251
|
Emgård J, Kammoun H, García-Cassani B, Chesné J, Parigi SM, Jacob JM, Cheng HW, Evren E, Das S, Czarnewski P, Sleiers N, Melo-Gonzalez F, Kvedaraite E, Svensson M, Scandella E, Hepworth MR, Huber S, Ludewig B, Peduto L, Villablanca EJ, Veiga-Fernandes H, Pereira JP, Flavell RA, Willinger T. Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation. Immunity 2018; 48:120-132.e8. [PMID: 29343433 PMCID: PMC5772175 DOI: 10.1016/j.immuni.2017.11.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/29/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis. ILC3s sense cholesterol metabolites (oxysterols) through the receptor GPR183 GPR183 and its ligand 7α,25-OHC promote ILC3 migration to CPs and ILFs GPR183 and 7α,25-OHC are critical for CP and ILF formation in the colon GPR183 controls inflammatory tissue remodeling during immune-mediated colitis
Collapse
Affiliation(s)
- Johanna Emgård
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Hana Kammoun
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | | | - Julie Chesné
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Sara M Parigi
- Immunology & Allergy Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jean-Marie Jacob
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Elza Evren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Srustidhar Das
- Immunology & Allergy Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Paulo Czarnewski
- Immunology & Allergy Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Natalie Sleiers
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Felipe Melo-Gonzalez
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PL, UK
| | - Egle Kvedaraite
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Matthew R Hepworth
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PL, UK
| | - Samuel Huber
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Lucie Peduto
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - Eduardo J Villablanca
- Immunology & Allergy Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute.
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
252
|
Seo GY, Shui JW, Takahashi D, Song C, Wang Q, Kim K, Mikulski Z, Chandra S, Giles DA, Zahner S, Kim PH, Cheroutre H, Colonna M, Kronenberg M. LIGHT-HVEM Signaling in Innate Lymphoid Cell Subsets Protects Against Enteric Bacterial Infection. Cell Host Microbe 2018; 24:249-260.e4. [PMID: 30092201 PMCID: PMC6132068 DOI: 10.1016/j.chom.2018.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/19/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023]
Abstract
Innate lymphoid cells (ILCs) are important regulators of early infection at mucosal barriers. ILCs are divided into three groups based on expression profiles, and are activated by cytokines and neuropeptides. Yet, it remains unknown if ILCs integrate other signals in providing protection. We show that signaling through herpes virus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor superfamily, in ILC3 is important for host defense against oral infection with the bacterial pathogen Yersinia enterocolitica. HVEM stimulates protective interferon-γ (IFN-γ) secretion from ILCs, and mice with HVEM-deficient ILC3 exhibit reduced IFN-γ production, higher bacterial burdens and increased mortality. In addition, IFN-γ production is critical as adoptive transfer of wild-type but not IFN-γ-deficient ILC3 can restore protection to mice lacking ILCs. We identify the TNF superfamily member, LIGHT, as the ligand inducing HVEM signals in ILCs. Thus HVEM signaling mediated by LIGHT plays a critical role in regulating ILC3-derived IFN-γ production for protection following infection. VIDEO ABSTRACT.
Collapse
MESH Headings
- Adoptive Transfer
- Adult
- Animals
- Cytokines/metabolism
- Disease Models, Animal
- Enterobacteriaceae Infections/pathology
- Enterobacteriaceae Infections/prevention & control
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Host-Pathogen Interactions/immunology
- Host-Pathogen Interactions/physiology
- Humans
- Interferon-gamma/metabolism
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neuropeptides/metabolism
- Protein Transport
- Receptors, CCR6/genetics
- Receptors, CCR6/metabolism
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Signal Transduction
- Spleen/microbiology
- Spleen/pathology
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Yersinia enterocolitica/pathogenicity
Collapse
Affiliation(s)
- Goo-Young Seo
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jr-Wen Shui
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Daisuke Takahashi
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Christina Song
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qingyang Wang
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kenneth Kim
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Daniel A Giles
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sonja Zahner
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Division of Biology, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
253
|
Cording S, Medvedovic J, Lécuyer E, Aychek T, Déjardin F, Eberl G. Mouse models for the study of fate and function of innate lymphoid cells. Eur J Immunol 2018; 48:1271-1280. [PMID: 29974461 DOI: 10.1002/eji.201747388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/05/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Natural killer (NK) cells and lymphoid tissue inducer (LTi) cells were discovered more than 40 and 20 years ago, respectively. These two cell types were initially studied for their unique functions in the elimination of infected or transformed cells, and in the development of lymphoid tissues. It took an additional 10 years to realize that NK cells and LTi cells were members of a larger family of innate lymphoid cells (ILCs), whose phenotypes and functions mirror those of T cells. Many mouse models have since been developed to identify and isolate ILCs, map their developmental pathways and characterize their functions. Because of the similarity between ILCs and T cells, this exploration remains a challenge. In spite of this, a broad range of mouse models available to researchers has lead to significant progress in untangling the unique roles of ILCs early in defense, regulation of adaptive immunity and homeostasis. Here, we review these mouse models, and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Sascha Cording
- Institut Pasteur, Microenvironment & Immunity Unit, Paris, France.,INSERM U1224, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Laboratory of Intestinal Immunity, Institute IMAGINE, INSERM 1163, Paris, France
| | - Jasna Medvedovic
- Institut Pasteur, Microenvironment & Immunity Unit, Paris, France.,INSERM U1224, Paris, France
| | - Emelyne Lécuyer
- Institut Pasteur, Microenvironment & Immunity Unit, Paris, France.,INSERM U1224, Paris, France
| | - Tegest Aychek
- Institut Pasteur, Microenvironment & Immunity Unit, Paris, France.,INSERM U1224, Paris, France
| | - François Déjardin
- Institut Pasteur, Microenvironment & Immunity Unit, Paris, France.,INSERM U1224, Paris, France
| | - Gérard Eberl
- Institut Pasteur, Microenvironment & Immunity Unit, Paris, France.,INSERM U1224, Paris, France
| |
Collapse
|
254
|
Pandya VB, Kumar S, Sachchidanand, Sharma R, Desai RC. Combating Autoimmune Diseases With Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc) Inhibitors: Hits and Misses. J Med Chem 2018; 61:10976-10995. [DOI: 10.1021/acs.jmedchem.8b00588] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vrajesh B. Pandya
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| | - Sanjay Kumar
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| | - Sachchidanand
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| | - Rajiv Sharma
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| | - Ranjit C. Desai
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| |
Collapse
|
255
|
Zhang Y, Kim TJ, Wroblewska JA, Tesic V, Upadhyay V, Weichselbaum RR, Tumanov AV, Tang H, Guo X, Tang H, Fu YX. Type 3 innate lymphoid cell-derived lymphotoxin prevents microbiota-dependent inflammation. Cell Mol Immunol 2018; 15:697-709. [PMID: 28579615 PMCID: PMC6123485 DOI: 10.1038/cmi.2017.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Splenomegaly is a well-known phenomenon typically associated with inflammation. However, the underlying cause of this phenotype has not been well characterized. Furthermore, the splenomegaly phenotype seen in lymphotoxin (LT) signaling-deficient mice is characterized by increased numbers of splenocytes and splenic neutrophils. Splenomegaly, as well as the related phenotype of increased lymphocyte counts in non-lymphoid tissues, is thought to result from the absence of secondary lymphoid tissues in LT-deficient mice. We now present evidence that mice deficient in LTα1β2 or LTβR develop splenomegaly and increased numbers of lymphocytes in non-lymphoid tissues in a microbiota-dependent manner. Antibiotic administration to LTα1β2- or LTβR-deficient mice reduces splenomegaly. Furthermore, re-derived germ-free Ltbr-/- mice do not exhibit splenomegaly or increased inflammation in non-lymphoid tissues compared to specific pathogen-free Ltbr-/- mice. By using various LTβ- and LTβR-conditional knockout mice, we demonstrate that retinoic acid-related orphan receptor γT-positive type 3 innate lymphoid cells provide the required active LT signaling to prevent the development of splenomegaly. Thus, this study demonstrates the importance of LT-mediated immune responses for the prevention of splenomegaly and systemic inflammation induced by microbiota.
