251
|
Sharma S, Uttam KN. Non-invasive Monitoring of Biochemical Response of Wheat Seedlings Toward Titanium Dioxide Nanoparticles Treatment Using Attenuated Total Reflectance Fourier Transform Infrared and Laser Induced Fluorescence Spectroscopy. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1563940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sweta Sharma
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
252
|
Margas M, Piotrowicz-Cieślak AI, Michalczyk DJ, Głowacka K. A Strong Impact of Soil Tetracycline on Physiology and Biochemistry of Pea Seedlings. SCIENTIFICA 2019; 2019:3164706. [PMID: 30733888 PMCID: PMC6348853 DOI: 10.1155/2019/3164706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/12/2018] [Indexed: 06/01/2023]
Abstract
Antibiotics are a new type of contaminants found in the environment. They are increasingly used in farm animal production systems and may accumulate in crops, limiting the plant growth rate and nutritive value. The aim of this study was to determine the effects of tetracycline (TC) on physiological and biochemical properties of pea seedlings. The presence of TC in the soil during 24 hours did not result in any distinct changes of the seedlings. However, after five days (120 h) of soil TC action, the seedling appearance and metabolic activities were significantly affected. Leaves lost their green coloration as a result of a 38% degradation of their chlorophyll. Total protein was isolated from shoots of pea grown for 120 h in TC-supplemented perlite (250 mg × L-1) or perlite with no TC (control plants). The 2D electrophoretic maps of proteins from non-TC shoots contained 326 spots, whereas maps of shoot proteins from TC-treated seedlings contained only 316 spots. The identity of 26 proteins was determined. The intensity of most proteins (62%) increased. This was particularly visible with diphosphate kinase, superoxide dismutase [Cu-Zn], peroxiredoxin, and glutathione S-transferase. A distinctly increased quantity of a protein involved in photosynthesis (photosystem II stability/assembly factor HCF136) was also noted. One protein was detected only in shoots of TC-treated plants (as opposed to controls); however, it could not be identified. Moreover, at the highest concentration of TC (250 mg × L-1 of perlite), a sharp increase in free-radical content was observed along with the amount of callose deposited in vascular bundles of leaves and roots and the occurrence of masses of dead cells in roots. It was found, therefore, that tetracycline which has been known for inhibiting predominantly the attachment of aminoacyl-tRNA to the ribosomal acceptor in bacteria can disturb diverse metabolic pathways in plants.
Collapse
Affiliation(s)
- Małgorzata Margas
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Agnieszka I. Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Dariusz J. Michalczyk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| |
Collapse
|
253
|
Uji T, Gondaira Y, Fukuda S, Mizuta H, Saga N. Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis. Cell Stress Chaperones 2019; 24:223-233. [PMID: 30632066 PMCID: PMC6363611 DOI: 10.1007/s12192-018-00959-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHSPs) are found in all three domains of life (Bacteria, Archaea, and Eukarya) and play a critical role in protecting organisms from a range of environmental stresses. However, little is known about their physiological functions in red algae. Therefore, we characterized the sHSPs (PysHSPs) in the red macroalga Pyropia yezoensis, which inhabits the upper intertidal zone where it experiences fluctuating stressful environmental conditions on a daily and seasonal basis, and examined their expression profiles at different developmental stages and under varying environmental conditions. We identified five PysHSPs (PysHSP18.8, 19.1, 19.2, 19.5, and 25.8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that expression of the genes PysHSP18.8, PysHSP19.5, and PysHSP25.8 was repressed at all the developmental stages under normal conditions, whereas PysHSP19.1 and PysHSP19.2 were overexpressed in mature gametophytes and sporophytes. Exposure of the gametophytes to high temperature, oxidative stress, or copper significantly increased the mRNA transcript levels of all the five genes, while exogenous application of the ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) significantly increased the expression levels of PysHSP19.2, PysHSP19.5, and PysHSP25.8. These findings will help to further our understanding of the role of PysHSP genes and provide clues about how Pyropia species can adapt to the stressful conditions encountered in the upper intertidal zone during their life cycle.
Collapse
Affiliation(s)
- Toshiki Uji
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | - Yohei Gondaira
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Satoru Fukuda
- Section of Food Sciences, Institute for Regional Innovation, Hirosaki University, Aomori, Aomori, 038-0012, Japan
| | - Hiroyuki Mizuta
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Naotsune Saga
- Section of Food Sciences, Institute for Regional Innovation, Hirosaki University, Aomori, Aomori, 038-0012, Japan
| |
Collapse
|
254
|
Dumont S, Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:166. [PMID: 30833954 PMCID: PMC6387960 DOI: 10.3389/fpls.2019.00166] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are present at low and controlled levels under normal conditions. These reactive molecules can increase to high levels under various biotic and abiotic conditions, resulting in perturbation of the cellular redox state that can ultimately lead to oxidative or nitrosative stress. In this review, we analyze the various effects that result from alterations of redox homeostasis on plant glycolytic pathway and tricarboxylic acid (TCA) cycle. Most documented modifications caused by ROS or RNS are due to the presence of redox-sensitive cysteine thiol groups in proteins. Redox modifications include Cys oxidation, disulfide bond formation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. A growing number of proteomic surveys and biochemical studies document the occurrence of ROS- or RNS-mediated modification in enzymes of glycolysis and the TCA cycle. In a few cases, these modifications have been shown to affect enzyme activity, suggesting an operational regulatory mechanism in vivo. Further changes induced by oxidative stress conditions include the proposed redox-dependent modifications in the subcellular distribution of a putative redox sensor, NAD-glyceraldehyde-3P dehydrogenase and the micro-compartmentation of cytosolic glycolytic enzymes. Data from the literature indicate that oxidative stress may induce complex changes in metabolite pools in central carbon metabolism. This information is discussed in the context of our understanding of plant metabolic response to oxidative stress.
