251
|
Shibabaw T, Molla MD, Teferi B, Ayelign B. Role of IFN and Complements System: Innate Immunity in SARS-CoV-2. J Inflamm Res 2020; 13:507-518. [PMID: 32982366 PMCID: PMC7490109 DOI: 10.2147/jir.s267280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
The critical role of the innate immune system has been confirmed in driving local and systemic inflammation and the cytokine release storm in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This dysregulated immune response is focused on interferon (IFN) and complement activation, which are crucial for the development of metabolic inflammation, local lung tissue damage, and systemic multi-organ failure. IFNs control viral infections by inducing expression of IFN-stimulated genes (ISGs) that restrict distinct steps of viral replication. Therefore, in this review article, we propose the mechanism of SARS-CoV-2-associated acute respiratory disease syndrome, and assess treatment options by considering IFNs and by targeting IFN-antagonist SARS-CoV-2 virulent gene products. Furthermore, we elaborate on the mechanism of the amplified complement-mediated inflammatory cytokine storm, and propose an antiviral and immunotherapeutic strategy against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
252
|
Guadarrama-Ortiz P, Choreño-Parra JA, Sánchez-Martínez CM, Pacheco-Sánchez FJ, Rodríguez-Nava AI, García-Quintero G. Neurological Aspects of SARS-CoV-2 Infection: Mechanisms and Manifestations. Front Neurol 2020; 11:1039. [PMID: 33013675 PMCID: PMC7499054 DOI: 10.3389/fneur.2020.01039] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
The human infection of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a public health emergency of international concern that has caused more than 16.8 million new cases and 662,000 deaths as of July 30, 2020. Although coronavirus disease 2019 (COVID-19), which is associated with this virus, mainly affects the lungs, recent evidence from clinical and pathological studies indicates that this pathogen has a broad infective ability to spread to extrapulmonary tissues, causing multiorgan failure in severely ill patients. In this regard, there is increasing preoccupation with the neuroinvasive potential of SARS-CoV-2 due to the observation of neurological manifestations in COVID-19 patients. This concern is also supported by the neurotropism previously documented in other human coronaviruses, including the 2002-2003 SARS-CoV-1 outbreak. Hence, in the current review article, we aimed to summarize the spectrum of neurological findings associated with COVID-19, which include signs of peripheral neuropathy, myopathy, olfactory dysfunction, meningoencephalitis, Guillain-Barré syndrome, and neuropsychiatric disorders. Furthermore, we analyze the mechanisms underlying such neurological sequela and discuss possible therapeutics for patients with neurological findings associated with COVID-19. Finally, we describe the host- and pathogen-specific factors that determine the tissue tropism of SARS-CoV-2 and possible routes employed by the virus to invade the nervous system from a pathophysiological and molecular perspective. In this manner, the current manuscript contributes to increasing the current understanding of the neurological aspects of COVID-19 and the impact of the current pandemic on the neurology field.
Collapse
Affiliation(s)
- Parménides Guadarrama-Ortiz
- Departament of Neurosurgery, Centro Especializado en Neurocirugía y Neurociencias México (CENNM), Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Departament of Neurosurgery, Centro Especializado en Neurocirugía y Neurociencias México (CENNM), Mexico City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Francisco Javier Pacheco-Sánchez
- Internado Medico de Pregrado, Centro Especializado en Neurocirugía y Neurociencias México (CENNM), Mexico City, Mexico
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alberto Iván Rodríguez-Nava
- Internado Medico de Pregrado, Centro Especializado en Neurocirugía y Neurociencias México (CENNM), Mexico City, Mexico
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela García-Quintero
- Internado Medico de Pregrado, Centro Especializado en Neurocirugía y Neurociencias México (CENNM), Mexico City, Mexico
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
253
|
Castelli V, Cimini A, Ferri C. Cytokine Storm in COVID-19: "When You Come Out of the Storm, You Won't Be the Same Person Who Walked in". Front Immunol 2020; 11:2132. [PMID: 32983172 PMCID: PMC7492381 DOI: 10.3389/fimmu.2020.02132] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, a novel coronavirus, COVID-19, was discovered to be the causal agent of a severe respiratory infection named SARS-CoV-2, and it has since been recognized worldwide as a pandemic. There are still numerous doubts concerning its pathogenesis and particularly the underlying causes of the various clinical courses, ranging from severe manifestations to asymptomatic forms, including acute respiratory distress syndrome. The major factor responsible for acute respiratory distress syndrome is the so-called "cytokine storm," which is an aberrant response from the host immune system that induces an exaggerated release of proinflammatory cytokines/chemokines. In this review, we will discuss the role of cytokine storm in COVID-19 and potential treatments with which counteract this aberrant response, which may be valuable in the clinical translation.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
254
|
Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol 2020; 10:200160. [PMID: 32961074 PMCID: PMC7536084 DOI: 10.1098/rsob.200160] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has swept the world, unlike any other pandemic in the last 50 years. Our understanding of the disease has evolved rapidly since the outbreak; disease prognosis is influenced mainly by multi-organ involvement. Acute respiratory distress syndrome, heart failure, renal failure, liver damage, shock and multi-organ failure are strongly associated with morbidity and mortality. The COVID-19 disease pathology is plausibly linked to the hyperinflammatory response of the body characterized by pathological cytokine levels. The term 'cytokine storm syndrome' is perhaps one of the critical hallmarks of COVID-19 disease severity. In this review, we highlight prominent cytokine families and their potential role in COVID-19, the type I and II interferons, tumour necrosis factor and members of the Interleukin family. We address various changes in cellular components of the immune response corroborating with changes in cytokine levels while discussing cytokine sources and biological functions. Finally, we discuss in brief potential therapies attempting to modulate the cytokine storm.
Collapse
Affiliation(s)
| | - Zan Mitrev
- Department of Clinical Research, Zan Mitrev Clinic, St. Bledski Dogovor 8, 1000 Skopje, The Republic of North Macedonia
| | - Rodney Alexander Rosalia
- Department of Clinical Research, Zan Mitrev Clinic, St. Bledski Dogovor 8, 1000 Skopje, The Republic of North Macedonia
| | - Bakri M. Assas
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, Immunology group, King Abdul Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
255
|
Mackman N, Antoniak S, Wolberg AS, Kasthuri R, Key NS. Coagulation Abnormalities and Thrombosis in Patients Infected With SARS-CoV-2 and Other Pandemic Viruses. Arterioscler Thromb Vasc Biol 2020; 40:2033-2044. [PMID: 32657623 PMCID: PMC7447001 DOI: 10.1161/atvbaha.120.314514] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
The world is amid a pandemic caused by severe acute respiratory syndrome-coronavirus 2. Severe acute respiratory syndrome-coronavirus causes serious respiratory tract infections that can lead to viral pneumonia, acute respiratory distress syndrome, and death. Some patients with coronavirus disease 2019 (COVID-19) have an activated coagulation system characterized by elevated plasma levels of d-dimer-a biomarker of fibrin degradation. Importantly, high levels of D-dimer on hospital admission are associated with increased risk of mortality. Venous thromboembolism is more common than arterial thromboembolism in hospitalized COVID-19 patients. Pulmonary thrombosis and microvascular thrombosis are observed in autopsy studies, and this may contribute to the severe hypoxia observed in COVID-19 patients. It is likely that multiple systems contribute to thrombosis in COVID-19 patients, such as activation of coagulation, platelet activation, hypofibrinolysis, endothelial cell dysfunction, inflammation, neutrophil extracellular traps, and complement. Targeting these different pathways may reduce thrombosis and improve lung function in COVID-19 patients.
Collapse
Affiliation(s)
- Nigel Mackman
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| | - Silvio Antoniak
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Department of Pathology and Laboratory Medicine (S.A., A.S.W.), University of North Carolina at Chapel Hill
| | - Alisa S. Wolberg
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Department of Pathology and Laboratory Medicine (S.A., A.S.W.), University of North Carolina at Chapel Hill
| | - Raj Kasthuri
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| | - Nigel S. Key
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| |
Collapse
|
256
|
Gremese E, Ferraccioli ES, Alivernini S, Tolusso B, Ferraccioli G. Basic immunology may lead to translational therapeutic rationale: SARS-CoV-2 and rheumatic diseases. Eur J Clin Invest 2020; 50:e13342. [PMID: 32645207 PMCID: PMC7404583 DOI: 10.1111/eci.13342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 pandemia is a major concern for patients and healthcare systems. The fear of infection by patients with concomitant rheumatic diseases (either adult or children) and connective tissue diseases is arising worldwide, because of their immunological background and immunological therapies. Analysing the basic biology of single diseases, the data suggest that there is an "immunological umbrella" that seems to protect against the infection, through IFN type 1 and NK cell function. To date, reports from China, United States and Europe did not reveal an higher risk of infection, either for rheumatoid arthritis, juvenile idiopathic arthritis nor for lupus erythematosus. Antimalarials, anti-IL6-Anti-IL6 receptor, anti-IL1, anti-GM-CSF receptor and JAK1/2/3 inhibitors, are under investigation in COVID-dedicated clinical trials to control the inflammation raised by SARS-CoV-2 infection. Initial reports on the occurrence of autoimmune phenomena in the convalescence phase of SARS-CoV-2 infection suggests that the immunological consequences of the infection need to be strictly understood. Reporting of the study conforms to broad EQUATOR guidelines (Simera et al January 2010 issue of EJCI).
