivity revealed ketoprofen to be more potent in comparison to members of other families of non-steroidal anti-inflammatory drugs, previously studied in the same experimental conditions of carrageenan-induced inflammatory pain.
Collapse
Affiliation(s)
- J Buritova
- Physiopharmacologie du Systéme Nerveux, INSERM U.161, Paris, France
| | | | | |
Collapse
|
281
|
Kerr JE, Beck SG, Handa RJ. Androgens selectively modulate C-fos messenger RNA induction in the rat hippocampus following novelty. Neuroscience 1996; 74:757-66. [PMID: 8884771 DOI: 10.1016/0306-4522(96)00219-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that androgen receptors are found in high concentrations in hippocampal CA1 pyramidal cells. To begin to explore the possible roles for androgen receptors in this area of the brain, we studied the effects of endogenous and exogenous androgen on the behaviourally induced expression of cellular immediate early gene messenger RNAs. Adult male Fischer 344 rats were either gonadectomized, gonadectomized and given two Silastic capsules of dihydrotestosterone propionate at the time of surgery, or left intact. Three weeks later, animals were placed into a novel open field for 20 min. This behavioural paradigm caused region- and gene-specific increases of c-fos, jun-B, c-jun and zif268 messenger RNA in the hippocampus as determined by semi-quantitative in situ hybridization histochemistry. The removal of circulating androgen by gonadectomy potentiated, whereas dihydrotestosterone treatment of castrates attenuated, the behaviourally induced expression of c-fos messenger RNA in the CA1 region of the hippocampus. No changes in c-fos messenger RNA expression were detected in the CA3 or dentate gyrus regions where androgen receptor levels are low. Androgen status did not affect either the basal or stimulated expression of Jun-B, c-Jun or zif268 messenger RNA in any of the three cellular regions of the hippocampus examined. These results implicate androgen receptors in modulating the active response of hippocampal neurons to a behaviourally relevant stimulus. Since the products of cellular immediate genes can function to alter an array of downstream genes, the modulation of these genes in the hippocampus by gonadal hormones may have important ramifications for hippocampal function.
Collapse
Affiliation(s)
- J E Kerr
- Department of Pharmacology and Experimental Therapeutics, Loyola University, Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | |
Collapse
|
282
|
Yano S, Fukunaga K, Takiguchi M, Ushio Y, Mori M, Miyamoto E. Regulation of CCAAT/enhancer-binding protein family members by stimulation of glutamate receptors in cultured rat cortical astrocytes. J Biol Chem 1996; 271:23520-7. [PMID: 8798561 DOI: 10.1074/jbc.271.38.23520] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Regulation of mRNA levels, DNA binding activities, and phosphorylation of CCAAT/enhancer-binding protein (C/EBP) family members by stimulation of glutamate receptors were studied in cultured rat cortical astrocytes. Indirect immunofluorescence and immunoblot analyses with specific antibodies to C/EBP family members revealed that both C/EBPbeta and C/EBPdelta but not C/EBPalpha are expressed in the nuclei of astrocytes. After exposure to glutamate, C/EBPbeta mRNA levels increased within 10 min, reached the maximal level at about 1 h, and returned to the basal level within 6 h. In contrast, C/EBPdelta mRNA levels decreased by 6 h and were recovered within 12 h. These changes in mRNA levels were accompanied by an increase and a decrease in proteins for C/EBPbeta and C/EBPdelta, respectively. Elevation of C/EBPbeta mRNA levels by glutamate treatment required an increase in intracellular Ca2+ concentration and depended on activations of protein kinase C and calmodulin-dependent protein kinases. Gel mobility shift analysis using nuclear extracts from the glutamate-treated cells showed increases in C/EBP site binding activities 2 h after the exposure to glutamate. Moreover, glutamate stimulated phosphorylation of C/EBPbeta in 32P-labeled astrocytes in a Ca2+-dependent manner. These results suggest that glutamate regulates functions of C/EBP family members in brain astrocytes through changes in mRNA levels of C/EBPbeta and C/EBPdelta as well as through phosphorylation of C/EBPbeta.