Collapse
MESH Headings
- Animals
- Immunity, Innate
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Lymphocytes/immunology
- Lymphocytes/pathology
- Lymphotoxin alpha1, beta2 Heterotrimer/genetics
- Lymphotoxin alpha1, beta2 Heterotrimer/immunology
- Lymphotoxin beta Receptor/genetics
- Lymphotoxin beta Receptor/immunology
- Mice
- Mice, Knockout
- Microbiota/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pathology, University of Chicago, 60637, Chicago, USA, IL
| | - Tae-Jin Kim
- Department of Pathology, University of Chicago, 60637, Chicago, USA, IL
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 02841, Seoul, Korea
| | - Joanna A Wroblewska
- Committee on Immunology, Department of Pathology, University of Chicago, 60637, Chicago, IL, USA
| | - Vera Tesic
- Department of Pathology, University of Chicago, 60637, Chicago, USA, IL
| | - Vaibhav Upadhyay
- Committee on Immunology, Department of Pathology, University of Chicago, 60637, Chicago, IL, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, University of Chicago, 60637, Chicago, IL, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 78229, San Antonio, TX, USA
| | - Hong Tang
- Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaohuan Guo
- Institute of Immunology, Tsinghua University School of Medicine, 100084, Beijing, China
| | - Haidong Tang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Chicago, 60637, Chicago, USA, IL.
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
256
|
Innate lymphoid cells: key players in tissue-specific immunity. Semin Immunopathol 2018; 40:315-317. [PMID: 29951905 DOI: 10.1007/s00281-018-0690-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
|
257
|
The roles for innate lymphoid cells in the human immune system. Semin Immunopathol 2018; 40:407-419. [PMID: 29948108 PMCID: PMC6060849 DOI: 10.1007/s00281-018-0688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022]
Abstract
From constituting a novel and obscure cell population, innate lymphoid cells (ILCs) are now accepted as a self-evident part of the immune system, contributing with unique and complementary functions to immunity by production of effector cytokines and interaction with other cell types. In this review, we discuss the redundant and complementary roles of the highly plastic human ILCs and their interaction with other immune cells with the ultimate aim of placing ILCs in a wider context within the human immune system.
Collapse
|
258
|
Xu Y, Romero R, Miller D, Silva P, Panaitescu B, Theis KR, Arif A, Hassan SS, Gomez-Lopez N. Innate lymphoid cells at the human maternal-fetal interface in spontaneous preterm labor. Am J Reprod Immunol 2018; 79:e12820. [PMID: 29457302 PMCID: PMC5948134 DOI: 10.1111/aji.12820] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Pathological inflammation is causally linked to preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Our aims were to investigate whether (i) the newly described family of innate lymphoid cells (ILCs) was present at the human maternal-fetal interface and (ii) ILC inflammatory subsets were associated with the pathological process of preterm labor. METHODS OF STUDY Decidual leukocytes were isolated from women with preterm or term labor as well as from gestational age-matched non-labor controls. ILCs (CD15- CD14- CD3- CD19- CD56- CD11b- CD127+ cells) and their subsets (ILC1, T-bet+ ILCs; ILC2, GATA3+ ILCs; and ILC3, RORγt+ ILCs) and cytokine expression were identified in the decidual tissues using immunophenotyping. RESULTS (i) The proportion of total ILCs was increased in the decidua parietalis of women with preterm labor; (ii) ILC1s were a minor subset of decidual ILCs during preterm and term gestations; (iii) ILC2s were the most abundant ILC subset in the decidua during preterm and term gestations; (iv) the proportion of ILC2s was increased in the decidua basalis of women with preterm labor; (v) the proportion of ILC3s was increased in the decidua parietalis of women with preterm labor; and (vi) during preterm labor, ILC3s had higher expression of IL-22, IL-17A, IL-13, and IFN-γ compared to ILC2s in the decidua. CONCLUSION ILC2s were the most abundant ILC subset at the human maternal-fetal interface during preterm and term gestations. Yet, during preterm labor, an increase in ILC2s and ILC3s was observed in the decidua basalis and decidua parietalis, respectively. These findings provide evidence demonstrating a role for ILCs at the maternal-fetal interface during the pathological process of preterm labor.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pablo Silva
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Afrah Arif
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
259
|
Control of pathogens and microbiota by innate lymphoid cells. Microbes Infect 2018; 20:317-322. [DOI: 10.1016/j.micinf.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022]
|
260
|
A-Gonzalez N, Castrillo A. Origin and specialization of splenic macrophages. Cell Immunol 2018; 330:151-158. [PMID: 29779612 DOI: 10.1016/j.cellimm.2018.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/18/2022]
Abstract
Macrophage heterogeneity in the spleen has been long documented, with four subsets populating the different splenic compartments. The diverse environments on the splenic compartments determine their varied phenotype and functions. In the white pulp, highly phagocytic macrophages contribute to the generation of the immune response. The marginal zone contains two populations of macrophages, which also contribute to the immune response. Their strategic position in the bloodstream and their unique phenotype confer them a crucial role in the defense against blood borne pathogens, placing them at the crossroad between innate and adaptive immune responses. Macrophages in the red pulp are classically linked to homeostatic and metabolic functions in erythrocyte phagocytosis and iron recycling. We review here recent advances demonstrating the importance of macrophage ontogeny and organ development in determining the phenotype, transcriptional profile and, ultimately, the functions of the populations of splenic macrophages.
Collapse
Affiliation(s)
- Noelia A-Gonzalez
- Institute of Immunology, University of Münster, 48149 Münster, Germany.
| | - Antonio Castrillo
- Instituto Investigaciones Biomédicas "Alberto Sols", Centro Mixto Consejo Superior de Investigaciones Cientificas y Universidad Autonoma de Madrid (IIBM CSIC-UAM), IIBM Madrid, Spain; Unidad De Biomedicina (Unidad Asociada al CSIC), IIBM- Universidad Las Palmas de Gran Canaria, ULPGC, Grupo de Investigación en medio ambiente y Salud (GIMAS), Instituto Universitario de Investigaciones Biomedicas y Sanitarias (IUIBS, ULPGC), Spain
| |
Collapse
|
261
|
Wang Z, Chai Q, Zhu M. Differential Roles of LTβR in Endothelial Cell Subsets for Lymph Node Organogenesis and Maturation. THE JOURNAL OF IMMUNOLOGY 2018; 201:69-76. [PMID: 29760194 DOI: 10.4049/jimmunol.1701080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/26/2018] [Indexed: 11/19/2022]
Abstract
Cellular cross-talk mediated by lymphotoxin αβ-lymphotoxin β receptor (LTβR) signaling plays a critical role in lymph node (LN) development. Although the major role of LTβR signaling has long been considered to occur in mesenchymal lymphoid tissue organizer cells, a recent study using a VE-cadherincreLtbrfl/fl mouse model suggested that endothelial LTβR signaling contributes to the formation of LNs. However, the detailed roles of LTβR in different endothelial cells (ECs) in LN development remain unknown. Using various cre transgenic mouse models (Tekcre , a strain targeting ECs, and Lyve1cre , mainly targeting lymphatic ECs), we observed that specific LTβR ablation in Tekcre+ or Lyve1cre+ cells is not required for LN formation. Moreover, double-cre-mediated LTβR depletion does not interrupt LN formation. Nevertheless, TekcreLtbrfl/fl mice exhibit reduced lymphoid tissue inducer cell accumulation at the LN anlagen and impaired LN maturation. Interestingly, a subset of ECs (VE-cadherin+Tekcre-low/neg ECs) was found to be enriched in transcripts related to hematopoietic cell recruitment and transendothelial migration, resembling LN high ECs in adult animals. Furthermore, endothelial Tek was observed to negatively regulate hematopoietic cell transmigration. Taken together, our data suggest that although Tekcre+ endothelial LTβR is required for the accumulation of hematopoietic cells and full LN maturation, LTβR in VE-cadherin+Tekcre-low/neg ECs in embryos might represent a critical portal-determining factor for LN formation.
