251
|
Abstract
IMPORTANCE OF THE FIELD Melatonin is a major chronobiological regulator involved in circadian phasing, sleep, and numerous other functions including cyto-/neuroprotection, immune modulation, and energy metabolism. The suitability of melatonin as a drug is limited because of its short half-life. Therefore, various indolic and non-indolic melatonergic agonists have been developed. Frequent health problems such as sleep disturbances, neuropsychiatric disorders related to circadian dysphasing, and metabolic diseases associated with insulin resistance are targeted by melatonergic agonists. AREAS COVERED IN THIS REVIEW Various synthetic melatonergic drugs are compared with regard to receptor affinities, selectivity, effects on sleep, endogenous melatonin, circadian phase and insulin-related metabolism. WHAT THE READER WILL GAIN The chemical design of melatonin receptor agonists is discussed in relation to consequences for receptor affinity, selectivity, metabolism, and spectrum of effects. TAKE HOME MESSAGE Melatonergic agonists are suitable for phase-shifting circadian rhythms, and may be used for treating disorders related to circadian dysfunction including sleep difficulties. Facilitation of sleep onset is a general property, whereas promotion of sleep maintenance is demonstrable but not always fully sufficient. Details are especially available for tasimelteon. Support of insulin sensitivity may become a new area of application for compounds such as NEU-P11. Some drugs acting additionally as serotonergic antagonists display antidepressant properties.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- University of Göttingen, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Göttingen, Germany.
| |
Collapse
|
252
|
Eismann EA, Lush E, Sephton SE. Circadian effects in cancer-relevant psychoneuroendocrine and immune pathways. Psychoneuroendocrinology 2010; 35:963-76. [PMID: 20097011 DOI: 10.1016/j.psyneuen.2009.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 12/11/2009] [Accepted: 12/17/2009] [Indexed: 02/04/2023]
Abstract
Human biology is deeply integrated with the rotation of the Earth: healthy physiology is synchronized with circadian cycles, while unhealthy states are often marked by poor circadian coordination. In certain cancers including breast cancer, striking circadian rhythm dysregulation extends to endocrine, immune, metabolic, and cellular function. Disruption resulting from biological and behavioral influences has been linked with higher incidence and faster tumor progression in humans and animals. The hypothalamic SCN coordinates circadian events at the tissue and cellular level, partly via glucocorticoids that regulate genes involved in tumor growth, cell proliferation, apoptosis, immune cell trafficking, and cytotoxicity. We present a revision of our previously published model of circadian effects in cancer (Sephton and Spiegel, 2003) based on evaluation of new data from divergent lines of investigation. Human clinical studies show circadian endocrine disruption may be accompanied by suppressed functional cellular immunity and overactive inflammatory responses that could promote tumor growth, angiogenesis, and metastasis. Animal data provide strong evidence of clock gene regulation of tumor cell growth. Tissue culture research demonstrates that biologically or behaviorally mediated down-regulation of clock gene expression can accelerate tumor growth. An integrated view suggests mechanisms by which circadian effects on tumor growth may be mediated. These include psychoneuroendocrine and psychoneuroimmune pathways, the relevance of which we highlight in the context of breast cancer. Taken together, data from clinical, systemic, cellular, and molecular research suggest the circadian clock is a tumor suppressor under both biological and behavioral control.
Collapse
Affiliation(s)
- Emily A Eismann
- University of Louisville, Department of Psychological and Brain Sciences, Louisville, KY 40292, USA
| | | | | |
Collapse
|
253
|
Talaei SA, Sheibani V, Salami M. Light deprivation improves melatonin related suppression of hippocampal plasticity. Hippocampus 2010; 20:447-55. [PMID: 19475653 DOI: 10.1002/hipo.20650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In early postnatal life, sensory inputs deeply influence development as well as function of the brain. Plasticity of synaptic transmission including its experimentally induced form, long-term potentiation (LTP), is affected by sensory deprivation in neocortex. This study is devoted to assess if dark rearing and a dark phase synthesized hormone melatonin influence LTP in the hippocampus, an area of brain involved in learning and memory. In vivo experiments were carried out on two groups of 45-days-old male Wistar rats kept in standard 12-h light/dark condition [light reared (LR) tested during the light phase] or in complete darkness [dark reared (DR)] since birth to testing. Each group, in turn, was divided to two, vehicle- and melatonin-treated, groups. Stimulating the Schaffer collaterals of CA3 area of hippocampus extracellular postsynaptic potentials (EPSPs) were recorded in the CA1 area. Having the stable baseline responses to the test pulses, the hippocampus was perfused by either vehicle or 2 microg melatonin and EPSPs were recorded for 30 min. Then, for induction of LTP, the tetanus was applied to the Schaffer collaterals and the field potentials were pooled for 120-min post-tetanus. The light deprivation resulted in a significant augmentation in the amplitude of baseline responses. Also, we observed a melatonin-induced increase in amplitude of the baseline recordings in either LR or DR animals. Tetanic stimulation elicited LTP of EPSPs in both LR and DR groups, robustly in the former where it lasted for about 90 min. Generally, melatonin inhibited the production of LTP in the two groups especially in the LR animals leading to a noticeable depression. We concluded that higher level of neuronal activity in the DR rats gives rise to a lower level of LTP. Weaker effect of melatonin on blocking the potentiation of post-tetanus EPSPs in the DR rats may be the result of a desensitization of melatonin receptors due to chronically increased levels of this hormone in the visually deprived rats.
Collapse
Affiliation(s)
- Sayyed Alireza Talaei
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, I. R. Iran
| | | | | |
Collapse
|
254
|
Markwald RR, Lee-Chiong TL, Burke TM, Snider JA, Wright KP. Effects of the melatonin MT-1/MT-2 agonist ramelteon on daytime body temperature and sleep. Sleep 2010; 33:825-31. [PMID: 20550024 PMCID: PMC2881716 DOI: 10.1093/sleep/33.6.825] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES A reduction in core temperature and an increase in the distal-proximal skin gradient (DPG) are reported to be associated with shorter sleep onset latencies (SOL) and better sleep quality. Ramelteon is a melatonin MT-1/MT-2 agonist approved for the treatment of insomnia. At night, ramelteon has been reported to shorten SOL. In the present study we tested the hypothesis that ramelteon would reduce core temperature, increase the DPG, as well as shorten SOL, reduce wakefulness after sleep onset (WASO), and increase total sleep time (TST) during a daytime sleep opportunity. DESIGN Randomized, double-blind, placebo-controlled, cross-over design. Eight mg ramelteon or placebo was administered 2 h prior to a 4-h daytime sleep opportunity. SETTING Sleep and chronobiology laboratory. PARTICIPANTS Fourteen healthy adults (5 females), aged (23.2 +/- 4.2 y). MEASUREMENTS AND RESULTS Primary outcome measures included core body temperature, the DPG and sleep physiology (minutes of total sleep time [TST], wake after sleep onset [WASO], and SOL). We also assessed as secondary outcomes, proximal and distal skin temperatures, sleep staging and subjective TST. Repeated measures ANOVA revealed ramelteon significantly reduced core temperature and increased the DPG (both P < 0.05). Furthermore, ramelteon reduced WASO and increased TST, and stages 1 and 2 sleep (all P < 0.05). The change in the DPG was negatively correlated with SOL in the ramelteon condition. CONCLUSIONS Ramelteon improved daytime sleep, perhaps mechanistically in part by reducing core temperature and modulating skin temperature. These findings suggest that ramelteon may have promise for the treatment of insomnia associated with circadian misalignment due to circadian sleep disorders.
Collapse
Affiliation(s)
- Rachel R. Markwald
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, Center for Neuroscience, University of Colorado, Boulder, CO
| | | | - Tina M. Burke
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, Center for Neuroscience, University of Colorado, Boulder, CO
| | - Jesse A. Snider
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, Center for Neuroscience, University of Colorado, Boulder, CO
| | - Kenneth P. Wright
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, Center for Neuroscience, University of Colorado, Boulder, CO
- Division of Sleep Medicine, National Jewish Health, Denver, CO
| |
Collapse
|
255
|
Zee PC, Wang-Weigand S, Wright KP, Peng X, Roth T. Effects of ramelteon on insomnia symptoms induced by rapid, eastward travel. Sleep Med 2010; 11:525-33. [PMID: 20483660 DOI: 10.1016/j.sleep.2010.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/27/2010] [Accepted: 03/04/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Ramelteon, an MT(1)/MT(2) melatonin receptor agonist, was evaluated for its ability to reduce sleep-onset difficulties associated with eastward jet travel. METHODS Healthy adults (n=110) with a history of jet lag sleep disturbances were flown eastward across five time zones from Hawaii to the east coast of the US. Ramelteon 1, 4, or 8 mg or placebo was administered 5 min before bedtime (local time) for four nights. Sleep parameters were measured using polysomnography (PSG) on Nights 2, 3, and 4. Next-day residual effects were assessed using psychomotor and memory function tests. RESULTS Compared to placebo, there was a significant decrease in mean latency to persistent sleep (LPS) on Nights 2-4 with ramelteon 1mg (-10.64 min, P=0.030). No consistent significant differences were observed with ramelteon vs. placebo on measures of next-day residual effects except on Day 4 where participants in all ramelteon groups performed significantly worse on the immediate memory recall test compared with placebo (P < or = 0.05). The incidence of adverse events was similar for ramelteon and placebo. CONCLUSION After a 5-h phase advance due to eastward jet travel, ramelteon 1mg taken before bedtime for four nights reduced mean LPS relative to placebo in healthy adults.
