251
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting. J Control Release 2024; 370:516-527. [PMID: 38718875 DOI: 10.1016/j.jconrel.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The success of mRNA vaccines against COVID-19 has enhanced the potential of lipid nanoparticles (LNPs) as a system for the delivery of mRNA. In this review, we describe our progress using a lipid library to engineer ionizable lipids and promote LNP technology from the viewpoints of safety, controlled biodistribution, and mRNA vaccines. These advancements in LNP technology are applied to cancer immunology, and a potential nano-DDS is constructed to evaluate immune status that is associated with a cancer-immunity cycle that includes the sub-cycles in tumor microenvironments. We also discuss the importance of the delivery of antigens and adjuvants in enhancing the cancer-immunity cycle. Recent progress in NK cell targeting in cancer immunotherapy is also introduced. Finally, the impact of next-generation DDS technology is explained using the MITO-Porter membrane fusion-based delivery system for the organelle targeting of the mitochondria. We introduce a successful example of the MITO-Porter used in a cell therapeutic strategy to treat cardiomyopathy.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | |
Collapse
|
252
|
Li X, Eastham J, Giltnane JM, Zou W, Zijlstra A, Tabatsky E, Banchereau R, Chang CW, Nabet BY, Patil NS, Molinero L, Chui S, Harryman M, Lau S, Rangell L, Waumans Y, Kockx M, Orlova D, Koeppen H. Automated tumor immunophenotyping predicts clinical benefit from anti-PD-L1 immunotherapy. J Pathol 2024; 263:190-202. [PMID: 38525811 DOI: 10.1002/path.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Cancer immunotherapy has transformed the clinical approach to patients with malignancies, as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision-making is still missing. We developed approaches to categorize solid tumors into 'desert', 'excluded', and 'inflamed' types according to the spatial distribution of CD8+ immune effector cells to determine the prognostic and/or predictive implications of such labels. To overcome the limitations of this subjective approach, we incrementally developed four automated analysis pipelines of increasing granularity and complexity for density and pattern assessment of immune effector cells. We show that categorization based on 'manual' observation is predictive for clinical benefit from anti-programmed death ligand 1 therapy in two large cohorts of patients with non-small cell lung cancer or triple-negative breast cancer. For the automated analysis we demonstrate that a combined approach outperforms individual pipelines and successfully relates spatial features to pathologist-based readouts and the patient's response to therapy. Our findings suggest that tumor immunophenotype generated by automated analysis pipelines should be evaluated further as potential predictive biomarkers for cancer immunotherapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiao Li
- Genentech, South San Francisco, CA, USA
| | | | | | - Wei Zou
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Shari Lau
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
253
|
Manitz J, Gerhold‐Ay A, Kieslich P, Shah P, Mrowiec T, Tyroller K. Avelumab first-line maintenance in advanced urothelial carcinoma: Complete screening for prognostic and predictive factors using machine learning in the JAVELIN Bladder 100 phase 3 trial. Cancer Med 2024; 13:e7411. [PMID: 38924353 PMCID: PMC11194683 DOI: 10.1002/cam4.7411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Avelumab first-line (1 L) maintenance is a standard of care for advanced urothelial carcinoma (aUC) based on the JAVELIN Bladder 100 phase 3 trial, which showed that avelumab 1 L maintenance + best supportive care (BSC) significantly prolonged overall survival (OS) and progression-free survival (PFS) vs BSC alone in patients who were progression free after receiving 1 L platinum-containing chemotherapy. Here, we comprehensively screened JAVELIN Bladder 100 trial datasets to identify prognostic factors that define subpopulations of patients with longer or shorter OS irrespective of treatment, and predictive factors that select patients who could obtain a greater OS benefit from avelumab 1 L maintenance treatment. METHODS We performed machine learning analyses to screen a large set of baseline covariates, including patient demographics, disease characteristics, laboratory values, molecular biomarkers, and patient-reported outcomes. Covariates were identified from previously reported analyses and established prognostic and predictive markers. Variables selected from random survival forest models were processed further in univariate Cox models with treatment interaction and visually inspected using correlation analysis and Kaplan-Meier curves. Results were summarized in a multivariable Cox model. RESULTS Prognostic baseline covariates associated with OS included in the final model were assignment to avelumab 1 L maintenance treatment, Eastern Cooperative Oncology Group performance status, site of metastasis, sum of longest target lesion diameters, levels of C-reactive protein and alkaline phosphatase in blood, lymphocyte proportion in intratumoral stroma, tumor mutational burden, and tumor CD8+ T-cell infiltration. Potential predictive factors included site of metastasis, tumor mutation burden, and tumor CD8+ T-cell infiltration. An analysis in patients with PD-L1+ tumors had similar findings to those in the overall population. CONCLUSIONS Machine learning analyses of data from the JAVELIN Bladder 100 trial identified potential prognostic and predictive factors for avelumab 1 L maintenance treatment in patients with aUC, which warrant further evaluation in other clinical datasets.
Collapse
|
254
|
Chen X, Zhao X, Mou X, Zhao J, Zhang Z, Zhang X, Huang J, Liu Y, Wang F, Zhang M, Wang L, Gu W, Zhang Y. PD-1-CD28-enhanced receptor and CD19 CAR-modified tumor-infiltrating T lymphocytes produce potential anti-tumor ability in solid tumors. Biomed Pharmacother 2024; 175:116800. [PMID: 38788547 DOI: 10.1016/j.biopha.2024.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
The limited expansion ability and functional inactivation of T cells within the solid tumor microenvironment are major problems faced during in the application of using tumor-infiltrating lymphocytes (TILs) in vivo. We sought to determine whether TILs carrying a PD-1-CD28-enhanced receptor and CD19 CAR could overcome this limitation and mediate tumor regression. First, anti-tumor effects of PD-1-CD28-enhanced receptor or CD19 CAR modified NY-ESO-1-TCR-T cells to mimic the TILs function (hereafter "PD-1-CD28-TCR-T" or "CD19 CAR-TCR-T" cells, respectively) were tested using the NY-ESO-1 over-expressed tumor cell line in vitro and in a tumor-bearing model. Furthermore, the safety and anti-tumor ability of S-TILs (TILs modified through transduction with a plasmid encoding the PD-1-CD28-T2A-CD19 CAR) were evaluated in vivo. PD-1-CD28-TCR-T cells showed a formidable anti-tumor ability that was not subject to PD-1/PD-L1 signaling in vivo. CD19 CAR-TCR-T cells stimulated with CD19+ B cells exhibited powerful expansion and anti-tumor abilities both in vitro and in vivo. Three patients with refractory solid tumors received S-TILs infusion. No treatment-related mortality was observed, and none of the patients experienced serious side effects. One patient with melanoma achieved a partial response, and two patients with colon or kidney cancer achieved long-term stable disease following S-TILs therapy. To the best of our knowledge, this is the first study describing the safety and efficacy of the adoptive transfer of autologous S-TILs to control disease in patients with advanced cancers, suggesting that S-TILs may be a promising alternative therapy for cancer.
Collapse
Affiliation(s)
- Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xuan Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoning Mou
- Chineo Medical Technology Co., Ltd., Beijing 100176, China
| | - Jie Zhao
- Chineo Medical Technology Co., Ltd., Beijing 100176, China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xudong Zhang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianmin Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanfen Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Feng Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mingzhi Zhang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Liping Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weiyue Gu
- Chineo Medical Technology Co., Ltd., Beijing 100176, China.
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan 450052, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China; Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
255
|
Mohan M, Van Oekelen O, Akhtar OS, Cohen A, Parekh S. Charting the Course: Sequencing Immunotherapy for Multiple Myeloma. Am Soc Clin Oncol Educ Book 2024; 44:e432204. [PMID: 38875506 DOI: 10.1200/edbk_432204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Multiple chimeric antigen receptor (CAR) T-cell and bispecific antibody (bsAb) therapies have been approved, demonstrating impressive clinical efficacy in relapsed/refractory multiple myeloma (MM). Currently, these treatment share overlapping approval indications in the relapsed/refractory space, highlighting the importance of optimal selection and sequencing to maximize clinical efficacy. For patients previously unexposed to T-cell-directed therapies, several factors should be weighed when both options are available. These factors include access and logistical challenges associated with CAR T-cell therapy, disease-specific factors such as tempo of disease relapse, in addition to patient-specific factors such as frailty, and distinct toxicity profiles across these agents. Sequential therapy, whether it involves CAR T-cell therapy followed by bsAb or vice versa, has demonstrated clinical efficacy. When sequencing these agents, it is crucial to consider various factors that contribute to treatment resistance with careful selection of treatments for subsequent therapy in order to achieve favorable long-term patient outcomes.
Collapse
Affiliation(s)
- Meera Mohan
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Oliver Van Oekelen
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Othman Salim Akhtar
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Adam Cohen
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Samir Parekh
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
256
|
Hu C, Lei Y, Liu X, Yu X, Geng Z, Liu Y, Yang L, Tie X, Zhou W, Li X, Zhang Y, Liang Y. Dissecting microenvironment in cystadenomas and hepatic cysts based on single nucleus RNA-sequencing data. Comput Biol Med 2024; 176:108541. [PMID: 38744012 DOI: 10.1016/j.compbiomed.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Hepatic cystadenoma is a rare disease, accounting for about 5% of all cystic lesions, with a high tendency of malignant transformation. The preoperative diagnosis of cystadenoma is difficult, and some cystadenomas are easily misdiagnosed as hepatic cysts at first. Hepatic cyst is a relatively common liver disease, most of which are benign, but large hepatic cysts can lead to pressure on the bile duct, resulting in abnormal liver function. To better understand the difference between the microenvironment of cystadenomas and hepatic cysts, we performed single-nuclei RNA-sequencing on cystadenoma and hepatic cysts samples. In addition, we performed spatial transcriptome sequencing of hepatic cysts. Based on nucleus RNA-sequencing data, a total of seven major cell types were identified. Here we described the tumor microenvironment of cystadenomas and hepatic cysts, particularly the transcriptome signatures and regulators of immune cells and stromal cells. By inferring copy number variation, it was found that the malignant degree of hepatic stellate cells in cystadenoma was higher. Pseudotime trajectory analysis demonstrated dynamic transformation of hepatocytes in hepatic cysts and cystadenomas. Cystadenomas had higher immune infiltration than hepatic cysts, and T cells had a more complex regulatory mechanism in cystadenomas than hepatic cysts. Immunohistochemistry confirms a cystadenoma-specific T-cell immunoregulatory mechanism. These results provided a single-cell atlas of cystadenomas and hepatic cyst, revealed a more complex microenvironment in cystadenomas than in hepatic cysts, and provided new perspective for the molecular mechanisms of cystadenomas and hepatic cyst.