Collapse
Affiliation(s)
- Elisa Gremese
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.,Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Stefano Alivernini
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.,Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
257
|
Battagello D, Dragunas G, Klein M, Ayub AL, Velloso F, Correa R. Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2137-2160. [PMID: 32820801 PMCID: PMC7443512 DOI: 10.1042/cs20200904] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coronaviruses - the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - discovered in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has rapidly spread across all continents and turned into a public health emergency, which was ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020. SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly regarding its genome, protein structure and intracellular mechanisms, that may translate into mild (or even asymptomatic) to severe infectious conditions. Although the mechanistic features underlying the COVID-19 progression have not been fully clarified, current evidence have suggested that SARS-CoV-2 may primarily behave as other β-coronavirus members. To better understand the development and transmission of COVID-19, unveiling the signaling pathways that may be impacted by SARS-CoV-2 infection, at the molecular and cellular levels, is of crucial importance. In this review, we present the main aspects related to the origin, classification, etiology and clinical impact of SARS-CoV-2. Specifically, here we describe the potential mechanisms of cellular interaction and signaling pathways, elicited by functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal (GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of these signaling pathways in evoking the onset and progression of COVID-19 symptoms in these organ systems are presently discussed. A brief description of future perspectives related to potential COVID-19 treatments is also highlighted.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marianne O. Klein
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana L.P. Ayub
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernando J. Velloso
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ, U.S.A
| | - Ricardo G. Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA, U.S.A
| |
Collapse
|
258
|
韩 宁, 杜 凌, 严 丽, 唐 红. [The mechanism and treatment strategies of SARS-CoV-2 mediated inflammatory response]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:572-578. [PMID: 32840072 PMCID: PMC10319537 DOI: 10.7507/1001-5515.202003030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 02/05/2023]
Abstract
Since the emergence of novel coronavirus pneumonia in late 2019, it has quickly spread to many countries and regions around the world, causing a significant impact on human beings and society, posing a great threat to the global public health system. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was highly infectious, and some complications emerged rapidly in some patients, including acute respiratory distress syndrome, and multiple organ failure. The virus could trigger a series of immune responses, which might lead to excessive immune activation, thereby bringing about the immune system imbalance of the body. Up to now, there was no specific antiviral drug, and we conjectured that immunomodulatory therapy might play an essential part in the treatment of coronavirus disease 2019 (COVID-19) as adjuvant therapy. Therefore, we analyzed the possible mechanism of immune imbalance caused by the new coronavirus, and summarized the immunotherapeutic means of COVID-19 based on the mechanisms, to provide some reference for follow-up research and clinical prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- 宁 韩
- 四川大学华西医院感染性疾病中心(成都 610041)Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China
| | - 凌遥 杜
- 四川大学华西医院感染性疾病中心(成都 610041)Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China
| | - 丽波 严
- 四川大学华西医院感染性疾病中心(成都 610041)Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China
| | - 红 唐
- 四川大学华西医院感染性疾病中心(成都 610041)Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China
| |
Collapse
|
259
|
Melenotte C, Silvin A, Goubet AG, Lahmar I, Dubuisson A, Zumla A, Raoult D, Merad M, Gachot B, Hénon C, Solary E, Fontenay M, André F, Maeurer M, Ippolito G, Piacentini M, Wang FS, Ginhoux F, Marabelle A, Kroemer G, Derosa L, Zitvogel L. Immune responses during COVID-19 infection. Oncoimmunology 2020; 9:1807836. [PMID: 32939324 PMCID: PMC7480812 DOI: 10.1080/2162402x.2020.1807836] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/09/2023] Open
Abstract
Over the past 16 years, three coronaviruses (CoVs), severe acute respiratory syndrome CoV (SARS-CoV) in 2002, Middle East respiratory syndrome CoV (MERS-CoV) in 2012 and 2015, and SARS-CoV-2 in 2020, have been causing severe and fatal human epidemics. The unpredictability of coronavirus disease-19 (COVID-19) poses a major burden on health care and economic systems across the world. This is caused by the paucity of in-depth knowledge of the risk factors for severe COVID-19, insufficient diagnostic tools for the detection of SARS-CoV-2, as well as the absence of specific and effective drug treatments. While protective humoral and cellular immune responses are usually mounted against these betacoronaviruses, immune responses to SARS-CoV2 sometimes derail towards inflammatory tissue damage, leading to rapid admissions to intensive care units. The lack of knowledge on mechanisms that tilt the balance between these two opposite outcomes poses major threats to many ongoing clinical trials dealing with immunostimulatory or immunoregulatory therapeutics. This review will discuss innate and cognate immune responses underlying protective or deleterious immune reactions against these pathogenic coronaviruses.
Collapse
Affiliation(s)
- Cléa Melenotte
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
- Infectious Diseases, IHU-Méditerranée Infection, Marseille, France
| | | | - Anne-Gaëlle Goubet
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Imran Lahmar
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Agathe Dubuisson
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Didier Raoult
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Mansouria Merad
- Service de Urgences et de Permanence des Soins, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | | | | | - Eric Solary
- Immunology, Gustave Roussy, Villejuif, France
| | - Michaela Fontenay
- INSERM U1016, Centre National Recherche Scientifique (CNRS) UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Markus Maeurer
- Immunosurgery, Immunotherapy Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Med Clinic, University of Mainz, Mayence, Germany
| | - Giuseppe Ippolito
- Dipartimento di Epidemiologia Ricerca Pre-Clinica e Diagnostica Avanzata, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Infectious Diseases Department, National Institute for Infectious Disease IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Fu-Sheng Wang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Aurélien Marabelle
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie,Pathologie – PUI – Hygiène, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Lisa Derosa
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Laurence Zitvogel
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
260
|
Ashary N, Bhide A, Chakraborty P, Colaco S, Mishra A, Chhabria K, Jolly MK, Modi D. Single-Cell RNA-seq Identifies Cell Subsets in Human Placenta That Highly Expresses Factors Driving Pathogenesis of SARS-CoV-2. Front Cell Dev Biol 2020; 8:783. [PMID: 32974340 PMCID: PMC7466449 DOI: 10.3389/fcell.2020.00783] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Infection by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) results in the novel coronavirus disease COVID-19, which has posed a serious threat globally. Infection of SARS-CoV-2 during pregnancy is associated with complications such as preterm labor and premature rupture of membranes, and a proportion of neonates born to infected mothers are also positive for the virus. During pregnancy, the placental barrier protects the fetus from pathogens and ensures healthy development. To predict if the placenta is permissive to SARS-CoV-2, we utilized publicly available single-cell RNA-seq data to identify if the placental cells express the necessary factors required for infection. SARS-CoV-2 binding receptor ACE2 and the S protein priming protease TMPRSS2 are co-expressed by a subset of syncytiotrophoblasts (STB) in the first trimester and extravillous trophoblasts (EVT) in the second trimester human placenta. In addition, the non-canonical receptor BSG/CD147 and other proteases (CTSL, CTSB, and FURIN) are detected in most of the placental cells. Other coronavirus family receptors (ANPEP and DPP4) were also expressed in the first and second trimester placental cells. Additionally, the term placenta of multiple species including humans expressed ACE2, DPP4, and ANPEP along with the viral S protein proteases. The ACE2- and TMPRSS2-positive (ACE2 + TMPRSS2 +) placental subsets expressed mRNA for proteins involved in viral budding and replication. These cells also had the mRNA for proteins that physically interact with SARS-CoV-2 in host cells. Further, we discovered unique signatures of genes in ACE2 + TMPRSS2 + STBs and EVTs. The ACE2 + TMPRSS2 + STBs are highly differentiated cells and express genes involving mitochondrial metabolism and glucose transport. The second trimester ACE2 + TMPRSS2 + EVTs are enriched for markers of endovascular trophoblasts. Both these subtypes abundantly expressed genes in the Toll-like receptor pathway. The second trimester EVTs are also enriched for components of the JAK-STAT pathway that drives inflammation. We carried out a systematic review and identified that in 12% of pregnant women with COVID-19, the placenta was infected with SARS-CoV-2, and the virus was detected in STBs. To conclude, herein we have uncovered the cellular targets for SARS-CoV-2 entry and have shown that these cells can potentially drive viremia in the developing human placenta. Our results provide a basic framework toward understanding the paraphernalia involved in SARS-CoV-2 infections in pregnancy.