Collapse
|
255
|
Mi J, Jia KP, Balakrishna A, Wang JY, Al-Babili S. An LC-MS profiling method reveals a route for apocarotene glycosylation and shows its induction by high light stress in Arabidopsis. Analyst 2019; 144:1197-1204. [DOI: 10.1039/c8an02143k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apocarotenoid glycosylation serves as a valve regulating carotenoid homeostasis in plants and may contribute to their response to photo-oxidative stress.
Collapse
Affiliation(s)
- Jianing Mi
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Kun-Peng Jia
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Jian You Wang
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| |
Collapse
|
256
|
Kawall K. New Possibilities on the Horizon: Genome Editing Makes the Whole Genome Accessible for Changes. FRONTIERS IN PLANT SCIENCE 2019; 10:525. [PMID: 31068963 PMCID: PMC6491833 DOI: 10.3389/fpls.2019.00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/04/2019] [Indexed: 05/04/2023]
Abstract
The emergence of new genome editing techniques, such as the site-directed nucleases, clustered regulatory interspaced short palindromic repeats (CRISPRs)/Cas9, transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs), has greatly increased the feasibility of introducing any desired changes into the genome of a target organism. The ability to target a Cas nuclease to DNA sequences with a single-guide RNA (sgRNA) has provided a dynamic tool for genome editing and is naturally derived from an adaptive immune system in bacteria and archaea. CRISPR/Cas systems are being rapidly improved and refined, thereby opening up even more possibilities. Classical plant breeding is based on genetic variations that occur naturally and is used to select plants with improved traits. Induced mutagenesis is used to enhance mutational frequency and accelerate this process. Plants have evolved cellular processes, including certain repair mechanisms that ensure DNA integrity and the maintenance of distinct DNA loci. The focus of this review is on the characterization of new potentials in plant breeding through the use of CRISPR/Cas systems that eliminate natural limitations in order to induce thus far unachievable genomic changes.
Collapse
|
257
|
Durak R, Bednarski W, Formela-Luboińska M, Woźniak A, Borowiak-Sobkowiak B, Durak T, Dembczyński R, Morkunas I. Defense responses of Thuja orientalis to infestation of anholocyclic species aphid Cinara tujafilina. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:160-170. [PMID: 30537603 DOI: 10.1016/j.jplph.2018.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
The aim of this study was to determine an interdependence between generation of semiquinone radicals, superoxide anion (O2-), manganese ions (Mn2+) and phenolic content in leaves of Thuja orientalis in response to infestation by varying populations of Cinara tujafilina, i.e. 40 or 80 aphids per plant. Also, superoxide dismutase (SOD) and β-d-glucosidase activities in leaves of T. orientalis in a defense response to C. tujafilina was recorded. Analyses of electron paramagnetic resonance (EPR) showed generally a higher concentration of semiquinone radicals with g-values of 2.0051 ± 0.0005 and 20032 ± 0.0005 after C. tujafilina infestation in leaves in comparison to the control. Up to 48 h post-infestation in leaves infested by 80 aphids the level of semiquinone radicals was significantly higher than in the control, while in leaves infested by 40 aphids the highest concentrations of these radicals were recorded at later time points (i.e. at 72 and 96 hpi). In parallel, the highest total generation of O2- and low activity of SOD were recorded in 24-h leaves infested by 80 aphids. Additionally, analysis of confocal images showed that the strongest yellow fluorescence indicating O2- generation was detected in epidermal cells of leaves up to 48 hpi. Significant reduction of Mn2+ ions detected by EPR spectroscopy in relation to the control was observed in 4-w leaves infested by 80 and 40 aphids and in 48-h leaves infested by 40 aphids. Phenolic contents in leaves infested by 80 and 40 aphids at all time points were higher than in the control. The greatest β-d-glucosidase activity and phenolic contents were recorded at 96 h of feeding. These results indicate that the perception of C. tujafilina infestation by T. orientalis leaves induces a specified sequence of defense mechanisms in the course of time.