Collapse
Affiliation(s)
- Congxue Hu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongqi Lei
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyang Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xingxin Yu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zhida Geng
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yu Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Liyu Yang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuehong Tie
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wenzhe Zhou
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yingjian Liang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
257
|
Waddell N, Addala V. Germline variants alter immune surveillance. Science 2024; 384:961-962. [PMID: 38815045 DOI: 10.1126/science.adp7370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Germline-derived epitopes shape tumor development through immunoediting.
Collapse
Affiliation(s)
- Nicola Waddell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Venkateswar Addala
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
258
|
Yang K, Lu R, Mei J, Cao K, Zeng T, Hua Y, Huang X, Li W, Yin Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark Res 2024; 12:51. [PMID: 38816871 PMCID: PMC11137916 DOI: 10.1186/s40364-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Kai Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yijia Hua
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| |
Collapse
|
259
|
Peng X, Liu C, Zhang L, Chen Y, Mao L, Gao S, Shi X, Zuo L. IL4I1: a novel molecular biomarker represents an inflamed tumor microenvironment and precisely predicts the molecular subtype and immunotherapy response of bladder cancer. Front Pharmacol 2024; 15:1365683. [PMID: 38873416 PMCID: PMC11169701 DOI: 10.3389/fphar.2024.1365683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction: IL4I1, also known as Interleukin-4-induced gene 1, is an enzyme that can modulate the immune system by acting as a L-amino acid oxidase. Nevertheless, a precise understanding of the correlation of IL4I1 with immunological features and immunotherapy efficacy in bladder cancer (BLCA) remains incomplete. Methods: We analyzed RNA sequencing data from the Cancer Genome Atlas (TCGA) to investigate the immune function and prognostic importance of IL4I1 across different cancer types. We further examined the TCGA-BLCA cohort for correlations between IL4I1 and various immunological characteristics of tumor microenvironment (TME), such as cancer immune cycle, immune cell infiltration, immune checkpoint expression and T cell inflamed score. Validation was conducted using two independent cohort, GSE48075 and E-MTAB-4321. Finally, RNA sequencing data from the IMvigor210 cohort and immunohistochemistry assays were employed to validate the predictive value of IL4I1 for the TME and immunotherapy efficacy. Results: In our findings, a positive correlation was observed between IL4I1 expression and immunomodulators expression, immune cell infiltration, the cancer immune cycle, and T cell inflamed score in BLCA, suggesting a significant link to the inflamed TME. In addition, studies have shown that IL4I1 elevated levels of individuals tend to be more performance for basal subtype and exhibit enhanced response rates to diverse treatment modalities, specifically immunotherapy. Clinical data from the IMvigor 210 cohort confirmed a higher rate of response to immunotherapy and better survival benefits in patients with high IL4I1 expression. Discussion: To summarize, our research showed that elevated IL4I1 levels are indicative of an inflamed TME, the basal subtype, and a more favorable response to various treatment methods, especially immune checkpoint blockade therapy in BLCA.
Collapse
Affiliation(s)
- Xiangrong Peng
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chuan Liu
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Zhang
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yin Chen
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lixin Mao
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Shenglin Gao
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai, China
| | - Xiaokai Shi
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Zuo
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
260
|
Wang B, Sun D, Li H, Chen J. A bird's eye view of the potential role of NFKBIA in pan-cancer. Heliyon 2024; 10:e31204. [PMID: 38813139 PMCID: PMC11133827 DOI: 10.1016/j.heliyon.2024.e31204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
In the 21st century, cancer remains a serious threat to people's health and has become a prominent public health problem. NFKBIA is involved in the pathological process of many diseases including cancer, but its specific role in pan-cancer has not yet been fully elucidated. This study aims to deepen the understanding of cancer pathology by analyzing the potential functions of NFKBIA in pan-cancer. We used TCGA data to analyze differences of expression of NFKBIA in pan-cancer. We explored the prognostic value, clinical relevance, immune relevance, potential biological function, and diagnosis and treatment value of NFKBIA in pan-cancer through bioinformatics analysis. This study found that in pan-cancer, NFKBIA exhibits differences in expression, which correlate with the prognosis, diagnosis, treatment value and clinical and immune parameters. We have identified that Aspirin, Astaxanthin and Bardoxolone methyl are expected to play a potential therapeutic role in pan-cancer. The results of this study will help to improve our understanding of the role and potential mechanism of NFKBIA in cancer pathology, which may provide guidance for cancer-related research and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bin Wang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Difang Sun
- Department of Ophthalmology, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Haifeng Li
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jinli Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
261
|
Wang L, Liu X, Han Y, Tsai HI, Dan Z, Yang P, Xu Z, Shu F, He C, Eriksson JE, Zhu H, Chen H, Cheng F. TRAF6 enhances PD-L1 expression through YAP1-TFCP2 signaling in melanoma. Cancer Lett 2024; 590:216861. [PMID: 38583649 DOI: 10.1016/j.canlet.2024.216861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.
Collapse
Affiliation(s)
- Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuhang Han
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Zilin Dan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Peiru Yang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
262
|
Zheng L, Xu Z, Zhang W, Lin H, Zhang Y, Zhou S, Liu Z, Gu X. Identification and validation of a prognostic signature based on six immune-related genes for colorectal cancer. Discov Oncol 2024; 15:192. [PMID: 38806963 PMCID: PMC11133253 DOI: 10.1007/s12672-024-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy with high mortality and morbidity rates. Although the significant efficacy of immunotherapy is well established, it is only beneficial for a limited number of individuals with CRC. METHODS Differentially expressed immune-related genes (DE-IRGs) were retrieved from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and ImmPort databases. A prognostic signature comprising DE-IRGs was developed using univariate, LASSO, and multivariate Cox regression analyses. A nomogram integrating the independent prognostic factors was also developed. CIBERSORT was used to assess immune cell infiltration (ICI). Furthermore, wound-healing, colony formation, migration, and invasion assays were performed to study the involvement of ACTG1 in CRC. RESULTS A signature including six DE-IRGs was developed. The overall survival (OS) rate was accurately estimated for TCGA and GSE38832 cohorts. The risk score (RS) of the signature was an independent factor for OS. Moreover, a nomogram encompassing age, RS, and pathological T stage accurately predicted the long-term OS probability of individuals with CRC. The high-risk group had an elevated proportion of patients treated with ICIs, including native B cells, relative to the low-risk group. Additionally, ACTG1 expression was upregulated, which supported the proliferation, migration, and invasion abilities of CRC cells. CONCLUSIONS An immune-related prognostic signature was developed for predicting OS and for determining the immune status of individuals with CRC. The present study provides new insights into accurate immunotherapy for individuals with CRC. Moreover, ACTG1 may serve as a new immune biomarker.
Collapse
Affiliation(s)
- Lifeng Zheng
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Ziyu Xu
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Wulou Zhang
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Hao Lin
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Yepeng Zhang
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Shu Zhou
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China.
| | - Zonghang Liu
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China.
| | - Xi Gu
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
263
|
van der Haar Àvila I, Zhang T, Lorrain V, de Bruin F, Spreij T, Nakayama H, Iwabuchi K, García-Vallejo JJ, Wuhrer M, van Kooyk Y, van Vliet SJ. Limited impact of cancer-derived gangliosides on anti-tumor immunity in colorectal cancer. Glycobiology 2024; 34:cwae036. [PMID: 38785323 PMCID: PMC11137322 DOI: 10.1093/glycob/cwae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Victor Lorrain
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Florance de Bruin
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Tianne Spreij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Hitoshi Nakayama
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Kazuhisa Iwabuchi
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
264
|
McEwen DP, Ray P, Nancarrow DJ, Wang Z, Kasturirangan S, Abdullah S, Balan A, Hoskeri R, Thomas D, Lawrence TS, Beer DG, Lagisetty KH, Ray D. ISG15/GRAIL1/CD3 axis influences survival of patients with esophageal adenocarcinoma. JCI Insight 2024; 9:e179315. [PMID: 38781019 PMCID: PMC11383178 DOI: 10.1172/jci.insight.179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Immunosuppression is a common feature of esophageal adenocarcinoma (EAC) and has been linked to poor overall survival (OS). We hypothesized that upstream factors might negatively influence CD3 levels and T cell activity, thus promoting immunosuppression and worse survival. We used clinical data and patient samples of those who progressed from Barrett's to dysplasia to EAC, investigated gene (RNA-Seq) and protein (tissue microarray) expression, and performed cell biology studies to delineate a pathway impacting CD3 protein stability that might influence EAC outcome. We showed that the loss of both CD3-ε expression and CD3+ T cell number correlated with worse OS in EAC. The gene related to anergy in lymphocytes isoform 1 (GRAIL1), which is the prominent isoform in EACs, degraded (ε, γ, δ) CD3s and inactivated T cells. In contrast, isoform 2 (GRAIL2), which is reduced in EACs, stabilized CD3s. Further, GRAIL1-mediated CD3 degradation was facilitated by interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein. Consequently, the overexpression of a ligase-dead GRAIL1, ISG15 knockdown, or the overexpression of a conjugation-defective ISG15-leucine-arginine-glycine-glycine mutant could increase CD3 levels. Together, we identified an ISG15/GRAIL1/mutant p53 amplification loop negatively influencing CD3 levels and T cell activity, thus promoting immunosuppression in EAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David G Beer
- Department of Surgery, Section of Thoracic Surgery
| | | | | |
Collapse
|
265
|
Mao Z, Pang G, Huang X, Chen X, Wu J, Xu X, Teng Z, Tan Y, Wang P. Risk factors of immune checkpoint inhibitor-related pneumonitis after neoadjuvant immunochemotherapy for resectable NSCLC. BMC Pulm Med 2024; 24:253. [PMID: 38783253 PMCID: PMC11112843 DOI: 10.1186/s12890-024-03041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The incidence of checkpoint inhibitor-associated pneumonitis (CIP) in advanced non-small cell lung cancer (NSCLC) has been substantiated through large-scale clinical trials or real-world studies. However, reports on CIP incidence within the context of neoadjuvant immunotherapy for resectable NSCLC remain scarce. This study endeavors to investigate the incidence, risk factors, and outcomes of CIP in patients with resectable NSCLC receiving neoadjuvant immunochemotherapy. METHODS A retrospective, case-control study was conducted on patients diagnosed with NSCLC stages IIA-IIIB who received neoadjuvant immunochemotherapy between January 2018 and September 2022. Patients were stratified into two groups based on the presence or absence of CIP, facilitating a comparative analysis of clinical characteristics, treatment modalities, physiological indicators, and prognostic outcomes . RESULTS The study cohort comprised 245 patients, with 11.4% (28/245) experiencing CIP. The median period of CIP onset was 70 (range, 40-221) days. The incidence of severe CIP (grade 3-4) was 3.7% (9/245). Patients with CIP showed a higher all-cause mortality rate of 21.4% (6/28) compared to that of patients without CIP. Those who developed CIP exhibited elevated body mass index (BMI) values (p = 0.028) and increased fibrinogen (FIB) levels (p < 0.001), alongside a significant decrease in both diffusing capacity for carbon monoxide (DLCO)% pred (p = 0.001) and DLCO/VA% pred (p = 0.021) after neoadjuvant therapy compared to pre-indicators. Receiver operating characteristic curve (ROC) analysis showed that the area under the ROC curve of three assessed variables (FIB levels, BMI, DLCO) reached 0.806 in predicting CIP occurrence at an early stage. CONCLUSIONS This cohort demonstrated that elevated BMI, increased FIB levels, and decreased pulmonary diffusion function after neoadjuvant therapy are risk factors of CIP occurrence. Early assessment and continuous monitoring of these indicators are imperative for the predictive identification of CIP, enhancing patient management and outcomes.