Collapse
Affiliation(s)
- Zhongnan Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and .,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
262
|
Shen Y, Li J, Wang SQ, Jiang W. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases. World J Gastroenterol 2018; 24:1962-1977. [PMID: 29760540 PMCID: PMC5949710 DOI: 10.3748/wjg.v24.i18.1962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) are defined as a distinct arm of innate immunity. According to their profile of secreted cytokines and lineage-specific transcriptional factors, ILCs can be categorized into the following three groups: group 1 ILCs (including natural killer (NK) cells and ILC1s) are dependent on T-bet and can produce interferon-γ; group 2 ILCs (ILC2s) are dependent on GATA3 and can produce type 2 cytokines, including interleukin (IL)-5 and IL-13; and, group 3 ILCs (including lymphoid tissue-like cells and ILC3s) are dependent on RORγt and can produce IL-22 and IL-17. Collaborative with adaptive immunity, ILCs are highly reactive innate effectors that promptly orchestrate immunity, inflammation and tissue repair. Dysregulation of ILCs might result in inflammatory disorders. Evidence regarding the function of intrahepatic ILCs is emerging from longitudinal studies of inflammatory liver diseases wherein they exert both physiological and pathological functions, including immune homeostasis, defenses and surveillance. Their overall effect on the liver depends on the balance of their proinflammatory and antiinflammatory populations, specific microenvironment and stages of immune responses. Here, we review the current data about ILCs in chronic liver disease progression, to reveal their roles in different stages as well as to discuss their therapeutic potency as intervention targets.
Collapse
Affiliation(s)
- Yue Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai 200000, China
| | - Si-Qi Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
263
|
Abstract
Innate and adaptive immunity are two complementary systems that work together to protect the host organism. A new study unravels how innate lymphoid cells and adaptive T lymphocytes act sequentially to establish microbial commensalism and ensure tissue and metabolic homeostasis.
Collapse
|
264
|
Koga S, Hozumi K, Hirano KI, Yazawa M, Terooatea T, Minoda A, Nagasawa T, Koyasu S, Moro K. Peripheral PDGFRα +gp38 + mesenchymal cells support the differentiation of fetal liver-derived ILC2. J Exp Med 2018; 215:1609-1626. [PMID: 29728440 PMCID: PMC5987924 DOI: 10.1084/jem.20172310] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are derived from common lymphoid progenitors (CLPs) via several specific precursors, and the transcription factors essential for ILC2 differentiation have been extensively studied. However, the external factors regulating commitment to the ILC lineage as well as the sites and stromal cells that constitute the optimal microenvironment for ILC2-specific differentiation are not fully defined. In this study, we demonstrate that three key external factors, the concentration of interleukin 7 (IL-7) and strength and duration of Notch signaling, coordinately determine the fate of CLP toward the T, B, or ILC lineage. Additionally, we identified three stages of ILC2 in the fetal mesentery that require STAT5 signals for maturation: ILC progenitors, CCR9+ ILC2 progenitors, and KLRG1- immature ILC2. We further demonstrate that ILC2 development is supported by mesenteric platelet-derived growth factor receptor α (PDGFRα)+ glycoprotein 38 (gp38)+ mesenchymal cells. Collectively, our results suggest that early differentiation of ILC2 occurs in the fetal liver via IL-7 and Notch signaling, whereas final differentiation occurs in the periphery with the aid of PDGFRα+gp38+ cells.
Collapse
Affiliation(s)
- Satoshi Koga
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Department of Supramolecular Biology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Ken-Ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan.,Department of Biochemistry, Tokai University, Hiratsuka, Japan
| | - Tommy Terooatea
- Epigenome Technology Exploration Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Aki Minoda
- Epigenome Technology Exploration Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Deparment of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan .,Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Department of Supramolecular Biology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
265
|
Rosado MM, Aranburu A, Scarsella M, Cascioli S, Giorda E, Del Chierico F, Mortera SL, Mortari EP, Petrini S, Putignani L, Carsetti R. Spleen development is modulated by neonatal gut microbiota. Immunol Lett 2018; 199:1-15. [PMID: 29715493 DOI: 10.1016/j.imlet.2018.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023]
Abstract
The full development of the mammalian immune system occurs after birth upon exposure to non self-antigens. The gut is the first site of bacterial colonization where it is crucial to create the appropriate microenvironment able to balance effector or tolerogenic responses to external stimuli. It is a well-established fact that at mucosal sites bacteria play a key role in developing the immune system but we ignore how colonising bacteria impact the maturation of the spleen. Here we addressed this issue. Taking advantage of the fact that milk SIgA regulates bacterial colonization of the newborn intestine, we generated immunocompetent mice born either from IgA pro-efficient or IgA deficient females. Having demonstrated that SIgA in maternal milk modulates neonatal gut microbiota by promoting an increased diversity of the colonizing species we also found that immunocompetent pups, not exposed to milk SIgA, fail to properly develop the FDC network and primary follicles in the spleen compromising the response to T-dependent antigens. The presence of a less diverse microbiota with a higher representation of pathogenic species leads to a fast replenishment of the marginal zone and the IgM plasma cell compartment of the spleen as well as IgA plasma cells in the gut.
Collapse
Affiliation(s)
- M Manuela Rosado
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy.
| | - Alaitz Aranburu
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Marco Scarsella
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Simona Cascioli
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Ezio Giorda
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Federica Del Chierico
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefano Levi Mortera
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Eva Piano Mortari
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| |
Collapse
|
266
|
Alabbas SY, Begun J, Florin TH, Oancea I. The role of IL-22 in the resolution of sterile and nonsterile inflammation. Clin Transl Immunology 2018; 7:e1017. [PMID: 29713472 PMCID: PMC5905349 DOI: 10.1002/cti2.1017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
In a broad sense, inflammation can be conveniently characterised by two phases: the first phase, which is a pro-inflammatory, has evolved to clear infection and/or injured tissue; and the second phase concerns regeneration of normal tissue and restitution of normal physiology. Innate immune cell-derived pro-inflammatory cytokines and chemokines activate and recruit nonresident immune cells to the site of infection, thereby amplifying the inflammatory responses to clear infection or injury. This phase is followed by a cytokine milieu that promotes tissue regeneration. There is no absolute temporal distinction between these two phases, and cytokines may have dual pleiotropic effects depending on the timing of release, inflammatory microenvironment or concentrations. IL-22 is a cytokine with reported pro- and anti-inflammatory roles; in this review, we contend that this protein has primarily a function in restitution of normal tissue and physiology.