Collapse
Affiliation(s)
- Phyllis C Zee
- Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
256
|
Shimomura K, Lowrey PL, Vitaterna MH, Buhr ED, Kumar V, Hanna P, Omura C, Izumo M, Low SS, Barrett RK, LaRue SI, Green CB, Takahashi JS. Genetic suppression of the circadian Clock mutation by the melatonin biosynthesis pathway. Proc Natl Acad Sci U S A 2010; 107:8399-403. [PMID: 20404168 PMCID: PMC2889547 DOI: 10.1073/pnas.1004368107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most laboratory mouse strains including C57BL/6J do not produce detectable levels of pineal melatonin owing to deficits in enzymatic activity of arylalkylamine N-acetyltransferase (AANAT) and N-acetylserotonin O-methyl transferase (ASMT), two enzymes necessary for melatonin biosynthesis. Here we report that alleles segregating at these two loci in C3H/HeJ mice, an inbred strain producing melatonin, suppress the circadian period-lengthening effect of the Clock mutation. Through a functional mapping approach, we localize mouse Asmt to chromosome X and show that it, and the Aanat locus on chromosome 11, are significantly associated with pineal melatonin levels. Treatment of suprachiasmatic nucleus (SCN) explant cultures from Period2(Luciferase) (Per2(Luc)) Clock/+ reporter mice with melatonin, or the melatonin agonist, ramelteon, phenocopies the genetic suppression of the Clock mutant phenotype observed in living animals. These results demonstrate that melatonin suppresses the Clock/+ mutant phenotype and interacts with Clock to affect the mammalian circadian system.
Collapse
Affiliation(s)
- Kazuhiro Shimomura
- Center for Functional Genomics
- Department of Neurobiology and Physiology
- Center for Sleep and Circadian Biology, and
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208
| | | | - Martha Hotz Vitaterna
- Center for Functional Genomics
- Department of Neurobiology and Physiology
- Center for Sleep and Circadian Biology, and
| | | | - Vivek Kumar
- Center for Functional Genomics
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208
- Department of Neuroscience
| | | | - Chiaki Omura
- Center for Functional Genomics
- Department of Neurobiology and Physiology
| | | | | | | | - Silvia I. LaRue
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Carla B. Green
- Department of Neuroscience
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Joseph S. Takahashi
- Center for Functional Genomics
- Department of Neurobiology and Physiology
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208
- Department of Neuroscience
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111; and
| |
Collapse
|
257
|
Fang MZ, Zhang X, Zarbl H. Methylselenocysteine resets the rhythmic expression of circadian and growth-regulatory genes disrupted by nitrosomethylurea in vivo. Cancer Prev Res (Phila) 2010; 3:640-52. [PMID: 20424134 PMCID: PMC2865563 DOI: 10.1158/1940-6207.capr-09-0170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiologic and animal studies indicate that disruption of circadian rhythm increases breast cancer risk. Previously, we showed that methylselenocysteine reduced the incidence of N-nitroso-N-methylurea (NMU)-induced mammary carcinomas in Fischer 344 rats by 63%. Methylselenocysteine also increased the expression of Period 2 (Per2) and D-binding protein (DBP), providing evidence for a link between circadian rhythm and chemoprevention. Here, we report that NMU disrupted the expression of core circadian genes (Per1, Per2, Cry1, Cry2, and RevErbAalpha) and circadian-controlled genes, including melatonin receptor 1alpha (MTNR1A), estrogen receptors (ERalpha and ERbeta), and growth-regulatory genes (Trp53, p21, Gadd45alpha, and c-Myc) in mammary glands of Fischer 344 rats. By contrast, dietary methylselenocysteine (3 ppm selenium) given for 30 days, significantly enhanced the circadian expression of these genes (except for Cry1 and Cry2). The largest effect was on the levels of the Per2, MTNR1A, and ERbeta mRNAs, which showed 16.5-fold, 4.7-fold, and 9.5-fold increases in their rhythm-adjusted means, respectively, and 44.5-fold, 6.5-fold, and 9.7-fold increases in amplitude as compared with the control diet, respectively. Methylselenocysteine also shifted the peak expression times of these genes to Zeitgeber time 12 (ZT12; lights off). Methylselenocysteine also induced rhythmic expression of Trp53, p21, and Gadd45alpha mRNAs with peak levels at ZT12, when c-Myc expression was at its lowest level. However, methylselenocysteine had no significant effect on the circadian expression of these genes in liver. These results suggest that dietary methylselenocysteine counteracted the disruptive effect of NMU on circadian expression of genes essential to normal mammary cell growth and differentiation.
Collapse
Affiliation(s)
- Ming Zhu Fang
- Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, NJ, 08854
| | | | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, NJ, 08854
- Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, 08903
| |
Collapse
|
258
|
Hu Y, Ho MK, Chan KH, New DC, Wong YH. Synthesis of substituted N-[3-(3-methoxyphenyl)propyl] amides as highly potent MT2-selective melatonin ligands. Bioorg Med Chem Lett 2010; 20:2582-5. [DOI: 10.1016/j.bmcl.2010.02.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/27/2010] [Accepted: 02/22/2010] [Indexed: 11/30/2022]
|
259
|
Paschos GK, Baggs JE, Hogenesch JB, FitzGerald GA. The role of clock genes in pharmacology. Annu Rev Pharmacol Toxicol 2010; 50:187-214. [PMID: 20055702 DOI: 10.1146/annurev.pharmtox.010909.105621] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The physiology of a wide variety of organisms is organized according to periodic environmental changes imposed by the earth's rotation. This way, a large number of physiological processes present diurnal rhythms regulated by an internal timing system called the circadian clock. As part of the rhythmicity in physiology, drug efficacy and toxicity can vary with time. Studies over the past four decades present diurnal oscillations in drug absorption, distribution, metabolism, and excretion. On the other hand, diurnal variations in the availability and sensitivity of drug targets have been correlated with time-dependent changes in drug effectiveness. In this review, we provide evidence supporting the regulation of drug kinetics and dynamics by the circadian clock. We also use the examples of hypertension and cancer to show current achievements and challenges in chronopharmacology.
Collapse
Affiliation(s)
- Georgios K Paschos
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA.
| | | | | | | |
Collapse
|
260
|
Juszczak M, Boczek-Leszczyk E. Hypothalamic gonadotropin-releasing hormone receptor activation stimulates oxytocin release from the rat hypothalamo-neurohypophysial system while melatonin inhibits this process. Brain Res Bull 2010; 81:185-90. [PMID: 19874874 DOI: 10.1016/j.brainresbull.2009.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/23/2009] [Accepted: 10/16/2009] [Indexed: 11/17/2022]
Abstract
The present study was undertaken to investigate the influence of gonadotropin-releasing hormone (GnRH) and its agonist and antagonist on oxytocin (OT) release from the rat hypothalamo-neurohypophysial (H-N) system. An additional aim was to determine whether the possible response of oxytocinergic neurons to these peptides could be modified by melatonin through a cAMP-dependent mechanism. The results show that the highly selective GnRH agonist (i.e., [Des-Gly(10),d-His(Bzl)(6),Pro-NHEt(9)]-LHRH; Histrelin) stimulates the secretion of OT from an isolated rat H-N system. Melatonin significantly inhibited basal and histrelin-induced release of OT in vitro, and displayed no significant influence on OT release in the presence of GnRH or its antagonist. Addition of melatonin to a medium containing forskolin resulted in significant reduction of OT secretion from the H-N system. On the other hand, addition of forskolin to a medium containing both histrelin and melatonin did not further alter the inhibitory influence of melatonin on the histrelin-dependent secretion of OT in vitro. Intracerebroventricular (icv) infusion (experiment in vivo) of a GnRH antagonist resulted in substantial inhibition of OT release, thus revealing the stimulatory action of endogenous GnRH. In melatonin-treated animals, blood plasma OT levels were not changed in comparison to the vehicle. Our present data strongly suggests that activation of the GnRH receptor in the hypothalamus is involved in stimulation of OT secretion from the rat H-N system. It has also been shown, under experimental in vitro conditions, that melatonin fully suppresses the response of oxytocinergic neurons to the GnRH agonist - histrelin. The effect of melatonin on OT release is mediated by the cAMP-dependent mechanism, although other mechanisms of action are also possible.
Collapse
Affiliation(s)
- Marlena Juszczak
- Department of Pathophysiology, Medical University of Lodz, Narutowicza 60, str., 90-136 Lodz, Poland.
| | | |
Collapse
|
261
|
Unfried C, Burbach G, Korf HW, von Gall C. Melatonin receptor 1-dependent gene expression in the mouse pars tuberalis as revealed by cDNA microarray analysis and in situ hybridization. J Pineal Res 2010; 48:148-56. [PMID: 20070488 DOI: 10.1111/j.1600-079x.2009.00738.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melatonin is an important rhythmic endocrine signal within the circadian system of mammals. The hypophyseal pars tuberalis (PT) is a major target for melatonin and shows a high density of melatonin type 1 receptors (MT1). Melatonin affects expression of clock genes in PT cells which encode for transcriptional regulators of rhythmic gene expression. In this study, microarray analysis was performed to screen for genes coding for transcriptional regulators under the control of MT1 receptors in the mouse PT. Gene expression levels were compared between melatonin-proficient mice deficient for MT1 (MT1-/-) and the corresponding wild-type (WT) during mid-subjective day (CT06, low endogenous melatonin levels) and mid-subjective night (CT18, high endogenous melatonin levels). In situ hybridization was used to validate the data obtained by microarray analysis to analyze the acute effect of daytime melatonin application on gene expression in the wild-type PT. In the wild-type PT, expression of Tim was higher during day as compared to night. These day/night differences in gene expression were not observed in the PT of MT1-/- mice, demonstrating the impact of MT1-mediated signal transduction pathway. Day-time application of melatonin acutely affected Tim and Cry1 expression but not Neurod1 and Npas4 expression. We conclude that melatonin regulates expression of genes coding for transcriptional regulators in the PT through MT1 receptors by either acute or long-term mechanisms.