Collapse
Affiliation(s)
- Zhirong Mao
- Department of Respiratory Medicine, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Guanchao Pang
- Department of Respiratory Medicine, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Xiaojie Huang
- Department of Respiratory Medicine, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Xiuxiu Chen
- Department of Respiratory Medicine, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Jiaji Wu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Xia Xu
- Department of Pathology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Zhihua Teng
- Department of Thoracic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Yanbin Tan
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Pingli Wang
- Department of Respiratory Medicine, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
266
|
Sun Y, Li T, Ding L, Wang J, Chen C, Liu T, Liu Y, Li Q, Wang C, Huo R, Wang H, Tian T, Zhang C, Pan B, Zhou J, Fan J, Yang X, Yang W, Wang B, Guo W. Platelet-mediated circulating tumor cell evasion from natural killer cell killing through immune checkpoint CD155-TIGIT. Hepatology 2024:01515467-990000000-00888. [PMID: 38779918 DOI: 10.1097/hep.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND AIMS Circulating tumor cells (CTCs) are precursors of cancer metastasis. However, how CTCs evade immunosurveillance during hematogenous dissemination remains unclear. APPROACH AND RESULTS We identified CTC-platelet adhesions by single-cell RNA sequencing and multiplex immunofluorescence of blood samples from multiple cancer types. Clinically, CTC-platelet aggregates were associated with significantly shorter progression-free survival and overall survival in patients with HCC. In vitro, ex vivo, and in vivo assays demonstrated direct platelet adhesions gifted cancer cells with an evasive ability from NK cell killing by upregulating inhibitory checkpoint CD155 (PVR cell adhesion molecule), therefore facilitating distant metastasis. Mechanistically, CD155 was transcriptionally regulated by the FAK/JNK/c-Jun cascade in a platelet contact-dependent manner. Further competition assays and cytotoxicity experiments revealed that CD155 on CTCs inhibited NK-cell cytotoxicity only by engaging with immune receptor TIGIT, but not CD96 and DNAM1, another 2 receptors for CD155. Interrupting the CD155-TIGIT interactions with a TIGIT antibody restored NK-cell immunosurveillance on CTCs and markedly attenuated tumor metastasis. CONCLUSIONS Our results demonstrated CTC evasion from NK-cell-mediated innate immunosurveillance mainly through immune checkpoint CD155-TIGIT, potentially offering an immunotherapeutic strategy for eradicating CTCs.
Collapse
Affiliation(s)
- Yunfan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyan Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Cell Biology, Shanghai Dunwill Medical Technology Company, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuyu Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ran Huo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xinrong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
267
|
Chang H, Foulke JG, Chen L, Tian F, Gu Z. GAS-Luc2 Reporter Cell Lines for Immune Checkpoint Drug Screening in Solid Tumors. Cancers (Basel) 2024; 16:1965. [PMID: 38893085 PMCID: PMC11171215 DOI: 10.3390/cancers16111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Recent studies highlight the integral role of the interferon gamma receptor (IFNγR) pathway in T cell-mediated cytotoxicity against solid but not liquid tumors. IFNγ not only directly facilitates tumor cell death by T cells but also indirectly promotes cytotoxicity via myeloid phagocytosis in the tumor microenvironment. Meanwhile, full human ex vivo immune checkpoint drug screening remains challenging. We hypothesized that an engineered gamma interferon activation site response element luciferase reporter (GAS-Luc2) can be utilized for immune checkpoint drug screening in diverse ex vivo T cell-solid tumor cell co-culture systems. We comprehensively profiled cell surface proteins in ATCC's extensive collection of human tumor and immune cell lines, identifying those with endogenously high expression of established and novel immune checkpoint molecules and binding ligands. We then engineered three GAS-Luc2 reporter tumor cell lines expressing immune checkpoints PD-L1, CD155, or B7-H3/CD276. Luciferase expression was suppressed upon relevant immune checkpoint-ligand engagement. In the presence of an immune checkpoint inhibitor, T cells released IFNγ, activating the JAK-STAT pathway in GAS-Luc2 cells, and generating a quantifiable bioluminescent signal for inhibitor evaluation. These reporter lines also detected paracrine IFNγ signaling for immune checkpoint-targeted ADCC drug screening. Further development into an artificial antigen-presenting cell line (aAPC) significantly enhanced T cell signaling for superior performance in these ex vivo immune checkpoint drug screening platforms.
Collapse
Affiliation(s)
| | | | | | - Fang Tian
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| | - Zhizhan Gu
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| |
Collapse
|
268
|
Moore J, Gkantalis J, Guix I, Chou W, Yuen K, Lazar AA, Spitzer M, Combes AJ, Barcellos-Hoff MH. Lack of TGFβ signaling competency predicts immune poor cancer conversion to immune rich and response to checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583752. [PMID: 38496519 PMCID: PMC10942434 DOI: 10.1101/2024.03.06.583752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Transforming growth factor beta (TGFβ) is well-recognized as an immunosuppressive player in the tumor microenvironment but also has a significant impact on cancer cell phenotypes. Loss of TGFβ signaling impairs DNA repair competency, which is described by a transcriptomic score, βAlt. Cancers with high βAlt have more genomic damage and are more responsive to genotoxic therapy. The growing appreciation that cancer DNA repair deficits are important determinants of immune response prompted us to investigate the association of βAlt with response to immune checkpoint blockade (ICB). We predicted that high βAlt tumors would be infiltrated with lymphocytes because of DNA damage burden and hence responsive to ICB. Methods We analyzed public transcriptomic data from clinical trials and preclinical models using transcriptomic signatures of TGFβ targets, DNA repair genes, tumor educated immune cells and interferon. A high βAlt, immune poor mammary tumor derived transplant model resistant to programmed death ligand 1 (PD-L1) antibodies was studied using multispectral flow cytometry to interrogate the immune system. Results Metastatic bladder patients in IMvigor 210 who responded to ICB had significantly increased βAlt scores and experienced significantly longer overall survival compared to those with low βAlt scores (hazard ratio 0.62, P=0.011) . Unexpectedly, 75% of high βAlt cancers were immune poor as defined by low expression of tumor educated immune cell and interferon signatures. The association of high βAlt with immune poor cancer was also evident in TCGA and preclinical cancer models. We used a high βAlt, immune poor cancer to test therapeutic strategies to overcome its inherent anti-PD-L1 resistance. Combination treatment with radiation and TGFβ inhibition were necessary for lymphocytic infiltration and activated NK cells were required for ICB response. Bioinformatic analysis identified high βAlt, immune poor B16 and CT26 preclinical models and paired biopsies of cancer patients that also demonstrated NK cell activation upon response to ICB. Conclusions Our studies support βAlt as a biomarker that predicts response to ICB albeit in immune poor cancers, which has implications for the development of therapeutic strategies to increase the number of cancer patients who will benefit from immunotherapy.
Collapse
Affiliation(s)
- Jade Moore
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Jim Gkantalis
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Ines Guix
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - William Chou
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Kobe Yuen
- Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Ann A Lazar
- Division of Oral Epidemiology and Division of Biostatistics, University of California, San Francisco, CA, USA
| | - Mathew Spitzer
- Parker Institute for Cancer Immunotherapy, Department of Otolaryngology- Head and Neck Surgery, Department of Microbiology and Immunology, University of California, San Francisco, CA USA
- A member of the imCORE Network
| | - Alexis J Combes
- Department of Pathology, CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- A member of the imCORE Network
| |
Collapse
|
269
|
Wu B, Zhao S, Zhang J, Liu Y, Bai J, Wang G, Wang Y, Jiang H, Hu Y, OuYang W, Lu B, Su S. PD-1 Inhibitor Aggravate Irradiation-Induced Myocardial Fibrosis by Regulating TGF-β1/Smads Signaling Pathway via GSDMD-Mediated Pyroptosis. Inflammation 2024:10.1007/s10753-024-02056-9. [PMID: 38773023 DOI: 10.1007/s10753-024-02056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Cancer therapy has entered a new era with the use of programmed cell death protein 1 (PD-1) immune checkpoint inhibitors. When combined with thoracic radiotherapy, it demonstrates synergistic anti-tumor effects and potentially worsens radiation-induced myocardial fibrosis (RIMF). RIMF is the final stage of radiation-induced heart disease (RIHD) and a potentially fatal clinical complication of chest radiotherapy. It is characterized by decreased ventricular elasticity and distensibility, which can result in decreased ejection fraction, heart failure, and even sudden cardiac death. Pyroptosis, a type of programmed cell death, is mediated by members of the gasdermin (GSDM) family and has been associated with numerous cardiac disorders. The effect of pyroptosis on myocardial fibrosis caused by a combination of radiotherapy and PD-1 inhibitors remains uncertain. In this study, a 6MV X-ray of 20 Gy for local heart irradiation was used in the RIHD mouse model. We noticed that PD-1 inhibitors aggravated radiation-induced cardiac dysfunction and RIMF, concurrently enhancing the presence of CD8+ T lymphocytes in the cardiac tissue. Additionally, our findings indicated that the combination of PD-1 inhibitor and thoracic radiation can stimulate caspase-1 to cleave GSDMD, thereby regulating pyroptosis and liberating interleukin-8 (IL-18). In the myocardium of mice, the manifestation of pyroptosis mediated by GSDMD is accompanied by the buildup of proteins associated with fibrosis, such as collagen I, transforming growth factor β1 (TGF-β1), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor α (TNF-α). Moreover, it was discovered that TFG-β1 induced the phosphorylation of Smad2/Smad3 when the cardiac underwent PD-1 inhibitor in conjunction with thoracic irradiation (IR). The findings of this research indicate that PD-1 inhibitor worsen RIMF in mice by triggering GSDMD-induced pyroptosis and influencing the TGF-β1/Smads pathway. While using the caspase-1 inhibitor Z-YVAD-FMK, RIMF can be alleviated. Blocking GSDMD may be a viable strategy for managing myocardial fibrosis caused by the combination of PD-1 inhibitors and radiotherapy.