Collapse
Affiliation(s)
- Nancy Ashary
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Priyanka Chakraborty
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Stacy Colaco
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Anuradha Mishra
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Karisma Chhabria
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| |
Collapse
|
261
|
Renu K, Prasanna PL, Valsala Gopalakrishnan A. Coronaviruses pathogenesis, comorbidities and multi-organ damage - A review. Life Sci 2020; 255:117839. [PMID: 32450165 PMCID: PMC7243768 DOI: 10.1016/j.lfs.2020.117839] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Human coronaviruses, especially COVID-19, is an emerging pandemic infectious disease with high morbidity and mortality. Coronaviruses are associated with comorbidities, along with the symptoms of it. SARS-CoV-2 is one of the highly pathogenic coronaviruses that causes a high death rate compared to the SARS-CoV and MERS. In this review, we focused on the mechanism of coronavirus with comorbidities and impairment in multi-organ function. The main dysfunction upon coronavirus infection is damage to alveolar and acute respiratory failure. It is associated with the other organ damage such as cardiovascular risk via an increased level of hypertension through ACE2, gastrointestinal dysfunction, chronic kidney disease, diabetes mellitus, liver dysfunction, lung injury, CNS risk, ocular risks such as chemosis, conjunctivitis, and conjunctival hyperemia, cancer risk, venous thromboembolism, tuberculosis, aging, and cardiovascular dysfunction and reproductive risk. Along with this, we have discussed the immunopathology and coronaviruses at a molecular level and therapeutic approaches for the coronavirus infection. The comorbidities and multi-organ failure of COVID-19 have been explained at a molecular level along with the base of the SARS-CoV and MERS-CoV. This review would help us to understand the comorbidities associated with the coronaviruses with multi-organ damage.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Pureti Lakshmi Prasanna
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | | |
Collapse
|
262
|
Valle C, Martin B, Touret F, Shannon A, Canard B, Guillemot JC, Coutard B, Decroly E. Drugs against SARS-CoV-2: What do we know about their mode of action? Rev Med Virol 2020; 30:1-10. [PMID: 32779326 PMCID: PMC7435512 DOI: 10.1002/rmv.2143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The health emergency caused by the recent Covid-19 pandemic highlights the need to identify effective treatments against the virus causing this disease (SARS-CoV-2). The first clinical trials have been testing repurposed drugs that show promising anti-SARS-CoV-2 effects in cultured cells. Although more than 2400 clinical trials are already under way, the actual number of tested compounds is still limited to approximately 20, alone or in combination. In addition, knowledge on their mode of action (MoA) is currently insufficient. Their first results reveal some inconsistencies and contradictory results and suggest that cohort size and quality of the control arm are two key issues for obtaining rigorous and conclusive results. Moreover, the observed discrepancies might also result from differences in the clinical inclusion criteria, including the possibility of early treatment that may be essential for therapy efficacy in patients with Covid-19. Importantly, efforts should also be made to test new compounds with a documented MoA against SARS-CoV-2 in clinical trials. Successful treatment will probably be based on multitherapies with antiviral compounds that target different steps of the virus life cycle. Moreover, a multidisciplinary approach that combines artificial intelligence, compound docking, and robust in vitro and in vivo assays will accelerate the development of new antiviral molecules. Finally, large retrospective studies on hospitalized patients are needed to evaluate the different treatments with robust statistical tools and to identify the best treatment for each Covid-19 stage. This review describes different candidate antiviral strategies for Covid-19, by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Coralie Valle
- Laboratoire AFMB, Aix Marseille Université, CNRS, UMR 7257, Marseille, France
| | | | - Franck Touret
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), Marseille, France
| | - Ashleigh Shannon
- Laboratoire AFMB, Aix Marseille Université, CNRS, UMR 7257, Marseille, France
| | - Bruno Canard
- Laboratoire AFMB, Aix Marseille Université, CNRS, UMR 7257, Marseille, France
| | | | - Bruno Coutard
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), Marseille, France
| | - Etienne Decroly
- Laboratoire AFMB, Aix Marseille Université, CNRS, UMR 7257, Marseille, France
| |
Collapse
|
263
|
Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers (Basel) 2020; 12:E2186. [PMID: 32764454 PMCID: PMC7464614 DOI: 10.3390/cancers12082186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Human coronaviruses, especially SARS-CoV-2, are emerging pandemic infectious diseases with high morbidity and mortality in certain group of patients. In general, SARS-CoV-2 causes symptoms ranging from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome in addition to other organs' destruction. The main impact upon SARS-CoV-2 infection is damage to alveolar and acute respiratory failure. Thus, lung cancer patients are identified as a particularly high-risk group for SARS-CoV-2 infection and its complications. On the other hand, it has been reported that SARS-CoV-2 spike (S) protein binds to angiotensin-converting enzyme 2 (ACE-2), that promotes cellular entry of this virus in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2). Today, there are no vaccines and/or effective drugs against the SARS-CoV-2 coronavirus. Thus, manipulation of key entry genes of this virus especially in lung cancer patients could be one of the best approaches to manage SARS-CoV-2 infection in this group of patients. We herein provide a comprehensive and up-to-date overview of the role of ACE-2 and TMPRSS2 genes, as key entry elements as well as therapeutic targets for SARS-CoV-2 infection, which can help to better understand the applications and capacities of various remedial approaches for infected individuals, especially those with lung cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Eyad Elkord
- Qatar Biomedical Research Institute & 4Hamad Bin Khalifa University, 34110 Doha, Qatar;
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
264
|
Ojha R, Gupta N, Naik B, Singh S, Verma VK, Prusty D, Prajapati VK. High throughput and comprehensive approach to develop multiepitope vaccine against minacious COVID-19. Eur J Pharm Sci 2020; 151:105375. [PMID: 32417398 PMCID: PMC7224663 DOI: 10.1016/j.ejps.2020.105375] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
The ongoing enigmatic COVID-19 outbreak, first reported from Wuhan, China, on last day of the year 2019, which has spread to 213 countries, territories/areas till 28th April 2020, threatens hundreds of thousands human souls. This devastating viral infection has stimulated the urgent development of viable vaccine against COVID-19 across the research institutes around the globe. The World Health Organization (WHO) has also confirmed that the recent pandemic is causing Public Health Emergency of International apprehension. Moreover, the earlier two pathogenic SARS-CoV and MERS-CoV and many others yet to be identified pose a universal menace. Here, in this piece of work, we have utilized an in silico structural biology and advanced immunoinformatic strategies to devise a multi-epitope subunit vaccine against ongoing COVID-19 infection. The engineered vaccine sequence is adjuvanted with ß-3 defensin and comprised of B-cell epitopes, HTL epitopes and CTL epitopes. This is very likely that the vaccine will be able to elicit the strong immune response. Further, specific binding of the engineered vaccine and immune cell receptor TLR3 was estimated by molecular interaction studies. Strong interaction in the binding groove as well as good docking scores affirmed the stringency of engineered vaccine. The interaction is stable with minimal deviation in root-mean square deviation and root-mean-square fluctuation was confirmed by the molecular dynamics simulation experiment. The immune-simulation by C-ImmSim server, which mimics the natural immune environment, yielded more potent immune response data of B-cells, Th cells, Tc cells and IgG for vaccine. The encouraging data obtained from the various in-silico works indicated this vaccine as an effective therapeutic against COVID-19.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
265
|
Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, Wang C, Wang Y, Li L, Ren L, Guo F, Zhao Z, Zhou Z, Xiang Z, Wang J. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun 2020; 11:3810. [PMID: 32733001 PMCID: PMC7392898 DOI: 10.1038/s41467-020-17665-9] [Citation(s) in RCA: 724] [Impact Index Per Article: 144.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022] Open
Abstract
The pandemic of COVID-19 has posed an unprecedented threat to global public health. However, the interplay between the viral pathogen of COVID-19, SARS-CoV-2, and host innate immunity is poorly understood. Here we show that SARS-CoV-2 induces overt but delayed type-I interferon (IFN) responses. By screening 23 viral proteins, we find that SARS-CoV-2 NSP1, NSP3, NSP12, NSP13, NSP14, ORF3, ORF6 and M protein inhibit Sendai virus-induced IFN-β promoter activation, whereas NSP2 and S protein exert opposite effects. Further analyses suggest that ORF6 inhibits both type I IFN production and downstream signaling, and that the C-terminus region of ORF6 is critical for its antagonistic effect. Finally, we find that IFN-β treatment effectively blocks SARS-CoV-2 replication. In summary, our study shows that SARS-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-CoV-2. The pandemic of SARS-CoV-2 post a significant threat to public health. Here the authors show, by screening 23 viral proteins, that both structural and non-structural SARS-CoV-2 proteins are capable of modulating host innate immunity and type interferon responses, with this information serves to warrant further studies on SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Ruiyi Ma
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Zhongqin Tian
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Conghui Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Ying Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Li Li
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Fei Guo
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Zhendong Zhao
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University Genome Editing Research Center, School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China. .,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China. .,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China. .,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China. .,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.
| |
Collapse
|
266
|
Rahman MS, Hoque MN, Islam MR, Akter S, Rubayet Ul Alam ASM, Siddique MA, Saha O, Rahaman MM, Sultana M, Crandall KA, Hossain MA. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic agent of COVID-19 pandemic: an in silico approach. PeerJ 2020; 8:e9572. [PMID: 33194329 PMCID: PMC7394063 DOI: 10.7717/peerj.9572] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19), a public health emergency of international concerns declared by the World Health Organization (WHO). An immuno-informatics approach along with comparative genomics was applied to design a multi-epitope-based peptide vaccine against SARS-CoV-2 combining the antigenic epitopes of the S, M, and E proteins. The tertiary structure was predicted, refined and validated using advanced bioinformatics tools. The candidate vaccine showed an average of ≥90.0% world population coverage for different ethnic groups. Molecular docking and dynamics simulation of the chimeric vaccine with the immune receptors (TLR3 and TLR4) predicted efficient binding. Immune simulation predicted significant primary immune response with increased IgM and secondary immune response with high levels of both IgG1 and IgG2. It also increased the proliferation of T-helper cells and cytotoxic T-cells along with the increased IFN-γ and IL-2 cytokines. The codon optimization and mRNA secondary structure prediction revealed that the chimera is suitable for high-level expression and cloning. Overall, the constructed recombinant chimeric vaccine candidate demonstrated significant potential and can be considered for clinical validation to fight against this global threat, COVID-19.
Collapse
Affiliation(s)
| | - M. Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M. Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Salma Akter
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | | | | | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, Washington D.C., United States of America
| | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Vice–Chancellor, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
267
|
Kow CS, Thiruchelvam K, Hasan SS. Pharmacotherapeutic considerations for the management of cardiovascular diseases among hospitalized COVID-19 patients. Expert Rev Cardiovasc Ther 2020; 18:475-485. [PMID: 32700573 DOI: 10.1080/14779072.2020.1797492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Cardiovascular diseases (CVDs) are among the most frequently identified comorbidities in hospitalized patients with COVID-19. Patients with CV comorbidities are typically prescribed with long-term medications. We reviewed the management of co-medications prescribed for CVDs among hospitalized COVID-19 patients. AREAS COVERED There is no specific contraindication or caution related to COVID-19 on the use of antihypertensives unless patients develop severe hypotension from septic shock where all antihypertensives should be discontinued or severe hyperkalemia in which continuation of renin-angiotensin system inhibitors is not desired. The continuation of antiplatelet or statin is not desired when severe thrombocytopenia or severe transminitis develop, respectively. Patients with atrial fibrillation receiving oral anticoagulants, particularly those who are critically ill, should be considered for substitution to parenteral anticoagulants. EXPERT OPINION An individualized approach to medication management among hospitalized COVID-19 patients with concurrent CVDs would seem prudent with attention paid to changes in clinical conditions and medications intended for COVID-19. The decision to modify prescribed long-term CV medications should be entailed by close follow-up to check if a revision on the decision is needed, with resumption of any long-term CV medication before discharge if it is discontinued during hospitalization for COVID-19, to ensure continuity of care.