Collapse
Affiliation(s)
- S Yano
- Department of Pharmacology, Kumamoto University School of Medicine, Kumamoto 860, Japan
| | | | | | | | | | | |
Collapse
|
283
|
Abstract
The AP-1 transcription factor is a variable complex of Fos and Jun nuclear phosphoproteins that is induced in many cell types. AP-1 interacts with transcription factors of different classes, including the nuclear steroid hormone receptors, an interaction that is often mutually antagonistic and thereby serves to integrate different cellular signalling events. In addition to direct, molecular interactions between AP-1 and glucocorticoid receptor (GR), there is also evidence that the two signalling pathways may interact at different levels, but in vivo interactions of this nature have not been well characterized. We have investigated a unique cellular context for GR/AP-1 interactions, namely in the adrenal gland of the rat where the production of glucocorticoids leads to extremely high local levels of glucocorticoids, and where high constitutive AP-1 activity (as determined by in vitro DNA binding activity) has been demonstrated. We have now shown that depletion of glucocorticoid production in rats with the 11-beta-hydroxylase inhibitor, metyrapone, results in increased adrenal AP-1 activity. The demonstrated 5-fold increase is reversed by prior treatment with the glucocorticoid agonist, dexamethasone, and is largely localized to the adrenal medullary region. Further experiments have shown that c-Jun and JunD are the principal components of adrenal AP-1 in the basal state, but a change in jun-B expression appears to underly the metyrapone-induced increase in AP-1 activity. In situ hybridization analysis has shown that glucocorticoid depletion is associated with a dramatic increase in adrenal medullary junB mRNA, and using immunoblotting we have demonstrated a similar increase in nuclear levels of both the 43 kD JunB protein, and an associated phosphorylated JunB. Our use of a pharmacological intervention to demonstrate tonic suppression of adrenal medullary JunB expression by glucocorticoids has provided evidence of a nuclear mechanism that may have physiological relevance as an adaptive response to fluctuating levels of glucocorticoids.
Collapse
Affiliation(s)
- M Smith
- Physiology Unit, School of Molecular and Medical Biosciences, MOMED, Cardiff University of Wales, UK
| | | | | |
Collapse
|
284
|
Guido ME, Rusak B, Robertson HA. Spontaneous circadian and light-induced expression of junB mRNA in the hamster suprachiasmatic nucleus. Brain Res 1996; 732:215-22. [PMID: 8891287 DOI: 10.1016/0006-8993(96)00526-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined both spontaneous and light-evoked expression of junB mRNA in the hamster suprachiasmatic nucleus (SCN), an endogenous circadian pacemaker. junB was expressed in the SCN in response to a light pulse during the subjective night and early subjective day as well as spontaneously during the transition from subjective night to subjective day. Light-evoked expression was strongest in the ventral SCN, while spontaneous expression was stronger in the dorsal SCN. Spontaneous expression began around subjective dawn and persisted for at least 4 h into the subjective day. The expression of junB mRNA may play a role in both phase-shifting responses to light and in spontaneous oscillation of the SCN pacemaker.
Collapse
Affiliation(s)
- M E Guido
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
285
|
Abstract
Synthesis of new protein has been shown to be required for establishment of a late phase in hippocampal long-term potentiation. Whether a similar requirement is needed to produce the late phase of long-term depression (LTD) remains to be determined. Application of transcription inhibitors or of the translation inhibitor anisomycin, immediately, but not 30 min after glutamate/depolarization conjunction, attenuated a late phase of cerebellar LTD in culture. LTD, produced in a perforated outside-out macropatch of Purkinje neuron dendrite, which lacks nuclear material, returned to baseline values with a time course paralleling that observed with protein synthesis inhibitors in intact cultured Purkinje neurons. These findings suggest that there is a distinct late phase of cerebellar LTD that is dependent upon postsynaptic protein synthesis.