Collapse
Affiliation(s)
- Bibo Wu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Shasha Zhao
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Jing Zhang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Yao Liu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Jie Bai
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Gang Wang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Yu Wang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Han Jiang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Yinxiang Hu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Weiwei OuYang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Bing Lu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Shengfa Su
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China.
- Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
270
|
Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, Ge F, Chen W. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol 2024; 15:1399926. [PMID: 38817608 PMCID: PMC11137211 DOI: 10.3389/fimmu.2024.1399926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a groundbreaking advance in the treatment of malignancies such as melanoma and non-small cell lung cancer, showcasing substantial therapeutic benefits. Nonetheless, the efficacy of ICIs is limited to a small subset of patients, primarily benefiting those with "hot" tumors characterized by significant immune infiltration. The challenge of converting "cold" tumors, which exhibit minimal immune activity, into "hot" tumors to enhance their responsiveness to ICIs is a critical and complex area of current research. Central to this endeavor is the activation of the cGAS-STING pathway, a pivotal nexus between innate and adaptive immunity. This pathway's activation promotes the production of type I interferon (IFN) and the recruitment of CD8+ T cells, thereby transforming the tumor microenvironment (TME) from "cold" to "hot". This review comprehensively explores the cGAS-STING pathway's role in reconditioning the TME, detailing the underlying mechanisms of innate and adaptive immunity and highlighting the contributions of various immune cells to tumor immunity. Furthermore, we delve into the latest clinical research on STING agonists and their potential in combination therapies, targeting this pathway. The discussion concludes with an examination of the challenges facing the advancement of promising STING agonists in clinical trials and the pressing issues within the cGAS-STING signaling pathway research.
Collapse
Affiliation(s)
- Mingqing Huang
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhuocen Cha
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guizhou, China
| | - Rui Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Mengping Lin
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Naif Abdul Gafoor
- International Education School of Kunming Medical University, Kunming, China
| | - Tong Kong
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
271
|
Segal NH, Melero I, Moreno V, Steeghs N, Marabelle A, Rohrberg K, Rodriguez-Ruiz ME, Eder JP, Eng C, Manji GA, Waterkamp D, Leutgeb B, Bouseida S, Flinn N, Das Thakur M, Elze MC, Koeppen H, Jamois C, Martin-Facklam M, Lieu CH, Calvo E, Paz-Ares L, Tabernero J, Argilés G. CEA-CD3 bispecific antibody cibisatamab with or without atezolizumab in patients with CEA-positive solid tumours: results of two multi-institutional Phase 1 trials. Nat Commun 2024; 15:4091. [PMID: 38750034 PMCID: PMC11096172 DOI: 10.1038/s41467-024-48479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Cibisatamab is a bispecific antibody-based construct targeting carcinoembryonic antigen (CEA) on tumour cells and CD3 epsilon chain as a T-cell engager. Here we evaluated cibisatamab for advanced CEA-positive solid tumours in two open-label Phase 1 dose-escalation and -expansion studies: as a single agent with or without obinutuzumab in S1 (NCT02324257) and with atezolizumab in S2 (NCT02650713). Primary endpoints were safety, dose finding, and pharmacokinetics in S1; safety and dose finding in S2. Secondary endpoints were anti-tumour activity (including overall response rate, ORR) and pharmacodynamics in S1; anti-tumour activity, pharmacodynamics and pharmacokinetics in S2. S1 and S2 enrolled a total of 149 and 228 patients, respectively. Grade ≥3 cibisatamab-related adverse events occurred in 36% of S1 and 49% of S2 patients. The ORR was 4% in S1 and 7% in S2. In S2, patients with microsatellite stable colorectal carcinoma (MSS-CRC) given flat doses of cibisatamab and atezolizumab demonstrated an ORR of 14%. In S1 and S2, 40% and 52% of patients, respectively, developed persistent anti-drug antibodies (ADAs). ADA appearance could be mitigated by obinutuzumab-pretreatment, with 8% of patients having persistent ADAs. Overall, cibisatamab warrants further exploration in immunotherapy combination strategies for MSS-CRC.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/pharmacokinetics
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Female
- Male
- Middle Aged
- Aged
- CD3 Complex/immunology
- Adult
- Carcinoembryonic Antigen/immunology
- Neoplasms/drug therapy
- Neoplasms/immunology
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
Collapse
Affiliation(s)
- Neil H Segal
- Memorial Sloan Kettering Cancer Center, New York, NY, United States; Weill Cornell Medical College, New York, NY, USA.
| | - Ignacio Melero
- Clínica Universidad de Navarra and CIMA University of Navarra, Navarra, Spain
- CIBERONC, Instituto de Salud Carlso III, Madrid, Spain
| | | | | | | | | | | | | | - Cathy Eng
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | | | | | | | | | - Nick Flinn
- F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | | | | | | | | | | | | | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | | | - Josep Tabernero
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona, Spain
| | - Guillem Argilés
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona, Spain
- Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
272
|
Yuwen H, Wang H, Li T, Ren Y, Zhang YK, Chen P, Sun A, Bian G, Li B, Flowers D, Presler M, Subramanian K, Xue J, Wang J, Lynch K, Mei J, He X, Shan B, Hou B. ATG-101 Is a Tetravalent PD-L1×4-1BB Bispecific Antibody That Stimulates Antitumor Immunity through PD-L1 Blockade and PD-L1-Directed 4-1BB Activation. Cancer Res 2024; 84:1680-1698. [PMID: 38501978 PMCID: PMC11094422 DOI: 10.1158/0008-5472.can-23-2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.
Collapse
Affiliation(s)
- Hui Yuwen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Huajing Wang
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Tengteng Li
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Yijing Ren
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | | | - Peng Chen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Ao Sun
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Gang Bian
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Bohua Li
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | | | | | | | - Jia Xue
- Crown Bioscience Inc., Taicang, P.R. China
| | | | | | - Jay Mei
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Xiaowen He
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Bo Shan
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Bing Hou
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| |
Collapse
|
273
|
Zhang P, Zhu L, Pan X. A comprehensive analysis of the oncogenic and prognostic role of TBC1Ds in human hepatocellular carcinoma. PeerJ 2024; 12:e17362. [PMID: 38766486 PMCID: PMC11100476 DOI: 10.7717/peerj.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Backgrounds TBC1D family members (TBC1Ds) are a group of proteins that contain the Tre2-Bub2-Cdc16 (TBC) domain. Recent studies have shown that TBC1Ds are involved in tumor growth, but no analysis has been done of expression patterns and prognostic values of TBC1Ds in hepatocellular carcinoma (HCC). Methods The expression levels of TBC1Ds were evaluated in HCC using the TIMER, UALCN and Protein Atlas databases. The correlation between the mRNA levels of TBC1Ds and the prognosis of patients with HCC in the GEPIA database was then analyzed. An enrichment analysis then revealed genes that potentially interact with TBC1Ds. The correlation between levels of TBC1Ds and tumor-infiltrating immune cells (TIICs) in HCC were studied using the TIMER 2.0 database. Finally, a series of in vitro assays verified the role of TBC1Ds in HCC progression. Results This study revealed the upregulated expression of TBC1Ds in HCC and the strong positive correlation between the mRNA levels of TBC1Ds and poor prognosis of patients with HCC. The functions of TBC1Ds were mainly related to autophagy and the AMPK pathway. There was also a significant correlation between level of TBC1Ds and tumor-infiltrating immune cells (TIICs) in HCC. The promoting role of TBC1Ds in HCC progression was verified in vitro assays. Conclusion The results of this analysis indicate that TBC1Ds may serve as new biomarkers for early diagnosis and treatment of HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Prognosis
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Autophagy/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Cell Line, Tumor
Collapse
Affiliation(s)
- Pei Zhang
- The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Zhu
- The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Pan
- The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
274
|
Lian F, Yang H, Hong R, Xu H, Yu T, Sun G, Zheng G, Xie B. Evaluation of the antitumor effect of neoantigen peptide vaccines derived from the translatome of lung cancer. Cancer Immunol Immunother 2024; 73:129. [PMID: 38744688 PMCID: PMC11093939 DOI: 10.1007/s00262-024-03670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 05/16/2024]
Abstract
Emerging evidence suggests that tumor-specific neoantigens are ideal targets for cancer immunotherapy. However, how to predict tumor neoantigens based on translatome data remains obscure. Through the extraction of ribosome-nascent chain complexes (RNCs) from LLC cells, followed by RNC-mRNA extraction, RNC-mRNA sequencing, and comprehensive bioinformatic analysis, we successfully identified proteins undergoing translatome and exhibiting mutations in the cells. Subsequently, novel antigens identification was analyzed by the interaction between their high affinity and the Major Histocompatibility Complex (MHC). Neoantigens immunogenicity was analyzed by enzyme-linked immunospot assay (ELISpot). Finally, in vivo experiments in mice were conducted to evaluate the antitumor effects of translatome-derived neoantigen peptides on lung cancer. The results showed that ten neoantigen peptides were identified and synthesized by translatome data from LLC cells; 8 out of the 10 neoantigens had strong immunogenicity. The neoantigen peptide vaccine group exhibited significant tumor growth inhibition effect. In conclusion, neoantigen peptide vaccine derived from the translatome of lung cancer exhibited significant tumor growth inhibition effect.