Collapse
Affiliation(s)
- Roma Durak
- Department of Experimental Zoology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Magda Formela-Luboińska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Beata Borowiak-Sobkowiak
- Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
| | - Tomasz Durak
- Department of Plant Physiology and Ecology, University of Rzeszów, Rejtana 16c, 35-959, Rzeszów, Poland
| | - Radosław Dembczyński
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
258
|
Paul K, Sorrentino M, Lucini L, Rouphael Y, Cardarelli M, Bonini P, Miras Moreno MB, Reynaud H, Canaguier R, Trtílek M, Panzarová K, Colla G. A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability. FRONTIERS IN PLANT SCIENCE 2019; 10:493. [PMID: 31130970 PMCID: PMC6509618 DOI: 10.3389/fpls.2019.00493] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Plant-derived protein hydrolysates (PHs) are an important category of biostimulants able to increase plant growth and crop yield especially under environmental stress conditions. PHs can be applied as foliar spray or soil drench. Foliar spray is generally applied to achieve a relatively short-term response, whereas soil drench is used when a long-term effect is desired. The aim of the study was to elucidate the biostimulant action of PH application method (foliar spray or substrate drench) on morpho-physiological traits and metabolic profile of tomato grown under limited water availability. An untreated control was also included. A high-throughput image-based phenotyping (HTP) approach was used to non-destructively monitor the crop response under limited water availability (40% of container capacity) in a controlled environment. Moreover, metabolic profile of leaves was determined at the end of the trial. Dry biomass of shoots at the end of the trial was significantly correlated with number of green pixels (R 2 = 0.90) and projected shoot area, respectively. Both drench and foliar treatments had a positive impact on the digital biomass compared to control while the photosynthetic performance of the plants was slightly influenced by treatments. Overall drench application under limited water availability more positively influenced biomass accumulation and metabolic profile than foliar application. Significantly higher transpiration use efficiency was observed with PH-drench applications indicating better stomatal conductance. The mass-spectrometry based metabolomic analysis allowed the identification of distinct biochemical signatures in PH-treated plants. Metabolomic changes involved a wide and organized range of biochemical processes that included, among others, phytohormones (notably a decrease in cytokinins and an accumulation of salicylates) and lipids (including membrane lipids, sterols, and terpenes). From a general perspective, treated tomato plants exhibited an improved tolerance to reactive oxygen species (ROS)-mediated oxidative imbalance. Such capability to cope with oxidative stress might have resulted from a coordinated action of signaling compounds (salicylic acid and hydroxycinnamic amides), radical scavengers such as carotenoids and prenyl quinones, as well as a reduced biosynthesis of tetrapyrrole coproporphyrins.
Collapse
Affiliation(s)
- Kenny Paul
- Photon Systems Instruments, spol. s.r.o., Drásov, Czechia
| | | | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, Pontecagnano Faiano, Italy
| | | | - Maria Begoña Miras Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | | | - Martin Trtílek
- Photon Systems Instruments, spol. s.r.o., Drásov, Czechia
| | - Klára Panzarová
- Photon Systems Instruments, spol. s.r.o., Drásov, Czechia
- *Correspondence: Klára Panzarová, Giuseppe Colla,
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, Tuscia University, Viterbo, Italy
- Arcadia Srl, Rivoli Veronese, Italy
- *Correspondence: Klára Panzarová, Giuseppe Colla,
| |
Collapse
|
259
|
Chen H, Shen C, Chen Z, Ali BA, Wen Y. Dichlorprop induced structural changes of LHCⅡ chiral macroaggregates associated with enantioselective toxicity to Scnedesmus obliquus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:54-60. [PMID: 30448745 DOI: 10.1016/j.aquatox.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
The enantioselective toxic mechanisms of chiral herbicides in photosynthetic organisms are closely related to the production of reactive oxygen species (ROS) production, however, there are few reports on how the enantioselective production of ROS can be triggered. In suboptimal conditions, photosynthesis is one of the most important processes in the production of ROS, especially in the process of light utilization and electron transfer. In this study, we investigated the interactions between chiral herbicide dichlorprop (DCPP) enantiomers and the chiral macroaggregates of the photosynthetic light-harvesting chlorophyll a/b pigment-protein complexes (LHCII) in Scenedesmus obliquus, which is of great significance in capturing and utilizing sun light, and also in dissipating the excess excitation energy. The results of the circular dichroism indicated that DCPP induced the structural changes of the LHCII chiral macroaggregates in an enantioselective manner and that the (R)-DCPP treated-group showed a bigger change accompanied by a changed enantioselective dissipation of the excitation energy. The excitation energy was excessed in DCPP treated-groups and the degree of excess was enantioselective and the detrimental non-chemical energy triggered the enantioselective production of ROS, that induced the enantioselective toxicity to green algae S. obliquus. Overall, this study has identified that how the enantioselective production of ROS can be triggered in chloroplasts; this can help to reveal the enantioselective mechanisms of chiral herbicides to photosynthetic organisms.