Collapse
Affiliation(s)
- Chia Siang Kow
- School of Postgraduate Studies, International Medical University , Kuala Lumpur, Malaysia
| | | | - Syed Shahzad Hasan
- School of Biomedical Sciences & Pharmacy, University of Newcastle , Callaghan, Australia.,Department of Pharmacy, University of Huddersfield , Huddersfield, UK
| |
Collapse
|
268
|
Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT, Creighton R, Peron JPS, Nakaya HI. ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19. J Infect Dis 2020; 222:556-563. [PMID: 32526012 PMCID: PMC7377288 DOI: 10.1093/infdis/jiaa332] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Patients who died from COVID-19 often had comorbidities, such as hypertension, diabetes, and chronic obstructive lung disease. Although angiotensin-converting enzyme 2 (ACE2) is crucial for SARS-CoV-2 to bind and enter host cells, no study has systematically assessed the ACE2 expression in the lungs of patients with these diseases. Here, we analyzed over 700 lung transcriptome samples from patients with comorbidities associated with severe COVID-19 and found that ACE2 was highly expressed in these patients compared to control individuals. This finding suggests that patients with such comorbidities may have higher chances of developing severe COVID-19. Correlation and network analyses revealed many potential regulators of ACE2 in the human lung, including genes related to histone modifications, such as HAT1, HDAC2, and KDM5B. Our systems biology approach offers a possible explanation for increased COVID-19 severity in patients with certain comorbidities.
Collapse
Affiliation(s)
- Bruna G G Pinto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antonio E R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Youvika Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Jimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andre N A Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo L T Ogava
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rachel Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory – Department of Immunology – Institute of Biomedical Sciences - University of Sao Paulo, Sao Paulo, Brazil
- Scientific Platform Pasteur USP, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur USP, São Paulo, Brazil
| |
Collapse
|
269
|
Méry G, Epaulard O, Borel AL, Toussaint B, Le Gouellec A. COVID-19: Underlying Adipokine Storm and Angiotensin 1-7 Umbrella. Front Immunol 2020; 11:1714. [PMID: 32793244 PMCID: PMC7385229 DOI: 10.3389/fimmu.2020.01714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third coronavirus leading to a global health outbreak. Despite the high mortality rates from SARS-CoV-1 and Middle-East respiratory syndrome (MERS)-CoV infections, which both sparked the interest of the scientific community, the underlying physiopathology of the SARS-CoV-2 infection, remains partially unclear. SARS-CoV-2 shares similar features with SARS-CoV-1, notably the use of the angiotensin conversion enzyme 2 (ACE2) as a receptor to enter the host cells. However, some features of the SARS-CoV-2 pandemic are unique. In this work, we focus on the association between obesity, metabolic syndrome, and type 2 diabetes on the one hand, and the severity of COVID-19 infection on the other, as it seems greater in these patients. We discuss how adipocyte dysfunction leads to a specific immune environment that predisposes obese patients to respiratory failure during COVID-19. We also hypothesize that an ACE2-cleaved protein, angiotensin 1-7, has a beneficial action on immune deregulation and that its low expression during the SARS-CoV-2 infection could explain the severity of infection. This introduces angiotensin 1-7 as a potential candidate of interest in therapeutic research on CoV infections.
Collapse
Affiliation(s)
- Geoffroy Méry
- Service Hospitalier Universitaire de Pneumologie Physiologie, CHU Grenoble-Alpes, La Tronche, France
| | - Olivier Epaulard
- Service de Maladies Infectieuses et Tropicales, CHU Grenoble-Alpes, La Tronche, France.,Groupe de Recherche en Infectiologie Clinique, Université Grenoble Alpes, La Tronche, France.,UMR 5075-Institut de Biologie Structurale, Grenoble, France
| | - Anne-Laure Borel
- Service de Nutrition, Pole DIGIDUNE, CHU Grenoble-Alpes, La Tronche, France.,Hypoxia PathoPhysiology Laboratory, INSERM U1042, University Grenoble Alpes, La Tronche, France
| | - Bertrand Toussaint
- Laboratoire TIMC-TheREx UMR 5525 CNRS-Université Grenoble Alpes, La Tronche, France.,Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, C.H.U. Grenoble-Alpes, La Tronche, France
| | - Audrey Le Gouellec
- Laboratoire TIMC-TheREx UMR 5525 CNRS-Université Grenoble Alpes, La Tronche, France.,Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, C.H.U. Grenoble-Alpes, La Tronche, France
| |
Collapse
|
270
|
Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2020; 6:258-259. [PMID: 32347925 PMCID: PMC7197622 DOI: 10.1093/ehjcvp/pvaa042] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023]
Affiliation(s)
| | - Martina Chiriacò
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Emdin
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
271
|
Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.24.059527. [PMID: 32511379 PMCID: PMC7263508 DOI: 10.1101/2020.04.24.059527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of CoV infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses E2F family target genes encoding key drivers of DNA replication and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.
Collapse
Affiliation(s)
- Scott A Ochsner
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Neil J McKenna
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
272
|
Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol 2020; 11:1708. [PMID: 32754163 PMCID: PMC7365923 DOI: 10.3389/fimmu.2020.01708] [Citation(s) in RCA: 700] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is the pathogen that causes coronavirus disease 2019 (COVID-19). As of 25 May 2020, the outbreak of COVID-19 has caused 347,192 deaths around the world. The current evidence showed that severely ill patients tend to have a high concentration of pro-inflammatory cytokines, such as interleukin (IL)-6, compared to those who are moderately ill. The high level of cytokines also indicates a poor prognosis in COVID-19. Besides, excessive infiltration of pro-inflammatory cells, mainly involving macrophages and T-helper 17 cells, has been found in lung tissues of patients with COVID-19 by postmortem examination. Recently, increasing studies indicate that the "cytokine storm" may contribute to the mortality of COVID-19. Here, we summarize the clinical and pathologic features of the cytokine storm in COVID-19. Our review shows that SARS-Cov-2 selectively induces a high level of IL-6 and results in the exhaustion of lymphocytes. The current evidence indicates that tocilizumab, an IL-6 inhibitor, is relatively effective and safe. Besides, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, intravenous immunoglobulin, and antimalarial agents could be potentially useful and reliable approaches to counteract cytokine storm in COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | - Jinjun Ji
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
273
|
López-Collazo E, Avendaño-Ortiz J, Martín-Quirós A, Aguirre LA. Immune Response and COVID-19: A mirror image of Sepsis. Int J Biol Sci 2020; 16:2479-2489. [PMID: 32792851 PMCID: PMC7415424 DOI: 10.7150/ijbs.48400] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of SARS-CoV-2 virus and its associated disease COVID-19 have triggered significant threats to public health, in addition to political and social changes. An important number of studies have reported the onset of symptoms compatible with pneumonia accompanied by coagulopathy and lymphocytopenia during COVID-19. Increased cytokine levels, the emergence of acute phase reactants, platelet activation and immune checkpoint expression are some of the biomarkers postulated in this context. As previously observed in prolonged sepsis, T-cell exhaustion due to SARS-CoV-2 and even their reduction in numbers due to apoptosis hinder the response to the infection. In this review, we synthesized the immune changes observed during COVID-19, the role of immune molecules as severity markers for patient stratification and their associated therapeutic options.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - José Avendaño-Ortiz
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Alejandro Martín-Quirós
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Luis A. Aguirre
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| |
Collapse
|
274
|
Li Y, Jerkic M, Slutsky AS, Zhang H. Molecular mechanisms of sex bias differences in COVID-19 mortality. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:405. [PMID: 32646459 PMCID: PMC7347256 DOI: 10.1186/s13054-020-03118-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
More men than women have died from COVID-19. Genes encoded on X chromosomes, and sex hormones may explain the decreased fatality of COVID-19 in women. The angiotensin-converting enzyme 2 gene is located on X chromosomes. Men, with a single X chromosome, may lack the alternative mechanism for cellular protection after exposure to SARS-CoV-2. Some Toll-like receptors encoded on the X chromosomes can sense SARS-CoV-2 nucleic acids, leading to a stronger innate immunity response in women. Both estrogen and estrogen receptor-α contribute to T cell activation. Interventional approaches including estrogen-related compounds and androgen receptor antagonists may be considered in patients with COVID-19.