Collapse
Affiliation(s)
- D J Linden
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
286
|
Petersohn D, Thiel G. Role of zinc-finger proteins Sp1 and zif268/egr-1 in transcriptional regulation of the human synaptobrevin II gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:827-34. [PMID: 8774732 DOI: 10.1111/j.1432-1033.1996.0827u.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synaptobrevin II is a small integral membrane protein of synaptic vesicles that plays a key role in exocytosis. The 5'-flanking region of the human synaptobrevin II gene is very (G+C)-rich and contains a 13-bp motif that includes overlapping binding sites for the zinc finger transcription factors Sp1 and zif268/egr-1. To test whether Sp1 and zif268/egr-1 interact with this motif, gel retardation assays were performed. These assays revealed that both transcription factors bind to the (G+C)-rich motif of the synaptobrevin II gene in vitro. The binding of Sp1 was additionally confirmed by supershift analysis with antibodies specific for Sp1. To determine whether zif268/egr-1 plays a role in controlling synaptobrevin II gene expression, a plasmid was constructed containing the (G+C)-rich motif of the synaptobrevin II gene upstream of a minimal promoter and the Escherichia coli chloramphenicol acetyltransferase (CAT) gene as a reporter. This plasmid was transfected into CHO-K1 cells together with an expression vector encoding zif268/egr-1. Zif268/egr-1 failed to activate transcription from this reporter gene, although it transactivated a reporter gene containing an identical (G+C)-rich motif derived from the human synapsin I promoter. Overexpression of Sp1, however, clearly activated transcription of a reporter gene under the control of the synaptobrevin II promoter (G+C)-rich sequence in Drosophila SL2 cells, which provided an Sp1-deficient background. Furthermore, a glutathione S-transferase protein containing the DNA-binding domain of Sp1 was shown to function as a dominant negative form of Sp1, reducing transcription of the synaptobrevin II promoter-CAT reporter gene in mammalian cells to basal levels. From these data, we conclude that the zif268/egr-1-binding site in the synaptobrevin II promoter is not functionally active. Instead, an overlapping Sp1-binding site in this (G+C)-rich region clearly mediates constitutive transcriptional activation.
Collapse
Affiliation(s)
- D Petersohn
- Institute for Genetics, University of Cologne, Germany
| | | |
Collapse
|
287
|
Developmental and stimulus-specific expression of the immediate-early genezif268 in rat spinal cord. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00552-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
288
|
Luckman SM, Dye S, Cox HJ. Induction of members of the Fos/Jun family of immediate-early genes in identified hypothalamic neurons: in vivo evidence for differential regulation. Neuroscience 1996; 73:473-85. [PMID: 8783263 DOI: 10.1016/0306-4522(96)00076-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In situ hybridization was used to measure the expression of members of the Fos/Jun family of immediate-early genes in hypothalamic neurons in vivo following defined stimuli that utilize different afferent pathways. Only c-jun messenger RNA was expressed in the hypothalamic supraoptic and paraventricular nuclei of control animals. Intravenous infusions of sodium chloride solutions of different tonicity produced a range of plasma osmolalities within physiological limits. While the induction of c-fos and jun B messenger RNAs followed the stimulus intensity, the expression of c-jun was repressed at low levels of stimulation. A higher level of osmotic stimulation was able to co-induce c-jun with the c-fos, jun B and fos B genes, suggesting that other signalling pathways may then be activated. Parturition or systemic administration of cholecystokinin, that activate supraoptic and paraventricular neurons via ascending afferent pathways from the brainstem, both induced c-fos, but not the other genes, in the magnocellular nuclei. Use of double in situ hybridization confirmed that, unlike with osmotic stimulation, induction of c-fos only occurred in oxytocin neurons. These two stimuli did not cause a concomitant repression of c-jun messenger RNA expression in magnocellular oxytocin neurons. These patterns of induction provide evidence for the differential regulation of members of this family of genes in a physiological context.
Collapse
Affiliation(s)
- S M Luckman
- Department of Neurobiology, Babraham Institute, Cambridge, U.K
| | | | | |
Collapse
|
289
|
Abrous DN, Desjardins S, Sorin B, Hancock D, Le Moal M, Herman JP. Changes in striatal immediate early gene expression following neonatal dopaminergic lesion and effects of intrastriatal dopaminergic transplants. Neuroscience 1996; 73:145-59. [PMID: 8783238 DOI: 10.1016/0306-4522(96)00032-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To evaluate the functional integration of neonatal dopaminergic transplants within host brain we studied the postsynaptic effects induced by their stimulation by following the expression of immediate early genes c-fos, c-jun and egr-1. This study was conducted nine months after the intrastriatal implantation of embryonic mesencephalic neurons to rat pups having sustained a unilateral lesion of the nigrostriatal dopaminergic system. We examined whether, when challenged with d-amphetamine: (1) dopaminergic grafts transplanted into the previously denervated neonatal neostriatum lead to a normal activation of postsynaptic striatal neurons in term of immediate early genes activation; and (2) whether this activation is related to the action of the dopamine released from the grafts using a dopaminergic D1 antagonist. Following a mild stress-injection of saline-c-fos expression was high in the lesioned neostriatum when compared with control animals. This effect was only partially counteracted by a pre-treatment with the D1 antagonist SCH 23390, but was abolished by the graft. Administration of d-amphetamine increased c-fos expression in the neostriatum and the globus pallidus of the control group. This activation was partially blocked by the lesion. The transplant reversed the effect of the lesion and, moreover, led to a c-fos over-expression in the dorsolateral neostriatum and the globus pallidus. These overcompensations positively correlated with the abnormal rotation induced by d-amphetamine in the same animals. Pre-treatment with SCH 23390 blocked the effect of d-amphetamine on c-fos expression in control and grafted animals. Similar results were found for egr-1 but not c-jun expression. It is concluded that the neonatal lesion of the nigrostriatal dopaminergic pathway, in contrast to the adult-stage lesion, modifies the reactivity of c-fos in the neostriatum to stress, presumably in relation with compensatory reorganizations occurring following the neonatal lesion. Grafts made into neonates, when challenged with amphetamine, induce an abnormal c-fos expression which can predict the degree of overshoot observed for rotation activity. This over-expression, which depends upon the stimulation of D1 receptors, indicate an abnormal activation of postsynaptic target cells by the grafts.