Collapse
Affiliation(s)
- Hui Chen
- College of Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, United States
| | - Babar Aijaz Ali
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuezhong Wen
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
260
|
Abbas HMK, Xiang J, Ahmad Z, Wang L, Dong W. Enhanced Nicotiana benthamiana immune responses caused by heterologous plant genes from Pinellia ternata. BMC PLANT BIOLOGY 2018; 18:357. [PMID: 30558544 PMCID: PMC6296014 DOI: 10.1186/s12870-018-1598-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pinellia ternata is a Chinese traditional medicinal herb, used to cure diseases including insomnia, eclampsia and cervical carcinoma, for hundreds of years. Non-self-recognition in multicellular organisms can initiate the innate immunity to avoid the invasion of pathogens. A design for pathogen independent, heterosis based, fresh resistance can be generated in F1 hybrid was proposed. RESULTS By library functional screening, we found that P. ternata genes, named as ptHR375 and ptHR941, were identified with the potential to trigger a hypersensitive response in Nicotiana benthamiana. Significant induction of ROS and Callose deposition in N. benthamiana leaves along with activation of pathogenesis-related genes viz.; PR-1a, PR-5, PDF1.2, NPR1, PAL, RBOHB and ERF1 and antioxidant enzymes was observed. After transformation into N. benthamiana, expression of pathogenesis related genes was significantly up-regulated to generate high level of resistance against Phytophthora capsici without affecting the normal seed germination and morphological characters of the transformed N. benthamiana. UPLC-QTOF-MS analysis of ptHR375 transformed N. benthamiana revealed the induction of Oxytetracycline, Cuelure, Allantoin, Diethylstilbestrol and 1,2-Benzisothiazol-3(2H)-one as bioactive compounds. Here we also proved that F1 hybrids, produced by crossing of the ptHR375 and ptHR941 transformed and non-transformed N. benthamiana, show significant high levels of PR-gene expressions and pathogen resistance. CONCLUSIONS Heterologous plant genes can activate disease resistance in another plant species and furthermore, by generating F1 hybrids, fresh pathogen independent plant immunity can be obtained. It is also concluded that ptHR375 and ptHR941 play their role in SA and JA/ET defense pathways to activate the resistance against invading pathogens.
Collapse
Affiliation(s)
- Hafiz Muhammad Khalid Abbas
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jingshu Xiang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zahoor Ahmad
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lilin Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
261
|
Angelos E, Brandizzi F. NADPH oxidase activity is required for ER stress survival in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1106-1120. [PMID: 30218537 PMCID: PMC6289879 DOI: 10.1111/tpj.14091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 05/13/2023]
Abstract
In all eukaryotes, the unfolded protein response (UPR) relieves endoplasmic reticulum (ER) stress, which is a potentially lethal condition caused by the accumulation of misfolded proteins in the ER. In mammalian and yeast cells, reactive oxygen species (ROS) generated during ER stress attenuate the UPR, negatively impacting cell survival. In plants, the relationship between the UPR and ROS is less clear. Although ROS develop during ER stress, the sources of ROS linked to ER stress responses and the physiological impact of ROS generation on the survival from proteotoxic stress are yet unknown. Here we show that in Arabidopsis thaliana the respiratory burst oxidase homologs, RBOHD and RBOHF, contribute to the production of ROS during ER stress. We also demonstrate that during ER stress RBOHD and RBOHF are necessary to properly mount the adaptive UPR and overcome temporary and chronic ER stress situations. These results ascribe a cytoprotective role to RBOH-generated ROS in the defense from proteotoxic stress in an essential organelle, and support a plant-specific feature of the UPR management among eukaryotes.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
262
|
Montero-Lobato Z, Vázquez M, Navarro F, Fuentes JL, Bermejo E, Garbayo I, Vílchez C, Cuaresma M. Chemically-Induced Production of Anti-Inflammatory Molecules in Microalgae. Mar Drugs 2018; 16:E478. [PMID: 30513601 PMCID: PMC6315467 DOI: 10.3390/md16120478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023] Open
Abstract
Microalgae have been widely recognized as a valuable source of natural, bioactive molecules that can benefit human health. Some molecules of commercial value synthesized by the microalgal metabolism have been proven to display anti-inflammatory activity, including the carotenoids lutein and astaxanthin, the fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), and sulphated polysaccharides. These molecules can accumulate to a certain extent in a diversity of microalgae species. A production process could become commercially feasible if the productivity is high and the overall production process costs are minimized. The productivity of anti-inflammatory molecules depends on each algal species and the cultivation conditions, the latter being mostly related to nutrient starvation and/or extremes of temperature and/or light intensity. Furthermore, novel bioprocess tools have been reported which might improve the biosynthesis yields and productivity of those target molecules and reduce production costs simultaneously. Such novel tools include the use of chemical triggers or enhancers to improve algal growth and/or accumulation of bioactive molecules, the algal growth in foam and the surfactant-mediated extraction of valuable compounds. Taken together, the recent findings suggest that the combined use of novel bioprocess strategies could improve the technical efficiency and commercial feasibility of valuable microalgal bioproducts production, particularly anti-inflammatory compounds, in large scale processes.