Collapse
Affiliation(s)
- Yuchong Li
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mirjana Jerkic
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Arthur S Slutsky
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Haibo Zhang
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. .,The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
275
|
Painter JD, Galle-Treger L, Akbari O. Role of Autophagy in Lung Inflammation. Front Immunol 2020; 11:1337. [PMID: 32733448 PMCID: PMC7358431 DOI: 10.3389/fimmu.2020.01337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a cellular recycling system found in almost all types of eukaryotic organisms. The system is made up of a variety of proteins which function to deliver intracellular cargo to lysosomes for formation of autophagosomes in which the contents are degraded. The maintenance of cellular homeostasis is key in the survival and function of a variety of human cell populations. The interconnection between metabolism and autophagy is extensive, therefore it has a role in a variety of different cell functions. The disruption or dysfunction of autophagy in these cell types have been implicated in the development of a variety of inflammatory diseases including asthma. The role of autophagy in non-immune and immune cells both lead to the pathogenesis of lung inflammation. Autophagy in pulmonary non-immune cells leads to tissue remodeling which can develop into chronic asthma cases with long term effects. The role autophagy in the lymphoid and myeloid lineages in the pathology of asthma differ in their functions. Impaired autophagy in lymphoid populations have been shown, in general, to decrease inflammation in both asthma and inflammatory disease models. Many lymphoid cells rely on autophagy for effector function and maintained inflammation. In stark contrast, autophagy deficient antigen presenting cells have been shown to have an activated inflammasome. This is largely characterized by a TH17 response that is accompanied with a much worse prognosis including granulocyte mediated inflammation and steroid resistance. The cell specificity associated with changes in autophagic flux complicates its targeting for amelioration of asthmatic symptoms. Differing asthmatic phenotypes between TH2 and TH17 mediated disease may require different autophagic modulations. Therefore, treatments call for a more cell specific and personalized approach when looking at chronic asthma cases. Viral-induced lung inflammation, such as that caused by SARS-CoV-2, also may involve autophagic modulation leading to inflammation mediated by lung resident cells. In this review, we will be discussing the role of autophagy in non-immune cells, myeloid cells, and lymphoid cells for their implications into lung inflammation and asthma. Finally, we will discuss autophagy's role viral pathogenesis, immunometabolism, and asthma with insights into autophagic modulators for amelioration of lung inflammation.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
276
|
Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, Srivastava AP. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 2020; 10:10895. [PMID: 32616763 PMCID: PMC7331818 DOI: 10.1038/s41598-020-67749-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2. The overall quality of the candidate vaccine was validated in silico and Molecular Dynamics Simulation confirmed the stability of the designed vaccine. Docking studies revealed stable interactions of the vaccine with Toll-Like Receptors and MHC Receptors. The in silico cloning and codon optimization supported the proficient expression of the designed vaccine in E. coli expression system. The efficiency of the candidate vaccine to trigger an effective immune response was assessed by an in silico immune simulation. The computational analyses suggest that the designed multi-epitope vaccine is structurally stable which can induce specific immune responses and thus, can be a potential vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tamalika Kar
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Utkarsh Narsaria
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Srijita Basak
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Debashrito Deb
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Via dei Taurini, Rome, Italy
| | - David M Mueller
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
| |
Collapse
|
277
|
Zhuang MW, Cheng Y, Zhang J, Jiang XM, Wang L, Deng J, Wang PH. Increasing host cellular receptor-angiotensin-converting enzyme 2 expression by coronavirus may facilitate 2019-nCoV (or SARS-CoV-2) infection. J Med Virol 2020; 92:2693-2701. [PMID: 32497323 PMCID: PMC7300907 DOI: 10.1002/jmv.26139] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
The ongoing outbreak of a new coronavirus (2019‐nCoV, or severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2]) has caused an epidemic of the acute respiratory syndrome known as coronavirus disease (COVID‐19) in humans. SARS‐CoV‐2 rapidly spread to multiple regions of China and multiple other countries, posing a serious threat to public health. The spike (S) proteins of SARS‐CoV‐1 and SARS‐CoV‐2 may use the same host cellular receptor, angiotensin‐converting enzyme 2 (ACE2), for entering host cells. The affinity between ACE2 and the SARS‐CoV‐2 S protein is much higher than that of ACE2 binding to the SARS‐CoV S protein, explaining why SARS‐CoV‐2 seems to be more readily transmitted from human to human. Here, we report that ACE2 can be significantly upregulated after infection of various viruses, including SARS‐CoV‐1 and SARS‐CoV‐2, or by the stimulation with inflammatory cytokines such as interferons. We propose that SARS‐CoV‐2 may positively induce its cellular entry receptor, ACE2, to accelerate its replication and spread; high inflammatory cytokine levels increase ACE2 expression and act as high‐risk factors for developing COVID‐19, and the infection of other viruses may increase the risk of SARS‐CoV‐2 infection. Therefore, drugs targeting ACE2 may be developed for the future emerging infectious diseases caused by this cluster of coronaviruses. Virus infection and inflammatory cytokines can stimulate angiotensin‐converting enzyme 2 (ACE2) expression. ACE2 is upregulated by the activation of RNA‐sensing pathways. ACE2 is a novel interferon‐stimulated gene (ISG). The increase in ACE2 induced by various viruses and inflammatory cytokines may facilitate severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection and spreading.
Collapse
Affiliation(s)
- Meng-Wei Zhuang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jing Zhang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue-Mei Jiang
- Jinan Infectious Diseases Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Wang
- Jinan Infectious Diseases Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
278
|
Ke C, Wang Y, Zeng X, Yang C, Hu Z. 2019 Novel coronavirus disease (COVID-19) in hemodialysis patients: A report of two cases. Clin Biochem 2020; 81:9-12. [PMID: 32360479 PMCID: PMC7191272 DOI: 10.1016/j.clinbiochem.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To analyze the diagnosis and treatment of patients with chronic renal failure complicated with novel coronavirus pneumonia, and to evaluate the effect of blood purification technology on the treatment and prognosis of such patients. METHODS Two COVID-19 cases undergoing hemodialysis with chronic renal failure were retrospectively analysed in our hospital. RESULTS Two COVID-19 patients were admitted to hospital due to cough, with or without fever. Laboratory tests showed decreased lymphocyte count, elevated PCT, IL-10, IL-6, TNF-α, IL-2R, high-sensitivity cardiac troponin I, NT-proBNP, creatinine, and urea nitrogen. Chest CT scan showed multiple blurred plaques and patchy shadows in both patients. Two patients received continuous venovenous hemodiafiltration (CVVHDF) every other day for 4-6 h everytime, in addition to the standard treatment. After CVVHDF, not only cytokines were reduced, but also liver function and cardiac function significantly improved. Both patients did not develop severe pneumonia. They were discharged on March 1, 2020 when meeting the discharge criteria. CONCLUSION Two COVID-19 patients on maintenance hemodialysis discharged after a month of hospitalization. The removal of cytokines through blood purification technology may be beneficial for the recovery of COVID-19 patients.
Collapse
Affiliation(s)
- Chunjin Ke
- Department of Urology, Tongji Hospital affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, PR China
| | - Yufeng Wang
- Department of Urology, Tongji Hospital affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, PR China
| | - Xing Zeng
- Department of Urology, Tongji Hospital affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, PR China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, PR China.
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, PR China.
| |
Collapse
|
279
|
Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, Gong W, Han JJ. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell 2020; 19:e13168. [PMID: 32558150 PMCID: PMC7323071 DOI: 10.1111/acel.13168] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 coronavirus is now spreading worldwide. Its pathogen, SARS-CoV-2, has been shown to use angiotensin-converting enzyme 2 (ACE2) as its host cell receptor, same as the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003. Epidemiology studies found males although only slightly more likely to be infected than females account for the majority of the severely ill and fatality, which also bias for people older than 60 years or with metabolic and cardiovascular diseases. Here by analyzing GTEx and other public data in 30 tissues across thousands of individuals, we found a significantly higher level in Asian females, an age-dependent decrease in all ethnic groups, and a highly significant decrease in type II diabetic patients of ACE2 expression. Consistently, the most significant expression quantitative loci (eQTLs) contributing to high ACE2 expression are close to 100% in East Asians, >30% higher than other ethnic groups. A shockingly common enrichment of viral infection pathways was found among ACE2 anti-expressed genes, and multiple binding sites of virus infection related transcription factors and sex hormone receptors locate at ACE2 regulatory regions. Human and mice data analysis further revealed ACE2 expression is reduced in T2D patients and with inflammatory cytokine treatment and upregulated by estrogen and androgen (both decrease with age). Our findings revealed a negative correlation between ACE2 expression and COVID-19 fatality at both population and molecular levels. These results will be instrumental when designing potential prevention and treatment strategies for ACE2 binding coronaviruses in general.
Collapse
Affiliation(s)
- Jiawei Chen
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesCenter for Quantitative Biology (CQB)Peking UniversityBeijingChina
| | - Quanlong Jiang
- CAS Key Laboratory of Computational BiologyCAS‐MPG Partner Institute for Computational BiologyShanghai Institute of Nutrition and HealthChinese Academy of Sciences Center for Excellence in Molecular Cell ScienceCollaborative Innovation Center for Genetics and Developmental BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Xian Xia
- CAS Key Laboratory of Computational BiologyCAS‐MPG Partner Institute for Computational BiologyShanghai Institute of Nutrition and HealthChinese Academy of Sciences Center for Excellence in Molecular Cell ScienceCollaborative Innovation Center for Genetics and Developmental BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Kangping Liu
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesCenter for Quantitative Biology (CQB)Peking UniversityBeijingChina
| | - Zhengqing Yu
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesCenter for Quantitative Biology (CQB)Peking UniversityBeijingChina
| | - Wanyu Tao
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesCenter for Quantitative Biology (CQB)Peking UniversityBeijingChina
| | - Wenxuan Gong
- CAS Key Laboratory of Computational BiologyCAS‐MPG Partner Institute for Computational BiologyShanghai Institute of Nutrition and HealthChinese Academy of Sciences Center for Excellence in Molecular Cell ScienceCollaborative Innovation Center for Genetics and Developmental BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jing‐Dong J. Han
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesCenter for Quantitative Biology (CQB)Peking UniversityBeijingChina
- CAS Key Laboratory of Computational BiologyCAS‐MPG Partner Institute for Computational BiologyShanghai Institute of Nutrition and HealthChinese Academy of Sciences Center for Excellence in Molecular Cell ScienceCollaborative Innovation Center for Genetics and Developmental BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
280
|
Debnath M, Banerjee M, Berk M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J 2020; 34:8787-8795. [PMID: 32525600 PMCID: PMC7300732 DOI: 10.1096/fj.202001115r] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/05/2023]
Abstract
The dynamics, such as transmission, spatial epidemiology, and clinical course of Coronavirus Disease-2019 (COVID-19) have emerged as the most intriguing features and remain incompletely understood. The genetic landscape of an individual in particular, and a population in general seems to play a pivotal role in shaping the above COVID-19 dynamics. Considering the implications of host genes in the entry and replication of SARS-CoV-2 and in mounting the host immune response, it appears that multiple genes might be crucially involved in the above processes. Herein, we propose three potentially important genetic gateways to COVID-19 infection; these could explain at least in part the discrepancies of its spread, severity, and mortality. The variations within Angiotensin-converting enzyme 2 (ACE2) gene might constitute the first genetic gateway, influencing the spatial transmission dynamics of COVID-19. The Human Leukocyte Antigen locus, a master regulator of immunity against infection seems to be crucial in influencing susceptibility and severity of COVID-19 and can be the second genetic gateway. The genes regulating Toll-like receptor and complement pathways and subsequently cytokine storm induced exaggerated inflammatory pathways seem to underlie the severity of COVID-19, and such genes might represent the third genetic gateway. Host-pathogen interaction is a complex event and some additional genes might also contribute to the dynamics of COVID-19. Overall, these three genetic gateways proposed here might be the critical host determinants governing the risk, severity, and outcome of COVID-19. Genetic variations within these gateways could be key in influencing geographical discrepancies of COVID-19.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human GeneticsNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | - Moinak Banerjee
- Human Molecular Genetics LaboratoryRajiv Gandhi Centre for BiotechnologyThiruvanathapuramIndia
| | - Michael Berk
- IMPACT ‐ the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon HealthDeakin UniversityGeelongVICAustralia
- Florey Institute for Neuroscience and Mental Health, Department of Psychiatry and Orygen, The National Centre of Excellence in Youth Mental HealthThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
281
|
He C, Qin M, Sun X. Highly pathogenic coronaviruses: thrusting vaccine development in the spotlight. Acta Pharm Sin B 2020; 10:1175-1191. [PMID: 32834948 PMCID: PMC7260574 DOI: 10.1016/j.apsb.2020.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023] Open
Abstract
Coronaviruses (CoVs) are a large family of viruses that cause illness ranging from the common cold to more severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has caused major public health crises. There have been more than 4,400,000 reported cases of COVID-2019 and more than 300,000 reported deaths to date (16/05/2020). SARS-CoV, MERS-CoV and SARS-CoV-2 have attracted widespread global attention due to their high infectivity and pathogenicity. To date, there is no specific treatment proven effective against these viral infectious diseases. Vaccination is considered one of the most effective strategies to prevent viral infections. Therefore, the development of effective vaccines against highly pathogenic coronaviruses is essential. In this review, we will briefly describe coronavirus vaccine design targets, summarize recent advances in the development of coronavirus vaccines, and highlight current adjuvants for improving the efficacy of coronavirus vaccines.