Collapse
Affiliation(s)
- Claudia Unfried
- Dr Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität, Frankfurt/M, Germany
| | | | | | | |
Collapse
|
262
|
Prendergast BJ. MT1 melatonin receptors mediate somatic, behavioral, and reproductive neuroendocrine responses to photoperiod and melatonin in Siberian hamsters (Phodopus sungorus). Endocrinology 2010; 151:714-21. [PMID: 19966183 PMCID: PMC2817621 DOI: 10.1210/en.2009-0710] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Environmental day length drives nocturnal pineal melatonin secretion, which in turn generates or entrains seasonal cycles of physiology, reproduction, and behavior. In mammals, melatonin (MEL) binds to a number of receptor subtypes including high-affinity (MT1 and MT2) and low-affinity (MT3, nuclear orphan receptors) binding sites, which are distributed throughout the central nervous system and periphery. The MEL receptors that mediate photoperiodic reproductive and behavioral responses to MEL have not been identified in a reproductively photoperiodic species. Here I tested the hypothesis that MT1 receptors are necessary and sufficient to engage photoperiodic responses by challenging male Siberian hamsters (Phodopus sungorus), a species that does not express functional MT2 receptors, with ramelteon (RAM), a specific MT1/MT2 receptor agonist. In hamsters housed in a long-day photoperiod, late-afternoon RAM treatment inhibited gonadotropin secretion, induced gonadal regression, and suppressed food intake and body mass, mimicking effects of MEL. In addition, chronic (24 h/d) RAM infusions were sufficient to obscure endogenous MEL signaling, and these treatments attenuated gonadal regression in short days. Together, the outcomes indicate that signaling at the MT1 receptor is sufficient and necessary to mediate the effects of photoperiod-driven changes in MEL on behavior and reproductive function in a reproductively photoperiodic mammal.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology and Committee on Neurobiology, Institute for Mind and Biology, University of Chicago, 940 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
263
|
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has revealed itself as an ubiquitously distributed and functionally diverse molecule. The mechanisms that control its synthesis within the pineal gland have been well characterized and the retinal and biological clock processes that modulate the circadian production of melatonin in the pineal gland are rapidly being unravelled. A feature that characterizes melatonin is the variety of mechanisms it employs to modulate the physiology and molecular biology of cells. While many of these actions are mediated by well-characterized, G-protein coupled melatonin receptors in cellular membranes, other actions of the indole seem to involve its interaction with orphan nuclear receptors and with molecules, for example calmodulin, in the cytosol. Additionally, by virtue of its ability to detoxify free radicals and related oxygen derivatives, melatonin influences the molecular physiology of cells via receptor-independent means. These uncommonly complex processes often make it difficult to determine specifically how melatonin functions to exert its obvious actions. What is apparent, however, is that the actions of melatonin contribute to improved cellular and organismal physiology. In view of this and its virtual absence of toxicity, melatonin may well find applications in both human and veterinary medicine.
Collapse
|
264
|
Cajochen C, Chellappa S, Schmidt C. What keeps us awake? The role of clocks and hourglasses, light, and melatonin. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 93:57-90. [PMID: 20970001 DOI: 10.1016/s0074-7742(10)93003-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
What is it that keeps us awake? Our assumption is that we consciously control our daily activities including sleep-wake behavior, as indicated by our need to make use of an alarm clock to wake up in the morning in order to be at work on time. However, when we travel across multiple time zones or do shift work, we realize that our intentionally planned timings to rest and to remain active can interfere with an intrinsic regulation of sleep/wake cycles. This regulation is driven by a small region in the anterior hypothalamus of the brain, termed as the "circadian clock". This clock spontaneously synchronizes with the environmental light-dark cycle, thus enabling all organisms to adapt to and anticipate environmental changes. As a result, the circadian clock actively gates sleep and wakefulness to occur in synchrony with the light-dark cycles. Indeed, our internal clock is our best morning alarm clock, since it shuts off melatonin production and boosts cortisol secretion and heart rate 2-3h prior awakening from Morpheus arms. The main reason most of us still use artificial alarm clocks is that we habitually carry on a sleep depth and/or the sleep-wake timing is not ideally matched with our social/work schedule. This in turn can lead hourglass processes, as indexed by accumulated homeostatic sleep need over time, to strongly oppose the clock. To add to the complexity of our sleep and wakefulness behavior, light levels as well as exogenous melatonin can impinge on the clock, by means of their so-called zeitgeber (synchronizer) role or by acutely promoting sleep or wakefulness. Here we attempt to bring a holistic view on how light, melatonin, and the brain circuitry underlying circadian and homeostatic processes can modulate sleep and in particular alertness, by actively promoting awakening/arousal and sleep at certain times during the 24-h day.
Collapse
Affiliation(s)
- Christian Cajochen
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, CH-4012 Basel, Switzerland
| | | | | |
Collapse
|
265
|
MT2-like melatonin receptor modulates amplitude receptor potential in visual cells of crayfish during a 24-hour cycle. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:486-92. [DOI: 10.1016/j.cbpa.2009.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 11/17/2022]
|
266
|
Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 2009; 61:383-410. [PMID: 19605939 DOI: 10.1016/s1734-1140(09)70081-7] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/01/2009] [Indexed: 01/01/2023]
Abstract
Melatonin is an evolutionarily conserved molecule that serves a time-keeping function in various species. In vertebrates, melatonin is produced predominantly by the pineal gland with a marked circadian rhythm that is governed by the central circadian pacemaker (biological clock) in the suprachiasmatic nuclei of the hypothalamus. High levels of melatonin are normally found at night, and low levels are seen during daylight hours. As a consequence, melatonin has been called the "darkness hormone". This review surveys the current state of knowledge regarding the regulation of melatonin synthesis, receptor expression, and function. In particular, it addresses the physiological, pathological, and therapeutic aspects of melatonin in humans, with an emphasis on biological rhythms.
Collapse
|
267
|
Chambers JC, Zhang W, Zabaneh D, Sehmi J, Jain P, McCarthy MI, Froguel P, Ruokonen A, Balding D, Jarvelin MR, Scott J, Elliott P, Kooner JS. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 2009; 58:2703-8. [PMID: 19651812 PMCID: PMC2768158 DOI: 10.2337/db08-1805] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 07/13/2009] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Fasting plasma glucose and risk of type 2 diabetes are higher among Indian Asians than among European and North American Caucasians. Few studies have investigated genetic factors influencing glucose metabolism among Indian Asians. RESEARCH DESIGN AND METHODS We carried out genome-wide association studies for fasting glucose in 5,089 nondiabetic Indian Asians genotyped with the Illumina Hap610 BeadChip and 2,385 Indian Asians (698 with type 2 diabetes) genotyped with the Illumina 300 BeadChip. Results were compared with findings in 4,462 European Caucasians. RESULTS We identified three single nucleotide polymorphisms (SNPs) associated with glucose among Indian Asians at P < 5 x 10(-8), all near melatonin receptor MTNR1B. The most closely associated was rs2166706 (combined P = 2.1 x 10(-9)), which is in moderate linkage disequilibrium with rs1387153 (r(2) = 0.60) and rs10830963 (r(2) = 0.45), both previously associated with glucose in European Caucasians. Risk allele frequency and effect sizes for rs2166706 were similar among Indian Asians and European Caucasians: frequency 46.2 versus 45.0%, respectively (P = 0.44); effect 0.05 (95% CI 0.01-0.08) versus 0.05 (0.03-0.07 mmol/l), respectively, higher glucose per allele copy (P = 0.84). SNP rs2166706 was associated with type 2 diabetes in Indian Asians (odds ratio 1.21 [95% CI 1.06-1.38] per copy of risk allele; P = 0.006). SNPs at the GCK, GCKR, and G6PC2 loci were also associated with glucose among Indian Asians. Risk allele frequencies of rs1260326 (GCKR) and rs560887 (G6PC2) were higher among Indian Asians compared with European Caucasians. CONCLUSIONS Common genetic variation near MTNR1B influences blood glucose and risk of type 2 diabetes in Indian Asians. Genetic variation at the MTNR1B, GCK, GCKR, and G6PC2 loci may contribute to abnormal glucose metabolism and related metabolic disturbances among Indian Asians.