Collapse
Affiliation(s)
- Zaida Montero-Lobato
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - María Vázquez
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Francisco Navarro
- Department of Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Juan Luis Fuentes
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Elisabeth Bermejo
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Inés Garbayo
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - María Cuaresma
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| |
Collapse
|
263
|
Dumont S, Bykova NV, Khaou A, Besserour Y, Dorval M, Rivoal J. Arabidopsis thaliana alcohol dehydrogenase is differently affected by several redox modifications. PLoS One 2018; 13:e0204530. [PMID: 30252897 PMCID: PMC6155552 DOI: 10.1371/journal.pone.0204530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
In plant cells, many stresses, including low oxygen availability, result in a higher production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules can lead to redox-dependent post-translational modification of proteins Cys residues. Here, we studied the effect of different redox modifications on alcohol dehydrogenase (ADH) from Arabidopsis thaliana. ADH catalyzes the last step of the ethanol fermentation pathway used by plants to cope with energy deficiency during hypoxic stress. Arabidopsis suspension cell cultures showed decreased ADH activity upon exposure to H2O2, but not to the thiol oxidizing agent diamide. We purified recombinant ADH and observed a significant decrease in the enzyme activity by treatments with H2O2 and diethylamine NONOate (DEA/NO). Treatments leading to the formation of a disulfide bond between ADH and glutathione (protein S-glutathionylation) had no negative effect on the enzyme activity. LC-MS/MS analysis showed that Cys47 and Cys243 could make a stable disulfide bond with glutathione, suggesting redox sensitivity of these residues. Mutation of ADH Cys47 to Ser caused an almost complete loss of the enzyme activity while the Cys243 to Ser mutant had increased specific activity. Incubation of ADH with NAD+ or NADH prevented inhibition of the enzyme by H2O2 or DEA/NO. These results suggest that binding of ADH with its cofactors may limit availability of Cys residues to redox modifications. Our study demonstrates that ADH from A. thaliana is subject to different redox modifications. Implications of ADH sensitivity to ROS and RNS during hypoxic stress conditions are discussed.
Collapse
Affiliation(s)
- Sébastien Dumont
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Alexia Khaou
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Yasmine Besserour
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Maude Dorval
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
264
|
Ito H, Kondo R, Yoshimori K, Kamachi T. Methane Hydroxylation with Water as an Electron Donor under Light Irradiation in the Presence of Reconstituted Membranes Containing both Photosystem II and a Methane Monooxygenase. Chembiochem 2018; 19:2152-2155. [DOI: 10.1002/cbic.201800324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Hidehiro Ito
- Department of Life Science and Technology; Tokyo Institute of Technology; 2-12-1-M6-7 Ookayama Meguro-ku Tokyo 152-8550 Japan
| | - Ryuichi Kondo
- Department of Life Science and Technology; Tokyo Institute of Technology; 2-12-1-M6-7 Ookayama Meguro-ku Tokyo 152-8550 Japan
| | - Kosei Yoshimori
- Department of Life Science and Technology; Tokyo Institute of Technology; 2-12-1-M6-7 Ookayama Meguro-ku Tokyo 152-8550 Japan
| | - Toshiaki Kamachi
- Department of Life Science and Technology; Tokyo Institute of Technology; 2-12-1-M6-7 Ookayama Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
265
|
Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int J Mol Sci 2018; 19:E2812. [PMID: 30231521 PMCID: PMC6163176 DOI: 10.3390/ijms19092812] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/30/2022] Open
Abstract
Hydrogen peroxide (H₂O₂) is steadily gaining more attention in the field of molecular biology research. It is a major REDOX (reduction⁻oxidation reaction) metabolite and at high concentrations induces oxidative damage to biomolecules, which can culminate in cell death. However, at concentrations in the low nanomolar range, H₂O₂ acts as a signalling molecule and in many aspects, resembles phytohormones. Though its signalling network in plants is much less well characterized than are those of its counterparts in yeast or mammals, accumulating evidence indicates that the role of H₂O₂-mediated signalling in plant cells is possibly even more indispensable. In this review, we summarize hydrogen peroxide metabolism in plants, the sources and sinks of this compound and its transport via peroxiporins. We outline H₂O₂ perception, its direct and indirect effects and known targets in the transcriptional machinery. We focus on the role of H₂O₂ in plant growth and development and discuss the crosstalk between it and phytohormones. In addition to a literature review, we performed a meta-analysis of available transcriptomics data which provided further evidence for crosstalk between H₂O₂ and light, nutrient signalling, temperature stress, drought stress and hormonal pathways.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Hana Habánová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Brno Ph.D. Talent, South Moravian Centre for International Mobility, 602 00 Brno, Czech Republic.
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 613 00 Brno, Czech Republic.
