251
|
Sesma A, Pardo J, Isla D, M. Gálvez E, Gascón-Ruiz M, Martínez-Lostao L, Moratiel A, Paño-Pardo JR, Quílez E, Torres-Ramón I, Yubero A, Zapata-García M, Domingo MP, Esteban P, Sanz Pamplona R, Lastra R, Ramírez-Labrada A. Peripheral Blood TCRβ Repertoire, IL15, IL2 and Soluble Ligands for NKG2D Activating Receptor Predict Efficacy of Immune Checkpoint Inhibitors in Lung Cancer. Cancers (Basel) 2024; 16:2798. [PMID: 39199571 PMCID: PMC11352724 DOI: 10.3390/cancers16162798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has changed the therapeutic paradigm of lung cancer (LC), becoming the standard of treatment for previously untreated advanced non-small cell lung cancer (NSCLC) without actionable mutations. It has allowed the achievement of durable responses and resulted in significant survival benefits. However, not all patients respond; hence, molecular biomarkers are needed to help us predict which patients will respond. With this objective, a prospective observational study was designed, including a cohort of 55 patients with NSCLC who received ICIs. We studied whether biomarkers such as TCRβ and specific cytokines involved in the regulation of T cell activity were related to the immunotherapy response. In the survival analysis, it was found that patients with higher TCRβ clonality, lower TCRβ evenness, higher TCRβ Shannon diversity and lower TCRβ convergence had higher overall survival (OS) and progression-free survival (PFS). However, no statistically significant association was observed. Regarding cytokines, those patients with higher levels of IL-2 and IL-15 presented statistically significantly shorter OS and PFS, respectively. In fact, in the multivariable analysis, the high IL-15 level increased the risk of death by three times. Although the sample size was small and more studies are needed to confirm our results, our study reveals promising markers of responses to ICIs.
Collapse
Affiliation(s)
- Andrea Sesma
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Julian Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Microbiology, Radiology, Pediatry and Public Health Department Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Eva M. Gálvez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma 4, 50018 Zaragoza, Spain
| | - Marta Gascón-Ruiz
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Luis Martínez-Lostao
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Nanoscience Institute, 50018 Zaragoza, Spain
- Aragon Materials Science Institute, 50009 Zaragoza, Spain
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain;
| | - Alba Moratiel
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - J. Ramón Paño-Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Infectious Disease Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
| | - Elisa Quílez
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Irene Torres-Ramón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Alfonso Yubero
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - María Zapata-García
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - María Pilar Domingo
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain;
| | - Patricia Esteban
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Rebeca Sanz Pamplona
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Rodrigo Lastra
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Ariel Ramírez-Labrada
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
| |
Collapse
|
252
|
Li S, Chen J, Zhou B. The clinical significance of endoplasmic reticulum stress related genes in non-small cell lung cancer and analysis of single nucleotide polymorphism for CAV1. Front Mol Biosci 2024; 11:1414164. [PMID: 39165641 PMCID: PMC11334084 DOI: 10.3389/fmolb.2024.1414164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, protein homeostasis imbalance caused by endoplasmic reticulum stress has become a major hallmark of cancer. Studies have shown that endoplasmic reticulum stress is closely related to the occurrence, development, and drug resistance of non-small cell lung cancer, however, the role of various endoplasmic reticulum stress-related genes in non-small cell lung cancer is still unclear. In this study, we established an endoplasmic reticulum stress scores based on the Cancer Genome Atlas for non-small cell lung cancer to reflect patient features and predict prognosis. Survival analysis showed significant differences in overall survival among non-small cell lung cancer patients with different endoplasmic reticulum stress scores. In addition, endoplasmic reticulum stress scores was significantly correlated with the clinical features of non-small cell lung cancer patients, and can be served as an independent prognostic indicator. A nomogram based on endoplasmic reticulum stress scores indicated a certain clinical net benefit, while ssGSEA analysis demonstrated that there was a certain immunosuppressive microenvironment in high endoplasmic reticulum stress scores. Gene Set Enrichment Analysis showed that scores was associated with cancer pathways and metabolism. Finally, weighted gene co-expression network analysis displayed that CAV1 was closely related to the occurrence of non-small cell lung cancer. Therefore, in order to further analyze the role of this gene, Chinese non-smoking females were selected as the research subjects to investigate the relationship between CAV1 rs3779514 and susceptibility and prognosis of non-small cell lung cancer. The results showed that the mutation of rs3779514 significantly reduced the risk of non-small cell lung cancer in Chinese non-smoking females, but no prognostic effect was found. In summary, we proposed an endoplasmic reticulum stress scores, which was an independent prognostic factor and indicated immune characteristics in the microenvironment of non-small cell lung cancer. We also validated the relationship between single nucleotide polymorphism locus of core genes and susceptibility to non-small cell lung cancer.
Collapse
Affiliation(s)
| | | | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
253
|
Mustafin RN. Prospects for breast cancer immunotherapy using microRNAs and transposable elements as objects. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1011-1026. [PMID: 39351441 PMCID: PMC11438560 DOI: 10.37349/etat.2024.00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/04/2024] [Indexed: 10/04/2024] Open
Abstract
One of the directions in treatment of chemoresistant breast cancer (BC) may include new methods of activating the immune response against tumor cells. Clinically used checkpoint inhibition using antibodies to PD-1 and PD-L1 works in some patients, but the lack of biomarkers means number of respondents is low. The possibility of combining this method with chemotherapy is limited by an increased risk of toxic liver damage, development of immune-related pneumonitis, and thyroid dysfunction. This article includes introduction into the clinic of new methods of immunotherapy for BC, among which epigenetic activation of retroelements, double-stranded transcripts of which stimulate the interferon response against the tumor, is promising. For this purpose, inhibitors of DNA methyltransferase*, histone deacetylase* and histone methyltransferase* are used (* subtitles in the main text). Their antitumor effect is also mediated by removal of repressive epigenetic marks from tumor suppressor genes. However, numerous studies have proven the role of retroelements in the carcinogenesis of various malignant neoplasms, including BC. Moreover, endogenous retroviruses HERV-K and LINE1 retrotransposons are planned to be used as diagnostic biomarkers for BC. Therefore, a rational approach to using viral mimicry in antitumor therapy of BC may be the simultaneous suppression of specific retrotransposons (drivers for carcinogenesis) using reverse transcriptase inhibitors and silencing of specific transposons involved in carcinogenesis using complementary microRNAs. To determine possible pathways of influence in this direction, 35 specific transposon-derived microRNAs* changes in BC were identified, which can become guides for targeted therapy of BC.
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, Ministry of Health of Russia, 450008 Ufa, Russia
| |
Collapse
|
254
|
Wang T, Zou X. Dynamic analysis of a drug resistance evolution model with nonlinear immune response. Math Biosci 2024; 374:109239. [PMID: 38906526 DOI: 10.1016/j.mbs.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Recent studies have utilized evolutionary mechanisms to impede the emergence of drug-resistant populations. In this paper, we develop a mathematical model that integrates hormonal treatment, immunotherapy, and the interactions among three cell types: drug-sensitive cancer cells, drug-resistant cancer cells and immune effector cells. Dynamical analysis is performed, examining the existence and stability of equilibria, thereby confirming the model's interpretability. Model parameters are calibrated using available prostate cancer data and literature. Through bifurcation analysis for drug sensitivity under different immune effector cells recruitment responses, we find that resistant cancer cells grow rapidly under weak recruitment response, maintain at a low level under strong recruitment response, and both may occur under moderate recruitment response. To quantify the competitiveness of sensitive and resistant cells, we introduce the comprehensive measures R1 and R2, respectively, which determine the outcome of competition. Additionally, we introduce the quantitative indicators CIE1 and CIE2 as comprehensive measures of the immune effects on sensitive and resistant cancer cells, respectively. These two indicators determine whether the corresponding cancer cells can maintain at a low level. Our work shows that the immune system is an important factor affecting the evolution of drug resistance and provides insights into how to enhance immune response to control resistance.
Collapse
Affiliation(s)
- Tengfei Wang
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
255
|
Lv Q, Su T, Liu W, Wang L, Hu J, Cheng Y, Ning C, Shan W, Luo X, Chen X. Low Serum Apolipoprotein A1 Levels Impair Antitumor Immunity of CD8+ T Cells via the HIF-1α-Glycolysis Pathway. Cancer Immunol Res 2024; 12:1058-1073. [PMID: 38752667 DOI: 10.1158/2326-6066.cir-23-0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 08/02/2024]
Abstract
An immunosuppressive microenvironment promotes the occurrence and development of tumors. Low apolipoprotein A1 (ApoA1) is closely related to tumor development, but the underlying mechanisms are unclear. This study investigated the association between serum ApoA1 levels and the immune microenvironment in endometrial, ovarian, and lung cancers. The serum ApoA1 level was decreased significantly in patients with endometrial and ovarian cancers compared with healthy controls. In endometrial cancer (EC) tissues, the low serum ApoA1 level group showed increased CD163+ macrophage infiltration and decreased CD8+ T-cell infiltration compared with the normal serum ApoA1 group. Compromised tumor-infiltrating CD8+ T-cell functions and decreased CD8+ T-cell infiltration also were found in tumor-bearing Apo1-knockout mice. CD8+ T-cell depletion experiments confirmed that ApoA1 exerted its antitumor activity in a CD8+ T-cell-dependent manner. In vitro experiments showed that the ApoA1 mimetic peptide L-4F directly potentiated the antitumor activity of CD8+ T cells via a HIF-1α-mediated glycolysis pathway. Mechanistically, ApoA1 suppressed ubiquitin-mediated degradation of HIF-1α protein by downregulating HIF-1α subunit α inhibitor. This regulatory process maintained the stability of HIF-1α protein and activated the HIF-1α signaling pathway. Tumor-bearing Apoa1 transgenic mice showed an increased response to anti-PD-1 therapy, leading to reduced tumor growth along with increased infiltration of activated CD8+ T cells and enhanced tumor necrosis. The data reported herein demonstrate critical roles for ApoA1 in enhancing CD8+ T-cell immune functions via HIF-1α-mediated glycolysis and support clinical investigation of combining ApoA1 supplementation with anti-PD-1 therapy for treating cancer.