Collapse
Affiliation(s)
- John C. Chambers
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
| | - Weihua Zhang
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
| | - Delilah Zabaneh
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
| | - Joban Sehmi
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Piyush Jain
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism and Oxford National Institute for Health Research, Biomedical Research Centre, Oxford, U.K
| | - Philippe Froguel
- Section of Genomic Medicine, Imperial College London, London, U.K., and the Centre National de la Recherche Scientifique, 8090-Institute of Biology, Pasteur Institute, Lille, France
- UMR 8090-Institute of Biology, Pasteur Institute, Lille, France
| | - Aimo Ruokonen
- Department of Clinical Sciences/Clinical Chemistry, University Hospital Oulu, Oulu, Finland
| | - David Balding
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
- Institute of Health Sciences and Biocenter Oulu, University of Oulu, Oulu, Finland, and Department of Child and Adolescent Health, National Institute of Health and Welfare, Helsinki, Finland
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Paul Elliott
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
| | - Jaspal S. Kooner
- National Heart and Lung Institute, Imperial College London, London, U.K
| |
Collapse
|
268
|
vanderLeest HT, Vansteensel MJ, Duindam H, Michel S, Meijer JH. PHASE OF THE ELECTRICAL ACTIVITY RHYTHM IN THE SCN IN VITRO NOT INFLUENCED BY PREPARATION TIME. Chronobiol Int 2009; 26:1075-89. [DOI: 10.3109/07420520903227746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
269
|
Wisor JP, Jiang P, Striz M, O'Hara BF. Effects of ramelteon and triazolam in a mouse genetic model of early morning awakenings. Brain Res 2009; 1296:46-55. [DOI: 10.1016/j.brainres.2009.07.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/13/2009] [Accepted: 07/25/2009] [Indexed: 11/16/2022]
|
270
|
Unfried C, Ansari N, Yasuo S, Korf HW, von Gall C. Impact of melatonin and molecular clockwork components on the expression of thyrotropin beta-chain (Tshb) and the Tsh receptor in the mouse pars tuberalis. Endocrinology 2009; 150:4653-62. [PMID: 19589858 DOI: 10.1210/en.2009-0609] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoperiodic regulation of reproduction in birds and mammals involves thyrotropin beta-chain (TSHb), which is secreted from the pars tuberalis (PT) and controls the expression of deiodinase type 2 and 3 in the ependymal cell layer of the infundibular recess (EC) via TSH receptors (TSHRs). To analyze the impact of melatonin and the molecular clockwork on the expression of Tshb and Tshr, we investigated melatonin-proficient C3H wild-type (WT), melatonin receptor 1-deficient (MT1-/-) or clockprotein PERIOD1-deficient (mPER1-/-) mice. Expression of Tshb and TSHb immunoreactivity in PT were low during day and high during the night in WT, high during the day and low during the night in mPER1-deficient, and equally high during the day and night in MT1-deficient mice. Melatonin injections into WT acutely suppressed Tshb expression. Transcription assays showed that the 5' upstream region of the Tshb gene could be controlled by clockproteins. Tshr levels in PT were low during the day and high during the night in WT and mPER1-deficient mice and equally low in MT1-deficient mice. Tshr expression in the EC did not show a day/night variation. Melatonin injections into WT acutely induced Tshr expression in PT but not in EC. TSH stimulation of hypothalamic slice cultures of WT induced phosphorylated cAMP response element-binding protein in PT and EC and deiodinase type 2 in the EC. Our data suggest that Tshb expression in PT is controlled by melatonin and the molecular clockwork and that melatonin activates Tshr expression in PT but not in EC. They also confirm the functional importance of TSHR in the PT and EC.
Collapse
Affiliation(s)
- Claudia Unfried
- Emmy Noether-Nachwuchsgruppe, Institut für Anatomie II, Goethe-Universität, D-60590 Frankfurt/M, Germany
| | | | | | | | | |
Collapse
|
271
|
Nishiyama K, Shintani Y, Hirai K, Yoshikubo SI. Molecular cloning and pharmacological characterization of monkey MT1 and MT2 melatonin receptors showing high affinity for the agonist ramelteon. J Pharmacol Exp Ther 2009; 330:855-63. [PMID: 19556449 DOI: 10.1124/jpet.109.155283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin receptor agonists such as melatonin and ramelteon [(S)-N-[2-(1,6,7,8-tetrahydro-2H-indeno-[5,4-b]furan-8-yl)ethyl]-propionamide; TAK-375] have sleep-promoting effects in humans. In preclinical models, these effects are more similar to those observed in monkeys than in other species. However, in contrast to the human melatonin receptors, the pharmacological characteristics of the monkey melatonin receptors have yet to be elucidated. In this study, we cloned the cynomolgus monkey MT(1) and MT(2) melatonin receptors based on rhesus monkey genome sequences and then characterized the monkey melatonin receptors and compared their pharmacological properties with those of the human homologs. The overall amino acid sequences of the monkey MT(1) and MT(2) melatonin receptors showed high homology to the human MT(1) (95%) and MT(2) (96%) receptors, respectively. Saturation binding experiments with 2-[(125)I]iodomelatonin revealed that the dissociation constants (K(d)) for the monkey MT(1) and MT(2) melatonin receptors were 19.9 and 70.4 pM, respectively. In ligand competition assays using 2-[(125)I]iodomelatonin, ramelteon displayed approximately 3- to 7-fold higher affinities than melatonin for the recombinant monkey MT(1) and MT(2) melatonin receptors and monkey suprachiasmatic nucleus membranes. This higher affinity of ramelteon compared with melatonin has also been observed in human melatonin receptors. Furthermore, ramelteon inhibited pituitary adenylate cyclase-activating polypeptide-27-stimulated cAMP production with higher potency than melatonin. In conclusion, this information will help us to understand the pharmacological effects of melatonin receptor agonists in monkeys.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Cyclic AMP/biosynthesis
- DNA/biosynthesis
- DNA/genetics
- Female
- Indenes/metabolism
- Macaca fascicularis
- Male
- Melatonin/pharmacology
- Molecular Sequence Data
- RNA/biosynthesis
- RNA/genetics
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/drug effects
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/drug effects
- Receptor, Melatonin, MT2/genetics
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sleep/drug effects
Collapse
Affiliation(s)
- Keiji Nishiyama
- Pharmacology Research Laboratory, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | | | | | | |
Collapse
|
272
|
Baba K, Pozdeyev N, Mazzoni F, Contreras-Alcantara S, Liu C, Kasamatsu M, Martinez-Merlos T, Strettoi E, Iuvone PM, Tosini G. Melatonin modulates visual function and cell viability in the mouse retina via the MT1 melatonin receptor. Proc Natl Acad Sci U S A 2009; 106:15043-8. [PMID: 19706469 PMCID: PMC2736407 DOI: 10.1073/pnas.0904400106] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Indexed: 11/18/2022] Open
Abstract
A clear demonstration of the role of melatonin and its receptors in specific retinal functions is lacking. The present study investigated the distribution of MT1 receptors within the retina, and the scotopic and photopic electroretinograms (ERG) and retinal morphology in wild-type (WT) and MT1 receptor-deficient mice. MT1 receptor transcripts were localized in photoreceptor cells and in some inner retinal neurons. A diurnal rhythm in the dark-adapted ERG responses was observed in WT mice, with higher a- and b-wave amplitudes at night, but this rhythm was absent in mice lacking MT1 receptors. Injection of melatonin during the day decreased the scotopic response threshold and the amplitude of the a- and b-waves in the WT mice, but not in the MT1(-/-) mice. The effects of MT1 receptor deficiency on retinal morphology was investigated at three different ages (3, 12, and 18 months). No differences between MT1(-/-) and WT mice were observed at 3 months of age, whereas at 12 months MT1(-/-) mice have a significant reduction in the number of photoreceptor nuclei in the outer nuclear layer compared with WT controls. No differences were observed in the number of cells in inner nuclear layer or in ganglion cells at 12 months of age. At 18 months, the loss of photoreceptor nuclei in the outer nuclear layer was further accentuated and the number of ganglion cells was also significantly lower than that of controls. These data demonstrate the functional significance of melatonin and MT1 receptors in the mammalian retina and create the basis for future studies on the therapeutic use of melatonin in retinal degeneration.
Collapse
MESH Headings
- Adaptation, Biological
- Aging
- Animals
- Cell Survival
- Darkness
- Electroretinography
- Gene Expression Regulation
- Melatonin/metabolism
- Mice
- Mice, Knockout
- RNA, Messenger/genetics
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Retina/cytology
- Retina/metabolism
- Retinal Degeneration/metabolism
- Retinal Degeneration/therapy
- Vision, Ocular
Collapse
Affiliation(s)
- Kenkichi Baba
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | - Nikita Pozdeyev
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Francesca Mazzoni
- Istituto di Neuroscience, Consiglio Nazionale delle Ricerche, Pisa 56100, Italy
| | | | - Cuimei Liu
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | - Manami Kasamatsu
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | | | - Enrica Strettoi
- Istituto di Neuroscience, Consiglio Nazionale delle Ricerche, Pisa 56100, Italy
| | - P. Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Gianluca Tosini
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310
| |
Collapse
|
273
|
Abstract
Hypertension is a major risk factor for cardiovascular disease and death. The "silent" rise of blood pressure that occurs over time is largely asymptomatic. However, its impact is deafening-causing and exacerbating cardiovascular disease, end-organ damage, and death. The present article addresses recent observations from human and animal studies that provide new insights into how the circadian clock regulates blood pressure, contributes to hypertension, and ultimately evolves vascular disease. Further, the molecular components of the circadian clock and their relationship with locomotor activity, metabolic control, fluid balance, and vascular resistance are discussed with an emphasis on how these novel, circadian clock-controlled mechanisms contribute to hypertension.