Collapse
Affiliation(s)
- Saleh Y Alabbas
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Jakob Begun
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Timothy H Florin
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Iulia Oancea
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
267
|
Stefanski HE, Jonart L, Goren E, Mulé JJ, Blazar BR. A novel approach to improve immune effector responses post transplant by restoration of CCL21 expression. PLoS One 2018; 13:e0193461. [PMID: 29617362 PMCID: PMC5884478 DOI: 10.1371/journal.pone.0193461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/12/2018] [Indexed: 01/13/2023] Open
Abstract
Chemotherapy or chemoradiotherapy conditioning regimens required for bone marrow transplantation (BMT) cause significant morbidity and mortality as a result of insufficient immune surveillance mechanisms leading to increased risks of infection and tumor recurrence. Such conditioning causes host stromal cell injury, impairing restoration of the central (thymus) and peripheral (spleen and lymph node) T cell compartments and slow immune reconstitution. The chemokine, CCL21, produced by host stromal cells, recruits T- and B-cells that provide lymphotoxin mediated instructive signals to stromal cells for lymphoid organogenesis. Moreover, T- and B-cell recruitment into these sites is required for optimal adaptive immune responses to pathogens and tumor antigens. Previously, we reported that CCL21 was markedly reduced in secondary lymphoid organs of transplanted animals. Here, we utilized adenoviral CCL21 gene transduced dendritic cells (DC/CCL21) given by footpad injections as a novel approach to restore CCL21 expression in secondary lymphoid organs post-transplant. CCL21 expression in secondary lymphoid organs reached levels of naïve controls and resulted in increased T cell trafficking to draining lymph nodes (LNs). An increase in both lymphoid tissue inducer cells and the B cell chemokine CXCL13 known to be important in LN formation was observed. Strikingly, only mice vaccinated with DC/CCL21 loaded with bacterial, viral or tumor antigens and not recipients of DC/control adenovirus loaded cells or no DCs had a marked increase in the systemic clearance of pathogens (bacteria; virus) and leukemia cells. Because DC/CCL21 vaccines have been tested in clinical trials for patients with lung cancer and melanoma, our studies provide the foundation for future trials of DC/CCL21 vaccination in patients receiving pre-transplant conditioning regimens.
Collapse
Affiliation(s)
- Heather E Stefanski
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leslie Jonart
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Emily Goren
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James J Mulé
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
268
|
Cai T, Qiu J, Ji Y, Li W, Ding Z, Suo C, Chang J, Wang J, He R, Qian Y, Guo X, Zhou L, Sheng H, Shen L, Qiu J. IL-17-producing ST2 + group 2 innate lymphoid cells play a pathogenic role in lung inflammation. J Allergy Clin Immunol 2018; 143:229-244.e9. [PMID: 29625134 DOI: 10.1016/j.jaci.2018.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/01/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND IL-17 plays a pathogenic role in asthma. ST2- inflammatory group 2 innate lymphoid cells (ILC2s) driven by IL-25 can produce IL-17, whereas ST2+ natural ILC2s produce little IL-17. OBJECTIVE We characterized ST2+IL-17+ ILC2s during lung inflammation and determined the pathogenesis and molecular regulation of ST2+IL-17+ ILC2s. METHODS Lung inflammation was induced by papain or IL-33. IL-17 production by lung ILC2s from wild-type, Rag1-/-, Rorcgfp/gfp, and aryl hydrocarbon receptor (Ahr)-/- mice was examined by using flow cytometry. Bone marrow transfer experiments were performed to evaluate hematopoietic myeloid differentiation primary response gene-88 (MyD88) signaling in regulating IL-17 production by ILC2s. mRNA expression of IL-17 was analyzed in purified naive ILC2s treated with IL-33, leukotrienes, and inhibitors for nuclear factor of activated T cells, p38, c-Jun N-terminal kinase, or nuclear factor κ light-chain enhancer of activated B cells. The pathogenesis of IL-17+ ILC2s was determined by transferring wild-type or Il17-/- ILC2s to Rag2-/-Il2rg-/- mice, which further induced lung inflammation. Finally, expression of 106 ILC2 signature genes was compared between ST2+IL-17+ ILC2s and ST2+IL-17- ILC2s. RESULTS Papain or IL-33 treatment boosted IL-17 production from ST2+ ILC2s (referred to by us as ILC217s) but not ST2- ILC2s. Ahr, but not retinoic acid receptor-related orphan receptor γt, facilitated the production of IL-17 by ILC217s. The hematopoietic compartment of MyD88 signaling is essential for ILC217 induction. IL-33 works in synergy with leukotrienes, which signal through nuclear factor of activated T-cell activation to promote IL-17 in ILC217s. Il17-/- ILC2s were less pathogenic in lung inflammation. ILC217s concomitantly expressed IL-5 and IL-13 but expressed little GM-CSF. CONCLUSION During lung inflammation, IL-33 and leukotrienes synergistically induce ILC217s. ILC217s are a highly pathogenic and unexpected source for IL-17 in lung inflammation.
Collapse
Affiliation(s)
- Ting Cai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Ji
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaoyun Ding
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Caixia Suo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiali Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Fla
| | - Huiming Sheng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
269
|
Golub R, Tan J, Watanabe T, Brendolan A. Origin and Immunological Functions of Spleen Stromal Cells. Trends Immunol 2018; 39:503-514. [PMID: 29567327 DOI: 10.1016/j.it.2018.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023]
Abstract
The mammalian spleen is a peripheral lymphoid organ that plays a central role in host defense. Consequently, the lack of spleen is often associated with immunodeficiency and increased risk of overwhelming infections. Growing evidence suggests that non-hematopoietic stromal cells are central players in spleen development, organization, and immune functions. In addition to its immunological role, the spleen also provides a site for extramedullary hematopoiesis (EMH) in response to injuries. A deeper understanding of the biology of stromal cells is therefore essential to fully comprehend how these cells modulate the immune system during normal and pathological conditions. Here, we review the specificities of the different mouse spleen stromal cell subsets and complement the murine studies with human data when available.
Collapse
Affiliation(s)
- Rachel Golub
- Unit for Lymphopoiesis, Immunology Department, INSERM U1223, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris, France.
| | - Jonathan Tan
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Andrea Brendolan
- Unit of Lymphoid Organ Development, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
270
|
Horsburgh S, Todryk S, Ramming A, Distler JH, O’Reilly S. Innate lymphoid cells and fibrotic regulation. Immunol Lett 2018; 195:38-44. [DOI: 10.1016/j.imlet.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/04/2023]
|
271
|
Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL 3 and the circadian clock. Science 2018; 357:912-916. [PMID: 28860383 DOI: 10.1126/science.aan0677] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
The intestinal microbiota has been identified as an environmental factor that markedly affects energy storage and body-fat accumulation in mammals, yet the underlying mechanisms remain unclear. Here we show that the microbiota regulates body composition through the circadian transcription factor NFIL3. Nfil3 transcription oscillates diurnally in intestinal epithelial cells, and the amplitude of the circadian oscillation is controlled by the microbiota through group 3 innate lymphoid cells, STAT3 (signal transducer and activator of transcription 3), and the epithelial cell circadian clock. NFIL3 controls expression of a circadian lipid metabolic program and regulates lipid absorption and export in intestinal epithelial cells. These findings provide mechanistic insight into how the intestinal microbiota regulates body composition and establish NFIL3 as an essential molecular link among the microbiota, the circadian clock, and host metabolism.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zheng Kuang
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofei Yu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. .,Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
272
|
Van Acker A, Gronke K, Biswas A, Martens L, Saeys Y, Filtjens J, Taveirne S, Van Ammel E, Kerre T, Matthys P, Taghon T, Vandekerckhove B, Plum J, Dunay IR, Diefenbach A, Leclercq G. A Murine Intestinal Intraepithelial NKp46-Negative Innate Lymphoid Cell Population Characterized by Group 1 Properties. Cell Rep 2018; 19:1431-1443. [PMID: 28514662 DOI: 10.1016/j.celrep.2017.04.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/22/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
The Ly49E receptor is preferentially expressed on murine innate-like lymphocytes, such as epidermal Vγ3 T cells, intestinal intraepithelial CD8αα+ T lymphocytes, and CD49a+ liver natural killer (NK) cells. As the latter have recently been shown to be distinct from conventional NK cells and have innate lymphoid cell type 1 (ILC1) properties, we investigated Ly49E expression on intestinal ILC populations. Here, we show that Ly49E expression is very low on known ILC populations, but it can be used to define a previously unrecognized intraepithelial innate lymphoid population. This Ly49E-positive population is negative for NKp46 and CD8αα, expresses CD49a and CD103, and requires T-bet expression and IL-15 signaling for differentiation and/or survival. Transcriptome analysis reveals a group 1 ILC gene profile, different from NK cells, iCD8α cells, and intraepithelial ILC1. Importantly, NKp46-CD8αα-Ly49E+ cells produce interferon (IFN)-γ, suggesting that this previously unrecognized population may contribute to Th1-mediated immunity.