Collapse
Affiliation(s)
- Qiaoying Lv
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Tong Su
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Wei Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Lulu Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Jiali Hu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Yali Cheng
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Chengcheng Ning
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Weiwei Shan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Xuezhen Luo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| |
Collapse
|
256
|
Sun LL, Zhao LN, Sun J, Yuan HF, Wang YF, Hou CY, Lv P, Zhang HH, Yang G, Zhang NN, Zhang XD, Lu W. Inhibition of USP7 enhances CD8 + T cell activity in liver cancer by suppressing PRDM1-mediated FGL1 upregulation. Acta Pharmacol Sin 2024; 45:1686-1700. [PMID: 38589688 PMCID: PMC11272784 DOI: 10.1038/s41401-024-01263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Lin-Lin Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Li-Na Zhao
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiao Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Hong-Feng Yuan
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu-Fei Wang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chun-Yu Hou
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pan Lv
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui-Hui Zhang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guang Yang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ning-Ning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China.
| | - Xiao-Dong Zhang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
257
|
Liu C, Li K, Sui X, Zhao T, Zhang T, Chen Z, Wu H, Li C, Li H, Yang F, Liu Z, Lu Y, Wang J, Chen X, Liu P. Patient-Derived Tumor Organoids Combined with Function-Associated ScRNA-Seq for Dissecting the Local Immune Response of Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400185. [PMID: 38896792 PMCID: PMC11336893 DOI: 10.1002/advs.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/03/2024] [Indexed: 06/21/2024]
Abstract
In vitro models coupled with multimodal approaches are needed to dissect the dynamic response of local tumor immune microenvironment (TIME) to immunotherapy. Here the patient-derived primary lung cancer organoids (pLCOs) are generated by isolating tumor cell clusters, including the infiltrated immune cells. A function-associated single-cell RNA sequencing (FascRNA-seq) platform allowing both phenotypic evaluation and scRNA-seq at single-organoid level is developed to dissect the TIME of individual pLCOs. The analysis of 171 individual pLCOs derived from seven patients reveals that pLCOs retain the TIME heterogeneity in the parenchyma of parental tumor tissues, providing models with identical genetic background but various TIME. Linking the scRNA-seq data of individual pLCOs with their responses to anti-PD-1 (αPD-1) immune checkpoint blockade (ICB) allows to confirm the central role of CD8+ T cells in anti-tumor immunity, to identify potential tumor-reactive T cells with a set of 10 genes, and to unravel the factors regulating T cell activity, including CD99 gene. In summary, the study constructs a joint phenotypic and transcriptomic FascRNA-seq platform to dissect the dynamic response of local TIME under ICB treatment, providing a promising approach to evaluate novel immunotherapies and to understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chang Liu
- School of Biomedical EngineeringTsinghua UniversityBeijing100084China
| | - Kaiyi Li
- School of Biomedical EngineeringTsinghua UniversityBeijing100084China
| | - Xizhao Sui
- Department of Thoracic SurgeryPeople's HospitalPeking UniversityBeijing100034China
| | - Tian Zhao
- School of Biomedical EngineeringTsinghua UniversityBeijing100084China
| | - Ting Zhang
- Beijing Advanced Innovation Centre for Biomedical EngineeringKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zhongyao Chen
- School of Biomedical EngineeringTsinghua UniversityBeijing100084China
| | - Hainan Wu
- Beijing Advanced Innovation Centre for Biomedical EngineeringKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Chao Li
- Department of Thoracic SurgeryPeople's HospitalPeking UniversityBeijing100034China
| | - Hao Li
- Department of Thoracic SurgeryPeople's HospitalPeking UniversityBeijing100034China
| | - Fan Yang
- Department of Thoracic SurgeryPeople's HospitalPeking UniversityBeijing100034China
| | - Zhidong Liu
- Beijing Chest HospitalCapital Medical University & Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing101125China
| | - You‐Yong Lu
- Laboratory of Molecular OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of OncologyBeijing Cancer Hospital and InstitutePeking UniversityBeijing100142China
| | - Jun Wang
- Department of Thoracic SurgeryPeople's HospitalPeking UniversityBeijing100034China
| | - Xiaofang Chen
- Beijing Advanced Innovation Centre for Biomedical EngineeringKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Peng Liu
- School of Biomedical EngineeringTsinghua UniversityBeijing100084China
- Changping LaboratoryBeijing102299China
| |
Collapse
|
258
|
Xin S, Zhang Y, Zhang Z, Li Z, Sun X, Liu X, Jin L, Li W, Tang C, Mei W, Cao Q, Wang H, Wei Z, Zhou Z, Li R, Wen X, Yang G, Chen W, Zheng J, Ye L. ScRNA-seq revealed the tumor microenvironment heterogeneity related to the occurrence and metastasis in upper urinary tract urothelial carcinoma. Cancer Gene Ther 2024; 31:1201-1220. [PMID: 38877164 DOI: 10.1038/s41417-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024]
Abstract
Metastasis is the greatest clinical challenge for UTUCs, which may have distinct molecular and cellular characteristics from earlier cancers. Herein, we provide single-cell transcriptome profiles of UTUC para cancer normal tissue, primary tumor lesions, and lymphatic metastases to explore possible mechanisms associated with UTUC occurrence and metastasis. From 28,315 cells obtained from normal and tumor tissues of 3 high-grade UTUC patients, we revealed the origin of UTUC tumor cells and the homology between metastatic and primary tumor cells. Unlike the immunomicroenvironment suppression of other tumors, we found no immunosuppression in the tumor microenvironment of UTUC. Moreover, it is imperative to note that stromal cells are pivotal in the advancement of UTUC. This comprehensive single-cell exploration enhances our comprehension of the molecular and cellular dynamics of metastatic UTUCs and discloses promising diagnostic and therapeutic targets in cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Yanwei Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ziyao Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Liang Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Zhengzhou University, Luoyang Central Hospital, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhen Zhou
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Rongbing Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Weihua Chen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
259
|
Ortega MA, Boaru DL, De Leon-Oliva D, Fraile-Martinez O, García-Montero C, Rios L, Garrido-Gil MJ, Barrena-Blázquez S, Minaya-Bravo AM, Rios-Parra A, Álvarez-Mon M, Jiménez-Álvarez L, López-González L, Guijarro LG, Diaz R, Saez MA. PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications. J Mol Med (Berl) 2024; 102:987-1000. [PMID: 38935130 DOI: 10.1007/s00109-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The PD-1/PD-L1 axis is a complex signaling pathway that has an important role in the immune system cells. Programmed cell death protein 1 (PD-1) acts as an immune checkpoint on the T lymphocytes, B lymphocytes, natural killer (NK), macrophages, dendritic cells (DCs), monocytes, and myeloid cells. Its ligand, the programmed cell death 1 ligand (PD-L1), is expressed in the surface of the antigen-presenting cells (APCs). The binding of both promotes the downregulation of the T cell response to ensure the activation to prevent the onset of chronic immune inflammation. This axis in the tumor microenvironment (TME) performs a crucial role in the tumor progression and the escape of the tumor by neutralizing the immune system, the engagement of PD-L1 with PD-1 in the T cell causes dysfunctions, neutralization, and exhaustion, providing the tumor mass production. This review will provide a comprehensive overview of the functions of the PD-1/PD-L1 system in immune function, cancer, and the potential therapeutic implications of the PD-1/PD-L1 pathway for cancer management.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain.
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Laura Rios
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Ana M Minaya-Bravo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, CIBEREHD, 28801, Alcala de Henares, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain.
- Surgery Service, University Hospital Principe de Asturias, 28801, Alcala de Henares, Spain.
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| |
Collapse
|
260
|
Li Z, Chen Z, Wang Y, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang W, Ou J, Lin L, Zhou J, Guo W, Li G, Lu YJ, Hu Y. Icariside I enhances the effects of immunotherapy in gastrointestinal cancer via targeting TRPV4 and upregulating the cGAS-STING-IFN-I pathway. Biomed Pharmacother 2024; 177:117134. [PMID: 39013225 DOI: 10.1016/j.biopha.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Gastrointestinal cancer is among the most common cancers worldwide. Immune checkpoint inhibitor-based cancer immunotherapy has become an innovative approach in cancer treatment; however, its efficacy in gastrointestinal cancer is limited by the absence of infiltration of immune cells within the tumor microenvironment. Therefore, it is therefore urgent to develop a novel therapeutic drug to enhance immunotherapy. In this study, we describe a previously unreported potentiating effect of Icariside I (ICA I, GH01), the main bioactive compound isolated from the Epimedium species, on anti-tumor immune responses. Mechanistically, molecular docking and SPR assay result show that ICA I binding with TRPV4. ICA I induced intracellular Ca2+ increasing and mitochondrial DNA release by targeting TRPV4, which triggered cytosolic ox-mitoDNA release. Importantly, these intracellular ox-mitoDNA fragments were taken up by immune cells in the tumor microenvironment, which amplified the immune response. Moreover, our study shows the remarkable efficacy of sequential administration of ICA I and anti-α-PD-1 mAb in advanced tumors and provides a strong scientific rationale for recommending such a combination therapy for clinical trials. ICA I enhanced the anti-tumor effects with PD-1 inhibitors by regulating the TRPV4/Ca2+/Ox-mitoDNA/cGAS/STING axis. We expect that these findings will be translated into clinical therapies, which will benefit more patients with cancer in the near future.
Collapse
Affiliation(s)
- Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yutong Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinzhou Ou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liwei Lin
- Golden Health (Guangdong) Biotechnology Co., Ltd., Guangdong 528200, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd., Guangdong 528200, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China.
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
261
|
Sha JY, Chen KC, Liu ZB, Li W, Lu YS, Liu S, Ma JK, Qu D, Sun YS. Ginseng-DF ameliorates intestinal mucosal barrier injury and enhances immunity in immunosuppressed mice by regulating MAPK/NF-κB signaling pathways. Eur J Nutr 2024; 63:1487-1500. [PMID: 38748287 DOI: 10.1007/s00394-024-03378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/18/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE Dietary fiber (DF) has a good application prospect in effectively restoring the integrity of the intestinal mucosal barrier. Ginseng-DF has good physicochemical properties and physiological activity and shows positive effects in enhancing immunity. The aim of this study was to investigate the protective effect of Ginseng-DF on intestinal mucosal barrier injury induced by cyclophosphamide (CTX) in immunosuppressed mice and its possible mechanism. METHODS The effects of Gginseng-DF on immune function in mice were studied by delayed-type hypersensitivy, lymphocyte proliferation assay and NK cytotoxicity assay, the T lymphocyte differentiation and intestinal barrier integrity were analyzed by flow cytometry and western blot. RESULTS Ginseng-DF (2.5% and 5%) could attenuate the inhibition of DTH response by CTX, promote the transformation and proliferation of lymphocytes, and stimulate NK effector cell activity. At the same time, Ginseng-DF could restore the proportion of CD4+/CD8+ T lymphocytes induced by CTX to different extents, improved spleen tissue damage, promoted the secretion of immunoglobulin IgG, and enhanced body immunity. More importantly, Ginseng-DF could up-regulate the contents of TNF-α, IFN-γ, IL-6 and IL-1β in serum and intestine of immunosuppressed mice to maintain the balance between Th1/Th2 cytokines, and improve the permeability of intestinal mucosal barrier. Meanwhile, Ginseng-DF could reduce intestinal epithelial cell apoptosis and improve intestinal adaptive immunity in CTX-induced immunosuppressed mice by regulating MAPK/NF-κB signaling pathway. CONCLUSION Ginseng-DF can be used as a safe dietary supplement to enhance body immunity and reduce intestinal mucosal injury caused by CTX.