Collapse
Affiliation(s)
- Fenbao Lian
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
| | - Haitao Yang
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
| | - Rujun Hong
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
| | - Hang Xu
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
| | - Tingting Yu
- Department of Thoracic Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Gang Sun
- Department of Breast and Thyroid Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, 789 East Suzhou Street, Xinshi District, Urumqi, 830011, Xinjiang, China.
- Xinjiang Cancer Center/Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, Xinjiang, China.
| | - Guanying Zheng
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China.
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China.
| | - Baosong Xie
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China.
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China.
| |
Collapse
|
275
|
Liang W, Yang X, Li X, Wang P, Zhu Z, Liu S, Xu D, Zhi X, Xue J. Investigating gene signatures associated with immunity in colon adenocarcinoma to predict the immunotherapy effectiveness using NFM and WGCNA algorithms. Aging (Albany NY) 2024; 16:7596-7621. [PMID: 38742936 PMCID: PMC11131999 DOI: 10.18632/aging.205763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Colon adenocarcinoma (COAD), a frequently encountered and highly lethal malignancy of the digestive system, has been the focus of intensive research regarding its prognosis. The intricate immune microenvironment plays a pivotal role in the pathological progression of COAD; nevertheless, the underlying molecular mechanisms remain incompletely understood. This study aims to explore the immune gene expression patterns in COAD, construct a robust prognostic model, and delve into the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby providing critical support for individualized treatment strategies and prognostic evaluation. Initially, we curated a comprehensive dataset by screening 2600 immune-related genes (IRGs) from the ImmPort and InnateDB databases, successfully obtaining a rich data resource. Subsequently, the COAD patient cohort was classified using the non-negative matrix factorization (NMF) algorithm, enabling accurate categorization. Continuing on, utilizing the weighted gene co-expression network analysis (WGCNA) method, we analyzed the top 5000 genes with the smallest p-values among the differentially expressed genes (DEGs) between immune subtypes. Through this rigorous screening process, we identified the gene modules with the strongest correlation to the COAD subpopulation, and the intersection of genes in these modules with DEGs (COAD vs COAD vs Normal colon tissue) is referred to as Differentially Expressed Immune Genes Associated with COAD (DEIGRC). Employing diverse bioinformatics methodologies, we successfully developed a prognostic model (DPM) consisting of six genes derived from the DEIGRC, which was further validated across multiple independent datasets. Not only does this predictive model accurately forecast the prognosis of COAD patients, but it also provides valuable insights for formulating personalized treatment regimens. Within the constructed DPM, we observed a downregulation of CALB2 expression levels in COAD tissues, whereas NOXA1, KDF1, LARS2, GSR, and TIMP1 exhibited upregulated expression levels. These genes likely play indispensable roles in the initiation and progression of COAD and thus represent potential therapeutic targets for patient management. Furthermore, our investigation into the molecular mechanisms and therapeutic targets for COAD liver metastasis revealed associations with relevant processes such as fat digestion and absorption, cancer gene protein polysaccharides, and nitrogen metabolism. Consequently, genes including CAV1, ANXA1, CPS1, EDNRA, and GC emerge as promising candidates as therapeutic targets for COAD liver metastasis, thereby providing crucial insights for future clinical practices and drug development. In summary, this study uncovers the immune gene expression patterns in COAD, establishes a robust prognostic model, and elucidates the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby possessing significant theoretical and clinical implications. These findings are anticipated to offer substantial support for both the treatment and prognosis management of COAD patients.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Xiangyu Yang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong 400010, Chongqing, China
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| | - Peng Wang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Zhenpeng Zhu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, Shenzhen 518132, Guangdong, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| |
Collapse
|
276
|
Hu T, Cheng B, Matsunaga A, Zhang T, Lu X, Fang H, Mori SF, Fang X, Wang G, Xu H, Shi H, Cowell JK. Single-cell analysis defines highly specific leukemia-induced neutrophils and links MMP8 expression to recruitment of tumor associated neutrophils during FGFR1 driven leukemogenesis. Exp Hematol Oncol 2024; 13:49. [PMID: 38730491 PMCID: PMC11084112 DOI: 10.1186/s40164-024-00514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Leukemias driven by activated, chimeric FGFR1 kinases typically progress to AML which have poor prognosis. Mouse models of this syndrome allow detailed analysis of cellular and molecular changes occurring during leukemogenesis. We have used these models to determine the effects of leukemia development on the immune cell composition in the leukemia microenvironment during leukemia development and progression. METHODS Single cell RNA sequencing (scRNA-Seq) was used to characterize leukemia associated neutrophils and define gene expression changes in these cells during leukemia progression. RESULTS scRNA-Seq revealed six distinct subgroups of neutrophils based on their specific differential gene expression. In response to leukemia development, there is a dramatic increase in only two of the neutrophil subgroups. These two subgroups show specific gene expression signatures consistent with neutrophil precursors which give rise to immature polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Analysis of gene expression in these precursor cells identified pathways that were specifically upregulated, the most pronounced of which involved matrix metalloproteinases Mmp8 and Mmp9, during leukemia progression. Pharmacological inhibition of MMPs using Ilomastat preferentially restricted in vitro migration of neutrophils from leukemic mice and led to a significantly improved survival in vivo, accompanied by impaired PMN-MDSC recruitment. As a result, levels of T-cells were proportionally increased. In clinically annotated TCGA databases, MMP8 was shown to act as an independent indicator for poor prognosis and correlated with higher neutrophil infiltration and poor pan-cancer prognosis. CONCLUSION We have defined specific leukemia responsive neutrophil subgroups based on their unique gene expression profile, which appear to be the precursors of neutrophils specifically associated with leukemia progression. An important event during development of these neutrophils is upregulation MMP genes which facilitated mobilization of these precursors from the BM in response to cancer progression, suggesting a possible therapeutic approach to suppress the development of immune tolerance.
Collapse
Affiliation(s)
- Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Atsuko Matsunaga
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Ting Zhang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiaocui Lu
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Stephanie F Mori
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Xuexiu Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Gavin Wang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- University of Georgia, Athens, GA, USA
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, 30912, Augusta, GA, USA
| | - Huidong Shi
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| | - John K Cowell
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| |
Collapse
|
277
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
278
|
Semancik CS, Zhao N, Koestler DC, Boerwinkle E, Bressler J, Buchsbaum RJ, Kelsey KT, Platz EA, Michaud DS. DNA Methylation-Derived Immune Cell Proportions and Cancer Risk, Including Lung Cancer, in Black Participants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307118. [PMID: 38766207 PMCID: PMC11100922 DOI: 10.1101/2024.05.09.24307118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Prior cohort studies assessing cancer risk based on immune cell subtype profiles have predominantly focused on White populations. This limitation obscures vital insights into how cancer risk varies across race. Immune cell subtype proportions were estimated using deconvolution based on leukocyte DNA methylation markers from blood samples collected at baseline on participants without cancer in the Atherosclerosis Risk in Communities (ARIC) Study. Over a mean of 17.5 years of follow-up, 668 incident cancers were diagnosed in 2,467 Black participants. Cox proportional hazards regression was used to examine immune cell subtype proportions and overall cancer incidence and site-specific incidence (lung, breast, and prostate cancers). Higher T regulatory cell proportions were associated with statistically significantly higher lung cancer risk (hazard ratio = 1.22, 95% confidence interval = 1.06-1.41 per percent increase). Increased memory B cell proportions were associated with significantly higher risk of prostate cancer (1.17, 1.04-1.33) and all cancers (1.13, 1.05-1.22). Increased CD8+ naïve cell proportions were associated with significantly lower risk of all cancers in participants ≥55 years (0.91, 0.83-0.98). Other immune cell subtypes did not display statistically significant associations with cancer risk. These results in Black participants align closely with prior findings in largely White populations. Findings from this study could help identify those at high cancer risk and outline risk stratifying to target patients for cancer screening, prevention, and other interventions. Further studies should assess these relationships in other cancer types, better elucidate the interplay of B cells in cancer risk, and identify biomarkers for personalized risk stratification.
Collapse
Affiliation(s)
- Christopher S. Semancik
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Naisi Zhao
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Devin C. Koestler
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
279
|
Wilson J, Kimmel B, Arora K, Chada N, Bharti V, Kwiatkowski A, Finklestein J, Hanna A, Arner E, Sheehy T, Pastora L, Yang J, Pagendarm H, Stone P, Taylor B, Hubert L, Gibson-Corley K, May J, McLean J, Rathmell J, Richmond A, Rathmell W, Balko J, Fingleton B, Hargrove-Wiley E. Programable Albumin-Hitchhiking Nanobodies Enhance the Delivery of STING Agonists to Potentiate Cancer Immunotherapy. RESEARCH SQUARE 2024:rs.3.rs-3243545. [PMID: 38766114 PMCID: PMC11100900 DOI: 10.21203/rs.3.rs-3243545/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for in situ hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models. We also demonstrated the programmability of the platform through the recombinant integration of a second nanobody domain that targeted programmed cell death ligand-1 (PD-L1), which further increased cargo delivery to tumor sites while also blocking immunosuppressive PD-1/PD-L1 interactions. This bivalent nanobody carrier for covalently conjugated STING agonists stimulated robust antigen-specific T cell responses and long-lasting immunological memory, conferred enhanced therapeutic efficacy, and was effective as a neoadjuvant treatment for improving responses to adoptive T cell transfer therapy. Albumin-hitchhiking nanobodies thus offer an enabling, multimodal, and programmable platform for systemic delivery of STING agonists with potential to augment responses to multiple immunotherapeutic modalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ann Hanna
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Zhang K, Qu C, Zhou P, Yang Z, Wu X. Integrative analysis of the cuproptosis-related gene ATP7B in the prognosis and immune infiltration of IDH1 wild-type glioma. Gene 2024; 905:148220. [PMID: 38286269 DOI: 10.1016/j.gene.2024.148220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Glioma is the most common malignant tumor in the brain and the central nervous system with a poor prognosis, and wild-type isocitrate dehydrogenase (IDH) glioma indicates a worse prognosis. Cuproptosis is a recently discovered form of cell death regulated by copper-dependent mitochondrial respiration. However, the effect of cuproptosis on tumor prognosis and immune infiltration is not clear. In this research, we analyzed of public databases to show the correlation between cuproptosis-related genes and the prognosis of IDH1 wild-type glioma. Nine out of 12 genes were upregulated in IDH1 wild-type glioma patients, and 6 genes were significantly associated with overall survival (OS), while 5 genes were associated with progression-free survival (PFS). Then, we constructed a prognostic cuproptosis-related gene signature for IDH1 wild-type glioma patients. ATP7B was considered an independent prognostic indicator, and a low expression level of ATP7B was related to a shorter period of OS and PFS. Moreover, downregulation of ATP7B was correlated not only with the infiltration of activated NK cells, CD8 + T cells and M2 macrophages; but also with high expression of immune checkpoint genes and tumor mutation burden (TMB). In the IDH1 wild-type glioma tissues we collected, our data also confirmed that high tumor grade was accompanied by low expression of ATP7B and high expression of PD-L1, which was associated with increasing infiltration of CD8 + immune cells. In conclusion, our research constructed a prognostic cuproptosis-related gene signature model to predict the prognosis of IDH1 wild-type glioma. ATP7B is deemed to be a potential prognostic indicator and novel immunotherapy biomarker for IDH1 wild-type glioma patients.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunhui Qu
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Peijun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Zezi Yang
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Human Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, 410011, China.