Collapse
Affiliation(s)
- Aline Van Acker
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Konrad Gronke
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | | - Yvan Saeys
- VIB Inflammation Research Centre, 9000 Ghent, Belgium
| | - Jessica Filtjens
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium
| | - Sylvie Taveirne
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium
| | - Tessa Kerre
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium
| | - Jean Plum
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Andreas Diefenbach
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Department of Microbiology, Charité - University Medical Centre Berlin, 12203 Berlin, Germany
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
273
|
Yang J, Cornelissen F, Papazian N, Reijmers RM, Llorian M, Cupedo T, Coles M, Seddon B. IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. J Exp Med 2018; 215:1069-1077. [PMID: 29472496 PMCID: PMC5881462 DOI: 10.1084/jem.20170518] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Yang et al. identify a new function for IL-7 in permitting efficient entry of T and B lymphocytes into lymph nodes. Maintenance of ILC3s by IL-7 is implicated because ILC3-deficient chimeras exhibit similar trafficking defects. IL-7 is essential for the development and homeostasis of T and B lymphocytes and is critical for neonatal lymph node organogenesis because Il7−/− mice lack normal lymph nodes. Whether IL-7 is a continued requirement for normal lymph node structure and function is unknown. To address this, we ablated IL-7 function in normal adult hosts. Either inducible Il7 gene deletion or IL-7R blockade in adults resulted in a rapid loss of lymph node cellularity and a corresponding defect in lymphocyte entry into lymph nodes. Although stromal and dendritic cell components of lymph nodes were present in normal numbers and representation, innate lymphoid cell (ILC) subpopulations were substantially decreased after IL-7 ablation. Testing lymphocyte homing in bone marrow chimeras reconstituted with Rorc−/− bone marrow confirmed that ILC3s in lymph nodes are required for normal lymphocyte homing. Collectively, our data suggest that maintenance of intact lymph nodes relies on IL-7–dependent maintenance of ILC3 cells.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, England, UK
| | - Ferry Cornelissen
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rogier M Reijmers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miriam Llorian
- The Francis Crick Institute, Kings Cross, London, England, UK
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, England, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, England, UK
| |
Collapse
|
274
|
Lopes N, Vachon H, Marie J, Irla M. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol Med 2018; 9:835-851. [PMID: 28455312 PMCID: PMC5452038 DOI: 10.15252/emmm.201607176] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytoablative treatments lead to severe damages on thymic epithelial cells (TECs), which result in delayed de novo thymopoiesis and a prolonged period of T‐cell immunodeficiency. Understanding the mechanisms that govern thymic regeneration is of paramount interest for the recovery of a functional immune system notably after bone marrow transplantation (BMT). Here, we show that RANK ligand (RANKL) is upregulated in CD4+ thymocytes and lymphoid tissue inducer (LTi) cells during the early phase of thymic regeneration. Importantly, whereas RANKL neutralization alters TEC recovery after irradiation, ex vivo RANKL administration during BMT boosts the regeneration of TEC subsets including thymic epithelial progenitor‐enriched cells, thymus homing of lymphoid progenitors, and de novo thymopoiesis. RANKL increases specifically in LTi cells, lymphotoxin α, which is critical for thymic regeneration. RANKL treatment, dependent on lymphotoxin α, is beneficial upon BMT in young and aged individuals. This study thus indicates that RANKL may be clinically useful to improve T‐cell function recovery after BMT by controlling multiple facets of thymic regeneration.
Collapse
Affiliation(s)
- Noella Lopes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| | - Hortense Vachon
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| | - Julien Marie
- Department of Immunology Virology and Inflammation, Cancer Research Center of Lyon (CRCL) UMR INSERM1052, CNRS 5286, Lyon, France.,TGF-b and Immune Evasion, Tumor Immunology Program, DKFZ, Heidelberg, Germany
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| |
Collapse
|
275
|
Zhong C, Zheng M, Zhu J. Lymphoid tissue inducer-A divergent member of the ILC family. Cytokine Growth Factor Rev 2018; 42:5-12. [PMID: 29454785 DOI: 10.1016/j.cytogfr.2018.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022]
Abstract
Innate lymphoid cells (ILCs) that are capable of producing effector cytokines reminiscent of CD4+ T helper (Th) cells during infections and tissue inflammations have drawn much attention in the immunology field in recent years. Within the ILCs, the lymphoid tissue inducer (LTi) cells that play a critical role in lymphoid organogenesis were identified long before the establishment of the ILC concept. LTi cells, developed and functioning mainly at the fetal stage, and LTi-like cells, presumably generated during the adulthood, are regarded as a subset of type 3 ILCs (ILC3s) because they express the ILC3 lineage-defining transcription factor RORγt, and like other ILC3s, can produce an ILC3 signature cytokine IL-22 and initiate protective immune responses against extracellular bacteria. However, LTi/LTi-like cells have a unique gene expression pattern, and they develop from a progenitor that is distinct from the progenitor of all other ILCs and the progenitor of conventional natural killer (cNK) cells. There are also several other unique features of LTi/LTi-like cells comparing to non-LTi ILC3s. In addition to their classical function in lymphoid organogenesis, LTi/LTi-like cells also have specialized functions in association with the adaptive immune system, which include their effects on T and B cell development, activation and function. In this review, we summarize these specific features of LTi/LTi-like cells and propose that these cells should be considered as a separated innate lymphoid lineage in parallel with other non-LTi ILCs and cNK cells.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
276
|
Mortha A, Burrows K. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells. Front Immunol 2018; 9:191. [PMID: 29467768 PMCID: PMC5808287 DOI: 10.3389/fimmu.2018.00191] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.
Collapse
Affiliation(s)
- Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
277
|
Qiu R, Wang Y. Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Agonists as Potential Small Molecule Therapeutics for Cancer Immunotherapy. J Med Chem 2018; 61:5794-5804. [DOI: 10.1021/acs.jmedchem.7b01314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruomeng Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, 201203 Shanghai, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, 201203 Shanghai, China
| |
Collapse
|
278
|
Bonne-Année S, Nutman TB. Human innate lymphoid cells (ILCs) in filarial infections. Parasite Immunol 2018; 40:10.1111/pim.12442. [PMID: 28504838 PMCID: PMC5685925 DOI: 10.1111/pim.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections.
Collapse
Affiliation(s)
- S Bonne-Année
- Laboratory of Parasitic Diseases, Helminth Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T B Nutman
- Laboratory of Parasitic Diseases, Helminth Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
279
|
Tenno M, Kojo S, Lawir DF, Hess I, Shiroguchi K, Ebihara T, Endo TA, Muroi S, Satoh R, Kawamoto H, Boehm T, Taniuchi I. Cbfβ2 controls differentiation of and confers homing capacity to prethymic progenitors. J Exp Med 2018; 215:595-610. [PMID: 29343500 PMCID: PMC5789415 DOI: 10.1084/jem.20171221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/28/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023] Open
Abstract
Tenno et al. show that an evolutionarily conserved alternative splicing event in the Cbfb gene generates Cbfβ2, which forms a functionally distinct transcription factor complex underlying the differentiation of extrathymic T cell progenitors, including induction of the principal thymus-homing receptor, Ccr9. Multipotent hematopoietic progenitors must acquire thymus-homing capacity to initiate T lymphocyte development. Despite its importance, the transcriptional program underlying this process remains elusive. Cbfβ forms transcription factor complexes with Runx proteins, and here we show that Cbfβ2, encoded by an RNA splice variant of the Cbfb gene, is essential for extrathymic differentiation of T cell progenitors. Furthermore, Cbfβ2 endows extrathymic progenitors with thymus-homing capacity by inducing expression of the principal thymus-homing receptor, Ccr9. This occurs via direct binding of Cbfβ2 to cell type–specific enhancers, as is observed in Rorγt induction during differentiation of lymphoid tissue inducer cells by activation of an intronic enhancer. As in mice, an alternative splicing event in zebrafish generates a Cbfβ2-specific mRNA, important for ccr9 expression. Thus, despite phylogenetically and ontogenetically variable sites of origin of T cell progenitors, their robust thymus-homing capacity is ensured by an evolutionarily conserved mechanism emerging from functional diversification of Runx transcription factor complexes by acquisition of a novel splice variant.