Collapse
Affiliation(s)
- Ji-Yue Sha
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | | | - Zheng-Bo Liu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Shun Lu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Shuang Liu
- Looking Up 9 Starry Sky Medical Research Center, Siping, 136000, China.
| | - Jian-Kai Ma
- Baker (Jilin) Special Medical Health Industry Co., Ltd., Changchun, 130102, China
| | - Di Qu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yin-Shi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
262
|
Li X, Gao ML, Wang SS, Li YL, Liu TN, Xiang H, Liu PN. Engineering an Organic Nanoplatform for Augmented Pyroeletroimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400756. [PMID: 38820232 DOI: 10.1002/adma.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Photothermal immunotherapy has shown great promise in the treatment of tumor metastasis. However, the thermal resistance of tumor cells substantially compromises the treatment effect of photothermal immunotherapy. Herein, a high-performance organic pyroelectric nanoplatform, tBu-TPAD-BF2 nanoparticles (NPs), is rationally engineered for the effective pyroelectroimmunotherapy of tumor metastasis. Biocompatible tBu-TPAD-BF2 NPs with excellent pyroelectric and photothermal conversion properties are constructed by assembling organic, low-bandgap pyroelectric molecules with amphiphilic polymers. After internalization by tumor cells, treatment with tBu-TPAD-BF2 NPs causes an apparent temperature elevation upon near-infrared (NIR) laser irradiation, inducing potent immunogenic cell death (ICD). Additionally, the temperature variations under alternating NIR laser irradiation facilitate reactive oxygen species production for pyroelectric therapy, thus promoting ICD activation and lowering thermal resistance. Importantly, in vivo assessments illustrate that tBu-TPAD-BF2 NPs in combination with NIR laser exposure notably inhibit primary and distant tumor proliferation and prominently retarded lung metastasis. RNA profiling reveals that treatment with tBu-TPAD-BF2 NPs markedly suppresses metastasis under NIR laser illumination by downregulating metastasis-related genes and upregulating immune response-associated pathways. Therefore, this study provides a strategy for designing high-performance pyroelectric nanoplatforms to effectively cure tumor metastasis, thereby overcoming the inherent shortcomings of photothermal immunotherapy.
Collapse
Affiliation(s)
- Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng-Lu Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shan-Shan Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu-Long Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tong-Ning Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
263
|
Zhan Y, Zhang Z, Yin A, Su X, Tang N, Chen Y, Zhang Z, Chen W, Wang J, Wang W. RBBP4: A novel diagnostic and prognostic biomarker for non-small-cell lung cancer correlated with autophagic cell death. Cancer Med 2024; 13:e70090. [PMID: 39109577 PMCID: PMC11304277 DOI: 10.1002/cam4.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) often presents at later stages, typically associated with poor prognosis. Autophagy genes play a role in the progression of tumors. This study investigated the clinical relevance, prognostic value, and biological significance of RBBP4 in NSCLC. METHODS We assessed RBBP4 expression using the GSE30219 and TCGA NSCLC datasets and NSCLC cells, exploring its links with clinical outcomes, tumor immunity, and autophagy genes through bioinformatics analysis after transcriptome sequencing of RBBP4-knockdown and control PC9 cells. We identified differentially expressed genes (DEGs) and conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and protein-protein interaction network analyses. The significance of autophagy-related DEGs was evaluated for diagnosis and prognosis using the GSE30219 dataset. Experiments both in vivo and in vitro explored the biological mechanisms behind RBBP4-mediated autophagic cell death in NSCLC. RESULTS RBBP4 overexpression in NSCLC correlates with a poorer prognosis. Eighteen types of immune cell were significantly enriched in cultures that had low RBBP4 expression compared high expression. DEGs associated with RBBP4 are enriched in autophagy pathways. Transcriptomic profiling of the PC9 cell line identified autophagy-related DEGs associated with RBBP4 that exhibited differential expression in NSCLC, suggesting prognostic applications. In vitro experiments demonstrated that RBBP4 knockdown induced autophagy and apoptosis in PC9 cells, promoting cell death, which was inhibited by 3-MA. In vivo, targeted siRNA against RBBP4 significantly reduced tumor development in PC9 cell-injected nude mice, elevating autophagy-related protein levels and inducing apoptosis and necrosis in tumor tissues. CONCLUSION In NSCLC, RBBP4 upregulation correlates with poor prognosis and altered immunity. Its knockdown induces autophagic cell death in NSCLC cells. These results indicate RBBP4 as a potential NSCLC diagnostic marker and its autophagy modulation as a prospective therapeutic target.
Collapse
Affiliation(s)
- Yajing Zhan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiqian Zhang
- Department of Clinical Laboratory CenterShaoxing People's Hospital (Shaoxing Hospital)ShaoxingZhejiangChina
| | - Ankang Yin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Xiyang Su
- Department of Laboratory MedicineThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Nan Tang
- Department of Clinical LaboratoryPeople's Hospital of Wangcheng District ChangshaChangshaHunanChina
| | - Yi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zebin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Juan Wang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Wei Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| |
Collapse
|
264
|
Brandenburg A, Heine A, Brossart P. Next-generation cancer vaccines and emerging immunotherapy combinations. Trends Cancer 2024; 10:749-769. [PMID: 39048489 DOI: 10.1016/j.trecan.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Therapeutic cancer vaccines have been a subject of research for several decades as potential new weapons to tackle malignancies. Their goal is to induce a long-lasting and efficient antitumour-directed immune response, capable of mediating tumour regression, preventing tumour progression, and eradicating minimal residual disease, while avoiding major adverse effects. Development of new vaccine technologies and antigen prediction methods has led to significant improvements in cancer vaccine efficacy. However, for their successful clinical application, certain obstacles still need to be overcome, especially tumour-mediated immunosuppression and escape mechanisms. In this review, we introduce therapeutic cancer vaccines and subsequently discuss combination approaches of next-generation cancer vaccines and existing immunotherapies, particularly immune checkpoint inhibitors (ICIs) and adoptive cell transfer/cell-based immunotherapies.
Collapse
Affiliation(s)
- Anne Brandenburg
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Annkristin Heine
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Peter Brossart
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
265
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
266
|
Rodriguez BL, Huang J, Gibson L, Fradette JJ, Chen HIH, Koyano K, Cortez C, Li B, Ho C, Ashique AM, Lin VY, Crawley S, Roda JM, Chen P, Fan B, Kim J, Sissons J, Sitrin J, Kaplan DD, Gibbons DL, Rivera LB. Antitumor Activity of a Novel LAIR1 Antagonist in Combination with Anti-PD1 to Treat Collagen-Rich Solid Tumors. Mol Cancer Ther 2024; 23:1144-1158. [PMID: 38648067 PMCID: PMC11293989 DOI: 10.1158/1535-7163.mct-23-0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
We recently reported that resistance to PD-1 blockade in a refractory lung cancer-derived model involved increased collagen deposition and the collagen-binding inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1). Thus, we hypothesized that LAIR1 and collagen cooperated to suppress therapeutic response. In this study, we report that LAIR1 is associated with tumor stroma and is highly expressed by intratumoral myeloid cells in both human tumors and mouse models of cancer. Stroma-associated myeloid cells exhibit a suppressive phenotype and correlate with LAIR1 expression in human cancer. NGM438, a novel humanized LAIR1 antagonist mAb, elicits myeloid inflammation and allogeneic T-cell responses by binding to LAIR1 and blocking collagen engagement. Furthermore, a mouse-reactive NGM438 surrogate antibody sensitized refractory KP mouse lung tumors to anti-PD-1 therapy and resulted in increased intratumoral CD8+ T-cell content and inflammatory gene expression. These data place LAIR1 at the intersection of stroma and suppressive myeloid cells and support the notion that blockade of the LAIR1/collagen axis can potentially address resistance to checkpoint inhibitor therapy in the clinic.
Collapse
Affiliation(s)
- B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiawei Huang
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Laura Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hung-I H. Chen
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Kikuye Koyano
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Czrina Cortez
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Betty Li
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Carmence Ho
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | | | - Vicky Y. Lin
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | | | - Julie M. Roda
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Peirong Chen
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Bin Fan
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Jeong Kim
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - James Sissons
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | | | | | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lee B. Rivera
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| |
Collapse
|
267
|
Ren J, Zhu Y, Nie Y, Zheng M, Hasimu A, Zhao M, Zhao Y, Ma X, Yuan Z, Li Q, Bahabayi A, Zhang Z, Zeng X, Liu C. Differential GPR56 Expression in T Cell Subpopulations for Early-Stage Lung Adenocarcinoma Patient Identification. Immunol Invest 2024; 53:843-856. [PMID: 38809082 DOI: 10.1080/08820139.2024.2350549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
OBJECTIVE This study aimed to investigate the expression of GPR56 in the T cells of early-stage lung adenocarcinoma (LUAD) patients and clarify its diagnostic significance. METHODS Blood samples were collected from 32 patients with stage IA LUAD and 31 healthy controls. GPR56 and perforin were analysed in circulating T-cell subsets by flow cytometry. In addition, a correlation between perforin and GPR56 expression was detected. Changes in GPR56+ cells in early LUAD patients were analysed, and the diagnostic significance of GPR56+ T cells for early LUAD was studied by receiver operating characteristic (ROC) curve analysis. RESULTS The expression of GPR56 in CD8+ T cells from early-stage LUAD patients was significantly greater than that in CD4+ T cells. The percentage of perforin-positive GPR56+ cells in early-stage LUAD patients was high. GPR56 levels in the T cells of LUAD patients were significantly lower than those in healthy controls. ROC analysis revealed that the area under the curve for the percentage of GPR56-positive CD8+ TEMRA cells to distinguish early-stage LUAD patients from healthy individuals- reached 0.7978. CONCLUSION The decreased expression of GPR56 in the peripheral blood of early-stage LUAD patients correlated with perforin levels, reflecting compromised antitumor immunity and aiding early-stage LUAD screening.
Collapse
Affiliation(s)
- Jiaxin Ren
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yaoyi Zhu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuying Nie
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ming Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiming Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiancan Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
268
|
He L, Li J, Li X, Wang X, Yan Q. Inflammatory status predicts prognosis in patients with gastric cancer with early pyloric stenosis who underwent radical resection: A propensity score‑matching analysis. Oncol Lett 2024; 28:355. [PMID: 38881714 PMCID: PMC11176888 DOI: 10.3892/ol.2024.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 06/18/2024] Open
Abstract
The inflammatory status of patients is closely related to their nutritional status, and the impact of inflammatory status on patients with pyloric stenosis remains unclear. The present study aimed to investigate the impact of inflammatory status on the prognosis of patients with gastric cancer with early pyloric stenosis who underwent radical resection. A retrospective analysis included 242 patients with gastric cancer who underwent radical resection at the Affiliated Hospital of Southwest Medical University between July 2016 and December 2020. All patients were diagnosed with early pyloric stenosis. Correlation analysis was used to assess variations among different factors, and survival analysis was conducted to evaluate differences in overall survival (OS). To identify independent prognostic indicators, both univariate and multivariate Cox regression analyses were performed, addressing potential multicollinearity using Lasso analysis. Propensity score matching (PSM) was employed to eliminate potential confounding factors. Additionally, a prognostic risk model and nomogram based on inflammatory indicators were developed to comprehensively explore their impact on prognosis. Initial survival analysis revealed significant associations between neutrophil-to-lymphocyte ratio (NLR; χ2=10.522, P<0.001), systemic immune-inflammation index (SII; χ2=6.733, P=0.025), systemic inflammation response index (SIRI; χ2=15.490, P<0.001) and OS of the patients, while there was no significant survival difference among patients with different platelet-to-lymphocyte ratio (PLR; χ2=2.561, P=0.050). SIRI not only had the highest area under the curve but was also found to be an independent prognostic indicator (hazard ratio=1.851, P=0.046) in the present study. Following PSM on SIRI, a total of 174 patients were included in the subsequent analysis. Time-receiver operating characteristic and survival curves for SIRI after PSM consistently demonstrated its robust prognostic predictive capability. Furthermore, the prognostic risk model based on SIRI and the nomogram incorporating SIRI both exhibited high prognostic value. Inflammatory status was significantly associated with the prognosis of patients with gastric cancer with early pyloric stenosis who underwent radical resection. The NLR, SII and SIRI could all predict patient outcomes. Moreover, SIRI exhibited the highest prognostic value among the inflammatory indices and has been identified as an independent prognostic factor in the present study.