Collapse
|
282
|
Carter-Timofte ME, Jørgensen SE, Freytag MR, Thomsen MM, Brinck Andersen NS, Al-Mousawi A, Hait AS, Mogensen TH. Deciphering the Role of Host Genetics in Susceptibility to Severe COVID-19. Front Immunol 2020; 11:1606. [PMID: 32695122 PMCID: PMC7338588 DOI: 10.3389/fimmu.2020.01606] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/19/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) describes a set of symptoms that develop following infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whilst COVID-19 disease is most serious in patients with significant co-morbidities, the reason for healthy individuals succumbing to fulminant infection is largely unexplained. In this review, we discuss the most recent findings in terms of clinical features and the host immune response, and suggest candidate immune pathways that may be compromised in otherwise healthy individuals with fulminating COVID-19. On the basis of this early knowledge we reason a potential genetic effect on host immune response pathways leading to increased susceptibility to SARS-CoV-2 infection. Understanding these pathways may help not only in unraveling disease pathogenesis, but also in suggesting targets for therapy and prophylaxis. Importantly such insight should instruct efforts to identify those at increased risk in order to institute preventative measures, such as prophylactic medication and/or vaccination, when such opportunities arise in the later phases of the current pandemic or during future similar pandemics.
Collapse
Affiliation(s)
- Madalina Elena Carter-Timofte
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Sofie Eg Jørgensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Mette Ratzer Freytag
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Michelle Mølgaard Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Nanna-Sophie Brinck Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Ali Al-Mousawi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Alon Schneider Hait
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus, Denmark
| |
Collapse
|
283
|
Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, Barrett S, Kusko R, Zeskind B, Kaufman H. Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J Transl Med 2020. [PMID: 32586380 DOI: 10.26434/chemrxiv.12037416.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The recent global pandemic has placed a high priority on identifying drugs to prevent or lessen clinical infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused by Coronavirus disease-2019 (COVID-19). METHODS We applied two computational approaches to identify potential therapeutics. First, we sought to identify existing FDA approved drugs that could block coronaviruses from entering cells by binding to ACE2 or TMPRSS2 using a high-throughput AI-based binding affinity prediction platform. Second, we sought to identify FDA approved drugs that could attenuate the gene expression patterns induced by coronaviruses, using our Disease Cancelling Technology (DCT) platform. RESULTS Top results for ACE2 binding iincluded several ACE inhibitors, a beta-lactam antibiotic, two antiviral agents (Fosamprenavir and Emricasan) and glutathione. The platform also assessed specificity for ACE2 over ACE1, important for avoiding counterregulatory effects. Further studies are needed to weigh the benefit of blocking virus entry against potential counterregulatory effects and possible protective effects of ACE2. However, the data herein suggest readily available drugs that warrant experimental evaluation to assess potential benefit. DCT was run on an animal model of SARS-CoV, and ranked compounds by their ability to induce gene expression signals that counteract disease-associated signals. Top hits included Vitamin E, ruxolitinib, and glutamine. Glutathione and its precursor glutamine were highly ranked by two independent methods, suggesting both warrant further investigation for potential benefit against SARS-CoV-2. CONCLUSIONS While these findings are not yet ready for clinical translation, this report highlights the potential use of two bioinformatics technologies to rapidly discover existing therapeutic agents that warrant further investigation for established and emerging disease processes.
Collapse
Affiliation(s)
- Jason Kim
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Jenny Zhang
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Yoonjeong Cha
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Sarah Kolitz
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Jason Funt
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | | | - Scott Barrett
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Rebecca Kusko
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA.
| | - Ben Zeskind
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Howard Kaufman
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| |
Collapse
|
284
|
Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, Barrett S, Kusko R, Zeskind B, Kaufman H. Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J Transl Med 2020; 18:257. [PMID: 32586380 PMCID: PMC7315012 DOI: 10.1186/s12967-020-02430-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recent global pandemic has placed a high priority on identifying drugs to prevent or lessen clinical infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused by Coronavirus disease-2019 (COVID-19). METHODS We applied two computational approaches to identify potential therapeutics. First, we sought to identify existing FDA approved drugs that could block coronaviruses from entering cells by binding to ACE2 or TMPRSS2 using a high-throughput AI-based binding affinity prediction platform. Second, we sought to identify FDA approved drugs that could attenuate the gene expression patterns induced by coronaviruses, using our Disease Cancelling Technology (DCT) platform. RESULTS Top results for ACE2 binding iincluded several ACE inhibitors, a beta-lactam antibiotic, two antiviral agents (Fosamprenavir and Emricasan) and glutathione. The platform also assessed specificity for ACE2 over ACE1, important for avoiding counterregulatory effects. Further studies are needed to weigh the benefit of blocking virus entry against potential counterregulatory effects and possible protective effects of ACE2. However, the data herein suggest readily available drugs that warrant experimental evaluation to assess potential benefit. DCT was run on an animal model of SARS-CoV, and ranked compounds by their ability to induce gene expression signals that counteract disease-associated signals. Top hits included Vitamin E, ruxolitinib, and glutamine. Glutathione and its precursor glutamine were highly ranked by two independent methods, suggesting both warrant further investigation for potential benefit against SARS-CoV-2. CONCLUSIONS While these findings are not yet ready for clinical translation, this report highlights the potential use of two bioinformatics technologies to rapidly discover existing therapeutic agents that warrant further investigation for established and emerging disease processes.
Collapse
Affiliation(s)
- Jason Kim
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Jenny Zhang
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Yoonjeong Cha
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Sarah Kolitz
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Jason Funt
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | | | - Scott Barrett
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Rebecca Kusko
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA.
| | - Ben Zeskind
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| | - Howard Kaufman
- Immuneering Corporation, 245 Main Street, Cambridge, MA, 02142, USA
| |
Collapse
|
285
|
Arastehfar A, Carvalho A, van de Veerdonk FL, Jenks JD, Koehler P, Krause R, Cornely OA, S. Perlin D, Lass-Flörl C, Hoenigl M. COVID-19 Associated Pulmonary Aspergillosis (CAPA)-From Immunology to Treatment. J Fungi (Basel) 2020; 6:E91. [PMID: 32599813 PMCID: PMC7346000 DOI: 10.3390/jof6020091] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Like severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA) published until June 2020. The release of danger-associated molecular patterns during severe COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition pathways required for the activation of antiviral immunity may, paradoxically, contribute to a highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture, which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission. Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence of CAPA. Finally, the treatment of CAPA is complicated by drug-drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality creates an urgency for new antifungal drugs currently in advanced clinical development with more promising pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6525Nijmegen, The Netherlands
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA
| | - Philipp Koehler
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.K.); (O.A.C.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937Cologne, Germany
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Oliver A. Cornely
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.K.); (O.A.C.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937Cologne, Germany
- Zentrum fuer klinische Studien (ZKS) Köln, Clinical Trials Centre Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
286
|
Affiliation(s)
- Dean G Karalis
- Division of Cardiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA.