Collapse
Affiliation(s)
- Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Isabell Hess
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katsuyuki Shiroguchi
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Laboratory for Integrative Omics, RIKEN Quantitative Biology Center, Osaka, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Rumi Satoh
- Laboratory for Lymphocyte Development, RIKEN Center for Allergy and Immunology, Yokohama, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Center for Allergy and Immunology, Yokohama, Japan
| | - Thomas Boehm
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
280
|
Takahashi T, Katano I, Ito R, Goto M, Abe H, Mizuno S, Kawai K, Sugiyama F, Ito M. Enhanced Antibody Responses in a Novel NOG Transgenic Mouse with Restored Lymph Node Organogenesis. Front Immunol 2018; 8:2017. [PMID: 29387068 PMCID: PMC5776085 DOI: 10.3389/fimmu.2017.02017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023] Open
Abstract
Lymph nodes (LNs) are at the center of adaptive immune responses. Various exogenous substances are transported into LNs and a series of immune responses ensue after recognition by antigen–specific lymphocytes. Although humanized mice have been used to reconstitute the human immune system, most lack LNs due to deficiency of the interleukin (IL)-2Rγ gene (cytokine common γ chain, γc). In this study, we established a transgenic strain, NOG-pRORγt-γc, in the NOD/shi-scid-IL-2Rγnull (NOG) background, in which the γc gene was expressed in a lymph-tissue inducer (LTi) lineage by the endogenous promoter of RORγt. In this strain, LN organogenesis was normalized and the number of human T cells substantially increased in the periphery after reconstitution of the human immune system by human hematopoietic stem cell transplantation. The distribution of human T cells differed between NOG-pRORγt-γc Tg and NOG-non Tg mice. About 40% of human T cells resided in LNs, primarily the mesenteric LNs. The LN-complemented humanized mice exhibited antigen-specific immunoglobulin G responses together and an increased number of IL-21+–producing CD4+ T cells in LNs. This novel mouse strain will facilitate recapitulation of human immune responses.
Collapse
Affiliation(s)
| | - Ikumi Katano
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hayato Abe
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Japan
| |
Collapse
|
281
|
Tan JKH, Watanabe T. Determinants of postnatal spleen tissue regeneration and organogenesis. NPJ Regen Med 2018; 3:1. [PMID: 29367882 PMCID: PMC5770394 DOI: 10.1038/s41536-018-0039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/27/2022] Open
Abstract
The spleen is an organ that filters the blood and is responsible for generating blood-borne immune responses. It is also an organ with a remarkable capacity to regenerate. Techniques for splenic auto-transplantation have emerged to take advantage of this characteristic and rebuild spleen tissue in individuals undergoing splenectomy. While this procedure has been performed for decades, the underlying mechanisms controlling spleen regeneration have remained elusive. Insights into secondary lymphoid organogenesis and the roles of stromal organiser cells and lymphotoxin signalling in lymph node development have helped reveal similar requirements for spleen regeneration. These factors are now considered in the regulation of embryonic and postnatal spleen formation, and in the establishment of mature white pulp and marginal zone compartments which are essential for spleen-mediated immunity. A greater understanding of the cellular and molecular mechanisms which control spleen development will assist in the design of more precise and efficient tissue grafting methods for spleen regeneration on demand. Regeneration of organs which harbour functional white pulp tissue will also offer novel opportunities for effective immunotherapy against cancer as well as infectious diseases.
Collapse
Affiliation(s)
- Jonathan K. H. Tan
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229 Australia
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507 Japan
- The Tazuke Kofukai Medical Research Institute/Kitano Hospital, Osaka, 530-8480 Japan
| |
Collapse
|
282
|
Li S, Bostick JW, Zhou L. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Front Immunol 2018; 8:1909. [PMID: 29354125 PMCID: PMC5760495 DOI: 10.3389/fimmu.2017.01909] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes- group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host-environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John W. Bostick
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
283
|
Leukocyte-Stromal Interactions Within Lymph Nodes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:1-22. [PMID: 30155619 DOI: 10.1007/978-3-319-78127-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lymph nodes play a crucial role in the formation and initiation of immune responses, allowing lymphocytes to efficiently scan for foreign antigens and serving as rendezvous points for leukocyte-antigen interactions. Here we describe the major stromal subsets found in lymph nodes, including fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells, marginal reticular cells, follicular dendritic cells and other poorly defined subsets such as integrin alpha-7+ pericytes. We focus on biomedically relevant interactions with T cells, B cells and dendritic cells, describing pro-survival mechanisms of support for these cells, promotion of their migration and tolerance-inducing mechanisms that help keep the body free of autoimmune-mediated damage.
Collapse
|
284
|
Hernandez P, Gronke K, Diefenbach A. A catch-22: Interleukin-22 and cancer. Eur J Immunol 2018; 48:15-31. [PMID: 29178520 DOI: 10.1002/eji.201747183] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022]
Abstract
Barrier surfaces of multicellular organisms are in constant contact with the environment and infractions to the integrity of epithelial surfaces is likely a frequent event. Interestingly, components of the immune system, that can be activated by environmental compounds such as the microbiota or nutrients, are interspersed among epithelial cells or directly underlie the epithelium. It is now appreciated that immune cells continuously receive and integrate signals from the environment. Curiously, such continuous reception of stimulation does not normally trigger an inflammatory response but mediators produced by immune cells in response to such signals seem to rather promote barrier integrity and repair. The molecular mediators involved in this process are poorly understood. In recent years, the cytokine interleukin-22, produced mainly by group 3 innate lymphoid cells (ILCs), has been studied as a paradigm for how immune cells can control various aspects of epithelial cell function because expression of its receptor is restricted to non-hematopoietic cells. We will summarize here the diverse roles of IL-22 for the malignant transformation of epithelial cells, for tumor growth, wound healing and tissue repair. Furthermore, we will discuss IL-22 as a potential therapeutic target.
Collapse
Affiliation(s)
- Pedro Hernandez
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Macrophages et Développement de l'Immunité, Institut Pasteur, Paris Cedex 15, France
- Max-Planck-Institute for Immunobiology und Epigenetics, Freiburg, Germany
| | - Konrad Gronke
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Max-Planck-Institute for Immunobiology und Epigenetics, Freiburg, Germany
- Institute of Medical Microbiology and Hygiene and Research Centre Immunology, University of Mainz Medical Centre, Mainz, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
285
|
Salomé B, Jandus C. Innate lymphoid cells in antitumor immunity. J Leukoc Biol 2017; 103:479-483. [PMID: 29345362 DOI: 10.1189/jlb.5mr0617-266r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently characterized subset of innate lymphocytes. Based on their specific transcriptional regulation, cytokine secretion pattern and effector functions ILCs mirror the different CD4 T helper cell subsets, with the unique attributes of acting locally in early phases of immune responses, in an antigen-independent manner. In this review, we discuss how ILCs have been implicated in tumorigenesis. Their presence might favor or inhibit tumor growth, depending on the cytokines released and the specific tumor microenvironment. As our understanding of ILCs' contribution to antitumor responses advances, clinical options to target ILCs in antitumor therapies are also emerging.