Collapse
Affiliation(s)
- Lijuan He
- Health Management Center, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jie Li
- Department of Cardiology, Ordos Central Hospital, Baotou Medical College, Ordos, Inner Mongolia Autonomous Region 017000, P.R. China
| | - Xiaohong Li
- Health Management Center, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiong Yan
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
269
|
Muilwijk T, Baekelandt L, Akand M, Daelemans S, Marien K, Waumans Y, van Dam PJ, Kockx M, Van den Broeck T, Van Cleynenbreugel B, Van der Aa F, Gevaert T, Joniau S. Fibroblast Activation Protein-α and the Immune Landscape: Unraveling T1 Non-muscle-invasive Bladder Cancer Progression. EUR UROL SUPPL 2024; 66:67-74. [PMID: 39044944 PMCID: PMC11263494 DOI: 10.1016/j.euros.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background and objective The tumor microenvironment (TME) in non-muscle-invasive bladder cancer (NMIBC) plays an important role in the anticancer response. We aimed to identify the prognostic biomarkers in the TME of patients with NMIBC for progression to ≥T2. Methods From our institutional database, 40 patients with T1 high-risk NMIBC who progressed were pair matched for Club Urologico Español de Tratamiento Oncologico (CUETO) progression variables with 80 patients who never progressed despite longer follow-up. Progression was defined as ≥T2 or extravesical disease. Patients were treated at least with bacillus Calmette-Guérin (BCG) induction (five or more of six doses). Immunohistochemical (IHC) markers for the TME were used on tissue at first T1 diagnosis: CD8-PanCK, GZMB-CD8-FOXP3, CD163, PD-L1 SP142/SP263, fibroblast activation protein-α (FAP), and CK5-GATA3. Full tissue slides were annotated digitally. Relative marker area (IHC-positive area/total area) or density (IHC-positive cells per area; n/mm2) was calculated, differentiating between regions of interest (ROIs; T1, Ta, and carcinoma in situ) and between compartments (stromal, epithelial, and combined). Differences in IHC variables were assessed using the t test, for continuous variables using analysis of variance and comparisons of more than two groups using Tukey's test. Conditional logistic regression for progression at 5-yr follow-up was performed with clusters based on pair matching. Key findings and limitations Only FAP expression (increase per 50%) in T1 (odds ratio [OR]: 1.33; 95% confidence interval [CI]: 1.04-1.70) and all ROIs combined (OR: 1.62; 95% CI: 1.14-2.29) correlated significantly with progression. None of the other clinicopathological/IHC variables correlated with progression. Conclusions and clinical implications FAP is a potential prognostic biomarker for progression in high-risk NMIBC. FAP is a marker for cancer-associated fibroblasts and is linked to immunosuppression and neoangiogenesis, which makes future investigation clinically relevant. Patient summary We found that progression of high-risk non-muscle-invasive bladder cancer to muscle-invasive disease is less in patients with lower fibroblast activation protein-α (FAP) expression, which is a marker for cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Tim Muilwijk
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Loïc Baekelandt
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Sofie Daelemans
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
- Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Marien
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Yannick Waumans
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Pieter-Jan van Dam
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Mark Kockx
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | | | | | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Thomas Gevaert
- Organ Systems, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| |
Collapse
|
270
|
Ren Y, Zhu L, Guo Y, Ma J, Yang L, Zheng C, Dong X. Melatonin enhances the efficacy of anti-PD-L1 by improving hypoxia in residual tumors after insufficient radiofrequency ablation. J Pharm Anal 2024; 14:100942. [PMID: 39263355 PMCID: PMC11388694 DOI: 10.1016/j.jpha.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 09/13/2024] Open
Abstract
The hypoxic microenvironment and inflammatory state of residual tumors caused by insufficient radiofrequency ablation (iRFA) are major reasons for rapid tumor progression and pose challenges for immunotherapy. We retrospectively analyzed the clinical data of patients with hepatocellular carcinoma (HCC) treated with RFA and observed that iRFA was associated with poor survival outcomes and progression-free survival. Using an orthotopic HCC mouse model and a colorectal liver metastasis model, we observed that treatment with melatonin after iRFA reduced tumor growth and metastasis and achieved the best outcomes when combined with anti-programmed death-ligand 1 (anti-PD-L1) therapy. In mechanism, melatonin inhibited the expression of epithelial-mesenchymal transitions, hypoxia-inducible factor (HIF)-1α, and PD-L1 in tumor cells after iRFA. Flow cytometry revealed that melatonin reduced the proportion of myeloid-derived suppressor cells and increased the proportion of CD8+ T cells. Transcriptomic analysis revealed an upregulation of immune-activated function-related genes in residual tumors. These findings demonstrated that melatonin can reverse hypoxia and iRFA-induced inflammation, thereby overcoming the immunosuppressive tumor microenvironment (TME) and enhancing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinqiang Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
271
|
Hirayama AV, Wright JH, Smythe KS, Fiorenza S, Shaw AN, Gauthier J, Maloney DG, Naresh KN, Yeung CCS, Turtle CJ. PD-L1 + macrophage and tumor cell abundance and proximity to T cells in the pretreatment large B-cell lymphoma microenvironment impact CD19 CAR-T cell immunotherapy efficacy. Hemasphere 2024; 8:e142. [PMID: 39113729 PMCID: PMC11303978 DOI: 10.1002/hem3.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
CD19-targeted chimeric antigen receptor T-cell (CAR-T) immunotherapy has transformed the management of relapsed/refractory large B-cell lymphoma (LBCL), yet durable remissions are observed in less than half of treated patients. The tumor microenvironment (TME) is a key and understudied factor impacting CD19 CAR-T therapy outcomes. Using NanoString nCounter transcriptome profiling (n = 24) and multiplex immunohistochemistry (mIHC, n = 15), we studied the TME in pretreatment biopsies from patients with LBCL undergoing CD19 CAR-T therapy. Patients who achieved complete response (CR) after CAR-T therapy demonstrated higher expression of genes associated with T-cell trafficking and function, whereas those who did not achieve CR had higher expression of genes associated with macrophages and T-cell dysfunction. Distinct patterns of immune infiltration and fibrosis in the TME were associated with CAR-T therapy outcomes, and these findings were corroborated using artificial intelligence-assisted image analyses. Patients who achieved CR had a lower proportion of the biopsy occupied by an interspersed immune infiltrate and a higher proportion of hypocellular/fibrotic regions. Furthermore, mIHC revealed lower density of CD4+ T cells and higher densities of both macrophages and tumor cells expressing PD-L1 in non-CR patients. Spatial analysis revealed that PD-1+ T cells were in close proximity to PD-L1+ macrophages or PD-L1+ tumor cells in patients who did not compared to those who did achieve CR after CAR-T therapy. These findings suggest that morphologic patterns in the TME and engagement of the PD-1/PD-L1 axis in pretreatment biopsies may impact CD19 CAR-T immunotherapy response in patients with LBCL.
Collapse
Affiliation(s)
- Alexandre V. Hirayama
- Clinical Research DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Jocelyn H. Wright
- Clinical Research DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Kimberly S. Smythe
- Translational Science and Therapeutics DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Salvatore Fiorenza
- Clinical Research DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Faculty of Medicine and HealthThe University of SydneyCamperdownNew South WalesAustralia
| | - Akira N. Shaw
- Faculty of Medicine and HealthThe University of SydneyCamperdownNew South WalesAustralia
| | - Jordan Gauthier
- Clinical Research DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - David G. Maloney
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer CenterSeattleWashingtonUSA
- Translational Science and Therapeutics DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Kikkeri N. Naresh
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer CenterSeattleWashingtonUSA
- Translational Science and Therapeutics DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Cecilia C. S. Yeung
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer CenterSeattleWashingtonUSA
- Translational Science and Therapeutics DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Cameron J. Turtle
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer CenterSeattleWashingtonUSA
- Translational Science and Therapeutics DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Faculty of Medicine and HealthThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
272
|
Zhang J, Huang Y, Tan X, Wang Z, Cheng R, Zhang S, Chen Y, Jiang F, Tan W, Deng X, Li F. Integrated analysis of multiple transcriptomic approaches and machine learning integration algorithms reveals high endothelial venules as a prognostic immune-related biomarker in bladder cancer. Int Immunopharmacol 2024; 136:112184. [PMID: 38824904 DOI: 10.1016/j.intimp.2024.112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Despite the availability of established surgical and chemotherapy options, the treatment of bladder cancer (BCa) patients remains challenging. While immunotherapy has emerged as a promising approach, its benefits are limited to a subset of patients. The exploration of additional targets to enhance the efficacy of immunotherapy is a valuable research direction. METHOD High endothelial venules (HEV) ssGSEA analysis was conducted using BEST. Through the utilization of R packages Limma, Seurat, SingleR, and Harmony, analyses were performed on spatial transcriptomics, bulk RNA-sequencing (bulk RNA-seq), and single-cell RNA sequencing (scRNA-seq) data, yielding HEV-related genes (HEV.RGs). Molecular subtyping analysis based on HEV.RGs was conducted using R package MOVICS, and various machine learning-integrated algorithm was employed to construct prognostic model. LDLRAD3 was validated through subcutaneous tumor formation in mice, HEV induction, Western blot, and qPCR. RESULTS A correlation between higher HEV levels and improved immune response and prognosis was revealed by HEV ssGSEA analysis in BCa patients receiving immunotherapy. HEV.RGs were identified in subsequent transcriptomic analyses. Based on these genes, BCa patients were stratified into two molecular clusters with distinct survival and immune infiltration patterns using various clustering-integrated algorithm. Prognostic model was developed using multiple machine learning-integrated algorithm. Low LDLRAD3 expression may promote HEV generation, leading to enhanced immunotherapy efficacy, as suggested by bulk RNA-seq, scRNA-seq analyses, and experimental validation of LDLRAD3. CONCLUSIONS HEV served as a predictive factor for immune response and prognosis in BCa patients receiving immunotherapy. LDLRAD3 represented a potential target for HEV induction and enhancing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jinge Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuan Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Xing Tan
- Department of Nanfang Hospital Administration Office, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zihuan Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ranyang Cheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shenlan Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuwen Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Feifan Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, PR China.
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
273
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
274
|
Horino T, Tokunaga R, Miyamoto Y, Baba H. Advanced Lung Cancer Inflammation Index: A Novel Comprehensive Biomarker of Host Status for Patients with Metastatic Colorectal Cancer. J Anus Rectum Colon 2024; 8:137-149. [PMID: 39086873 PMCID: PMC11286371 DOI: 10.23922/jarc.2023-077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 08/02/2024] Open
Abstract
Numerous biomarkers that reflect host status have been identified for patients with metastatic colorectal cancer (mCRC). However, there has been a paucity of biomarker studies that comprehensively indicate body composition, nutritional assessment, and systemic inflammation status. The advanced lung cancer inflammation index (ALI), initially introduced as a screening tool for patients with non-small-cell lung cancer in 2013, emerges as a holistic marker encompassing all body composition, nutritional status, and systemic inflammation status. The index is calculated by the simple formula: body mass index × albumin value / neutrophil-to-lymphocyte ratio. Given its accessibility in routine clinical practice, the ALI has exhibited promising clinical utility in prognosticating outcomes for patients with multiple types of cancer. In this review, we focus on the significance of host status and the clinical applicability of the ALI in the treatment and management of patients with malignancies, including mCRC. We also suggest its potential in guiding the formulation of treatment strategies against mCRC and outline future perspectives.