Collapse
Affiliation(s)
- R Daniel Rudic
- Department of Pharmacology and Toxicology, 1120 15th St., Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
274
|
Pandi-Perumal SR, Moscovitch A, Srinivasan V, Spence DW, Cardinali DP, Brown GM. Bidirectional communication between sleep and circadian rhythms and its implications for depression: Lessons from agomelatine. Prog Neurobiol 2009; 88:264-71. [DOI: 10.1016/j.pneurobio.2009.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/09/2009] [Accepted: 04/29/2009] [Indexed: 02/04/2023]
|
275
|
Abstract
Melatonin is a neurohormone that is believed to be involved in a wide range of physiological functions. In humans, appropriate clinical trials confirm the efficacy of melatonin or melatoninergic agonists for the MT1 and MT2 receptor subtypes in circadian rhythm sleep disorders only. Nevertheless, preclinical animal model studies relevant to human pathologies involving validated reference compounds lead to other therapeutic possibilities. Among these is a recently developed treatment concept for depression, which has been validated by the clinical efficacy of agomelatine, an agent having both MT1 and MT2 agonist and 5-HT2C antagonist activity. A third melatonin binding site has been purified and characterized as the enzyme quinone reductase 2 (QR2). The physiological role of this enzyme is not yet known. Recent results obtained by different groups suggest: (1) that inhibition of QR2 may lead to "protective" effects and (2) that over-expression of this enzyme may have deleterious effects. The inhibitory effect of melatonin on QR2 observed in vitro may explain the protective effects reported for melatonin in different animal models, such as cardiac or renal ischemia-effects that have been attributed to the controversial antioxidant properties of the hormone. The development of specific ligands for each of these melatonin binding sites is necessary to link physiological and/or therapeutic effects.
Collapse
Affiliation(s)
- Philippe Delagrange
- Département des Sciences Expérimentales, Institut de Recherches Servier, Suresnes, France.
| | | |
Collapse
|
276
|
Maldonado MD, Reiter RJ, Pérez-San-Gregorio MA. Melatonin as a potential therapeutic agent in psychiatric illness. Hum Psychopharmacol 2009; 24:391-400. [PMID: 19551767 DOI: 10.1002/hup.1032] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this review was to summarize the potential use of melatonin in the treatment of mental disorders, specifically bipolar disorders, depression, and schizophrenia. To date, melatonin has been most commonly used in psychiatry because of its hypnotic, rhythm resynchronizing, and antioxidant actions. Here, we examine other properties of the melatonin including its anti-inflammatory, antinociceptive, anxiolytic, and drug detoxification actions as well as its protective effects against neural loss. The brain is an intricate sensory and motor organ which receives information from both the external and internal environments. It transduces information into complex chemical and electrical signals which are transmitted throughout the central nervous system (CNS) and the organism. The pathogenesis of mental disorders remains ambiguous and neuroinflammation has been proposed as a causative agent. We consider the potential contributions of melatonin as therapeutic agent in CNS and during neuroinflammation in mental disorders.
Collapse
Affiliation(s)
- Maria D Maldonado
- Department of Medical Biochemistry and Molecular Biology, University of Seville Medical School, Seville, Spain.
| | | | | |
Collapse
|
277
|
|
278
|
Abstract
Ramelteon is a tricyclic synthetic analog of melatonin that acts specifically on MT(1) and MT(2) melatonin receptors. Ramelteon's half-life is longer than that of melatonin, being metabolized in the body to four main metabolites, M-I, M-II, M-III, and M-IV. M-II has an affinity to MT(1) and MT(2) of about one-tenth of the parent compound, but its concentration in the circulation exceeds that of ramelteon by more than an order of magnitude. Ramelteon is effective in decreasing latency to persistent sleep and increasing total sleep time in freely moving monkeys. A number of clinical studies have been undertaken to study the efficacy of ramelteon in subjects with chronic insomnia. In almost all of these studies, ramelteon, in various doses of 4, 8, or 16 mg most commonly, significantly reduced sleep latency and increased sleep duration. Its primary action in sleep promotion is not a generalized gamma-aminobutyric (GABA)-ergic central nervous system depression, but rather it acts as a melatonergic agonist in the suprachiasmatic nucleus (and at other central nervous system sites), from where downstream processes, including GABA-ergic effects, are controlled via the hypothalamic sleep switch. Unlike other commonly prescribed hypnotic drugs, ramelteon is not associated with next morning hangover effects or reductions in alertness, nor has it been shown to cause withdrawal symptoms. The adverse symptoms reported with ramelteon are mild. All long-term investigations that have been carried out support the conclusion that ramelteon is a well tolerated and effective drug for the treatment of insomnia.
Collapse
|
279
|
Srinivasan V, Pandi-Perumal SR, Trahkt I, Spence DW, Poeggeler B, Hardeland R, Cardinali DP. Melatonin and melatonergic drugs on sleep: possible mechanisms of action. Int J Neurosci 2009; 119:821-46. [PMID: 19326288 DOI: 10.1080/00207450802328607] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pineal melatonin is synthesized and secreted in close association with the light/dark cycle. The temporal relationship between the nocturnal rise in melatonin secretion and the "opening of the sleep gate" (i.e., the increase in sleep propensity at the beginning of the night), coupled with the sleep-promoting effects of exogenous melatonin, suggest that melatonin is involved in the regulation of sleep. The sleep-promoting and sleep/wake rhythm regulating effects of melatonin are attributed to its action on MT(1) and MT(2) melatonin receptors present in the suprachiasmatic nucleus (SCN) of the hypothalamus. Animal experiments carried out in rats, cats, and monkeys have revealed that melatonin has the ability to reduce sleep onset time and increase sleep duration. However, clinical studies reveal inconsistent findings, with some of them reporting beneficial effects of melatonin on sleep, whereas in others only marginal effects are documented. Recently a prolonged-release 2-mg melatonin preparation (Circadin(TM)) was approved by the European Medicines Agency as a monotherapy for the short-term treatment of primary insomnia in patients who are aged 55 or above. Several melatonin derivatives have been shown to increase nonrapid eye movement (NREM) in rats and are of potential pharmacological importance. So far only one of these melatonin derivatives, ramelteon, has received approval from the U.S. Food and Drug Administration to be used as a sleep promoter. Ramelteon is a novel MT(1) and MT(2) melatonergic agonist that has specific effects on melatonin receptors in the SCN and is effective in promoting sleep in experimental animals such as cats and monkeys. In clinical trials, ramelteon reduced sleep onset latency and promoted sleep in patients with chronic insomnia, including an older adult population. Both melatonin and ramelteon promote sleep by regulating the sleep/wake rhythm through their actions on melatonin receptors in the SCN, a unique mechanism of action not shared by any other hypnotics. Moreover, unlike benzodiazepines, ramelteon causes neither withdrawal effects nor dependence. Agomelatine, another novel melatonergic antidepressant in its final phase of approval for clinical use, has been shown to improve sleep in depressed patients and to have an antidepressant efficacy that is partially attributed to its effects on sleep-regulating mechanisms.
Collapse
Affiliation(s)
- Venkataramanujan Srinivasan
- SRM Medical College Hospital and Research Centre, SRM University, Kattankulathoor, Kancheepuram District, India
| | | | | | | | | | | | | |
Collapse
|
280
|
Wang-Weigand S, McCue M, Ogrinc F, Mini L. Effects of ramelteon 8 mg on objective sleep latency in adults with chronic insomnia on nights 1 and 2: pooled analysis. Curr Med Res Opin 2009; 25:1209-13. [PMID: 19327100 DOI: 10.1185/03007990902858527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Ramelteon is an MT(1)/MT(2) melatonin receptor agonist indicated for the treatment of insomnia characterized by difficulty with sleep onset. In previous clinical studies, ramelteon reduced latency to persistent sleep (LPS) in subjects with chronic insomnia. The goal of the current analysis was to determine the average reduction in LPS and overall adverse event profile for subjects taking ramelteon 8 mg. RESEARCH DESIGN AND METHODS This pooled analysis examined four randomized, double-blind, placebo-controlled clinical trials of ramelteon in subjects with chronic insomnia. The analysis included adults (age 18-83 years) with chronic insomnia who took ramelteon 8 mg or placebo. The primary endpoint of each trial was mean LPS, measured by polysomnography (PSG) on nights 1 and 2. Adverse events were collected for all subjects for the duration of each trial. RESULTS Efficacy data were available for 566 subjects who took ramelteon 8 mg (mean age 46.7 years) and 556 subjects who took placebo (mean age 47.8 years). Mean LPS at baseline was 66.6 min for the placebo group and 66.9 min for the ramelteon group. At nights 1 and 2, mean LPS for the ramelteon 8 mg group (30.2 min) was significantly less than the mean LPS for the placebo group (43.3 min). The least squares mean difference from placebo was -13.1 min (p < 0.001). Headache (8.9% ramelteon 8 mg, 8.8% placebo) and somnolence (3.5% ramelteon 8 mg, 0.7% placebo) were the most common adverse events. CONCLUSIONS Ramelteon 8 mg, on average, reduced LPS by approximately 13 min more than placebo on nights 1 and 2 of treatment in adults with chronic insomnia. Ramelteon was well tolerated with a low incidence of adverse events. This mean reduction in LPS versus placebo is similar to what has been reported for other classes of insomnia medications. However, these results reflect nights 1 and 2 of treatment and may not be representative of longer treatments.