| |
Collapse
|
266
|
Park S, Fischer AL, Steen CJ, Iwai M, Morris JM, Walla PJ, Niyogi KK, Fleming GR. Chlorophyll-Carotenoid Excitation Energy Transfer in High-Light-Exposed Thylakoid Membranes Investigated by Snapshot Transient Absorption Spectroscopy. J Am Chem Soc 2018; 140:11965-11973. [DOI: 10.1021/jacs.8b04844] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Soomin Park
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| | - Alexandra L. Fischer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| | - Collin J. Steen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Jonathan M. Morris
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| | - Peter Jomo Walla
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
- Department for Biophysical Chemistry, Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
- Department of Neurobiology, Research Group Biomolecular Spectroscopy and Single Molecule Detection, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| |
Collapse
|
267
|
Kalhor MS, Aliniaeifard S, Seif M, Asayesh EJ, Bernard F, Hassani B, Li T. Title: Enhanced salt tolerance and photosynthetic performance: Implication of ɤ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:157-172. [PMID: 29990769 DOI: 10.1016/j.plaphy.2018.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 05/05/2023]
Abstract
Gamma-Amino Butyric Acid (GABA) is a substantial component of the free amino acid pool with low concentration in plant tissues. Enhanced GABA content occurs during plant growth and developmental processes like seed germination. GABA level, basically, alters in response to many endogenous and exogenous stimuli. In the current study, GABA effects were studied on germination, photosynthetic performance and oxidative damages in salt-exposed lettuce plants. Three NaCl (0, 40 and 80 mM) and two GABA (0 and 25 μM) concentrations were applied on lettuce during two different developmental (seed germination and seedlings growth) stages. Negative effects of salinity on germination and plant growth were removed by GABA application. GABA significantly reduced mean germination time (MGT) in salt-exposed lettuce seeds. Although, salinity caused a significant decline in maximum quantum yield of photosystem II (Fv/Fm) during distinct steps of plant growth, GABA application improved Fv/Fm particularly on high salinity level. GABA decreased specific energy fluxes per reaction center (RC) for energy absorption and dissipation, while enhanced-electron transport flux in photosynthetic apparatus of lettuce plants was observed in GABA-supplemented plants. Moreover, decline in non-photochemical quenching (NPQ) and quenching coefficients (qP, qL, qN) by salt stress were recovered by GABA application. Elevated electrolyte leakage considerably decreased by GABA exposure on salt-treated plants. Although, proline level increased by NaCl treatments in a concentration dependent manner, combined application of salt with GABA caused a significant reduction in proline content. Catalase; EC 1.11.1.6 (CAT), l-ascorbate peroxidase; EC 1.11.1.11 (APX), and superoxide dismutase; EC 1.15.1.1 (SOD) activities were increased by GABA exposure in salt-supplemented plants that resulted in regulated hydrogen peroxide level. In conclusion, a multifaceted role for GABA is suggested for minimizing detrimental effects of salinity on lettuce through improvement of photosynthetic functionality and regulation of oxidative stress.
Collapse
Affiliation(s)
- Maryam Seifi Kalhor
- Faculty of Life Sciences and Biotechnology, Department of Plant Sciences, Shahid Beheshti University, Tehran, Iran
| | - Sasan Aliniaeifard
- Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran, Iran.
| | - Mehdi Seif
- Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran, Iran
| | - Elahe Javadi Asayesh
- Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran, Iran
| | - Françoise Bernard
- Faculty of Life Sciences and Biotechnology, Department of Plant Sciences, Shahid Beheshti University, Tehran, Iran
| | - Batool Hassani
- Faculty of Life Sciences and Biotechnology, Department of Plant Sciences, Shahid Beheshti University, Tehran, Iran
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
268
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is a key signaling molecule involved in the regulation of both physiological and pathological cellular processes. Genetically encoded HyPer probes are currently among the most effective approaches for monitoring H2O2 dynamics in various biological systems because they can be easily targeted to specific cells and organelles. Since its development in 2006, HyPer has proved to be a robust and powerful tool in redox biology research. Recent Advances: HyPer probes were used in a variety of models to study the role of H2O2 in various redox processes. HyPer has been increasingly used in the past few years for in vivo studies, which has already led to many important discoveries, for example, that H2O2 plays a key role in the regulation of signaling cascades involved in development and aging, inflammation, regeneration, photosynthetic signaling, and other biological processes. CRITICAL ISSUES In this review, we focus on the main achievements in the field of redox biology that have been obtained from in vivo experiments using HyPer probes. FUTURE DIRECTIONS Further in vivo studies of the role of H2O2 largely depend on the development of more suitable versions of HyPer for in vivo models: those having brighter fluorescence and a more stable signal in response to physiological changes in pH. Antioxid. Redox Signal. 29, 569-584.
Collapse
Affiliation(s)
- Dmitry S Bilan
- 1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia .,2 Pirogov Russian National Research Medical University , Moscow, Russia
| | - Vsevolod V Belousov
- 1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia .,2 Pirogov Russian National Research Medical University , Moscow, Russia .,3 Institute for Cardiovascular Physiology, Georg August University Göttingen , Göttingen, Germany
| |
Collapse
|
269
|
Li X, Xing X, Tian P, Zhang M, Huo Z, Zhao K, Liu C, Duan D, He W, Yang T. Comparative Transcriptome Profiling Reveals Defense-Related Genes against Meloidogyne incognita Invasion in Tobacco. Molecules 2018; 23:E2081. [PMID: 30127271 PMCID: PMC6222693 DOI: 10.3390/molecules23082081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023] Open
Abstract
Root-knot nematodes Meloidogyne incognita are one of the most destructive pathogens, causing severe losses to tobacco productivity and quality. However, the underlying resistance mechanism of tobacco to M. incognita is not clear. In this study, two tobacco genotypes, K326 and Changbohuang, which are resistant and susceptible to M. incognita, respectively, were used for RNA-sequencing analysis. An average of 35 million clean reads were obtained. Compared with their expression levels in non-infected plants of the same genotype, 4354 and 545 differentially expressed genes (DEGs) were detected in the resistant and susceptible genotype, respectively, after M. incognita invasion. Overall, 291 DEGs, involved in diverse biological processes, were common between the two genotypes. Genes encoding toxic compound synthesis, cell wall modification, reactive oxygen species and the oxidative burst, salicylic acid signal transduction, and production of some other metabolites were putatively associated with tobacco resistance to M. incognita. In particular, the complex resistance response needed to overcome M. incognita invasion may be regulated by several transcription factors, such as the ethylene response factor, MYB, basic helix⁻loop⁻helix transcription factor, and indole acetic acid⁻leucine-resistant transcription factor. These results may aid in the identification of potential genes of resistance to M. incognita for tobacco cultivar improvement.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Xuexia Xing
- Nanyang Branch of Henan Province Tobacco Company, Nanyang 473003, Henan, China.