Collapse
|
290
|
Liang F, Isackson PJ, Jones EG. Stimulus-dependent, reciprocal up- and downregulation of glutamic acid decarboxylase and Ca2+/calmodulin-dependent protein kinase II gene expression in rat cerebral cortex. Exp Brain Res 1996; 110:163-74. [PMID: 8836681 DOI: 10.1007/bf00228548] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-train tetanic stimulation of the cerebral cortex induces long-term changes in the excitability of cortical neurons, while short-train electrical stimulation does not. In the present study, we show that both forms of stimulation when applied to rat motor cortex for 4 h enhance c-fos expression, but only tetanic stimulation, when imposed upon short-train stimulation, modulates gene expression for 67-kDa glutamic acid decarboxylase (GAD) and alpha Ca2+/calmodulin-dependent protein kinase II (CaMKII alpha). Gene expression for beta Ca2+/calmodulin-dependent protein kinase II is not affected by either stimulation mode. GAD messenger RNA (mRNA) is increased from 1 h after the end of tetanization to the longest poststimulus survival time investigated (14 h). CaMKII alpha mRNA is decreased 1-3 h after the end of tetanization but thereafter returns to prestimulus levels. These results imply not only that mechanisms underlying neocortical plasticity are stimulus-dependent but also that they involve reciprocal changes in molecules regulating the balance of excitation and inhibition.
Collapse
Affiliation(s)
- F Liang
- Department of Anatomy and Neurobiology, University of California, Irvine 92717-1280, USA
| | | | | |
Collapse
|
291
|
Bereiter DA, Bereiter DF. N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor antagonism reduces Fos-like immunoreactivity in central trigeminal neurons after corneal stimulation in the rat. Neuroscience 1996; 73:249-58. [PMID: 8783246 DOI: 10.1016/0306-4522(96)00038-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of glutamate receptors in processing noxious sensory input from the cornea was assessed in barbiturate-anesthetized rats. Animals were treated with selective antagonists for N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor subtypes prior to application of mustard oil to the corneal surface. Neural activation was estimated from the number of neurons that produced Fos, the protein product of the immediate early gene, c-fos, as detected by immunocytochemistry. Fos-positive neurons were found at two distinct regions of the spinal trigeminal nucleus: the subnucleus interpolaris/caudalis transition and the subnucleus caudalis/upper cervical cord transition. The number of Fos-positive neurons was reduced dose-dependently by the competitive N-methyl-D-aspartate receptor antagonist, 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (0.08-8 nmol, i.c.v.), or by the non-N-methyl-D-aspartate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (2.5-250 nmol, i.c.v.). The greatest reduction in Fos-positive cells was seen at the subnucleus caudalis/upper cervical cord transition after blockade of either receptor subtype. Combined blockade of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors did not cause a further reduction in the number of Fos-positive neurons than was seen after the highest dose of either antagonist alone. Peripheral or central administration of the nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester, had no effect on the number of Fos-positive neurons after corneal stimulation. These results suggest that corneal input to neurons at the subnucleus caudalis/upper cervical cord transition, and to a lesser extent, at the subnucleus interpolaris/subnucleus caudalis transition depends on excitatory amino acid transmission. Both N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptor subtypes, but not the formation of nitric oxide, contribute to the processing of acute corneal stimuli by central trigeminal neurons.