Collapse
|
281
|
Mayer G, Wang-Weigand S, Roth-Schechter B, Lehmann R, Staner C, Partinen M. Efficacy and safety of 6-month nightly ramelteon administration in adults with chronic primary insomnia. Sleep 2009; 32:351-60. [PMID: 19294955 DOI: 10.1093/sleep/32.3.351] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Long-duration (> or = 6 months) polysomnographic studies of insomnia medications are lacking. This study evaluated the long-term efficacy of ramelteon, a selective MT1/MT2 melatonin-receptor agonist used for insomnia treatment. DESIGN Six-month, randomized, double-blind, placebo-controlled study. SETTING Forty-six investigative sites in the United States, Europe, Russia, and Australia. PARTICIPANTS Four hundred fifty-one adults (age > or = 18 years) with chronic primary insomnia. INTERVENTIONS Ramelteon, 8 mg, or placebo 30 minutes before bedtime nightly for 6 months. MEASUREMENTS Sleep was evaluated by polysomnography and morning questionnaires on the first 2 nights of Week 1; the last 2 nights of Months 1, 3, 5, and 6; and Nights 1 and 2 of the placebo run-out. Next-morning residual effects as well as adverse effects and vital signs were recorded at each visit. Rebound insomnia and withdrawal effects were evaluated during placebo run-out. RESULTS Over the 6 months of treatment, ramelteon consistently reduced latency to persistent sleep compared with baseline and with placebo; significant decreases were observed at Week 1 and Months 1, 3, 5, and 6 (P < 0.05). Ramelteon significantly reduced subjective sleep latency relative to placebo at Week 1, Month 1, and Month 5 (P < 0.05), with reductions nearing statistical significance at Months 3 and 6 (P < or = 0.08). No significant next-morning residual effects were detected during ramelteon treatment. No withdrawal symptoms or rebound insomnia were detected after ramelteon discontinuation. Most adverse events were mild or moderate in severity. CONCLUSIONS In adults with chronic insomnia, long-term ramelteon treatment consistently reduced sleep onset, with no next-morning residual effects or rebound insomnia or withdrawal symptoms upon discontinuation.
Collapse
|
282
|
Gorfine T, Zisapel N. Late evening brain activation patterns and their relation to the internal biological time, melatonin, and homeostatic sleep debt. Hum Brain Mapp 2009; 30:541-52. [PMID: 18095278 DOI: 10.1002/hbm.20525] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Sleep propensity increases sharply at night. Some evidence implicates the pineal hormone melatonin in this process. Using functional magnetic resonance imaging, brain activation during a visual search task was examined at 22:00 h (when endogenous melatonin levels normally increase). The relationships between brain activation, endogenous melatonin (measured in saliva), and self-reported fatigue were assessed. Finally, the effects of exogenous melatonin administered at 22:00 h were studied in a double blind, placebo-controlled crossover manner. We show that brain activation patterns as well as the response to exogenous melatonin significantly differ at night from those seen in afternoon hours. Thus, activation in the rostro-medial and lateral aspects of the occipital cortex and the thalamus diminished at 22:00 h. Activation in the right parietal cortex increased at night and correlated with individual fatigue levels, whereas exogenous melatonin given at 22:00 h reduced activation in this area. The right dorsolateral prefrontal cortex, an area considered to reflect homeostatic sleep debt, demonstrated increased activation at 22:00 h. Surprisingly, this increase correlated with endogenous melatonin. These results demonstrate and partially differentiate circadian effects (whether mediated by melatonin or not) and homeostatic sleep debt modulation of human brain activity associated with everyday fatigue at night.
Collapse
Affiliation(s)
- Tali Gorfine
- Department of Neurobiochemistry, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
283
|
Durieux S, Chanu A, Bochu C, Audinot V, Coumailleau S, Boutin JA, Delagrange P, Caignard DH, Bennejean C, Renard P, Lesieur D, Berthelot P, Yous S. Design and synthesis of 3-phenyltetrahydronaphthalenic derivatives as new selective MT2 melatoninergic ligands. Part II. Bioorg Med Chem 2009; 17:2963-74. [DOI: 10.1016/j.bmc.2009.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 12/15/2022]
|
284
|
Yasuo S, Yoshimura T, Ebihara S, Korf HW. Melatonin transmits photoperiodic signals through the MT1 melatonin receptor. J Neurosci 2009; 29:2885-9. [PMID: 19261884 PMCID: PMC6666200 DOI: 10.1523/jneurosci.0145-09.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/28/2009] [Accepted: 02/03/2009] [Indexed: 12/15/2022] Open
Abstract
Melatonin transmits photoperiodic signals that regulate reproduction. Two melatonin receptors (MT1 and MT2) have been cloned in mammals and additional melatonin binding sites suggested, but the receptor that mediates the effects of melatonin on the photoperiodic gonadal response has not yet been identified. We therefore investigated in mice whether and how targeted disruption of MT1, MT2, or both receptor types affects the expression level of two key genes for the photoperiodic gonadal regulation, type 2 and 3 deiodinase (Dio2 and Dio3, respectively). These are expressed in the ependymal cell layer lining the infundibular recess of the third ventricle and regulated by thyrotropin produced in the pars tuberalis. In wild-type C3H mice, Dio2 expression was constantly low, and no photoperiodic changes were observed, whereas Dio3 expression was upregulated under short-day conditions. In C3H with targeted disruption of MT1 and MT1/MT2, Dio2 expression was constitutively upregulated, Dio3 expression was constitutively downregulated, and the photoperiodic effect on Dio3 expression was abolished. Under short-day conditions, C3H with targeted disruption of MT2 displayed similar expression levels of Dio2 and Dio3 as wild-type animals, but they responded to long-day condition with a stronger suppression of Dio3 than wild-type mice. Melatonin injections into wild-type C57BL mice suppressed Dio2 expression and induced Dio3 expression under long-day conditions. These effects were abolished in C57BL mice with targeted disruption of MT1. All data suggest that the melatonin signal that transmits photoperiodic information to the hypothalamo-hypophysial axis acts on the MT1 receptor.
Collapse
MESH Headings
- Animals
- In Situ Hybridization
- Iodide Peroxidase/biosynthesis
- Iodide Peroxidase/genetics
- Male
- Melatonin/pharmacology
- Melatonin/physiology
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Photoperiod
- Receptor, Melatonin, MT1/drug effects
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/physiology
- Receptor, Melatonin, MT2/drug effects
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/physiology
- Signal Transduction/physiology
- Iodothyronine Deiodinase Type II
Collapse
Affiliation(s)
- Shinobu Yasuo
- Dr. Senckenbergische Anatomie, Institute of Anatomie II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Takashi Yoshimura
- Laboratory of Animal Physiology
- Avian Bioscience Research Center, and
| | - Shizufumi Ebihara
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Horst-Werner Korf
- Dr. Senckenbergische Anatomie, Institute of Anatomie II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
285
|
Abstract
Melatonin acts both as a hormone of the pineal gland and as a local regulator molecule in various tissues. Quantities of total tissue melatonin exceed those released from the pineal. With regard to this dual role, to the orchestrating, systemic action on various target tissues, melatonin is highly pleiotropic. Numerous secondary effects result from the control of the circadian pacemaker and, in seasonal breeders, of the hypothalamic/pituitary hormonal axes. In mammals, various binding sites for melatonin have been identified, the membrane receptors MT(1) and MT(2), which are of utmost chronobiological importance, ROR and RZR isoforms as nuclear receptors from the retinoic acid receptor superfamily, quinone reductase 2, calmodulin, calreticulin, and mitochondrial binding sites. The G protein-coupled receptors (GPCRs) MT(1) and MT(2) are capable of parallel or alternate signaling via different Galpha subforms, in particular, Galpha(i) (2/) (3) and Galpha(q), and via Gbetagamma, as well. Multiple signaling can lead to the activation of different cascades and/or ion channels. Melatonin frequently decreases cAMP, but also activates phospholipase C and protein kinase C, acts via the MAP kinase and PI3 kinase/Akt pathways, modulates large conductance Ca(2+)-activated K(+) and voltage-gated Ca(2+) channels. MT(1) and MT(2) can form homo and heterodimers, and MT(1) interacts with other proteins in the plasma membrane, such as an orphan GPCR, GPR50, and the PDZ domain scaffolding protein MUPP1, effects which negatively or positively influence signaling capacity. Cross-talks between different signaling pathways, including influences of the membrane receptors on nuclear binding sites, are discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
286
|
Jarzynka MJ, Passey DK, Johnson DA, Konduru NV, Fitz NF, Radio NM, Rasenick M, Benloucif S, Melan MA, Witt-Enderby PA. Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. J Pineal Res 2009; 46:161-71. [PMID: 19175856 PMCID: PMC2707086 DOI: 10.1111/j.1600-079x.2008.00644.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MT1 melatonin receptors expressed in Chinese hamster ovary (CHO) cells remain sensitive to a melatonin re-challenge even following chronic melatonin exposure when microtubules are depolymerized in the cell, an exposure that normally results in MT1 receptor desensitization. We extended our findings to MT2 melatonin receptors using both in vitro and in vivo approaches. Using CHO cells expressing human MT2 melatonin receptors, microtubule depolymerization prevents the loss in the number of high potency states of the receptor when compared to melatonin-treated cells. In addition, microtubule depolymerization increases melatonin-induced PKC activity but not PI hydrolysis via Gi proteins similar to that shown for MT1Rs. Furthermore, microtubule depolymerization in MT2-CHO cells enhances the exchange of GTP on Gi-proteins using a photoaffinity analog of GTP. To test whether microtubules are capable of modulating melatonin-induced phase-shifts, microtubules are depolymerized specifically within the suprachiasmatic nucleus of the hypothalamus (SCN) of the Long Evans rat and the efficacy of melatonin to phase shift their circadian activity rhythms was assessed and compared to animals with intact SCN microtubules. We find that microtubule depolymerization in the SCN using either Colcemid or nocodazole enhances the efficacy of 10 pm melatonin to phase-shift the activity rhythms of the Long Evans rat. No enhancement occurs in the presence of beta-lumicolchicine, the inactive analog of Colcemid. Taken together, these data suggest that microtubule dynamics can modulate melatonin-induced phase shifts of circadian activity rhythms which may explain, in part, why circadian disturbances occur in individuals afflicted with diseases associated with microtubule disturbances.