| | - Pei Tian
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Mingzhen Zhang
- Xiaogan Agricultural Technical Extension Station, Xiaogan 432000, Hubei, China.
| | - Zhaoguang Huo
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Ke Zhao
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Chao Liu
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Duwei Duan
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Wenjun He
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Tiezhao Yang
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
270
|
Siddiqui H, Ahmed KBM, Hayat S. Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:198-212. [PMID: 29894860 DOI: 10.1016/j.plaphy.2018.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/26/2018] [Indexed: 05/11/2023]
Abstract
BRs are polyhydroxylated sterol derivatives, classified as phytohormones. Plants of Brassica juncea var. Varuna were grown in pots and an aqueous solution (10-8 M) of two brassinosteroid isomers 28-homobrassinolide (HBL) and 24-epibrassinolide (EBL) of same concentration (10-8 M) was applied to their leaves. The treatment up-regulated the photosynthetic machinery directly by enhancing water splitting activity, photochemical quenching, non-photochemical quenching, maximum PSII efficiency, actual PSII efficiency, electron transport rate, stomatal movement, stomatal conductance, internal CO2 concentration, transpiration rate, net photosynthetic rate and carbohydrate synthesis. Moreover, the level of biochemical enzymes (carbonic anhydrase and nitrate reductase), reactive oxygen species (superoxide and hydrogen peroxide) generation, antioxidant enzyme activity and mineral status (C, N, Mg, P, S, K), which indirectly influence the rate of photosynthesis, also improved in the treated plants. Out of the two BR analogues tested, EBL excelled in its effects over HBL.
Collapse
Affiliation(s)
- Husna Siddiqui
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Khan Bilal Mukhtar Ahmed
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
271
|
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med 2018; 122:202-220. [PMID: 29627452 DOI: 10.1016/j.freeradbiomed.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networks.
Collapse
Affiliation(s)
- Cristina Ortega-Villasante
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ángel Barón-Sola
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis E Hernández
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
272
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
273
|
Taylor RM, Sallans L, Frankel LK, Bricker TM. Natively oxidized amino acid residues in the spinach cytochrome b 6 f complex. PHOTOSYNTHESIS RESEARCH 2018; 137:141-151. [PMID: 29380263 DOI: 10.1007/s11120-018-0485-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10-20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2•-, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p•- (possible sources for O2•-), the Rieske iron-sulfur cluster (possible source of O2•- and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2•- and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.
Collapse
Affiliation(s)
- Ryan M Taylor
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Laurie K Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
274
|
Rampuria S, Bag P, Rogan CJ, Sharma A, Gassmann W, Kirti PB. Pathogen-induced AdDjSKI of the wild peanut, Arachis diogoi, potentiates tolerance of multiple stresses in E. coli and tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:62-74. [PMID: 29807607 DOI: 10.1016/j.plantsci.2018.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
A gene encoding a serine-rich DnaJIII protein called AdDjSKI that has a 4Fe-4S cluster domain was found to be differentially upregulated in the wild peanut, Arachis diogoi in its resistance responses against the late leaf spot causing fungal pathogen Phaeoisariopsis personata when compared with the cultivated peanut, Arachis hypogaea. AdDjSKI is induced in multiple stress conditions in A. diogoi. Recombinant E. coli cells expressing AdDjSKI showed better growth kinetics when compared with vector control cells under salinity, osmotic, acidic and alkaline stress conditions. Overexpression of this type three J-protein potentiates not only abiotic stress tolerance in Nicotiana tabacum var. Samsun, but also enhances its disease resistance against the phytopathogenic fungi Phytophthora parasitica pv nicotianae and Sclerotinia sclerotiorum. In the present study we show transcriptional upregulation of APX, Mn-SOD and HSP70 under heat stress and increased transcripts of PR genes in response to fungal infection. This transmembrane-domain-containing J protein displays punctate localization in chloroplasts. AdDjSKI appears to ensure proper folding of proteins associated with the photosynthetic machinery under stress.
Collapse
Affiliation(s)
- Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pushan Bag
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Conner J Rogan
- Division of Biological Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Akanksha Sharma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Walter Gassmann
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
275
|
Soengas P, Cartea ME, Velasco P, Francisco M. Endogenous Circadian Rhythms in Polyphenolic Composition Induce Changes in Antioxidant Properties in Brassica Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5984-5991. [PMID: 29851489 DOI: 10.1021/acs.jafc.8b01732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that the circadian clock is a significant driver of plant phytochemicals. However, little is known about the clock effect on antioxidant metabolites in edible crops. Thus, the aim of the present investigation was to study whether the antioxidant potential of Brassica cultivars is under circadian regulation and its relationship with polyphenol content. To accomplish that we entrain plants of four Brassica cultivars to light-dark cycles prior to release into continuous light. The antioxidant activity and phenolic content was monitored at four time points of the day during four consecutive days: 2 days under light-dark conditions followed by 2 days under continuous light. Results showed daily oscillation of antioxidant activity. In addition, those variations were related with endogenous circadian rhythms in polyphenolics and exhibit a species-specific pattern. Considered together, we determined that Brassica cultivars have an optimal time during a single day with increased levels of health phytochemicals.