Collapse
Affiliation(s)
- D A Bereiter
- Department of Neuroscience, Brown University/Rhode Island Hospital, Providence 02903, USA
| | | |
Collapse
|
292
|
Moore AN, Waxham MN, Dash PK. Neuronal activity increases the phosphorylation of the transcription factor cAMP response element-binding protein (CREB) in rat hippocampus and cortex. J Biol Chem 1996; 271:14214-20. [PMID: 8662977 DOI: 10.1074/jbc.271.24.14214] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activity-mediated gene expression is thought to play an important role in many forms of neuronal plasticities. We have used pentylenetetrazol-induced seizure that produces synchronous and sustained neuronal activity as a model to examine the mechanism(s) of gene activation. The transcription factor CREB (Ca2+/cAMP response element-binding protein) is thought to be necessary for long-term memory formation both in invertebrates and vertebrates. When phosphorylated on Ser133 either by cAMP-dependent protein kinase and/or Ca2+/calmodulin-dependent protein kinases, CREB increases transcription of genes containing the CRE (cAMP response element) sequence. Using an antibody that detects Ser133-phosphorylated CREB protein, we show that CREB phosphorylation is maximal between 3 and 8 min after the onset of seizure activity and declines slowly both in the hippocampus and the cortex. The total amount of CREB protein did not change at the time points examined. The increased phosphorylation of CREB protein is preceded by an increase in the amount of cAMP, suggestive of cAMP-dependent protein kinase activation, in the hippocampus and activation of Ca2+/calmodulin-dependent protein kinases in the cortex. Subsequent to CREB phosphorylation, the expression of the CRE-containing gene, c-fos, and the AP-1 complexes (heterodimers of Fos and Jun family members) is increased. These findings support the role of CREB-mediated gene expression in activity-dependent neuronal plasticities.
Collapse
Affiliation(s)
- A N Moore
- Department of Neurobiology and Anatomy, The University of Texas-Houston Health Science Center, Houston, Texas 77225, USA
| | | | | |
Collapse
|
293
|
Meberg PJ, Kinney WR, Valcourt EG, Routtenberg A. Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 38:179-90. [PMID: 8793106 DOI: 10.1016/0169-328x(95)00229-l] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NF-kappa B is a potent transcriptional activator that resides in latent form in the cytoplasm complexed to its inhibitor I kappa B. Phosphorylation of I kappa B by protein kinase C (PKC) releases NF-kappa B, enabling its translocation to the nucleus. Since PKC can activate NF-kappa B and PKC is activated by long-term potentiation (LTP), we investigated NF-kappa B expression after hippocampal LTP induced in vivo. We first described the expression of the NF-kappa B subunits, p50 and p65, and I kappa B alpha mRNAs, in each cell field of the hippocampus. In other brain locations I kappa B alpha mRNA exhibited a more selective expression than p50 and p65. We then demonstrated specific NF-kappa B-like DNA-binding activity in hippocampal whole-cell extracts and in synaptosomes using electrophoretic mobility shift assays by the following criteria: (1) latent binding was revealed after deoxycholate treatment; (2) binding was competed off by unlabeled kappa B oligonucleotides; and (3) antibodies to either p50 or p65 blocked binding. Since p50 gene expression is auto-regulated by NF-kappa B, we used its expression as a reporter for NF-kappa B activity using quantitative in situ hybridization. Both p50 and p65 increased their expression in response to either LTP-inducing or low-frequency control stimulation, although the increase in p65 mRNA levels was greater after LTP than control stimulation. In contrast to p50 and p65, I kappa B alpha hybridization levels were not increased, but were inversely correlated with the magnitude of LTP. Since NF-kappa B subunit gene expression in the hippocampus is increased by augmented synaptic activity, NF-kappa B activation may contribute to alterations in target gene expression that accompany activity-dependent synaptic plasticity, but only in a combinatorial fashion with other transcription factors.