Collapse
Affiliation(s)
- Taichi Horino
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuma Tokunaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
275
|
Long G, Li Z, Gao Y, Zhang X, Cheng X, Daniel IE, Zhang L, Wang D, Li Z. Ferroptosis-related alternative splicing signatures as potential biomarkers for predicting prognosis and therapy response in gastric cancer. Heliyon 2024; 10:e34381. [PMID: 39816333 PMCID: PMC11734151 DOI: 10.1016/j.heliyon.2024.e34381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Ferroptosis is linked to various tumor biological traits, and alternative splicing (AS), a crucial step in mRNA processing, plays a role in the post-transcriptional regulation of ferroptosis-related genes (FRGs). A least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis was utilized to build a prognostic signature based on 12 AS events (p < 0.05), which was validated in gastric cancer (GC) patients. The high-risk group (n = 203) showed enrichment in cancer and metastasis pathways (p < 0.05). Significant differences existed between the high- and low-risk groups in terms of tumor microenvironment (TME) cell infiltration and immune activities (p < 0.05). The low-risk group (n = 203) was characterized by immune activation and improved prognosis (p < 0.001). Additionally, targeted treatment and immunotherapy were more likely to benefit the low-risk group (p < 0.05). Correlation analysis was performed to detect related splicing factors (SF) (Cor>0.4, FDR<0.05). Furthermore, our functional assay results suggested that high SF3A2 expression might increase ferroptosis resistance and promote cell proliferation. In conclusion, the FRAs model we built has an advantage in predicting GC prognosis. The model's demonstration of variations in the immune microenvironment and drug response could potentially inform decisions regarding treatment strategies.
Collapse
Affiliation(s)
- Gang Long
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Zhiyong Li
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yue Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Xu Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Xiyang Cheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Irankunda Eric Daniel
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Lisha Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Dawei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Zhengtian Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| |
Collapse
|
276
|
Zhong F, Song L, li H, Liu J, Liu C, Guo Q, Liu W. Multi-omics evaluation of the prognostic value and immune signature of FCN1 in pan-cancer and its relationship with proliferation and apoptosis in acute myeloid leukemia. Front Genet 2024; 15:1425075. [PMID: 39139822 PMCID: PMC11320419 DOI: 10.3389/fgene.2024.1425075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Background The FCN1 gene encodes the ficolin-1 protein, implicated in the pathogenesis of various diseases, though its precise role in tumorigenesis remains elusive. This study aims to elucidate the prognostic significance, immune signature, and treatment response associated with FCN1 across diverse cancer types. Methods Employing multi-omics data, we conducted a comprehensive assessment, encompassing tissue-specific and single-cell-specific expression disparities, pan-cancer expression patterns, epigenetic modifications affecting FCN1 expression, and the immune microenvironment. Our investigation primarily focused on the clinical prognostic attributes, immune profiles, potential molecular mechanisms, and candidate therapeutic agents concerning FCN1 and acute myeloid leukemia (AML). Additionally, in vitro experiments were performed to scrutinize the impact of FCN1 knockdown on cell proliferation, apoptosis, and cell cycle dynamics within the AML cell line U937 and NB4. Results FCN1 expression exhibits widespread dysregulation across various cancers. Through both univariate and multivariate Cox regression analyses, FCN1 has been identified as an independent prognostic indicator for AML. Immunological investigations elucidate FCN1's involvement in modulating inflammatory responses within the tumor microenvironment and its correlation with treatment efficacy. Remarkably, the deletion of FCN1 influences the proliferation, apoptosis, and cell cycle dynamics of U937 cells and NB4 cells. Conclusion These findings underscore FCN1 as a promising pan-cancer biomarker indicative of macrophage infiltration, intimately linked with the tumor microenvironment and treatment responsiveness, and pivotal for cellular mechanisms within AML cell lines.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Lijun Song
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Hao li
- Department of Pediatrics, Hejiang County People’s Hospital, Luzhou, Sichuan, China
| | - Jing Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Chunyan Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| |
Collapse
|
277
|
Zhu J, Li M, Zhang Y, Lv Z, Zhao Z, Guo Y, Chen Y, Ren X, Cheng X, Shi H. S-Sulfenylation Driven Antigen Capture Boosted by Radiation for Enhanced Cancer Immunotherapy. ACS NANO 2024. [PMID: 39066710 DOI: 10.1021/acsnano.4c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Radiotherapy (RT)-induced in situ vaccination greatly promotes the development of personalized cancer vaccines owing to the massive release of antigens initiated by tumor-localized RT eliciting the tumor-specific immune response. However, its broad application in cancer treatment is seriously impeded by poor antigen cross-presentation, low response rate, and short duration of efficacy. Herein, the tumor-antigen-capturing nanosystem dAuNPs@CpG consisting of gold nanoparticles, 3,5-cyclohexanedione (CHD), and immunoadjuvant CpG were fabricated to enhance RT-induced vaccination. Taking advantage of the specific covalent binding between CHD and sulfenic acids of antigen proteins, we show that this nanoplatform has an unexpected potential to capture the sulfenylated tumor-derived protein antigens (TDPAs) induced by RT to in situ generate a vaccination effect, achieving significant growth suppression of both primary and distant tumors in combination with PD-1 blockade. We thus believe that our work presents a powerful and effective means to improve the synergistic tumor radioimmunotherapy.
Collapse
Affiliation(s)
- Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma 00133, Italy
| | - Miao Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhongsheng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Yirui Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xingxiang Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
278
|
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech 2024; 25:168. [PMID: 39044047 PMCID: PMC11573471 DOI: 10.1208/s12249-024-02883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Immunotherapy is one of the most promising therapeutic approaches in the field of cancer treatment. As a tumor progresses, tumor cells employ an array of immune-regulatory mechanisms to suppress immune responses within the tumor microenvironment. Using our understanding of these mechanisms, cancer immunotherapy has been developed to enhance the immune system's effectiveness in treating cancer. Numerous cancer immunotherapies are currently in clinical use, yet many others are either in different stages of development or undergoing clinical studies. In this paper, we briefly discuss the features and current status of cancer immunotherapies. This includes the application of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy, cytokine therapy, cancer vaccines, and gene therapy, all of which have gained significant recognition in clinical practice. Additionally, we discuss limitations that may hinder successful clinical utilization and promising strategies, such as combining immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Ruby Maharjan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
279
|
Wondergem NE, Miedema IHC, van de Ven R, Zwezerijnen GJC, de Graaf P, Karagozoglu KH, Hendrickx JJ, Eerenstein SEJ, Bun RJ, Mulder DC, Voortman J, Boellaard R, Windhorst AD, Hagers JP, Peferoen LAN, de Gruijl TD, Bloemena E, Brakenhoff RH, Leemans CR, Menke-van der Houven van Oordt CW. Circulating T cell status and molecular imaging may predict clinical benefit of neoadjuvant PD-1 blockade in oral cancer. J Immunother Cancer 2024; 12:e009278. [PMID: 39038919 PMCID: PMC11268040 DOI: 10.1136/jitc-2024-009278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Addition of neoadjuvant immune checkpoint inhibition to standard-of-care interventions for locally advanced oral cancer could improve clinical outcome. METHODS In this study, 16 evaluable patients with stage III/IV oral cancer were treated with one dose of 480 mg nivolumab 3 weeks prior to surgery. Primary objectives were safety, feasibility, and suitability of programmed death receptor ligand-1 positron emission tomography (PD-L1 PET) as a biomarker for response. Imaging included 18F-BMS-986192 (PD-L1) PET and 18F-fluorodeoxyglucose (FDG) PET before and after nivolumab treatment. Secondary objectives included clinical and pathological response, and immune profiling of peripheral blood mononuclear cells (PBMCs) for response prediction. Baseline tumor biopsies and postnivolumab resection specimens were evaluated by histopathology. RESULTS Grade III or higher adverse events were not observed and treatment was not delayed in relation to nivolumab administration and other study procedures. Six patients (38%) had a pathological response, of whom three (19%) had a major (≥90%) pathological response (MPR). Tumor PD-L1 PET uptake (quantified using standard uptake value) was not statistically different in patients with or without MPR (median 5.3 vs 3.4). All major responders showed a significantly postnivolumab decreased signal on FDG PET. PBMC immune phenotyping showed higher levels of CD8+ T cell activation in MPR patients, evidenced by higher baseline expression levels of PD-1, TIGIT, IFNγ and lower levels of PD-L1. CONCLUSION Together these data support that neoadjuvant treatment of advanced-stage oral cancers with nivolumab was safe and induced an MPR in a promising 19% of patients. Response was associated with decreased FDG PET uptake as well as activation status of peripheral T cell populations.
Collapse
Affiliation(s)
- Niels E Wondergem
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Iris H C Miedema
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Gerben J C Zwezerijnen
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Pim de Graaf
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - K Hakki Karagozoglu
- Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Oral and Maxillofacial Surgery/Oral Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jan-Jaap Hendrickx
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Simone E J Eerenstein
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Rolf J Bun
- Oral and Maxillofacial Surgery, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Dorien C Mulder
- Oral and Maxillofacial Surgery, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Jens Voortman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - J Pascal Hagers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Laura A N Peferoen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - C René Leemans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - C Willemien Menke-van der Houven van Oordt
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
280
|
Zhang H, Huang W, Chen M, Liu Y, Yan B, Mou S, Jiang W, Mei H. Research on molecular characteristics of ADME-related genes in kidney renal clear cell carcinoma. Sci Rep 2024; 14:16834. [PMID: 39039118 PMCID: PMC11263354 DOI: 10.1038/s41598-024-67516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) are named ADME genes. However, the comprehensive role of ADME genes in kidney renal clear cell carcinoma (KIRC) remains unclear. Using the clinical and gene expression data of KIRC patients downloaded from The Cancer Genome Atlas (TCGA), ArrayExpress, and the Gene Expression Omnibus (GEO) databases, we cluster patients into two patterns, and the population with a relatively poor prognosis demonstrated higher level of immunosuppressive cell infiltration and higher proportion of glycolytic subtypes. Then, 17 ADME genes combination identified through the least absolute shrinkage and selection operator algorithm (LASSO, 1000 times) was utilized to calculate the ADME score. The ADME score was found to be an independent predictor of prognosis in KIRC and to be tightly associated with the infiltration level of immune cells, metabolic properties, tumor-related signaling pathways, genetic variation, and responses to chemotherapeutics. Our work revealed the characteristics of ADME in KIRC. Assessing the ADME profiles of individual patients can deepen our comprehension of tumor microenvironment (TME) features in KIRC and can aid in developing more personalized and effective therapeutic strategies.
Collapse
Affiliation(s)
- Haiyu Zhang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Urology, Shantou University Medical College, Shantou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weisheng Huang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Urology, Shantou University Medical College, Shantou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mutong Chen
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Urology, Shantou University Medical College, Shantou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuhan Liu
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bing Yan
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuanzhu Mou
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wendong Jiang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongbing Mei
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
- Department of Urology, Shantou University Medical College, Shantou, China.
- Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
281
|
Yang W, Chen C, Ouyang Q, Han R, Sun P, Chen H. Machine learning models for predicting of PD-1 treatment efficacy in Pan-cancer patients based on routine hematologic and biochemical parameters. Cancer Cell Int 2024; 24:258. [PMID: 39034386 PMCID: PMC11265142 DOI: 10.1186/s12935-024-03439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Immune checkpoint blockade therapy targeting the programmed death-1(PD-1) pathway has shown remarkable efficacy and durable response in patients with various cancer types. Early prediction of therapeutic efficacy is important for optimizing treatment plans and avoiding potential side effects. In this work, we developed an efficient machine learning prediction method using routine hematologic and biochemical parameters to predict the efficacy of PD-1 combination treatment in Pan-Cancer patients. A total of 431 patients with nasopharyngeal carcinoma, esophageal cancer and lung cancer who underwent PD-1 checkpoint inhibitor combination therapy were included in this study. Patients were divided into two groups: progressive disease (PD) and disease control (DC) groups. Hematologic and biochemical parameters were collected before and at the third week of PD-1 therapy. Six machine learning models were developed and trained to predict the efficacy of PD-1 combination therapy at 8-12 weeks. Analysis of 57 blood biomarkers before and after three weeks of PD-1 combination therapy through statistical analysis, heatmaps, and principal component analysis did not accurately predict treatment outcome. However, with machine learning models, both the AdaBoost classifier and GBDT demonstrated high levels of prediction efficiency, with clinically acceptable AUC values exceeding 0.7. The AdaBoost classifier exhibited the highest performance among the 6 machine learning models, with a sensitivity of 0.85 and a specificity of 0.79. Our study demonstrated the potential of machine learning to predict the efficacy of PD-1 combination therapy based on changes in hematologic and biochemical parameters.
Collapse
Affiliation(s)
- Wenjian Yang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Qiangqiang Ouyang
- College of Electronic Engineering, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Runkun Han
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Peng Sun
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Hao Chen
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
282
|
Monette A, Warren S, Barrett JC, Garnett-Benson C, Schalper KA, Taube JM, Topp B, Snyder A. Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee. J Immunother Cancer 2024; 12:e009427. [PMID: 39032943 PMCID: PMC11261685 DOI: 10.1136/jitc-2024-009427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Therapies targeting the programmed cell death protein-1/programmed death-ligand 1 (PD-L1) (abbreviated as PD-(L)1) axis are a significant advancement in the treatment of many tumor types. However, many patients receiving these agents fail to respond or have an initial response followed by cancer progression. For these patients, while subsequent immunotherapies that either target a different axis of immune biology or non-immune combination therapies are reasonable treatment options, the lack of predictive biomarkers to follow-on agents is impeding progress in the field. This review summarizes the current knowledge of mechanisms driving resistance to PD-(L)1 therapies, the state of biomarker development along this axis, and inherent challenges in future biomarker development for these immunotherapies. Innovation in the development and application of novel biomarkers and patient selection strategies for PD-(L)1 agents is required to accelerate the delivery of effective treatments to the patients most likely to respond.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | | | | | | | | | - Janis M Taube
- The Mark Foundation Center for Advanced Genomics and Imaging at Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
283
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
284
|
Cheng Q, Ji W, Lv Z, Wang W, Xu Z, Chen S, Zhang W, Shao Y, Liu J, Yang Y. Comprehensive analysis of PHF5A as a potential prognostic biomarker and therapeutic target across cancers and in hepatocellular carcinoma. BMC Cancer 2024; 24:868. [PMID: 39030507 PMCID: PMC11264801 DOI: 10.1186/s12885-024-12620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE Cancer is a predominant cause of death globally. PHD-finger domain protein 5 A (PHF5A) has been reported to participate in various cancers; however, there has been no pan-cancer analysis of PHF5A. This study aims to present a novel prognostic biomarker and therapeutic target for cancer treatment. METHODS This study explored PHF5A expression and its impact on prognosis, tumor mutation burden (TMB), microsatellite instability (MSI), functional status and tumor immunity across cancers using various public databases, and validated PHF5A expression and its correlation with survival, immune evasion, angiogenesis, and treatment response in hepatocellular carcinoma (HCC) using bioinformatics tools, qRT-PCR and immunohistochemistry (IHC). RESULTS PHF5A was differentially expressed between tumor and corresponding normal tissues and was correlated with prognosis in diverse cancers. Its expression was also associated with TMB, MSI, functional status, tumor microenvironment, immune infiltration, immune checkpoint genes and tumor immune dysfunction and exclusion (TIDE) score in diverse malignancies. In HCC, PHF5A was confirmed to be upregulated by qRT-PCR and IHC, and elevated PHF5A expression may promote immune evasion and angiogenesis in HCC. Additionally, multiple canonical pathways were revealed to be involved in the biological activity of PHF5A in HCC. Moreover, immunotherapy and transcatheter arterial chemoembolization (TACE) worked better in the low PHF5A expression group, while sorafenib, chemotherapy and AKT inhibitor were more effective in the high expression group. CONCLUSIONS This study provides a comprehensive understanding of the biological function of PHF5A in the carcinogenesis and progression of various cancers. PHF5A could serve as a tumor biomarker related to prognosis across cancers, especially HCC, and shed new light on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Wenbin Ji
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Zhenyu Lv
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Wei Wang
- Department of Gastroenterology, The Third People's Hospital of Bengbu, 233004, Bengbu, China
| | - Zhaiyue Xu
- School of Medical, Southeast University, 210000, Nanjing, China
| | - Shaohua Chen
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Wenting Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Yu Shao
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Jing Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China.
| |
Collapse
|
285
|
Ercilla-Rodríguez P, Sánchez-Díez M, Alegría-Aravena N, Quiroz-Troncoso J, Gavira-O'Neill CE, González-Martos R, Ramírez-Castillejo C. CAR-T lymphocyte-based cell therapies; mechanistic substantiation, applications and biosafety enhancement with suicide genes: new opportunities to melt side effects. Front Immunol 2024; 15:1333150. [PMID: 39091493 PMCID: PMC11291200 DOI: 10.3389/fimmu.2024.1333150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment with strategies like checkpoint blockade antibodies and adoptive T cell transfer. Chimeric antigen receptor T cells (CAR-T) have emerged as a promising approach to combine these strategies and overcome their limitations. This review explores CAR-T cells as a living drug for cancer treatment. CAR-T cells are genetically engineered immune cells designed to target and eliminate tumor cells by recognizing specific antigens. The study involves a comprehensive literature review on CAR-T cell technology, covering structure optimization, generations, manufacturing processes, and gene therapy strategies. It examines CAR-T therapy in haematologic cancers and solid tumors, highlighting challenges and proposing a suicide gene-based mechanism to enhance safety. The results show significant advancements in CAR-T technology, particularly in structure optimization and generation. The manufacturing process has improved for broader clinical application. However, a series of inherent challenges and side effects still need to be addressed. In conclusion, CAR-T cells hold great promise for cancer treatment, but ongoing research is crucial to improve efficacy and safety for oncology patients. The proposed suicide gene-based mechanism offers a potential solution to mitigate side effects including cytokine release syndrome (the most common toxic side effect of CAR-T therapy) and the associated neurotoxicity.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Genes, Transgenic, Suicide
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/genetics
- T-Lymphocytes/immunology
- Animals
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
| | - Marta Sánchez-Díez
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nicolás Alegría-Aravena
- Grupo de Biología y Producción de Cérvidos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, Albacete, Spain
- Asociación Española Contra el Cáncer (AECC)-Fundación Científica AECC, Albacete, Spain
| | - Josefa Quiroz-Troncoso
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Clara E. Gavira-O'Neill
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Raquel González-Martos
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Ramírez-Castillejo
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| |
Collapse
|
286
|
Peng B, Lin Y, Yi G, Lin M, Xiao Y, Qiu Y, Yao W, Zhou X, Liu Z. Comprehensive landscape of m6A regulator-related gene patterns and tumor microenvironment infiltration characterization in gastric cancer. Sci Rep 2024; 14:16404. [PMID: 39013954 PMCID: PMC11252343 DOI: 10.1038/s41598-024-66744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The epigenetic regulation of N6-methyladenosine (m6A) has attracted considerable interest in tumor research, but the potential roles of m6A regulator-related genes, remain largely unknown within the context of gastric cancer (GC) and tumor microenvironment (TME). Here, a comprehensive strategy of data mining and computational biology utilizing multiple datasets based on 28 m6A regulators (including novel anti-readers) was employed to identify m6A regulator-related genes and patterns and elucidate their underlying mechanisms in GC. Subsequently, a scoring system was constructed to evaluate individual prognosis and immunotherapy response. Three distinct m6A regulator-related patterns were identified through the unsupervised clustering of 56 m6A regulator-related genes (all significantly associated with GC prognosis). TME characterization revealed that these patterns highly corresponded to immune-inflamed, immune-excluded, and immune-desert phenotypes, and their TME characteristics were highly consistent with different clinical outcomes and biological processes. Additionally, an m6A-related scoring system was developed to quantify the m6A modification pattern of individual samples. Low scores indicated high survival rates and high levels of immune activation, whereas high scores indicated stromal activation and tumor malignancy. Furthermore, the m6A-related scores were correlated with tumor mutation loads and various clinical traits, including molecular or histological subtypes and clinical stage or grade, and the score had predictive values across all digestive system tumors and even in all tumor types. Notably, a low score was linked to improved responses to anti-PD-1/L1 and anti-CTLA4 immunotherapy in three independent cohorts. This study has expanded the important role of m6A regulator-related genes in shaping TME diversity and clinical/biological traits of GC. The developed scoring system could help develop more effective immunotherapy strategies and personalized treatment guidance.
Collapse
Affiliation(s)
- Bin Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yinglin Lin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Gao Yi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Mingzhen Lin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yao Xiao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yezhenghong Qiu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Wenxia Yao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| | - Xinke Zhou
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| | - Zhaoyu Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
287
|
Chen F, Zhang H, Li Y, Liang T, Zhang T. Complete remission in a patient with sinonasal squamous cell carcinoma receiving neoadjuvant tislelizumab plus chemotherapy: a case report. Front Immunol 2024; 15:1414529. [PMID: 39076983 PMCID: PMC11284056 DOI: 10.3389/fimmu.2024.1414529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is the most common, high-aggressive sinonasal malignancies that have remained relatively stable poor outcomes over the past decade. As a first-line treatment for SNSCC, surgery plus adjuvant radiotherapy is recommended. However, complete surgical resection may not be appropriate due to the proximity of the nasal cavity and sinuses to key structures such as orbit or intracranial. Currently, immune checkpoint inhibitors (ICIs) have been established as one of the first-line therapies for many solid tumors with unresectable stage. However, evidence on the efficacy of ICIs in sinonasal malignancy is scarce and no ICIs are approved for use in SNSCC up to day. In this report, we report a case of a 64-year-old man with SNSCC treated by multi-protocol exploration. The patient achieved pathological complete response (pCR) after receiving two cycles of Docetaxel and cisplatin combined with tislelizumab. To the best of our knowledge, this is the first case of SNSCC treated with tislelizumab that achieved pCR. This case offers real-world evidence that chemotherapy plus immunotherapy is a promising treatment for SNSCC.