Collapse
MESH Headings
- Animals
- CHO Cells
- Central Nervous System Depressants/pharmacology
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cricetinae
- Cricetulus
- Demecolcine/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Male
- Melatonin/metabolism
- Melatonin/pharmacology
- Microtubules/genetics
- Microtubules/metabolism
- Nocodazole/pharmacology
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Rats
- Rats, Long-Evans
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Suprachiasmatic Nucleus/metabolism
- Tubulin Modulators/pharmacology
Collapse
Affiliation(s)
- Michael J. Jarzynka
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Duquesne University, Pittsburgh, PA 15282
| | - Deepshikha K. Passey
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Duquesne University, Pittsburgh, PA 15282
| | - David A. Johnson
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Duquesne University, Pittsburgh, PA 15282
| | - Nagarjun V. Konduru
- Department of Environmental and Occupational Health, University of Pittsburgh
| | - Nicholas F. Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh
| | | | - Mark Rasenick
- Division of Molecular Diagnostics, Dept of Pathology, University of Pittsburgh Medical Center
| | | | | | - Paula A. Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
287
|
Berra B, Rizzo AM. Melatonin: circadian rhythm regulator, chronobiotic, antioxidant and beyond. Clin Dermatol 2009; 27:202-9. [DOI: 10.1016/j.clindermatol.2008.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
288
|
Mühlbauer E, Gross E, Labucay K, Wolgast S, Peschke E. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur J Pharmacol 2009; 606:61-71. [DOI: 10.1016/j.ejphar.2009.01.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/08/2009] [Accepted: 01/19/2009] [Indexed: 12/15/2022]
|
289
|
Pathophysiology of depression: role of sleep and the melatonergic system. Psychiatry Res 2009; 165:201-14. [PMID: 19181389 DOI: 10.1016/j.psychres.2007.11.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/13/2007] [Accepted: 11/12/2007] [Indexed: 11/23/2022]
Abstract
Profound disturbances in sleep architecture occur in major depressive disorders (MDD) and in bipolar affective disorders. Reduction in slow wave sleep, decreased latency of rapid eye movement (REM) sleep and abnormalities in the timing of REM/non-REM sleep cycles have all been documented in patients with MDD. It is thus evident that an understanding of the basic mechanisms of sleep regulation is essential for an analysis of the pathophysiology of depressive disorders. The suprachiasmatic nucleus (SCN), which functions as the body's master circadian clock, plays a major role in the regulation of the sleep/wakefulness rhythm and interacts actively with the homeostatic processes that regulate sleep. The control of melatonin secretion by the SCN, the occurrence of high concentrations of melatonin receptors in the SCN, and the suppression of electrical activity in the SCN by melatonin all underscore the major influence which this neurohormone has in regulating the sleep/wake cycle. The transition from wakefulness to high sleep propensity is associated with the nocturnal rise of endogenous melatonin secretion. Various lines of evidence show that depressed patients exhibit disturbances in both the amplitude and shape of the melatonin secretion rhythm and that melatonin can improve the quality of sleep in these patients. The choice of a suitable antidepressant that improves sleep quality is thus important while treating a depressive disorder. The novel antidepressant agomelatine, which combines the properties of a 5-HT(2C) antagonist and a melatonergic MT(1)/MT(2) receptor agonist, has been found very effective for resetting the disturbed sleep/wake cycle and in improving the clinical status of MDD. Agomelatine has also been found useful in treating sleep problems and improving the clinical status of patients suffering from seasonal affective disorder.
Collapse
|
290
|
Rajaratnam SM, Polymeropoulos MH, Fisher DM, Roth T, Scott C, Birznieks G, Klerman EB. Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomised controlled multicentre trials. Lancet 2009; 373:482-91. [PMID: 19054552 DOI: 10.1016/s0140-6736(08)61812-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Circadian rhythm sleep disorders are common causes of insomnia for millions of individuals. We did a phase II study to establish efficacy and physiological mechanism, and a phase III study to confirm efficacy of the melatonin agonist tasimelteon (VEC-162) for treatment of transient insomnia associated with shifted sleep and wake time. METHODS We undertook phase II and phase III randomised, double-blind, placebo-controlled, parallel-group studies. In a phase II study, 39 healthy individuals from two US sites were randomly assigned to tasimelteon (10 [n=9], 20 [n=8], 50 [n=7], or 100 mg [n=7]) or placebo (n=8). We monitored individuals for 7 nights: 3 at baseline, 3 after a 5-h advance of sleep-wake schedule with treatment before sleep, and 1 after treatment; we measured plasma melatonin concentration for circadian phase assessment. In a phase III study, 411 healthy individuals from 19 US sites, who had transient insomnia induced in a sleep clinic by a 5-h advance of the sleep-wake schedule and a first-night effect in a sleep clinic, were given tasimelteon (20 [n=100], 50 [n=102], or 100 mg [n=106]) or placebo (n=103) 30 min before bedtime. Prespecified primary efficacy outcomes were polysomnographic sleep efficiency (phase II study), latency to persistent sleep (phase III study), and circadian phase shifting (phase II study). Analysis was by intention to treat. Safety was assessed in both studies. These trials are registered with ClinicalTrials.gov, numbers NCT00490945 and NCT00291187. FINDINGS In the phase II study, tasimelteon reduced sleep latency and increased sleep efficiency compared with placebo. The shift in plasma melatonin rhythm to an earlier hour was dose dependent. In the phase III study, tasimelteon improved sleep latency, sleep efficiency, and wake after sleep onset (ie, sleep maintenance). The frequency of adverse events was similar between tasimelteon and placebo. INTERPRETATION After an abrupt advance in sleep time, tasimelteon improved sleep initiation and maintenance concurrently with a shift in endogenous circadian rhythms. Tasimelteon may have therapeutic potential for transient insomnia in circadian rhythm sleep disorders.
Collapse
|
291
|
Zlotos DP, Attia MI, Julius J, Sethi S, Witt-Enderby PA. 2-[(2,3-Dihydro-1H-indol-1-yl)methyl]melatonin Analogues: A Novel Class of MT2-Selective Melatonin Receptor Antagonists. J Med Chem 2009; 52:826-33. [DOI: 10.1021/jm800974d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Darius P. Zlotos
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| | - Mohamed I. Attia
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| | - Justin Julius
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| | - Shalini Sethi
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| | - Paula A. Witt-Enderby
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| |
Collapse
|
292
|
Paredes SD, Barriga C, Reiter RJ, Rodríguez AB. Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-wake Cycle and Immune Function: Streptopelia Risoria as a Model. Int J Tryptophan Res 2009; 2:23-36. [PMID: 22084580 PMCID: PMC3195230 DOI: 10.4137/ijtr.s1129] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the present review we summarize the relationship between the amino acid, tryptophan, the neurotransmitter, serotonin, and the indole, melatonin, with the rhythms of sleep/wake and the immune response along with the possible connections between the alterations in these rhythms due to aging and the so-called “serotonin and melatonin deficiency state.” The decrease associated with aging of the brain and circulating levels of serotonin and melatonin seemingly contributes to the alterations of both the sleep/wake cycle and the immune response that typically accompany old age. The supplemental administration of tryptophan, e.g. the inclusion of tryptophan-enriched food in the diet, might help to remediate these age-related alterations due to its capacity of raise the serotonin and melatonin levels in the brain and blood. Herein, we also summarize a set of studies related to the potential role that tryptophan, and its derived product melatonin, may play in the restoration of the aged circadian rhythms of sleep/wake and immune response, taking the ringdove (Streptopeliarisoria) as a suitable model.