Collapse
Affiliation(s)
- P J Meberg
- Cresap Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
294
|
Bramham CR, Southard T, Sarvey JM, Herkenham M, Brady LS. Unilateral LTP triggers bilateral increases in hippocampal neurotrophin and trk receptor mRNA expression in behaving rats: evidence for interhemispheric communication. J Comp Neurol 1996; 368:371-82. [PMID: 8725345 DOI: 10.1002/(sici)1096-9861(19960506)368:3<371::aid-cne4>3.0.co;2-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Induction of long-term potentiation (LTP) in the dentate gyrus of awake rats triggered a rapid (2 hour) elevation in tyrosine kinase receptor (trkB and trkC) gene expression and a delayed (6-24 hour) increase in brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) gene expression. Depending on the mRNA species, LTP induction led to highly selective unilateral or bilateral increases in gene expression. Specifically, trkB and NT-3 mRNA elevations were restricted to granule cells in the ipsilateral dentate gyrus, whereas bilateral increases in trkC, BDNF, and nerve growth factor (NGF) mRNA levels occurred in granule cells and hippocampal pyramidal cells. Both unilateral and bilateral changes in gene expression were N-methyl-D-aspartate (NMDA) receptor-dependent and LTP-specific. Bilateral electrophysiological recordings demonstrated that LTP was unilaterally induced; this was corroborated by a dramatic unilateral increase in the expression of the immediate early gene zif/268, a marker for LTP, restricted to the ipsilateral granule cells. The results indicate that LTP triggers an interhemispheric communication manifested as selective, bilateral increases in gene expression at multiple sites in the hippocampal network. Furthermore, our findings suggest that physiological plastic changes in the adult brain may involve coordinated, time-dependent regulation of multiple neurotrophin and trk receptor genes.
Collapse
Affiliation(s)
- C R Bramham
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | | | | | |
Collapse
|
295
|
Wilson DA, Sullivan RM, Gall CM, Guthrie KM. NMDA-receptor modulation of lateral inhibition and c-fos expression in olfactory bulb. Brain Res 1996; 719:62-71. [PMID: 8782864 DOI: 10.1016/0006-8993(96)00083-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Olfactory bulb primary output neurons, mitral/tufted cells, are glutamatergic and excite inhibitory interneurons, granule cells, by activation of both alpha-amino-3-hydroxy-5-methyl-ioxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors. The data presented here demonstrate that the NMDA antagonists MK-801 and CGP39551, but not ketamine, significantly enhanced expression of c-fos mRNA by mitral cells as measured by in situ hybridization. All three antagonists significantly reduced mitral/tufted cell excitation of granule cells as measured with extracellular field potentials following antidromic stimulation of the lateral olfactory tract (LOT). In turn, the NMDA antagonists significantly reduced granule cell mediated feedback inhibition of mitral/tufted cells, as measured with field potential recordings of paired-pulse LOT stimulation, suppression of mitral/tufted cell single-unit spontaneous activity following LOT stimulation, and intracellularly recorded IPSP amplitude in mitral/tufted cells following LOT stimulation. While there was not a perfect correlation between the effects of the NMDA antagonists on c-fos mRNA expression and on inhibition, the results suggest that disinhibition of mitral/tufted cells accounts for the observed enhancement in c-fos mRNA expression induced by NMDA receptor antagonists.
Collapse
Affiliation(s)
- D A Wilson
- Department of Zoology, University of Oklahoma, Norman 73019, USA
| | | | | | | |
Collapse
|
296
|
Abstract
This article summarizes recent studies from the long-term potentiation (LTP), long-term depression (LTD), and behavioral learning literature, indicating that immediate-early genes (IEGs) may play an important role in learning and memory. The LTP studies suggest that synaptic modifications occurring during NMDA-receptor-mediated hippocampal LTP and LTD are stabilized by the protein products of the krox family of IEGs (as well as by brain-derived neurotrophic factor, BDNF). Activation of muscarinic receptors also induces members of the krox as well as the fos and jun family (jun-B but not c-jun) IEGs in hippocampal neurons and this action may be involved in the facilitatory effects of muscarinic receptor activation on both hippocampal LTP and learning. The possible role of IEGs in the learning-enhancing effects of cholinergically mediated hippocampal theta is also discussed. Finally, I review a number of recent studies showing IEG expression in brain neurons after behavioral learning. Together these results suggest some role for select IEGs (e.g., Krox 24) in learning and memory, although definitive studies using antisense DNA technology are required to establish any causal links. In particular, IEGs may be critical components of the signal transduction cascade that links NMDA and muscarinic receptors to the neuronal genome and ultimately to the generation of permanent modifications in neuronal biochemistry that provides the substrate for learning.