Collapse
Affiliation(s)
- Fang Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongzheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yonghe Li
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingfeng Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
288
|
Zhang HW, Yu HB. Case report: Translational treatment of unresectable intrahepatic cholangiocarcinoma: Tislelizumab, Lenvatinib, and GEMOX in one case. Front Oncol 2024; 14:1428370. [PMID: 39077469 PMCID: PMC11284616 DOI: 10.3389/fonc.2024.1428370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Background Intrahepatic cholangiocellular carcinoma (ICC) is one of the most common invasive malignancies. Currently, ICC is treated with radical surgical resection. However, the majority of patients are diagnosed at an advanced stage, making surgery ineligible for them. Case presentation We present a case of advanced ICC, which could not undergo radical surgery due to tumor invasion of liver blood vessels. The gemcitabine and oxaliplatin (GEMOX) regimen combined with Tislelizumab immunotherapy and Lenvatinib targeted therapy for 8 cycles resulted in significant tumor shrinkage significantly and the vascular invasion disappeared. CA19-9 levels were reduced to normal levels. Partial remission and successful tumor transformation were achieved. The patient underwent a successful radical surgical resection, including cholecystectomy, resection of liver segments IV, V, and VIII, as well as a regional lymphatic dissection procedure, resulting in complete pathological remission. Conclusion Tumor-free surgical margins (R0) resection of patients with advanced ICC after combination of immune, targeted and chemotherapy is rare, and there are almost no cases of complete postoperative remission. The GEMOX regimen in combination with Tislelizumab and Lenvatinib has a good antitumor efficacy and safety profile, and may be a feasible and safe translational treatment option for advanced ICC.
Collapse
Affiliation(s)
| | - Hai-bo Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Dingli Clinical Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang, China
| |
Collapse
|
289
|
Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci 2024; 25:7666. [PMID: 39062908 PMCID: PMC11277571 DOI: 10.3390/ijms25147666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Autoimmunity refers to an organism's immune response against its own healthy cells, tissues, or components, potentially leading to irreversible damage to vital organs. Central and peripheral tolerance mechanisms play crucial roles in preventing autoimmunity by eliminating self-reactive T and B cells. The disruption of immunological tolerance, characterized by the failure of these mechanisms, results in the aberrant activation of autoreactive lymphocytes that target self-tissues, culminating in the pathogenesis of autoimmune disorders. Genetic predispositions, environmental exposures, and immunoregulatory disturbances synergistically contribute to the susceptibility and initiation of autoimmune pathologies. Within the realm of immune therapies for autoimmune diseases, cytokine therapies have emerged as a specialized strategy, targeting cytokine-mediated regulatory pathways to rectify immunological imbalances. Proinflammatory cytokines are key players in inducing and propagating autoimmune inflammation, highlighting the potential of cytokine therapies in managing autoimmune conditions. This review discusses the etiology of autoimmune diseases, current therapeutic approaches, and prospects for future drug design.
Collapse
Affiliation(s)
- Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bilal Ahmad
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bogeum Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
290
|
Eguren-Santamaría I, Rodríguez I, Herrero-Martin C, Fernández de Piérola E, Azpilikueta A, Sánchez-Gregorio S, Bolaños E, Gomis G, Molero-Glez P, Chacón E, Mínguez JÁ, Chiva S, Diez-Caballero F, de Andrea C, Teijeira Á, Sanmamed MF, Melero I. Short-term cultured tumor fragments to study immunotherapy combinations based on CD137 (4-1BB) agonism. Oncoimmunology 2024; 13:2373519. [PMID: 38988823 PMCID: PMC11236292 DOI: 10.1080/2162402x.2024.2373519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Biomarkers for cancer immunotherapy are an unmet medical need. The group of Daniela Thommen at the NKI recently reported on novel methodologies based on short-term cultures of patient-derived tumor fragments whose cytokine concentrations in the supernatants and activation markers on infiltrating T cells were associated with clinical response to PD-1 blockade. We set up a similar culture technology with tumor-derived fragments using mouse tumors transplanted into syngeneic immunocompetent mice to test an agonist anti-CD137 mAb and its combinations with anti-PD-1 and/or anti-TGF-β. Increases in IFNγ concentrations in the tissue culture supernatants were detected upon in-culture activation with the anti-CD137 and anti-PD-1 mAb combinations or concanavalin A as a positive control. No other cytokine from a wide array was informative of stimulation with these mAbs. Interestingly, increases in Ki67 and other activation markers were substantiated in lymphocytes from cell suspensions gathered at the end of 72 h cultures. In mice bearing bilateral tumors in which one was excised prior to in vivo anti-CD137 + anti-PD-1 treatment to perform the fragment culture evaluation, no association was found between IFNγ production from the fragments and the in vivo therapeutic outcome in the non-resected contralateral tumors. The experimental system permitted freezing and thawing of the fragments with similar functional outcomes. Using a series of patient-derived tumor fragments from excised solid malignancies, we showed IFNγ production in a fraction of the studied cases, that was conserved in frozen/thawed fragments. The small tumor fragment culture technique seems suitable to preclinically explore immunotherapy combinations.
Collapse
Affiliation(s)
- Iñaki Eguren-Santamaría
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Inmaculada Rodríguez
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Claudia Herrero-Martin
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Eva Fernández de Piérola
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sandra Sánchez-Gregorio
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elixabet Bolaños
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Gabriel Gomis
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Molero-Glez
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Enrique Chacón
- Gynecology & Obstetrics Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - José Ángel Mínguez
- Gynecology & Obstetrics Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Santiago Chiva
- Urology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Carlos de Andrea
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Pathology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Miguel F. Sanmamed
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
291
|
Zanotta S, Galati D, De Filippi R, Pinto A. Enhancing Dendritic Cell Cancer Vaccination: The Synergy of Immune Checkpoint Inhibitors in Combined Therapies. Int J Mol Sci 2024; 25:7509. [PMID: 39062753 PMCID: PMC11277144 DOI: 10.3390/ijms25147509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Dendritic cell (DC) cancer vaccines are a promising therapeutic approach, leveraging the immune system to fight tumors. These vaccines utilize DCs' ability to present tumor-associated antigens to T cells, triggering a robust immune response. DC vaccine development has progressed through three generations. The first generation involved priming DCs with tumor-associated antigens or messenger RNA outside the body, showing limited clinical success. The second generation improved efficacy by using cytokine mixtures and specialized DC subsets to enhance immunogenicity. The third generation used blood-derived DCs to elicit a stronger immune response. Clinical trials indicate that cancer vaccines have lower toxicity than traditional cytotoxic treatments. However, achieving significant clinical responses with DC immunotherapy remains challenging. Combining DC vaccines with immune checkpoint inhibitors (ICIs), such as anticytotoxic T-lymphocyte Antigen 4 and antiprogrammed death-1 antibodies, has shown promise by enhancing T-cell responses and improving clinical outcomes. These combinations can transform non-inflamed tumors into inflamed ones, boosting ICIs' efficacy. Current research is exploring new checkpoint targets like LAG-3, TIM-3, and TIGIT, considering their potential with DC vaccines. Additionally, engineering T cells with chimeric antigen receptors or T-cell receptors could further augment the antitumor response. This comprehensive strategy aims to enhance cancer immunotherapy, focusing on increased efficacy and improved patient survival rates.
Collapse
Affiliation(s)
- Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Antonio Pinto
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| |
Collapse
|
292
|
Wei J, Wang M, Wu Y. A disulfidptosis-related lncRNAs cluster to forecast the prognosis and immune landscapes of ovarian cancer. Front Genet 2024; 15:1397011. [PMID: 39045330 PMCID: PMC11263023 DOI: 10.3389/fgene.2024.1397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Objective Disulfidptosis is a newly recognized form of regulated cell death that has been linked to cancer progression and prognosis. Despite this association, the prognostic significance, immunological characteristics and treatment response of disulfidptosis-related lncRNAs (DRLs) in ovarian cancer have not yet been elucidated. Methods The lncRNA data and clinical information for ovarian cancer and normal samples were obtained from the UCSC XENA. Differential expression analysis and Pearson analysis were utilized to identify core DRLs, followed by LASSO algorithm. Random Survival Forest was used to construct a prognostic model. The relationships between risk scores, RNA methylation, immune cell infiltration, mutation, responses to immunotherapy and drug sensitivity analysis were further examined. Additionally, qRT-PCR experiments were conducted to validate the expression of the core DRLs in human ovarian cancer cells and normal ovarian cells and the scRNA-seq data of the core DRLs were obtained from the GEO dataset, available in the TISCH database. Results A total of 8 core DRLs were obtained to construct a prognostic model for ovarian cancer, categorizing all patients into low-risk and high-risk groups using an optimal cutoff value. The AUC values for 1-year, 3-year and 5-year OS in the TCGA cohort were 0.785, 0.810 and 0.863 respectively, proving a strong predictive capability of the model. The model revealed the high-risk group patients exhibited lower overall survival rates, higher TIDE scores and lower TMB levels compared to the low-risk group. Variations in immune cell infiltration and responses to therapeutic drugs were observed between the high-risk and low-risk groups. Besides, our study verified the correlations between the DRLs and RNA methylation. Additionally, qRT-PCR experiments and single-cell RNA sequencing data analysis were conducted to confirm the significance of the core DRLs at both cellular and scRNA-seq levels. Conclusion We constructed a reliable and novel prognostic model with a DRLs cluster for ovarian cancer, providing a foundation for further researches in the management of this disease.
Collapse
|
293
|
Azzi L, Celesti F, Chiaravalli AM, Shaik AKB, Shallak M, Gatta A, Battaglia P, La Rosa S, Tagliabue A, Accolla RS, Forlani G. Novel vaccination strategies based on optimal stimulation of CD4 + T helper cells for the treatment of oral squamous cell carcinoma. Front Immunol 2024; 15:1387835. [PMID: 39035008 PMCID: PMC11257872 DOI: 10.3389/fimmu.2024.1387835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant tumor of the oral cavity. Despite recent advances in the field of oral cancer therapy, including the introduction of immunotherapeutic approaches, the 5-year survival rate remains steadily assessed around 50%. Thus, there is an urgent need for new therapeutic strategies. After the characterization of the immune phenotype of three human OSCC cell lines (CAL-27, SCC-25, and SCC-4) and one mouse OSCC cell line (MOC2) showing their similarities to resected patient tumors, we explored for the first time an experimental preclinical model of therapeutic vaccination with mouse OSCC MOC2 cell line stably expressing MHC class II antigens after CIITA gene transfection (MOC2-CIITA). Mice injected with MOC2-CIITA reject or strongly retard tumor growth; more importantly, vaccinated animals that fully reject MOC2-CIITA tumors display anti-tumor immunological memory protective against challenge with parental MOC2 tumor cells. Further experiments of adoptive cell transfer or in vivo cell depletion show that both CD4+ and CD8+ T lymphocytes prove fundamental in tumor rejection. This unprecedented approach for oral cancer opens the way for possible future translation of novel immunotherapeutic strategies to the human setting for the treatment of this tumor.