| |
Collapse
|
287
|
Villena J, Kitazawa H. The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic? Front Physiol 2020; 11:699. [PMID: 32670091 PMCID: PMC7326040 DOI: 10.3389/fphys.2020.00699] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Viral respiratory infections are of major importance because of their capacity to cause of a high degree of morbidity and mortality in high-risk populations, and to rapidly spread between countries. Perhaps the best example of this global threat is the infectious disease caused by the new SARS-CoV-2 virus, which has infected more than 4 million people worldwide, causing the death of 287,000 persons according to the WHO's situation report on May 13, 2020. The availability of therapeutic tools that would be used massively to prevent or mitigate the detrimental effects of emerging respiratory viruses on human health is therefore mandatory. In this regard, research from the last decade has reported the impact of the intestinal microbiota on the respiratory immunity. It was conclusively demonstrated how the variations in the intestinal microbiota affect the responses of respiratory epithelial cells and antigen presenting cells against respiratory virus attack. Moreover, the selection of specific microbial strains (immunobiotics) with the ability to modulate immunity in distal mucosal sites made possible the generation of nutritional interventions to strengthen respiratory antiviral defenses. In this article, the most important characteristics of the limited information available regarding the immune response against SARS-CoV-2 virus are revised briefly. In addition, this review summarizes the knowledge on the cellular and molecular mechanisms involved in the improvement of respiratory antiviral defenses by beneficial immunobiotic microorganisms such as Lactobacillus rhamnosus CRL1505. The ability of beneficial microorganisms to enhance type I interferons and antiviral factors in the respiratory tract, stimulate Th1 response and antibodies production, and regulate inflammation and coagulation activation during the course of viral infections reducing tissue damage and preserving lung functionally, clearly indicate the potential of immunobiotics to favorably influence the immune response against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
288
|
Hachim MY, Al Heialy S, Hachim IY, Halwani R, Senok AC, Maghazachi AA, Hamid Q. Interferon-Induced Transmembrane Protein (IFITM3) Is Upregulated Explicitly in SARS-CoV-2 Infected Lung Epithelial Cells. Front Immunol 2020; 11:1372. [PMID: 32595654 PMCID: PMC7301886 DOI: 10.3389/fimmu.2020.01372] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022] Open
Abstract
Current guidelines for COVID-19 management recommend the utilization of various repurposed drugs. Despite ongoing research toward the development of a vaccine against SARS-CoV-2, such a vaccine will not be available in time to contribute to the containment of the ongoing pandemic. Therefore, there is an urgent need to develop a framework for the rapid identification of novel targets for diagnostic and therapeutic interventions. We analyzed publicly available transcriptomic datasets of SARS-CoV infected humans and mammals to identify consistent differentially expressed genes then validated in SARS-CoV-2 infected epithelial cells transcriptomic datasets. Comprehensive toxicogenomic analysis of the identified genes to identify possible interactions with clinically proven drugs was carried out. We identified IFITM3 as an early upregulated gene, and valproic acid was found to enhance its mRNA expression as well as induce its antiviral action. These findings indicate that analysis of publicly available transcriptomic and toxicogenomic data represents a rapid approach for the identification of novel targets and molecules that can modify the action of such targets during the early phases of emerging infections like COVID-19.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Abiola C. Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Azzam A. Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
289
|
Park A, Iwasaki A. Type I and Type III Interferons - Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe 2020; 27:870-878. [PMID: 32464097 PMCID: PMC7255347 DOI: 10.1016/j.chom.2020.05.008] [Citation(s) in RCA: 650] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Without approved antiviral therapeutics or vaccines to this ongoing global threat, type I and type III interferons (IFNs) are currently being evaluated for their efficacy. Both the role of IFNs and the use of recombinant IFNs in two related, highly pathogenic coronaviruses, SARS-CoV and MERS-CoV, have been controversial in terms of their protective effects in the host. In this review, we describe the recent progress in our understanding of both type I and type III IFN-mediated innate antiviral responses against human coronaviruses and discuss the potential use of IFNs as a treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Annsea Park
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Molecular Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
290
|
Zhu J, Xu S, Li X, Wang J, Jiang Y, Hu W, Ruan W. Infectious bronchitis virus inhibits activation of the TLR7 pathway, but not the TLR3 pathway. Arch Virol 2020; 165:2037-2043. [PMID: 32524263 PMCID: PMC7286419 DOI: 10.1007/s00705-020-04690-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
Various strains of infectious bronchitis virus (IBV) cause different forms of infectious bronchitis with different clinical signs. Here, primary chicken embryo kidney (CEK) cells and specific-pathogen-free (SPF) chickens were infected with three pathogenic IBV strains, and it was observed that the TLR7-MYD88 pathway was inhibited but the TLR3-TIRF pathway was activated. After treatment with poly(I:C)-LMW, poly (I:C)-LMW/LyoVec, and Imiquimod, the replication of IBV was significantly suppressed after 24 h. However, treatment with TLR3 pathway inhibitors such as Pepinh-TRIF, celastrol, chloroquine, and BX795 resulted in increased replication of IBV after 36 h. These results also showed that chloroquine and celastrol were most effective inhibitors of the antiviral response at 48 hpi.
Collapse
Affiliation(s)
- Jinyan Zhu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuang Xu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xueyan Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Jue Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yueqi Jiang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Weichen Hu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenke Ruan
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
291
|
Hemmat N, Derakhshani A, Bannazadeh Baghi H, Silvestris N, Baradaran B, De Summa S. Neutrophils, Crucial, or Harmful Immune Cells Involved in Coronavirus Infection: A Bioinformatics Study. Front Genet 2020; 11:641. [PMID: 32582303 DOI: 10.3389/fgene.2020.00641] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
The latest member of the Coronaviridae family, called SARS-CoV-2, causes the Coronavirus Disease 2019 (COVID-19). The disease has caused a pandemic and is threatening global health. Similar to SARS-CoV, this new virus can potentially infect lower respiratory tract cells and can go on to cause severe acute respiratory tract syndrome, followed by pneumonia and even death in many nations. The molecular mechanism of the disease has not yet been evaluated until now. We analyzed the GSE1739 microarray dataset including 10 SARS-positive PBMC and four normal PBMC. Co-expression network analysis by WGCNA suggested that highly preserved 833 turquoise module with genes were significantly related to SARS-CoV infection. ELANE, ORM2, RETN, BPI, ARG1, DEFA4, CXCL1, and CAMP were the most important genes involved in this disease according to GEO2R analysis as well. The GO analysis demonstrated that neutrophil activation and neutrophil degranulation are the most activated biological processes in the SARS infection as well as the neutrophilia, basophilia, and lymphopenia predicted by deconvolution analysis of samples. Thus, using Serpins and Arginase inhibitors during SARS-CoV infection may be beneficial for increasing the survival of SARS-positive patients. Regarding the high similarity of SARS-CoV-2 to SARS-CoV, the use of such inhibitors might be beneficial for COVID-19 patients.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS IstitutoTumori "Giovanni Paolo II", Bari, Italy.,Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS IstitutoTumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
292
|
Singh R, Vijayan V. Chloroquine: A Potential Drug in the COVID-19 Scenario. TRANSACTIONS OF THE INDIAN NATIONAL ACADEMY OF ENGINEERING : AN INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY 2020; 5:399-410. [PMID: 38624400 PMCID: PMC7275976 DOI: 10.1007/s41403-020-00114-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 04/16/2023]
Abstract
Today, the whole world is fighting a public health emergency called 'COVID-19' caused by a new infectious virus called SARS-CoV2. Any person can catch COVID-19 from an infected person via aerosol droplets when the person coughs, sneezes, or speaks. To limit such a transmission, World Health Organization (WHO) has recommended people to wear masks and physically distance themselves by staying at least 1 m (3 feet) away from others. As aerosol droplets (by cough or sneeze) land on objects and surfaces around the person such as tables, doorknobs and handrails, and remain active on these surfaces for hours to days, people are advised to use soaps for at least 20 s. and alcohol-based sanitizers as well. As the public made efforts, clinicians and researchers investigated and found that drugs which were initially used to treat other diseases may work as a treatment option for COVID-19. One of those drugs was Chloroquine and its related derivative called hydroxychloroquine. In this review article, we have systematically searched for details of COVID-19 pandemic till May 2020 and assembled few data pertaining to (i) Corona viruses; (ii) SARS-CoV2, the virus that causes COVID-19' and (iii) How chloroquine and hydroxychloroquine mediates anti-viral effect in both prophylactic and therapeutic setting. These data have been acquired mostly from PubMed and websites of WHO and Indian Council for Medical Research (ICMR). We did a systematic search and found that the properties of chloroquine are very much essential for the COVID-19 scenario. We also bring to you some evidence that the anti-lysosomal activity of chloroquine may be increased by botanicals like betulinic acid.
Collapse
Affiliation(s)
- Ranjana Singh
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana 500 046 India
| | - Viji Vijayan
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581 India
| |
Collapse
|
293
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.30.20117788. [PMID: 32511629 PMCID: PMC7276057 DOI: 10.1101/2020.05.30.20117788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The recent SARS-CoV-2 pandemic raises many scientific and clinical questions. One set of questions involves host genetic factors that may affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. OBJECTIVES We aimed to review the literature on host genetic factors related to coronaviruses, with a systematic focus on human studies. METHODS We conducted a PubMed-based search and analysis for articles relevant to host genetic factors in coronavirus. We categorized articles, summarized themes related to animal studies, and extracted data from human studies for analyses. RESULTS We identified 1,187 articles of potential relevance. Forty-five studies were related to human host genetic factors related to coronavirus, of which 35 involved analysis of specific genes or loci; aside from one meta-analysis on respiratory infections, all were candidate-driven studies, typically investigating small number of research subjects and loci. Multiple significant loci were identified, including 16 related to susceptibility to coronavirus (of which 7 identified protective alleles), and 16 related to outcomes or clinical variables (of which 3 identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Of the other studies, 28 involved both human and non-human host genetic factors related to coronavirus, 174 involved study of non-human (animal) host genetic factors related to coronavirus, 584 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis, 16 involved study of other pathogens (not coronavirus), 321 involved other studies of coronavirus, and 18 studies were assigned to the other categories and removed. KEY FINDINGS We have outlined key genes and loci from animal and human host genetic studies that may bear investigation in the nascent host genetic factor studies of COVID-19. Previous human studies to date have been limited by issues that may be less impactful on current endeavors, including relatively low numbers of eligible participants and limited availability of advanced genomic methods.