Collapse
Affiliation(s)
- Bérengère Salomé
- Translational Tumor Immunology Group, Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Camilla Jandus
- Translational Tumor Immunology Group, Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
286
|
Colbeck EJ, Ager A, Gallimore A, Jones GW. Tertiary Lymphoid Structures in Cancer: Drivers of Antitumor Immunity, Immunosuppression, or Bystander Sentinels in Disease? Front Immunol 2017; 8:1830. [PMID: 29312327 PMCID: PMC5742143 DOI: 10.3389/fimmu.2017.01830] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022] Open
Abstract
Secondary lymphoid organs are integral to initiation and execution of adaptive immune responses. These organs provide a setting for interactions between antigen-specific lymphocytes and antigen-presenting cells recruited from local infected or inflamed tissues. Secondary lymphoid organs develop as a part of a genetically preprogrammed process during embryogenesis. However, organogenesis of secondary lymphoid tissues can also be recapitulated in adulthood during de novo lymphoid neogenesis of tertiary lymphoid structures (TLSs). These ectopic lymphoid-like structures form in the inflamed tissues afflicted by various pathological conditions, including cancer, autoimmunity, infection, or allograft rejection. Studies are beginning to shed light on the function of such structures in different disease settings, raising important questions regarding their contribution to progression or resolution of disease. Data show an association between the tumor-associated TLSs and a favorable prognosis in various types of human cancer, attracting the speculation that TLSs support effective local antitumor immune responses. However, definitive evidence for the role for TLSs in fostering immune responses in vivo are lacking, with current data remaining largely correlative by nature. In fact, some more recent studies have even demonstrated an immunosuppressive, tumor-promoting role for cancer-associated TLSs. In this review, we will discuss what is known about the development of cancer-associated TLSs and the current understanding of their potential role in the antitumor immune response.
Collapse
Affiliation(s)
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Awen Gallimore
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Gareth Wyn Jones
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
287
|
Elemam NM, Hannawi S, Maghazachi AA. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules. Toxins (Basel) 2017; 9:toxins9120398. [PMID: 29232860 PMCID: PMC5744118 DOI: 10.3390/toxins9120398] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce TH2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, and Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah 27272, UAE.
| | - Suad Hannawi
- Medical Department, Ministry of Health and Prevention, Dubai 65522, UAE.
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah 27272, UAE.
| |
Collapse
|
288
|
Shabgah AG, Navashenaq JG, Shabgah OG, Mohammadi H, Sahebkar A. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev 2017; 16:1209-1218. [PMID: 29037907 DOI: 10.1016/j.autrev.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
Interleukin-22 (IL22) is one of the members of IL10 family. Elevated levels of this cytokine can be seen in diseases caused by T lymphocytes, such as Psoriasis, Rheumatoid arthritis, interstitial lung diseases. IL22 is produced by different cells in both innate and acquired immunities. Different types of T cells are able to produce IL22, but the major IL22-producing T-cell is the TCD4. TH22 cell is a new line of TCD4 cells, which differentiated from naive T cells in the presence of TNFα and IL6; 50% of peripheral blood IL22 is produced by these cells. IL22 has important functions in host defense at mucosal surfaces as well as in tissue repair. In this review, we assess the current understanding of this cytokine and focus on the possible roles of IL-22 in autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Blood Borne Infections Research Center, AcademicCenter for Education, Culture and Research (ACECR), Razavi Khorasan Branch,Mashhad, Iran
| | - Jamshid Gholizadeh Navashenaq
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Gohari Shabgah
- Parasitology Department, Medical sciencesfaculty, Tarbiat Modares University, Tehran, Iran
| | - Hamed Mohammadi
- ImmunologyResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- BiotechnologyResearch Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
289
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
290
|
Huang Q, Seillet C, Belz GT. Shaping Innate Lymphoid Cell Diversity. Front Immunol 2017; 8:1569. [PMID: 29201028 PMCID: PMC5697340 DOI: 10.3389/fimmu.2017.01569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a key cell type that are enriched at mucosal surfaces and within tissues. Our understanding of these cells is growing rapidly. Paradoxically, these cells play a role in maintaining tissue integrity but they also function as key drivers of allergy and inflammation. We present here the most recent understanding of how genomics has provided significant insight into how ILCs are generated and the enormous heterogeneity present within the canonical subsets. This has allowed the generation of a detailed blueprint for ILCs to become highly sensitive and adaptive sensors of environmental changes and therefore exquisitely equipped to protect immune surfaces.
Collapse
Affiliation(s)
- Qiutong Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
291
|
Zhu J. GATA3 Regulates the Development and Functions of Innate Lymphoid Cell Subsets at Multiple Stages. Front Immunol 2017; 8:1571. [PMID: 29184556 PMCID: PMC5694433 DOI: 10.3389/fimmu.2017.01571] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are regarded as the innate counterpart of effector CD4 T helper (Th) cells. Just as Th cells, ILCs are classified into distinct subsets based on their functions that are delivered mainly through effector cytokine production. Both ILCs and Th cells play critical roles in various protective immune responses and inflammatory diseases. Similar to Th cell differentiation, the development of ILC subsets depends on several master transcription factors, among which GATA3 is critical for the development and maintenance of type 2 ILCs (ILC2s). However, GATA3 is expressed by all ILC subsets and ILC progenitors, albeit at different levels. In a striking parallel with GATA3 function in T cell development and differentiation, GATA3 also has multiple functions in different ILCs at various stages. In this review, I will discuss how quantitative and dynamic expression of GATA3 regulates the development and functions of ILC subsets.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
292
|
Sciumè G, Shih HY, Mikami Y, O'Shea JJ. Epigenomic Views of Innate Lymphoid Cells. Front Immunol 2017; 8:1579. [PMID: 29250060 PMCID: PMC5715337 DOI: 10.3389/fimmu.2017.01579] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022] Open
Abstract
The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.
Collapse
Affiliation(s)
- Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Han-Yu Shih
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| | - Yohei Mikami
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| | - John J O'Shea
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
293
|
Abstract
The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.
Collapse
Affiliation(s)
- Isabel E Ishizuka
- Committee on Immunology, The University of Chicago, Illinois 60637; .,Department of Pathology, The University of Chicago, Illinois 60637
| | - Michael G Constantinides
- Committee on Immunology, The University of Chicago, Illinois 60637; .,Department of Pathology, The University of Chicago, Illinois 60637.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Herman Gudjonson
- Committee on Immunology, The University of Chicago, Illinois 60637; .,Institute of Biophysical Dynamics, The University of Chicago, Illinois 60637.,Department of Chemistry, The University of Chicago, Illinois 60637
| | - Albert Bendelac
- Committee on Immunology, The University of Chicago, Illinois 60637; .,Department of Pathology, The University of Chicago, Illinois 60637
| |
Collapse
|
294
|
Prajeeth CK, Kronisch J, Khorooshi R, Knier B, Toft-Hansen H, Gudi V, Floess S, Huehn J, Owens T, Korn T, Stangel M. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. J Neuroinflammation 2017; 14:204. [PMID: 29037246 PMCID: PMC5644084 DOI: 10.1186/s12974-017-0978-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/06/2017] [Indexed: 12/30/2022] Open
Abstract
Background Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. Methods To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4+ T cell-specific integrin α4-deficient mice where trafficking of Th1 cells into the CNS was affected. We compared microglial and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the messenger RNA expression of neurotrophic factors, cytokines and chemokines, using real-time PCR. Data obtained was analyzed using the Kruskal-Wallis test. Results We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Conclusion Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation. Electronic supplementary material The online version of this article (10.1186/s12974-017-0978-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julius Kronisch
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Henrik Toft-Hansen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Center of Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
295
|
Withers DR, Hepworth MR. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System. Front Immunol 2017; 8:1298. [PMID: 29085366 PMCID: PMC5649144 DOI: 10.3389/fimmu.2017.01298] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of “exogenous” signals, such as dietary metabolites and commensal microbes, and “endogenous” host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a “communications hub” in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell–cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases.