Collapse
Affiliation(s)
- Lorenzo Azzi
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Azienda Socio-Sanitaria Territoriale (ASST) dei Sette Laghi, Varese, Italy
| | - Fabrizio Celesti
- Center for Immuno-Oncology, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | | | | | - Mariam Shallak
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Andrea Gatta
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Paolo Battaglia
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Azienda Socio-Sanitaria Territoriale (ASST) Lariana, San Fermo della Battaglia, CO, Italy
| | - Stefano La Rosa
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Azienda Socio-Sanitaria Territoriale (ASST) dei Sette Laghi, Varese, Italy
| | - Angelo Tagliabue
- Azienda Socio-Sanitaria Territoriale (ASST) dei Sette Laghi, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Roberto Sergio Accolla
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Greta Forlani
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| |
Collapse
|
294
|
Younis A, Gribben J. Immune Checkpoint Inhibitors: Fundamental Mechanisms, Current Status and Future Directions. IMMUNO 2024; 4:186-210. [DOI: 10.3390/immuno4030013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Immune checkpoint inhibitors (ICI) are a promising form of immunotherapy that have significantly changed the therapeutic landscape for many advanced cancers. They have shown unique clinical benefit against a broad range of tumour types and a strong overall impact on survival in studied patient populations. However, there are still many limitations holding back this immunotherapy from reaching its full potential as a possible curative option for advanced cancer patients. A great deal of research is being undertaken in the hope of driving advancements in this area, building a better understanding of the mechanisms behind immune checkpoint inhibition and ultimately developing more effective, safer, and wider-reaching agents. Taking into account the current literature on this topic, this review aims to explore in depth the basis of the use of ICIs in the treatment of advanced cancers, evaluate its efficacy and safety, consider its current limitations, and finally reflect on what the future holds for this very promising form of cancer immunotherapy.
Collapse
Affiliation(s)
- Abdullah Younis
- Barts and the London School of Medicine and Dentistry, London E1 2AD, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6AU, UK
| |
Collapse
|
295
|
Guo F, Kong W, Li D, Zhao G, Anwar M, Xia F, Zhang Y, Ma C, Ma X. M2-type tumor-associated macrophages upregulated PD-L1 expression in cervical cancer via the PI3K/AKT pathway. Eur J Med Res 2024; 29:357. [PMID: 38970071 PMCID: PMC11225336 DOI: 10.1186/s40001-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND AND PURPOSE PD-1/PD-L1 inhibitors have become a promising therapy. However, the response rate is lower than 30% in patients with cervical cancer (CC), which is related to immunosuppressive components in tumor microenvironment (TME). Tumor-associated macrophages (TAMs), as one of the most important immune cells, are involved in the formation of tumor suppressive microenvironment. Therefore, it will provide a theoretical basis for curative effect improvement about the regulatory mechanism of TAMs on PD-L1 expression. METHODS The clinical data and pathological tissues of CC patients were collected, and the expressions of PD-L1, CD68 and CD163 were detected by immunohistochemistry. Bioinformatics was used to analyze the macrophage subtypes involved in PD-L1 regulation. A co-culture model was established to observe the effects of TAMs on the morphology, migration and invasion function of CC cells, and the regulatory mechanism of TAMs on PD-L1. RESULTS PD-L1 expression on tumor cells could predict the poor prognosis of patients. And there was a strong correlation between PD-L1 expression with CD163+TAMs infiltration. Similarly, PD-L1 expression was associated with M1/M2-type TAMs infiltration in bioinformatics analysis. The results of cell co-culture showed that M1/M2-type TAMs could upregulate PD-L1 expression, especially M2-type TAMs may elevate the PD-L1 expression via PI3K/AKT pathway. Meanwhile, M1/M2-type TAMs can affect the morphological changes, and enhance migration and invasion abilities of CC cells. CONCLUSIONS PD-L1 expression in tumor cells can be used as a prognostic factor and is closely related to CD163+TAMs infiltration. In addition, M2-type TAMs can upregulate PD-L1 expression in CC cells through PI3K/AKT pathway, enhance the migration and invasion capabilities, and affect the tumor progression.
Collapse
Affiliation(s)
- Fan Guo
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
- Postdoctoral Research Workstation of Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weina Kong
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, The People's Hospital of the Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Miyessar Anwar
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Feifei Xia
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Yuanming Zhang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, 137 Li Yu Shan South Road, Urumqi, 830054, Xinjiang, China.
| | - Xiumin Ma
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
296
|
Liu W, Zhang F, Quan B, Yao F, Chen R, Ren Z, Dong L, Yin X. DDR2/STAT3 Positive Feedback Loop Mediates the Immunosuppressive Microenvironment by Upregulating PD-L1 and Recruiting MDSCs in Oxaliplatin-Resistant HCC. Cell Mol Gastroenterol Hepatol 2024; 18:101377. [PMID: 38969205 PMCID: PMC11386308 DOI: 10.1016/j.jcmgh.2024.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND AND AIMS Transcriptome sequencing revealed high expression of DDR2 in oxaliplatin-resistant hepatocellular carcinoma (HCC). This study aimed to explore the role of DDR2 in oxaliplatin resistance and immune evasion in HCC. METHODS Oxaliplatin-resistant HCC cell lines were established. The interaction between DDR2 and STAT3 was investigated, along with the mechanisms involved in DDR2/STAT3-mediated PD-L1 upregulation and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) accumulation both in vitro and in vivo. RESULTS DDR2 was found to induce the phosphorylation of STAT3, leading to its nuclear translocation. Conversely, the activation of STAT3 enhanced DDR2 expression. A positive feedback loop involving DDR2/STAT3 was identified in oxaliplatin-resistant HCC, which was associated with PD-L1 upregulation and PMN-MDSCs accumulation. Knockdown of DDR2 and STAT3 sensitized oxaliplatin-resistant HCC cells to oxaliplatin and resulted in decreased PMN-MDSCs and increased CD8+ T cells in the tumor microenvironment. Enzyme-linked immunosorbent array and MDSC transwell migration assays indicated that oxaliplatin-resistant HCC cells recruited PMN-MDSCs through CCL20. Dual luciferase reporter assays demonstrated that STAT3 can directly enhance the transcription of PD-L1 and CCL20. Furthermore, treatment with a PD-L1 antibody in combination with CCL20 blockade had significant antitumor effects on oxaliplatin-resistant HCC. CONCLUSIONS Our findings revealed a positive feedback mechanism involving DDR2 and STAT3 that mediates the immunosuppressive microenvironment and promotes oxaliplatin resistance and immune evasion via PD-L1 upregulation and PMN-MDSC recruitment. Targeting the DDR2/STAT3 pathway may be a promising therapeutic strategy to overcome immune escape and chemoresistance in HCC.
Collapse
Affiliation(s)
- Wenfeng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Bing Quan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fan Yao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
297
|
Makita K, Hamamoto Y, Kanzaki H, Nagasaki K, Matsuki H, Inoue K, Kozuki T. Association between tumor cell in air space and treatment outcomes in early-stage lung cancer treated with stereotactic body radiation therapy. Clin Transl Radiat Oncol 2024; 47:100795. [PMID: 38783905 PMCID: PMC11111827 DOI: 10.1016/j.ctro.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Background and purpose Spread-through air space (STAS) is an unfavorable factor in patients with lung cancer treated with surgery. However, the relationship between the treatment outcomes of stereotactic body radiation therapy (SBRT) for lung cancer and STAS has not been adequately investigated. This study aimed to evaluate the impact of tumor cells in the air space (TCIAS), which show a STAS burden, on treatment outcomes in patients with early-stage lung cancer treated with SBRT. Materials and methods Data of patients who underwent SBRT for early-stage lung cancer treated with SBRT were retrospectively reviewed. The influence of the TCIAS status on local progression-free (LPF), regional failure-free (RFF), distant failure-free (DFF), progression-free survival (PFS), and overall survival (OS) rates was assessed using univariate and multivariate analyses. Results Overall, 68 patients were included. The median follow-up time was 24.3 months. For patients positive/negative for TCIAS, the 2-year LPF, RFF, DFF, PFS, and OS rates were 81.4 %/91.1 %, 73.7 %/96.2 %, 55.9 %/75.3 %, 55.0 %/84.6 %, and 67.8 %/92.2 %, respectively. In the multivariate analysis, TCIAS-positive was a significant unfavorable factor for RFF (hazard ratio [HR]: 4.10; 95 % confidence interval [CI]: 1.04-16.16, p = 0.04), DFF (HR: 2.61, 95 % CI: 1.03-6.57, p = 0.04), and PFS (HR: 2.36; 95 % CI: 1.05-5.30, p = 0.04). By contrast, TCIAS-positive was not a significant risk factor for LPF and OS. Conclusion TCIAS-positive is an unfavorable factor for regional and distant failure after SBRT. TCIAS status may be useful in predicting the treatment outcome of SBRT for early-stage lung cancer.
Collapse
Affiliation(s)
- Kenji Makita
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790‐0024, Japan
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Yasushi Hamamoto
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| | - Hiromitsu Kanzaki
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| | - Kei Nagasaki
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| | - Hirokazu Matsuki
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790‐0024, Japan
| | - Koji Inoue
- Department of Respirology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790‐0024, Japan
| | - Toshiyuki Kozuki
- Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| |
Collapse
|
298
|
Tang M, Xu M, Wang J, Liu Y, Liang K, Jin Y, Duan W, Xia S, Li G, Chu H, Liu W, Wang Q. Brain Metastasis from EGFR-Mutated Non-Small Cell Lung Cancer: Secretion of IL11 from Astrocytes Up-Regulates PDL1 and Promotes Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306348. [PMID: 38696655 PMCID: PMC11234401 DOI: 10.1002/advs.202306348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Mengyi Tang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Mingxin Xu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Jian Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Kun Liang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Yinuo Jin
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Wenzhe Duan
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Shengkai Xia
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian, Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Qi Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| |
Collapse
|
299
|
Hamada K, Murakami R, Ueda A, Kashima Y, Miyagawa C, Taki M, Yamanoi K, Yamaguchi K, Hamanishi J, Minamiguchi S, Matsumura N, Mandai M. A Deep Learning-Based Assessment Pipeline for Intraepithelial and Stromal Tumor-Infiltrating Lymphocytes in High-Grade Serous Ovarian Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1272-1284. [PMID: 38537936 DOI: 10.1016/j.ajpath.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Tumor-infiltrating lymphocytes (TILs) are associated with improved survival in patients with epithelial ovarian cancer. However, TIL evaluation has not been used in routine clinical practice because of reproducibility issues. The current study developed two convolutional neural network models to detect TILs and to determine their spatial location in whole slide images, and established a spatial assessment pipeline to objectively quantify intraepithelial and stromal TILs in patients with high-grade serous ovarian carcinoma. The predictions of the established models showed a significant positive correlation with the number of CD8+ T cells and immune gene expressions. Patients with a higher density of intraepithelial TILs had a significantly prolonged overall survival and progression-free survival in multiple cohorts. On the basis of the density of intraepithelial and stromal TILs, patients were classified into three immunophenotypes: immune inflamed, excluded, and desert. The immune-desert subgroup showed the worst prognosis. Gene expression analysis showed that the immune-desert subgroup had lower immune cytolytic activity and T-cell-inflamed gene-expression profile scores, whereas the immune-excluded subgroup had higher expression of interferon-γ and programmed death 1 receptor signaling pathway. The established evaluation method provided detailed and comprehensive quantification of intraepithelial and stromal TILs throughout hematoxylin and eosin-stained slides. It has potential for clinical application for personalized treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiko Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoko Kashima
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chiho Miyagawa
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
300
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|