Collapse
|
294
|
Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:425-435. [PMID: 32414646 PMCID: PMC7201239 DOI: 10.1016/j.jmii.2020.04.015] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged in Chinese people in December 2019 and has currently spread worldwide causing the COVID-19 pandemic with more than 150,000 deaths. In order for a SARS-CoV like virus circulating in wild life for a very long time to infect the index case-patient, a number of conditions must be met, foremost among which is the encounter with humans and the presence in homo sapiens of a cellular receptor allowing the virus to bind. Recently it was shown that the SARS-CoV-2 spike protein, binds to the human angiotensin I converting enzyme 2 (ACE2). This molecule is a peptidase expressed at the surface of lung epithelial cells and other tissues, that regulates the renin-angiotensin-aldosterone system. Humans are not equal with respect to the expression levels of the cellular ACE2. Moreover, ACE2 polymorphisms were recently described in human populations. Here we review the most recent evidence that ACE2 expression and/or polymorphism could influence both the susceptibility of people to SARS-CoV-2 infection and the outcome of the COVID-19 disease. Further exploration of the relationship between the virus, the peptidase function of ACE2 and the levels of angiotensin II in SARS-CoV-2 infected patients should help to better understand the pathophysiology of the disease and the multi-organ failures observed in severe COVID-19 cases, particularly heart failure.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
295
|
Birra D, Benucci M, Landolfi L, Merchionda A, Loi G, Amato P, Licata G, Quartuccio L, Triggiani M, Moscato P. COVID 19: a clue from innate immunity. Immunol Res 2020; 68:161-168. [PMID: 32524333 PMCID: PMC7286633 DOI: 10.1007/s12026-020-09137-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent COVID-19 pandemic has had a significant impact on our lives and has rapidly expanded to reach more than 4 million cases worldwide by May 2020. These cases are characterized by extreme variability, from a mild or asymptomatic form lasting for a few days up to severe forms of interstitial pneumonia that may require ventilatory therapy and can lead to patient death.Several hypotheses have been drawn up to understand the role of the interaction between the infectious agent and the immune system in the development of the disease and the most severe forms; the role of the cytokine storm seems important.Innate immunity, as one of the first elements of guest interaction with different infectious agents, could play an important role in the development of the cytokine storm and be responsible for boosting more severe forms. Therefore, it seems important to study also this important arm of the immune system to adequately understand the pathogenesis of the disease. Research on this topic is also needed to develop therapeutic strategies for treatment of this disease.
Collapse
Affiliation(s)
- Domenico Birra
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy.
| | | | - Luigi Landolfi
- UOC of Internal Medicine, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Anna Merchionda
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| | - Gabriella Loi
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| | | | - Gaetano Licata
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Quartuccio
- Clinic of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, Udine, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano, Italy
| | - Paolo Moscato
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| |
Collapse
|
296
|
Abstract
A close interaction between the virus SARS-CoV-2 and the immune system of an individual results in a diverse clinical manifestation of the COVID-19 disease. While adaptive immune responses are essential for SARS-CoV-2 virus clearance, the innate immune cells, such as macrophages, may contribute, in some cases, to the disease progression. Macrophages have shown a significant production of IL-6, suggesting they may contribute to the excessive inflammation in COVID-19 disease. Macrophage Activation Syndrome may further explain the high serum levels of CRP, which are normally lacking in viral infections. In adaptive immune responses, it has been revealed that cytotoxic CD8+ T cells exhibit functional exhaustion patterns, such as the expression of NKG2A, PD-1, and TIM-3. Since SARS-CoV-2 restrains antigen presentation by downregulating MHC class I and II molecules and, therefore, inhibits the T cell-mediated immune responses, humoral immune responses also play a substantial role. Specific IgA response appears to be stronger and more persistent than the IgM response. Moreover, IgM and IgG antibodies show similar dynamics in COVID-19 disease.
Collapse
Affiliation(s)
- J Paces
- Laboratory of Cell Immunology, Faculty of Science, Charles University, Prague, Czech Republic; Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.
| | | | | | | |
Collapse
|
297
|
Sallenave JM, Guillot L. Innate Immune Signaling and Proteolytic Pathways in the Resolution or Exacerbation of SARS-CoV-2 in Covid-19: Key Therapeutic Targets? Front Immunol 2020; 11:1229. [PMID: 32574272 PMCID: PMC7270404 DOI: 10.3389/fimmu.2020.01229] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
COVID-19 is caused by the Severe Acute Respiratory Syndrome (SARS) coronavirus (Cov)-2, an enveloped virus with a positive-polarity, single-stranded RNA genome. The initial outbreak of the pandemic began in December 2019, and it is affecting the human health of the global community. In common with previous pandemics (Influenza H1N1 and SARS-CoV) and the epidemics of Middle east respiratory syndrome (MERS)-CoV, CoVs target bronchial and alveolar epithelial cells. Virus protein ligands (e.g., haemagglutinin or trimeric spike glycoprotein for Influenza and CoV, respectively) interact with cellular receptors, such as (depending on the virus) either sialic acids, Dipeptidyl peptidase 4 (DPP4), or angiotensin-converting enzyme 2 (ACE2). Host proteases, e.g., cathepsins, furin, or members of the type II transmembrane serine proteases (TTSP) family, such as Transmembrane protease serine 2 (TMPRSS2), are involved in virus entry by proteolytically activating virus ligands. Also involved are Toll Like Receptor (TLR) family members, which upregulate anti-viral and pro-inflammatory mediators [interleukin (IL)-6 and IL-8 and type I and type III Interferons among others], through the activation of Nuclear Factor (NF)-kB. When these events (virus cellular entry and innate immune responses) are uncontrolled, a deleterious systemic response is sometimes encountered in infected patients, leading to the well-described "cytokine storm" and an ensuing multiple organ failure promoted by a downregulation of dendritic cell, macrophage, and T-cell function. We aim to describe how the lung and systemic host innate immune responses affect survival either positively, through downregulating initial viral load, or negatively, by triggering uncontrolled inflammation. An emphasis will be put on host cellular signaling pathways and proteases involved with a view on tackling these therapeutically.
Collapse
Affiliation(s)
- Jean-Michel Sallenave
- INSERM UMR1152, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Hôpital Bichat, Université de Paris, Paris, France
| | - Loïc Guillot
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
298
|
Liang Y, Wang ML, Chien CS, Yarmishyn AA, Yang YP, Lai WY, Luo YH, Lin YT, Chen YJ, Chang PC, Chiou SH. Highlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection. Front Immunol 2020; 11:1022. [PMID: 32574260 PMCID: PMC7236801 DOI: 10.3389/fimmu.2020.01022] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
A sudden outbreak of COVID-19 caused by a novel coronavirus, SARS-CoV-2, in Wuhan, China in December 2019 quickly grew into a global pandemic, putting at risk not only the global healthcare system, but also the world economy. As the disease continues to spread rapidly, the development of prophylactic and therapeutic approaches is urgently required. Although some progress has been made in understanding the viral structure and invasion mechanism of coronaviruses that may cause severe cases of the syndrome, due to the limited understanding of the immune effects caused by SARS-CoV-2, it is difficult for us to prevent patients from developing acute respiratory distress syndrome (ARDS) and pulmonary fibrosis (PF), the major complications of coronavirus infection. Therefore, any potential treatments should focus not only on direct killing of coronaviruses and prevention strategies by vaccine development, but also on keeping in check the acute immune/inflammatory responses, resulting in ARDS and PF. In addition, potential treatments currently under clinical trials focusing on killing coronaviruses or on developing vaccines preventing coronavirus infection largely ignore the host immune response. However, taking care of SARS-CoV-2 infected patients with ARDS and PF is considered to be the major difficulty. Therefore, further understanding of the host immune response to SARS-CoV-2 is extremely important for clinical resolution and saving medication cost. In addition to a breif overview of the structure, infection mechanism, and possible therapeutic approaches, we summarized and compared the hematopathologic effect and immune responses to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also discussed the indirect immune response caused by SARS and direct infection, replication, and destroying of immune cells by MERS-CoV. The molecular mechanisms of SARS-CoV and MERS-CoV infection-induced lymphopenia or cytokine storm may provide some hint toward fight against SARS-CoV-2, the novel coronavirus. This may provide guidance over using immune therapy as a combined treatment to prevent patients developing severe respiratory syndrome and largely reduce complications.
Collapse
Affiliation(s)
- Yanwen Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hung Luo
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yann-Jang Chen
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pediatrics, Renai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
299
|
Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M, Hernández AF. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol 2020; 141:111418. [PMID: 32437891 PMCID: PMC7211730 DOI: 10.1016/j.fct.2020.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemicals after World War II have a strong relationship with the increase of chronic diseases, health cost and environmental pollution. The link between environment and immunity is particularly intriguing as it is known that chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups, taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological implications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)–B radiation, ionizing radiation and lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus threaten global public health, human prosperity and achievements, and global economy. Finally, we propose metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and those required to prevent similar future pandemics. Developmental exposure to environmental factors can disrupt the immune system. Long-term low-dose exposure to chemical mixtures is linked to imunodeficiency Immunodeficiency contributes to chronic diseases and the current Covid-19 pandemics. Environmental chemicals and microorganisms share similar molecular pathomechanisms (AhR pathway). Understanding the underlying pathomechanisms helps to improve public health.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Demetrious Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece.
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy.
| | - Marina Goumenou
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Ronald N Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, USA.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Michael Aschner
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 180016 Granada, Spain.
| |
Collapse
|
300
|
Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, Bonten M. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell 2020; 181:969-977. [PMID: 32437659 PMCID: PMC7196902 DOI: 10.1016/j.cell.2020.04.042] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 infection is mild in the majority of individuals but progresses into severe pneumonia in a small proportion of patients. The increased susceptibility to severe disease in the elderly and individuals with co-morbidities argues for an initial defect in anti-viral host defense mechanisms. Long-term boosting of innate immune responses, also termed “trained immunity,” by certain live vaccines (BCG, oral polio vaccine, measles) induces heterologous protection against infections through epigenetic, transcriptional, and functional reprogramming of innate immune cells. We propose that induction of trained immunity by whole-microorganism vaccines may represent an important tool for reducing susceptibility to and severity of SARS-CoV-2.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Center for Infectious Diseases, Radboud University, 6500 Nijmegen, the Netherlands; Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany.
| | | | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Center for Infectious Diseases, Radboud University, 6500 Nijmegen, the Netherlands
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne and Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Reinout van Crevel
- Department of Internal Medicine and Center for Infectious Diseases, Radboud University, 6500 Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Center for Infectious Diseases, Radboud University, 6500 Nijmegen, the Netherlands
| | - Marc Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, University of Utrecht, the Netherlands
| |
Collapse
|