Collapse
Affiliation(s)
- M Dragunow
- Department of Pharmacology, School of Medicine, University of Auckland, New Zealand
| |
Collapse
|
297
|
Suzuki T. Messengers from the synapses to the nucleus (MSNs) that establish late phase of long-term potentiation (LTP) and long-term memory. Neurosci Res 1996; 25:1-6. [PMID: 8808794 DOI: 10.1016/0168-0102(96)01023-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The late stage of long-term potentiation (LTP) and long-term memory is believed to be largely governed by altered gene expression for its generation and maintenance, while the early stages of LTP and memory are controlled mainly by the phosphorylation-dephosphorylation of the synaptic proteins. For the altered gene expression, synaptic information must be transmitted from the synaptic sites to the nucleus. This article describes the presence of specific messenger molecules that transmit synaptic information to the nucleus; these molecules are referred to as MSNs (Messengers from Synapse to the Nucleus). In addition, recent studies have indicated that certain transcription factors localize at postsynaptic sites as well as the nucleus, and may function as MSNs.
Collapse
Affiliation(s)
- T Suzuki
- Department of Neuroplasticity, Shinshu University School of Medicine, Nagano, Japan
| |
Collapse
|
298
|
Abstract
Many diverse behaviors exhibit clear circadian rhythms in their expression. In mammals, these rhythms originate from a neural circadian clock located in the suprachiasmatic nuclei (SCN). Recently, signaling pathways activated by light in the SCN have begun to be identified. A specific set of immediate-early genes is induced by light in the SCN, and their expression is correlated with the resetting of circadian behavioral rhythms. These light-regulated immediate-early genes offer multiple inroads into the biology of the SCN: first, they are functional markers for the activation of SCN neurons by light; second, they can direct us to the upstream light-activated (and clock-regulated) signal transduction pathways which mediate their induction; and finally, they encode transcription factor proteins which may play a role in the molecular mechanism of resetting the circadian clock.
Collapse
Affiliation(s)
- J M Kornhauser
- NSF Center for Biological Timing, Northwestern University, Evanston, Illinois 60208-3520, USA
| | | | | |
Collapse
|
299
|
Woo CC, Oshita MH, Leon M. A learned odor decreases the number of Fos-immunopositive granule cells in the olfactory bulb of young rats. Brain Res 1996; 716:149-56. [PMID: 8738231 DOI: 10.1016/0006-8993(96)00037-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Olfactory stimulation evokes a column of activity within the olfactory bulb extending from the glomerular layer to the granule cell layer that can be visualized with 2-deoxyglucose autoradiography, optical imaging, Fos protein immunohistochemistry and c-fos mRNA in situ hybridization. The Fos response to odors is typified by the activity of relatively few juxtaglomerular cells, which often occur in foci, and a large number of granule cells extending through much of the bulb. In this study, we characterized the granule cell response to an odor for which young rats had acquired a preference. Fos-like immunoreactive granule cells were quantified by image analysis, and densely stained cells were counted in a region previously shown to be responsive to peppermint odor. We found that odor-trained pups have about half the number of Fos-immunopositive superficial granule cells which respond to a learned odor than do control pups. We then determined whether there was a correlation between the juxtaglomerular cell response and the response of the superficial granule cells deep to those glomerular layer cells. We found a positive correlation between the number of juxtaglomerular cells and the number of granule cells demonstrating Fos immunoreactivity in both control and trained pups, a relationship that changed with early olfactory training.
Collapse
Affiliation(s)
- C C Woo
- Department of Psychobiology, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
300
|
Inokuchi K, Kato A, Hiraia K, Hishinuma F, Inoue M, Ozawa F. Increase in activin beta A mRNA in rat hippocampus during long-term potentiation. FEBS Lett 1996; 382:48-52. [PMID: 8612762 DOI: 10.1016/0014-5793(96)00135-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have used mRNA differential display to isolate genes that are induced by neural activity in rat hippocampus. One of these encodes activin beta A subunit. Convulsive seizure caused by kainate significantly induced the expression of activin beta A mRNA. Furthermore high frequency stimulation (HFS) of perforant pathway, which produced a persistent long-term potentiation (LTP) (>10 h), caused a marked increase at 3 h in the level of activin beta A mRNA at the dentate gyrus of urethane-anesthetized rat. The increase was NMDA receptor-dependent. By contrast the level of inhibin alpha mRNA was not changed following the induction of LTP. THe results suggest a role for activin in maintenance of neural plasticity in the adult brain.
Collapse
Affiliation(s)
- K Inokuchi
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|