| |
Collapse
|
281
|
Yu KX, Yuan WJ, Wang HZ, Li YX. Extracellular matrix stiffness and tumor-associated macrophage polarization: new fields affecting immune exclusion. Cancer Immunol Immunother 2024; 73:115. [PMID: 38693304 PMCID: PMC11063025 DOI: 10.1007/s00262-024-03675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.
Collapse
Affiliation(s)
- Ke-Xun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei-Jie Yuan
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
282
|
Li F, Ouyang J, Chen Z, Zhou Z, Milon Essola J, Ali B, Wu X, Zhu M, Guo W, Liang XJ. Nanomedicine for T-Cell Mediated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301770. [PMID: 36964936 DOI: 10.1002/adma.202301770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiang Ouyang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Zuqin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Barkat Ali
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- Food Sciences Research Institute, Pakistan Agricultural Research Council, 44000, Islamabad, Pakistan
| | - Xinyue Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
283
|
Li Y, Ren X, Gao W, Cai R, Wu J, Liu T, Chen X, Jiang D, Chen C, Cheng Q, Wu A, Cheng W. The biological behavior and clinical outcome of pituitary adenoma are affected by the microenvironment. CNS Neurosci Ther 2024; 30:e14729. [PMID: 38738958 PMCID: PMC11090080 DOI: 10.1111/cns.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/25/2024] [Accepted: 03/31/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Pituitary adenoma is one of the most common brain tumors. Most pituitary adenomas are benign and can be cured by surgery and/or medication. However, some pituitary adenomas show aggressive growth with a fast growth rate and are resistant to conventional treatments such as surgery, drug therapy, and radiation therapy. These tumors, referred to as refractory pituitary adenomas, often relapse or regrow in the early postoperative period. The tumor microenvironment (TME) has recently been identified as an important factor affecting the biological manifestations of tumors and acts as the main battlefield between the tumor and the host immune system. MAIN BODY In this review, we focus on describing TME in pituitary adenomas and refractory pituitary adenomas. Research on the immune microenvironment of pituitary adenomas is currently focused on immune cells such as macrophages and lymphocytes, and extensive research and experimental verifications are still required regarding other components of the TME. In particular, studies are needed to determine the role of the TME in the specific biological behaviors of refractory pituitary adenomas, such as high invasion, fast recurrence rate, and high tolerance to traditional treatments and to identify the mechanisms involved. CONCLUSION Overall, we summarize the similarities and differences between the TME of pituitary adenomas and refractory pituitary adenomas as well as the changes in the biological behavior of pituitary adenomas that may be caused by the microenvironment. These changes greatly affect the outcome of patients.
Collapse
Affiliation(s)
- Yuhe Li
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiufang Ren
- Department of PathologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Wei Gao
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ruikai Cai
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianqi Wu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tianqi Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Chen
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Daoming Jiang
- Shenyang ShenDa Endoscopy Co., Ltd.ShenyangLiaoningChina
| | - Chong Chen
- Shenyang ShenDa Endoscopy Co., Ltd.ShenyangLiaoningChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Anhua Wu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Wen Cheng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
284
|
Xue C, Zhou Q, Zhang B, Ke X, Zhang P, Liu X, Li S, Deng J, Zhou J. Vasari-Based Features Nomogram to Predict the Tumor-Infiltrating CD8+ T Cell Levels in Glioblastoma. Acad Radiol 2024; 31:2050-2060. [PMID: 37985291 DOI: 10.1016/j.acra.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
RATIONALE AND OBJECTIVES Tumor-infiltrating CD8 + T cells play a key role in glioblastoma (GB) development, malignant progression, and recurrence. The aim of the study was to establish nomograms based on the Visually AcceSAble Rembrandt Images (VASARI) features of multiparametric magnetic resonance imaging (MRI) to determine the expression levels of tumor-infiltrating CD8 + T cells in patients with GB. MATERIALS AND METHODS Pathological and imaging data of 140 patients with GB confirmed by surgery and pathology were retrospectively analyzed. The levels of tumor-infiltrating CD8 + T cells in tumor tissue samples obtained from patients were quantified using immunohistochemical staining. Patients were divided into high and low CD8 expression groups. The MRI images of patients with GB were analyzed by two radiologists using the VASARI scoring system. RESULTS A total of 25 MRI-based VASARI imaging features were evaluated by two neuroradiologists. The features with the greatest predictive power for CD8 expression levels were, cystic (OR, 3.063; 95% CI: 1.387, 6.766; P = 0.006), hemorrhage (OR, 2.980; 95% CI: 1.172, 7.575; P = 0.022), and ependymal extension (OR, 0.257; 95% CI: 0.114 0.581; P = 0.001). A logistic regression model based on these three features showed better sample predictive performance (AUC=0.745; 95% CI: 0.665, 0.825; Sensitivity=0.527; Specificity=0.857). CONCLUSION The VASARI feature-based nomogram model can show promise to predict the level of infiltrative CD8 expression in GB tumors non-invasively for earlier tissue diagnosis and more aggressive treatment.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
285
|
Wang W, Fan J, Zhang C, Huang Y, Chen Y, Fu S, Wu J. Targeted modulation of gut and intra-tumor microbiota to improve the quality of immune checkpoint inhibitor responses. Microbiol Res 2024; 282:127668. [PMID: 38430889 DOI: 10.1016/j.micres.2024.127668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapies, such as those blocking the interaction of PD-1 with its ligands, can restore the immune-killing function of T cells. However, ICI therapy is clinically beneficial in only a small number of patients, and it is difficult to predict post-treatment outcomes, thereby limiting its widespread clinical use. Research suggests that gut microbiota can regulate the host immune system and affect cancer progression and treatment. Moreover, the effectiveness of immunotherapy is related to the composition of the patient's gut microbiota; different gut microbial strains can either activate or inhibit the immune response. However, the importance of the microbial composition within the tumor has not been explored until recently. This study describes recent advances in the crosstalk between microbes in tumors and gut microbiota, which can modulate the tumor microbiome by directly translocating into the tumor and altering the tumor microenvironment. This study focused on the potential manipulation of the tumor and gut microbiota using fecal microbiota transplantation (FMT), probiotics, antimicrobials, prebiotics, and postbiotics to enrich immune-boosting bacteria while decreasing unfavorable bacteria to proactively improve the efficacy of ICI treatments. In addition, the use of genetic technologies and nanomaterials to modify microorganisms can largely optimize tumor immunotherapy and advance personalized and precise cancer treatment.
Collapse
Affiliation(s)
- WeiZhou Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - JunYing Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chi Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
286
|
Cao Y, Li Y, Ren C, Yang C, Hao R, Mu T. Manganese-based nanomaterials promote synergistic photo-immunotherapy: green synthesis, underlying mechanisms, and multiple applications. J Mater Chem B 2024; 12:4097-4117. [PMID: 38587869 DOI: 10.1039/d3tb02844e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Caixia Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Chengkai Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
287
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
288
|
Yang H, Zeng X, Liu J, Wen X, Liu H, Liang Y, Wang X, Fang J, Zhang Q, Li J, Zhang X, Guo Z. Development of small-molecular-based radiotracers for PET imaging of PD-L1 expression and guiding the PD-L1 therapeutics. Eur J Nucl Med Mol Imaging 2024; 51:1582-1592. [PMID: 38246910 DOI: 10.1007/s00259-024-06610-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Programmed cell death protein ligand 1 (PD-L1) is a crucial biomarker for immunotherapy. However, nearly 70% of patients do not respond to PD-L1 immune checkpoint therapy. Accurate monitoring of PD-L1 expression and quantification of target binding during treatment are essential. In this study, a series of small-molecule radiotracers were developed to assess PD-L1 expression and direct immunotherapy. METHODS Radiotracers of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were designed based on a 2-methyl-3-biphenyl methanol scaffold and successfully synthesized. Cellular experiments and molecular docking assays were performed to determine their specificity for PD-L1. PD-L1 status was investigated via positron emission tomography (PET) imaging in MC38 tumor models. PET imaging of [68Ga]Ga-D-pep-PMED was performed to noninvasively quantify PD-L1 blocking using an anti-mouse PD-L1 antibody (PD-L1 mAb). RESULTS The radiosyntheses of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were achieved with radiochemical yields of 87 ± 6%, 82 ± 4%, and 79 ± 9%, respectively. In vitro competition assays demonstrated their high affinities (the IC50 values of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were 90.66 ± 1.24, 160.8 ± 1.35, and 51.6 ± 1.32 nM, respectively). At 120 min postinjection (p.i.) of the radiotracers, MC38 tumors displayed optimized tumor-to-muscle ratios for all radioligands. Owing to its hydrophilic modification, [68Ga]Ga-D-pep-PMED had the highest target-to-nontarget (T/NT) ratio of approximately 6.2 ± 1.2. Interestingly, the tumor/liver ratio was hardly affected by different concentrations of the inhibitor BMS202. We then evaluated the impacts of dose and time on accessible PD-L1 levels in the tumor during anti-mouse PD-L1 antibody treatment. The tumor uptake of [68Ga]Ga-D-pep-PMED significantly decreased with increasing PD-L1 mAb dose. Moreover, after 8 days of treatment with a single antibody, the uptake of [68Ga]Ga-D-pep-PMED in the tumor significantly increased but remained lower than that in the saline group. CONCLUSION PET imaging with [68Ga]Ga-D-pep-PMED, a small-molecule radiotracer, is a promising tool for evaluating PD-L1 expression and quantifying the target blockade of PD-L1 to assist in the development of effective therapeutic regimens.