Collapse
Affiliation(s)
- David R Withers
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy (III), University of Birmingham, Birmingham, United Kingdom
| | - Matthew R Hepworth
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
296
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
297
|
Victor AR, Nalin AP, Dong W, McClory S, Wei M, Mao C, Kladney RD, Youssef Y, Chan WK, Briercheck EL, Hughes T, Scoville SD, Pitarresi JR, Chen C, Manz S, Wu LC, Zhang J, Ostrowski MC, Freud AG, Leone GW, Caligiuri MA, Yu J. IL-18 Drives ILC3 Proliferation and Promotes IL-22 Production via NF-κB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2333-2342. [PMID: 28842466 PMCID: PMC5624342 DOI: 10.4049/jimmunol.1601554] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are important regulators of the immune system, maintaining homeostasis in the presence of commensal bacteria, but activating immune defenses in response to microbial pathogens. ILC3s are a robust source of IL-22, a cytokine critical for stimulating the antimicrobial response. We sought to identify cytokines that can promote proliferation and induce or maintain IL-22 production by ILC3s and determine a molecular mechanism for this process. We identified IL-18 as a cytokine that cooperates with an ILC3 survival factor, IL-15, to induce proliferation of human ILC3s, as well as induce and maintain IL-22 production. To determine a mechanism of action, we examined the NF-κB pathway, which is activated by IL-18 signaling. We found that the NF-κB complex signaling component, p65, binds to the proximal region of the IL22 promoter and promotes transcriptional activity. Finally, we observed that CD11c+ dendritic cells expressing IL-18 are found in close proximity to ILC3s in human tonsils in situ. Therefore, we identify a new mechanism by which human ILC3s proliferate and produce IL-22, and identify NF-κB as a potential therapeutic target to be considered in pathologic states characterized by overproduction of IL-18 and/or IL-22.
Collapse
Affiliation(s)
- Aaron R Victor
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
| | - Ansel P Nalin
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
| | - Wenjuan Dong
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Susan McClory
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Min Wei
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Charlene Mao
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Raleigh D Kladney
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, OH 43210
| | - Youssef Youssef
- Department of Pathology, The Ohio State University, Columbus, OH 43210
| | - Wing Keung Chan
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Edward L Briercheck
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Tiffany Hughes
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Steven D Scoville
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Jason R Pitarresi
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Charlie Chen
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Sarah Manz
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Lai-Chu Wu
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Jianying Zhang
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, OH 43210; and
| | - Michael C Ostrowski
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Aharon G Freud
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Pathology, The Ohio State University, Columbus, OH 43210
| | - Gustavo W Leone
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, OH 43210
| | - Michael A Caligiuri
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210;
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Jianhua Yu
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210;
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
298
|
Na H, Lim H, Choi G, Kim BK, Kim SH, Chang YS, Nurieva R, Dong C, Chang SH, Chung Y. Concomitant suppression of T H2 and T H17 cell responses in allergic asthma by targeting retinoic acid receptor-related orphan receptor γt. J Allergy Clin Immunol 2017; 141:2061-2073.e5. [PMID: 28943467 DOI: 10.1016/j.jaci.2017.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Allergic asthma is a heterogeneous chronic inflammatory disease of the airways with a massive infiltration of eosinophils or neutrophils mediated by allergen-specific TH2 and TH17 cells, respectively. Therefore successful treatment of allergic asthma will require suppression of both TH2 and TH17 cells. OBJECTIVE We sought to investigate the role of the TH17 cell pathway in regulating TH2 cell responses in allergic asthma. METHODS Allergic asthma was induced by intranasal challenge with proteinase allergens in C57BL/6, Il17a-/-Il17f-/-, and retinoic acid receptor-related orphan receptor γt (RORγt)gfp/gfp mice. A pharmacologic RORγt inhibitor was used to evaluate its preventive and therapeutic effects in allergic asthma. Characteristics of allergic airway inflammation were analyzed by using flow cytometry, histology, quantitative real-time PCR, and ELISA. Mixed bone marrow chimeric mice, fate mapping analysis, short hairpin RNA transduction, and in vitro T-cell differentiation were used for mechanistic studies. RESULTS Mice deficient in IL-17A and IL-17F, as well as RORγt, exhibited a significant reduction not only in TH17 cell responses but also in TH2 cell responses in an animal model of allergic asthma. Similarly, mice treated with an RORγt inhibitor had significantly diminished TH17 and TH2 cell responses, leading to reduced neutrophil and eosinophil numbers in the airway. RORγt-deficient T cells were intrinsically defective in differentiating into TH2 cells and expressed increased levels of B-cell lymphoma 6 (Bcl6). Bcl6 knockdown resulted in a remarkable restoration of TH2 cell differentiation in RORγt-deficient T cells. Blockade of RORγt also significantly hampered the differentiation of human TH2 and TH17 cells from naive CD4+ T cells. CONCLUSION RORγt in T cells is required for optimal TH2 cell differentiation by suppressing Bcl6 expression; this finding suggests that targeting RORγt might be a promising approach for the treatment of allergic asthma by concomitantly suppressing TH17 and TH2 cell responses in the airway.
Collapse
Affiliation(s)
- Hyeongjin Na
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hoyong Lim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Garam Choi
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byung-Keun Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sae-Hoon Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Roza Nurieva
- Department of Immunology, MD Anderson Cancer Center, Houston, Tex
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Seon Hee Chang
- Department of Immunology, MD Anderson Cancer Center, Houston, Tex.
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea.
| |
Collapse
|
299
|
Mowel WK, McCright SJ, Kotzin JJ, Collet MA, Uyar A, Chen X, DeLaney A, Spencer SP, Virtue AT, Yang E, Villarino A, Kurachi M, Dunagin MC, Pritchard GH, Stein J, Hughes C, Fonseca-Pereira D, Veiga-Fernandes H, Raj A, Kambayashi T, Brodsky IE, O'Shea JJ, Wherry EJ, Goff LA, Rinn JL, Williams A, Flavell RA, Henao-Mejia J. Group 1 Innate Lymphoid Cell Lineage Identity Is Determined by a cis-Regulatory Element Marked by a Long Non-coding RNA. Immunity 2017; 47:435-449.e8. [PMID: 28930659 PMCID: PMC5761663 DOI: 10.1016/j.immuni.2017.08.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/01/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023]
Abstract
Commitment to the innate lymphoid cell (ILC) lineage is determined by Id2, a transcriptional regulator that antagonizes T and B cell-specific gene expression programs. Yet how Id2 expression is regulated in each ILC subset remains poorly understood. We identified a cis-regulatory element demarcated by a long non-coding RNA (lncRNA) that controls the function and lineage identity of group 1 ILCs, while being dispensable for early ILC development and homeostasis of ILC2s and ILC3s. The locus encoding this lncRNA, which we termed Rroid, directly interacted with the promoter of its neighboring gene, Id2, in group 1 ILCs. Moreover, the Rroid locus, but not the lncRNA itself, controlled the identity and function of ILC1s by promoting chromatin accessibility and deposition of STAT5 at the promoter of Id2 in response to interleukin (IL)-15. Thus, non-coding elements responsive to extracellular cues unique to each ILC subset represent a key regulatory layer for controlling the identity and function of ILCs.
Collapse
Affiliation(s)
- Walter K Mowel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam J McCright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Magalie A Collet
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Asli Uyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Xin Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Alexandra DeLaney
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean P Spencer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony T Virtue
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alejandro Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Makoto Kurachi
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret C Dunagin
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Judith Stein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Cynthia Hughes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Diogo Fonseca-Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisbon, Portugal
| | - Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisbon, Portugal; Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Arjun Raj
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Loyal A Goff
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John L Rinn
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | - Richard A Flavell
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
300
|
Abstract
Ten years ago, we discovered that microbiota composition controls intestinal T cell homeostasis and alters T cell responses of mice in different animal facilities. Here I discuss how these discoveries, reported in Cell Host & Microbe in 2008, came to be and contributed to our understanding of microbiota immune effects.
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|