Collapse
Affiliation(s)
- Sergio D Paredes
- Department of Physiology (Neuroimmunophysiology Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
293
|
Hardeland R. New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists. Neuropsychiatr Dis Treat 2009; 5:341-54. [PMID: 19557144 PMCID: PMC2699659 DOI: 10.2147/ndt.s4234] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Indexed: 12/12/2022] Open
Abstract
Hypnotic effects of melatonin and melatoninergic drugs are mediated via MT(1) and MT(2) receptors, especially those in the circadian pacemaker, the suprachiasmatic nucleus, which acts on the hypothalamic sleep switch. Therefore, they differ fundamentally from GABAergic hypnotics. Melatoninergic agonists primarily favor sleep initiation and reset the circadian clock to phases allowing persistent sleep, as required in circadian rhythm sleep disorders. A major obstacle for the use of melatonin to support sleep maintenance in primary insomnia results from its short half-life in the circulation. Solutions to this problem have been sought by developing prolonged-release formulations of the natural hormone, or melatoninergic drugs of longer half-life, such as ramelteon, tasimelteon and agomelatine. With all these drugs, improvements of sleep are statistically demonstrable, but remain limited, especially in primary chronic insomnia, so that GABAergic drugs may be indicated. Melatoninergic agonists do not cause next-day hangover and withdrawal effects, or dependence. They do not induce behavioral changes, as sometimes observed with z-drugs. Despite otherwise good tolerability, the use of melatoninergic drugs in children, adolescents, and during pregnancy has been a matter of concern, and should be avoided in autoimmune diseases and Parkinsonism. Problems and limits of melatoninergic hypnotics are compared.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| |
Collapse
|
294
|
Imbesi M, Arslan AD, Yildiz S, Sharma R, Gavin D, Tun N, Manev H, Uz T. The melatonin receptor MT1 is required for the differential regulatory actions of melatonin on neuronal 'clock' gene expression in striatal neurons in vitro. J Pineal Res 2009; 46:87-94. [PMID: 18798788 DOI: 10.1111/j.1600-079x.2008.00634.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Through inhibitory G protein-coupled melatonin receptors, melatonin regulates intracellular signaling systems and also the transcriptional activity of certain genes. Clock genes are proposed as regulatory factors in forming dopamine-related behaviors and mood and melatonin has the ability to regulate these processes. Melatonin-mediated changes in clock gene expression have been reported in brain regions, including the striatum, that are crucial for the development of dopaminergic behaviors and mood. However, it is not known whether melatonin receptors present in striatum mediate these effects. Therefore, we investigated the role of the melatonin/melatonin receptor system on clock gene expression using a model of primary neuronal cultures prepared from striatum. We found that melatonin at the receptor affinity range (i.e., nm) affects the expression of the clock genes mPer1, mClock, mBmal1 and mNPAS2 (neuronal PAS domain protein 2) differentially in a pertussis toxin-sensitive manner: a decrease in Per1 and Clock, an increase in NPAS2 and no change in Bmal1 expression. Furthermore, mutating MT1 melatonin receptor (i.e., MT1 knockouts, MT1(-/-)) reversed melatonin-induced changes, indicating the involvement of MT1 receptor in the regulatory action of melatonin on neuronal clock gene expression. Therefore, by controlling clock gene expression we propose melatonin receptors (i.e., MT1) as novel therapeutic targets for the pathobiologies of dopamine-related behaviors and mood.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- CLOCK Proteins/biosynthesis
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Cells, Cultured
- Corpus Striatum/cytology
- Corpus Striatum/metabolism
- Corpus Striatum/physiology
- Cyclic AMP/metabolism
- Female
- Male
- Melatonin/metabolism
- Melatonin/physiology
- Mice
- Mice, Inbred C3H
- Mice, Inbred ICR
- Mice, Knockout
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Neurons/physiology
- Period Circadian Proteins/biosynthesis
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- Pertussis Toxin/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Melatonin, MT1/biosynthesis
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/biosynthesis
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Marta Imbesi
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
295
|
Zammit G, Schwartz H, Roth T, Wang-Weigand S, Sainati S, Zhang J. The effects of ramelteon in a first-night model of transient insomnia. Sleep Med 2009; 10:55-9. [DOI: 10.1016/j.sleep.2008.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 11/15/2022]
|
296
|
Miyamoto M. Pharmacology of ramelteon, a selective MT1/MT2 receptor agonist: a novel therapeutic drug for sleep disorders. CNS Neurosci Ther 2009; 15:32-51. [PMID: 19228178 PMCID: PMC2871175 DOI: 10.1111/j.1755-5949.2008.00066.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An estimated one-third of the general population is affected by insomnia, and this number is increasing due to more stressful working conditions and the progressive aging of society. However, current treatment of insomnia with hypnotics, gamma-aminobutyric acid A (GABA(A)) receptor modulators, induces various side effects, including cognitive impairment, motor disturbance, dependence, tolerance, hangover, and rebound insomnia. Ramelteon (Rozerem; Takeda Pharmaceutical Company Limited, Osaka, Japan) is an orally active, highly selective melatonin MT(1)/MT(2) receptor agonist. Unlike the sedative hypnotics that target GABA(A) receptor complexes, ramelteon is a chronohypnotic that acts on the melatonin MT(1) and MT(2) receptors, which are primarily located in the suprachiasmatic nucleus, the body's "master clock." As such, ramelteon possesses the first new therapeutic mechanism of action for a prescription insomnia medication in over three decades. Ramelteon has demonstrated sleep-promoting effects in clinical trials, and coupled with its favorable safety profile and lack of abuse potential or dependence, this chronohypnotic provides an important treatment option for insomnia.
Collapse
Affiliation(s)
- Masaomi Miyamoto
- Pharmaceutical Development Division, Takeda Pharmaceutical Company Limited, 4-1-1 Doshomachi, Chuo-ku, Osaka, Japan.
| |
Collapse
|
297
|
Yasuo S, von Gall C, Weaver DR, Korf HW. Rhythmic expression of clock genes in the ependymal cell layer of the third ventricle of rodents is independent of melatonin signaling. Eur J Neurosci 2008; 28:2443-50. [PMID: 19087172 DOI: 10.1111/j.1460-9568.2008.06541.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Reproductive physiology is regulated by the photoperiod in many mammals. Decoding of the photoperiod involves circadian clock mechanisms, although the molecular basis remains unclear. Recent studies have shown that the ependymal cell layer lining the infundibular recess of the third ventricle (EC) is a key structure for the photoperiodic gonadal response. The EC exhibits daylength-dependent changes in the expression of photoperiodic output genes, including the type 2 deiodinase gene (Dio2 ). Here we investigated whether clock genes (Per1 and Bmal1) and the albumin D-binding protein gene (Dbp) are expressed in the EC of Syrian hamsters, and whether their expression differs under long-day and short-day conditions. Expression of all three genes followed a diurnal rhythm; expression of Per1 and Dbp in the EC peaked around lights-off, and expression of Bmal1 peaked in the early light phase. The amplitude of Per1 and Dbp expression was higher in hamsters kept under long-day conditions than in those kept under short-day conditions. Notably, the expression of these genes was not modified by exogenous melatonin within 25 h after injection, whereas Dio2 expression was inhibited 19 h after injection. Targeted melatonin receptor (MT1, MT2, and both MT1 and MT2) disruption in melatonin-proficient C3H mice did not affect the rhythmic expression of Per1 in the EC. These data show the existence of a molecular clock in the rodent EC. In the hamster, this clock responds to long-term changes in the photoperiod, but is independent of acute melatonin signals. In mice, the EC clock is not affected by deletion of melatonin receptors.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Dr Senckenbergische Anatomie, Institut f. Anatomie II, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
298
|
Brown GM, Pandi-Perumal SR, Trakht I, Cardinali DP. Melatonin and its relevance to jet lag. Travel Med Infect Dis 2008; 7:69-81. [PMID: 19237140 DOI: 10.1016/j.tmaid.2008.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/15/2008] [Indexed: 12/11/2022]
Abstract
Jet lag is a disorder in which body rhythms are out of phase with the environment because of rapid travel across time zones. Although it often produces minor symptoms it can cause serious problems in those who need to make rapid critical decisions including airline pilots and business travelers. In this article the authors review basic knowledge underlying the body clock, the suprachiasmatic nucleus (SCN) of the hypothalamus, and the manner in which it regulates the sleep/wake cycle. The regulation of melatonin by the SCN is described together with the role of the melatonin receptors which are integral to its function as the major hormonal output of the body clock. Several factors are known that help prevent and treat jet lag, including ensuring adequate sleep, appropriate timing of exposure to bright light and treatment with melatonin. Because travel can cross a variable number of time zones and in two different directions, recommendations for treatment are given that correspond with these different types of travel. In addition to use of bright light and melatonin, other factors including timed exercise, timed and selective diets and social stimuli deserve study as potential treatments. Moreover, new melatonin agonists are currently under investigation for treatment of jet lag.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, 100 Bronte Road, Unit 422, Oakville, ON L6L 6L5, Canada.
| | | | | | | |
Collapse
|
299
|
Monteleone P, Maj M. The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol 2008; 18:701-11. [PMID: 18662865 DOI: 10.1016/j.euroneuro.2008.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/09/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
In humans, most physiological and behavioural functions demonstrate a circadian rhythmicity, which is essential to adequately cope with dramatic fluctuations occurring in the external environment. Therefore, it is intuitive that alterations in the endogenous machinery regulating circadian oscillations may lead to physical and mental symptoms and morbidities. Mood disorders, especially unipolar depression and seasonal affective disorder, have been linked to circadian rhythm abnormalities. This paper provides a brief description of the molecular and genetic mechanisms regulating the endogenous clock system and reviews selected studies describing circadian abnormalities in patients with depression. Evidence is emerging that a disruption of the normal circadian rhythmicity occurs at least in a subgroup of depressed patients and that interventions able to resynchronize the human circadian system, including sleep deprivation, light therapy and drugs specifically acting on the endogenous clock system, have proven antidepressant effects. It seems likely that, in the future, the knowledge coming from the exploration of molecular and genetic mechanisms involved in the physiology of the circadian clock system will be fruitful for a deeper understanding of the etiopathogenesis of mood disorders and the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Palmiero Monteleone
- Department of Psychiatry, University of Naples SUN, Large Madonna delle Grazie, Naples, Italy.
| | | |
Collapse
|
300
|
Nunes D, Mota R, Machado M, Pereira E, de Bruin V, de Bruin P. Effect of melatonin administration on subjective sleep quality in chronic obstructive pulmonary disease. Braz J Med Biol Res 2008; 41:926-31. [DOI: 10.1590/s0100-879x2008001000016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022] Open
|