Collapse
Affiliation(s)
- Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xuejun Wen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jindian Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
289
|
Liao C, Huang Z, Liu J, Deng M, Wang L, Chen Y, Li J, Zhao J, Luo X, Zhu J, Wu Q, Fu W, Sun B, Zheng J. Role of extracellular vesicles in castration-resistant prostate cancer. Crit Rev Oncol Hematol 2024; 197:104348. [PMID: 38588967 DOI: 10.1016/j.critrevonc.2024.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Prostate cancer (PCa) is a common health threat to men worldwide, and castration-resistant PCa (CRPC) is the leading cause of PCa-related deaths. Extracellular vesicles (EVs) are lipid bilayer compartments secreted by living cells that are important mediators of intercellular communication. EVs regulate the biological processes of recipient cells by transmitting heterogeneous cargoes, contributing to CRPC occurrence, progression, and drug resistance. These EVs originate not only from malignant cells, but also from various cell types within the tumor microenvironment. EVs are widely dispersed throughout diverse biological fluids and are attractive biomarkers derived from noninvasive liquid biopsy techniques. EV quantities and cargoes have been tested as potential biomarkers for CRPC diagnosis, progression, drug resistance, and prognosis; however, technical barriers to their clinical application continue to exist. Furthermore, exogenous EVs may provide tools for new therapies for CRPC. This review summarizes the current evidence on the role of EVs in CRPC.
Collapse
Affiliation(s)
- Chaoyu Liao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingui Liu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Min Deng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Leyi Wang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yutong Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiang Zhao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xing Luo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingzhen Zhu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Qingjian Wu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Weihua Fu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Bishao Sun
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
290
|
Liu J, Ma R, Chen S, Lai Y, Liu G. Anoikis patterns via machine learning strategy and experimental verification exhibit distinct prognostic and immune landscapes in melanoma. Clin Transl Oncol 2024; 26:1170-1186. [PMID: 37989822 DOI: 10.1007/s12094-023-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Anoikis is a cell death programmed to eliminate dysfunctional or damaged cells induced by detachment from the extracellular matrix. Utilizing an anoikis-based risk stratification is anticipated to understand melanoma's prognostic and immune landscapes comprehensively. METHODS Differential expression genes (DEGs) were analyzed between melanoma and normal skin tissues in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data sets. Next, least absolute shrinkage and selection operator, support vector machine-recursive feature elimination algorithm, and univariate and multivariate Cox analyses on the 308 DEGs were performed to build the prognostic signature in the TCGA-melanoma data set. Finally, the signature was validated in GSE65904 and GSE22155 data sets. NOTCH3, PIK3R2, and SOD2 were validated in our clinical samples by immunohistochemistry. RESULTS The prognostic model for melanoma patients was developed utilizing ten hub anoikis-related genes. The overall survival (OS) of patients in the high-risk subgroup, which was classified by the optimal cutoff value, was remarkably shorter in the TCGA-melanoma, GSE65904, and GSE22155 data sets. Low-risk patients exhibited low immune cell infiltration and high expression of immunophenoscores and immune checkpoints. They also demonstrated increased sensitivity to various drugs, including dasatinib and dabrafenib. NOTCH3, PIK3R2, and SOD2 were notably associated with OS by univariate Cox analysis in the GSE65904 data set. The clinical melanoma samples showed remarkably higher protein expressions of NOTCH3 (P = 0.003) and PIK3R2 (P = 0.009) than the para-melanoma samples, while the SOD2 protein expression remained unchanged. CONCLUSIONS In this study, we successfully established a prognostic anoikis-connected signature using machine learning. This model may aid in evaluating patient prognosis, clinical characteristics, and immune treatment modalities for melanoma.
Collapse
Affiliation(s)
- Jinfang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Rong Ma
- School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Siyuan Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, No. 1278 Baode Road, Shanghai, China.
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China.
| |
Collapse
|
291
|
Qin R, Ma X, Pu S, Shen C, Hu D, Liu C, Wang K, Wang Y. Identification and validation of a signature based on myofibroblastic cancer-associated fibroblast marker genes for predicting prognosis, immune infiltration, and therapeutic response in bladder cancer. Investig Clin Urol 2024; 65:263-278. [PMID: 38714517 PMCID: PMC11076800 DOI: 10.4111/icu.20230300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 05/10/2024] Open
Abstract
PURPOSE Myofibroblastic cancer-associated fibroblasts (myCAFs) are important components of the tumor microenvironment closely associated with tumor stromal remodeling and immunosuppression. This study aimed to explore myCAFs marker gene biomarkers for clinical diagnosis and therapy for patients with bladder cancer (BC). MATERIALS AND METHODS BC single-cell RNA sequencing (scRNA-seq) data were obtained from the National Center for Biotechnology Information Sequence Read Archive. Transcriptome and clinical data were downloaded from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Subsequently, univariate Cox and LASSO (Least Absolute Shrinkage and Selection Operator regression) regression analyses were performed to construct a prognostic signature. Immune cell activity was estimated using single-sample gene set enrichment analysis whilst the TIDE (tumor immune dysfunction and exclusion) method was employed to assess patient response to immunotherapy. The chemotherapy response of patients with BC was evaluated using genomics of drug sensitivity in cancer. Furthermore, Immunohistochemistry was used to verify the correlation between MAP1B expression and immunotherapy efficacy. The scRNA-seq data were analyzed to identify myCAFs marker genes. RESULTS Combined with bulk RNA-sequencing data, we constructed a two-gene (COL6A1 and MAP1B) risk signature. In patients with BC, the signature demonstrated outstanding prognostic value, immune infiltration, and immunotherapy response. This signature served as a crucial guide for the selection of anti-tumor chemotherapy medications. Additionally, immunohistochemistry confirmed that MAP1B expression was significantly correlated with immunotherapy efficacy. CONCLUSIONS Our findings revealed a typical prognostic signature based on myCAF marker genes, which offers patients with BC a novel treatment target alongside theoretical justification.
Collapse
Affiliation(s)
- Ruize Qin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaocheng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shi Pu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengquan Shen
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ding Hu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changxue Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kongjia Wang
- Department of Urology, Qingdao Municipal Hospital, Qingdao, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
292
|
Werner W, Kuzminskaya M, Lurje I, Tacke F, Hammerich L. Overcoming Resistance to Immune Checkpoint Blockade in Liver Cancer with Combination Therapy: Stronger Together? Semin Liver Dis 2024; 44:159-179. [PMID: 38806159 PMCID: PMC11245330 DOI: 10.1055/a-2334-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Primary liver cancer, represented mainly by hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA), is one of the most common and deadliest tumors worldwide. While surgical resection or liver transplantation are the best option in early disease stages, these tumors often present in advanced stages and systemic treatment is required to improve survival time. The emergence of immune checkpoint inhibitor (ICI) therapy has had a positive impact especially on the treatment of advanced cancers, thereby establishing immunotherapy as part of first-line treatment in HCC and CCA. Nevertheless, low response rates reflect on the usually cold or immunosuppressed tumor microenvironment of primary liver cancer. In this review, we aim to summarize mechanisms of resistance leading to tumor immune escape with a special focus on the composition of tumor microenvironment in both HCC and CCA, also reflecting on recent important developments in ICI combination therapy. Furthermore, we discuss how combination of ICIs with established primary liver cancer treatments (e.g. multikinase inhibitors and chemotherapy) as well as more complex combinations with state-of-the-art therapeutic concepts may reshape the tumor microenvironment, leading to higher response rates and long-lasting antitumor immunity for primary liver cancer patients.
Collapse
Affiliation(s)
- Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Maria Kuzminskaya
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
293
|
Song LN, Wang B, Cai JL, Zhang PL, Chen SP, Zhou ZJ, Dai Z. Stratifying ICIs-responsive tumor microenvironment in HCC: from parsing out immune-hypoxic crosstalk to clinically applicable MRI-radiomics models. Br J Cancer 2024; 130:1356-1364. [PMID: 38355839 PMCID: PMC11014931 DOI: 10.1038/s41416-023-02463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND We aimed to redefine Immune checkpoint inhibitors (ICIs)-responsive "hot" TME and develop a corresponding stratification model to maximize ICIs-efficacy in Hepatocellular Carcinoma (HCC). METHODS Hypoxic scores were designed, and the relevance to immunotherapy responses were validated in pan-cancers through single cell analysis. Multi-omics analysis using the hypoxic scores and immune infiltrate abundance was performed to redefine the ICIs-responsive TME subtype in HCC patients from TCGA (n = 363) and HCCDB database (n = 228). The immune hypoxic stress index (IHSI) was constructed to stratify the ICIs-responsive TME subtype, with exploring biological mechanism in vitro and in vivo. MRI-radiomics models were built for clinical applicability. RESULTS The hypoxic scores were lower in the dominant cell-subclusters of responders in pan-cancers. The higher immune infiltrate-normoxic (HIN) subtype was redefined as the ICIs-responsive TME. Stratification of the HIN subtype using IHSI effectively identified ICIs-responders in Melanoma (n = 122) and urological cancer (n = 22). TRAF3IP3, the constituent gene of IHSI, was implicated in ICIs-relevant "immune-hypoxic" crosstalk by stimulating MAVS/IFN-I pathway under normoxic condition. MRI-radiomics models assessing TRAF3IP3 with HIF1A expression (AUC > 0.80) screened ICIs-Responders in HCC cohort (n = 75). CONCLUSION The hypoxic-immune stratification redefined ICIs-responsive TME and provided MRI-Radiomics models for initial ICIs-responders screening, with IHSI facilitating further identification.
Collapse
Affiliation(s)
- Li-Na Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Biao Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Pei-Ling Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Shi-Ping Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng-Jun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
294
|
Sotirov S, Dimitrov I. Tumor-Derived Antigenic Peptides as Potential Cancer Vaccines. Int J Mol Sci 2024; 25:4934. [PMID: 38732150 PMCID: PMC11084719 DOI: 10.3390/ijms25094934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.
Collapse
Affiliation(s)
| | - Ivan Dimitrov
- Drug Design and Bioinformatics Lab, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria;
| |
Collapse
|
295
|
Liang X, Huang X, Cai Z, Deng Y, Liu D, Hu J, Jin Z, Zhou X, Zhou H, Wang L. The S100 family is a prognostic biomarker and correlated with immune cell infiltration in pan-cancer. Discov Oncol 2024; 15:137. [PMID: 38684596 PMCID: PMC11058162 DOI: 10.1007/s12672-024-00945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The S100 protein family is a group of small molecular EF-hand calcium-binding proteins that play critical roles in various biological processes, including promotion of growth, metastasis and immune evasion of tumor. However, the potential roles of S100 protein family expression in tumor microenvironment (TME) cell infiltration in pan-cancer remain elusive. METHODS Herein, we conducted a comprehensive assessment of the expression patterns of the S100 protein family in pan-cancer, meticulously examining their correlation with characteristics of TME cell infiltration. The S100 score was constructed to quantify S100 family expression patterns of individual tumors. RESULTS The S100 family was a potent risk factor in many cancers. Clustering analysis based on the transcriptome patterns of S100 protein family identified two cancer clusters with distinct immunophenotypes and clinical characteristics. Cluster A, with lower S100 expression, exhibited lower immune infiltration, whereas, Cluster B, with higher S100 expression, featured higher immune infiltration. Interestingly, Cluster B had a poorer prognosis, likely due to an immune-excluded phenotype resulting from stromal activation. The analysis revealed robust enrichment of the TGFb and EMT pathways in the cohort exhibiting high S100 score, alongside a positive correlation between the S100 score and Treg levels, suggesting the manifestation of an immune-excluded phenotype in this group. Moreover, S100 families were associated with the prognosis of 22 different cancers and a noteworthy association was observed between high S100 score and an unfavorable response to anti-PD-1/L1 immunotherapy. Consistent findings across two independent immunotherapy cohorts substantiated the advantageous therapeutic outcomes and clinical benefits in patients displaying lower S100score. CONCLUSION Our analysis demonstrated the role of S100 family in formation of TME diversity and complexity, enabling deeper cognition of TME infiltration characterization and the development of personalized immunotherapy strategies targeting S100 family for unique tumor types.
Collapse
Affiliation(s)
- Xiaojie Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiaoshan Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yeling Deng
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Dan Liu
- Department of Radiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan, China
| | - Jiayi Hu
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Zhihao Jin
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Xinyu Zhou
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
296
|
Yang D, Dang S, Wang Z, Xie M, Li X, Ding X. Vessel co-option: a unique vascular-immune niche in liver cancer. Front Oncol 2024; 14:1386772. [PMID: 38737903 PMCID: PMC11082301 DOI: 10.3389/fonc.2024.1386772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Tumor vasculature is pivotal in regulating tumor perfusion, immune cell infiltration, metastasis, and invasion. The vascular status of the tumor is intricately linked to its immune landscape and response to immunotherapy. Vessel co-option means that tumor tissue adeptly exploits pre-existing blood vessels in the para-carcinoma region to foster its growth rather than inducing angiogenesis. It emerges as a significant mechanism contributing to anti-angiogenic therapy resistance. Different from angiogenic tumors, vessel co-option presents a distinctive vascular-immune niche characterized by varying states and distribution of immune cells, including T-cells, tumor-associated macrophages, neutrophils, and hepatic stellate cells. This unique composition contributes to an immunosuppressive tumor microenvironment that is crucial in modulating the response to cancer immunotherapy. In this review, we systematically reviewed the evidence and molecular mechanisms of vessel co-option in liver cancer, while also exploring its implications for anti-angiogenic drug resistance and the immune microenvironment, to provide new ideas and clues for screening patients with liver cancer who are effective in immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangming Ding
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
297
|
Zhao J, Liu Z, Yang K, Shen S, Peng J. DNA methylation regulator-based molecular subtyping and tumor microenvironment characterization in hepatocellular carcinoma. Front Immunol 2024; 15:1333923. [PMID: 38736884 PMCID: PMC11082416 DOI: 10.3389/fimmu.2024.1333923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Backgroud Although recent studies have reported the regulation of the immune response in hepatocellular carcinoma (HCC) through DNA methylation, the comprehensive impact methylation modifications on tumor microenvironment characteristics and immunotherapy efficacy has not been fully elucidated. Methods In this research, we conducted a comprehensive assessment of the patterns of DNA methylation regulators and the profiles of the tumor microenvironment (TME) in HCC, focusing on 21 specific DNA methylation regulators. We subsequently developed a unique scoring system, a DNA methylation score (DMscore), to assess the individual DNA methylation modifications among the three distinct methylation patterns for differentially expressed genes (DEGs). Results Three distinct methylation modification patterns were identified with distinct TME infiltration characteristics. We demonstrated that the DMscore could predict patient subtype, TME infiltration, and patient prognosis. A low DMscore, characterized by an elevated tumor mutation burden (TMB), hepatitis B virus (HBV)/hepatitis C virus (HCV) infection, and immune activation, indicates an inflamed tumor microenvironment phenotype with a 5-year survival rate of 7.8%. Moreover, a low DMscore appeared to increase the efficacy of immunotherapy in the anti-CTLA-4/PD-1/PD-L1 cohort. Conclusions In brief, this research has enhanced our understanding of the correlation between modifications in DNA methylation patterns and the profile of the tumor microenvironment in individuals diagnosed with HCC. The DMscore may serve as an alternative biomarker for survival and efficacy of immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Junsheng Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengtao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Sijia Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
298
|
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris PC, Pearson MJ, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely MD, Zhang Y, Zhang JP, Ji L, Flies DB, Liu L, Langermann S, LaRochelle WJ, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper KA, Sanmamed MF, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Sci Immunol 2024; 9:eadh2334. [PMID: 38669316 DOI: 10.1126/sciimmunol.adh2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/19/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiwei Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoxiao Cheng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Viviana Ahumada
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Xuan Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Christina Halcovich
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ala Nassar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D. Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian-Ping Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Ji
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Qiuyu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jindong Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Runxia Gu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Program of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
299
|
Aguadé-Gorgorió G, Anderson AR, Solé R. Modeling tumors as species-rich ecological communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590504. [PMID: 38712062 PMCID: PMC11071393 DOI: 10.1101/2024.04.22.590504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Many advanced cancers resist therapeutic intervention. This process is fundamentally related to intra-tumor heterogeneity: multiple cell populations, each with different mutational and phenotypic signatures, coexist within a tumor and its metastatic nodes. Like species in an ecosystem, many cancer cell populations are intertwined in a complex network of ecological interactions. Most mathematical models of tumor ecology, however, cannot account for such phenotypic diversity nor are able to predict its consequences. Here we propose that the Generalized Lotka-Volterra model (GLV), a standard tool to describe complex, species-rich ecological communities, provides a suitable framework to describe the ecology of heterogeneous tumors. We develop a GLV model of tumor growth and discuss how its emerging properties, such as outgrowth and multistability, provide a new understanding of the disease. Additionally, we discuss potential extensions of the model and their application to three active areas of cancer research, namely phenotypic plasticity, the cancer-immune interplay and the resistance of metastatic tumors to treatment. Our work outlines a set of questions and a tentative road map for further research in cancer ecology.
Collapse
Affiliation(s)
| | - Alexander R.A. Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
300
|
Plage H, Furlano K, Hofbauer S, Weinberger S, Ralla B, Franz A, Fendler A, de Martino M, Roßner F, Elezkurtaj S, Kluth M, Lennartz M, Blessin NC, Marx AH, Samtleben H, Fisch M, Rink M, Slojewski M, Kaczmarek K, Ecke T, Hallmann S, Koch S, Adamini N, Zecha H, Minner S, Simon R, Sauter G, Weischenfeldt J, Klatte T, Schlomm T, Horst D, Schallenberg S. PD-L1 expression in tumor and inflammatory cells is associated with favorable tumor features and favorable prognosis in muscle-invasive urothelial carcinoma of the bladder not treated by immune checkpoint inhibitors. BMC Urol 2024; 24:96. [PMID: 38658905 PMCID: PMC11041044 DOI: 10.1186/s12894-024-01482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND A high level of PD-L1 expression is the most relevant predictive parameter for response to immune checkpoint inhibitor (CPI) therapy in urinary bladder cancer. Existing data on the relationship between PD-L1 expression and the natural course of disease are controversial and sparse. METHODS To expand our understanding of the relationship between PD-L1 expression and parameters of cancer aggressiveness, PD-L1 was analyzed on tissue microarrays containing 2710 urothelial bladder carcinomas including 512 patients with follow-up data who underwent radical cystectomy and follow-up therapies in the pre-immune checkpoint inhibitor therapy era. RESULTS Tumor cell positivity in ≥10% of cells were seen in 513 (20%) and an immune cell positivity occurred in 872 (34%) of 2566 interpretable cancers. PD-L1 positivity in tumor cells increased from pTaG2 low grade (0.9% positive) to pTaG3 high grade (4.1%; p = 0.0255) and was even higher in muscle-invasive (pT2-4) carcinomas (29.3%; p < 0.0001). However, within pT2-4 carcinomas, PD-L1 positivity was linked to low pT stage (p = 0.0028), pN0 (p < 0.0001), L0 status (p = 0.0005), and a better prognosis within 512 patients with cystectomy who never received CPIs (p = 0.0073 for tumor cells and p = 0.0086 for inflammatory cells). PD-L1 staining in inflammatory cells was significantly linked to PD-L1 staining in tumor cells (p < 0.0001) and both were linked to a positive p53 immunostaining (p < 0.0001). CONCLUSION It cannot be fully excluded that the strong statistical link between PD-L1 status and favorable histological tumor features as well as better prognosis could influence the outcome of studies evaluating CPIs in muscle-invasive urothelial carcinoma.
Collapse
Affiliation(s)
- Henning Plage
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kira Furlano
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Hofbauer
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sarah Weinberger
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Bernhard Ralla
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Antonia Franz
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Annika Fendler
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michela de Martino
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Florian Roßner
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Henrik Samtleben
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, Marienhospital Hamburg, Hamburg, Germany
| | - Marcin Slojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Krystian Kaczmarek
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Steffen Hallmann
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Stefan Koch
- Department of Pathology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Nico Adamini
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Henrik Zecha
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Joachim Weischenfeldt
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Biotech Research & Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Tobias Klatte
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|