Collapse
Affiliation(s)
- Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas , Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC) , Pontevedra , Spain
| | - M Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas , Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC) , Pontevedra , Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas , Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC) , Pontevedra , Spain
| | - Marta Francisco
- Group of Genetics, Breeding and Biochemistry of Brassicas , Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC) , Pontevedra , Spain
| |
Collapse
|
276
|
Begara-Morales JC, Chaki M, Valderrama R, Sánchez-Calvo B, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB. Nitric oxide buffering and conditional nitric oxide release in stress response. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3425-3438. [PMID: 29506191 DOI: 10.1093/jxb/ery072] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/19/2018] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) has emerged as an essential biological messenger in plant biology that usually transmits its bioactivity by post-translational modifications such as S-nitrosylation, the reversible addition of an NO group to a protein cysteine residue leading to S-nitrosothiols (SNOs). In recent years, SNOs have risen as key signalling molecules mainly involved in plant response to stress. Chief among SNOs is S-nitrosoglutathione (GSNO), generated by S-nitrosylation of the key antioxidant glutathione (GSH). GSNO is considered the major NO reservoir and a phloem mobile signal that confers to NO the capacity to be a long-distance signalling molecule. GSNO is able to regulate protein function and gene expression, resulting in a key role for GSNO in fundamental processes in plants, such as development and response to a wide range of environmental stresses. In addition, GSNO is also able to regulate the total SNO pool and, consequently, it could be considered the storage of NO in cells that may control NO signalling under basal and stress-related responses. Thus, GSNO function could be crucial during plant response to environmental stresses. Besides the importance of GSNO in plant biology, its mode of action has not been widely discussed in the literature. In this review, we will first discuss the GSNO turnover in cells and secondly the role of GSNO as a mediator of physiological and stress-related processes in plants, highlighting those aspects for which there is still some controversy.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| |
Collapse
|
277
|
Zhang J, Wang L, Zhou Q, Huang X. Reactive oxygen species initiate a protective response in plant roots to stress induced by environmental bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:197-205. [PMID: 29475125 DOI: 10.1016/j.ecoenv.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA), a contaminant of emerging concern, can affect plant growth and development at high concentrations. Reactive oxygen species (ROS) production is a general primary response in plants to stress. Here, the aim is to investigate whether ROS in plants play protective roles for stress induced by BPA exposure at environmental concentrations. In this study, soybean roots (seedling, flowering and podding stages) were exposed to 1.5 and 3.0 mg L-1 BPA, and ROS response was measured. The relationship between ROS levels and residual BPA content in soybean roots was evaluated. The results showed that exposure (9 h) to 1.5 mg L-1 BPA elicited changes in ROS production. ROS then gradually accumulated in soybean roots (seedling stage). Exposure to 3.0 mg L-1 BPA elicited a stronger and earlier ROS responses at the flowering and podding stage, but did not lead to membrane lipid peroxidation. Residual BPA content in soybean roots reached peak concentrations after 9 h of exposure, and then gradually decreased at the flowering and podding stage. These results indicate that ROS in soybean roots might be involved in the oxidative metabolism of BPA, which could prevent BPA from damaging exposed plants. In conclusion, the observed ROS metabolic effects may be self-protection responses of plants to stress induced by BPA exposure.
Collapse
Affiliation(s)
- Jiazhi Zhang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
278
|
Watson SJ, Sowden RG, Jarvis P. Abiotic stress-induced chloroplast proteome remodelling: a mechanistic overview. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2773-2781. [PMID: 29547945 DOI: 10.1093/jxb/ery053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/08/2018] [Indexed: 05/22/2023]
Abstract
The chloroplast houses photosynthesis in all green plants, and is therefore of fundamental importance to the viability and productivity of plants, ecosystems, and agriculture. Chloroplasts are, however, extremely vulnerable to environmental stress, on account of the inherent volatility of oxygenic photosynthesis. To counteract this sensitivity, sophisticated systems of chloroplast stress acclimation have evolved, and many of these involve broad proteome changes. Here, we provide an overview of the interlocking and mutually dependent mechanisms of abiotic stress-induced chloroplast proteome remodelling. Topics that are covered in this context include: nucleus to chloroplast signalling mechanisms, with a particular emphasis on the nuclear control of the chloroplast genome; chloroplast to nucleus signalling; and the roles of chloroplast pre-protein import regulation and chloroplast proteases.
Collapse
Affiliation(s)
- Samuel J Watson
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Robert G Sowden
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
279
|
Hippler FWR, Petená G, Boaretto RM, Quaggio JA, Azevedo RA, Mattos-Jr D. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13134-13146. [PMID: 29488204 DOI: 10.1007/s11356-018-1529-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/13/2018] [Indexed: 04/15/2023]
Abstract
Nutritional disorders caused by copper (Cu) have affected citrus orchards. Since Cu is foliar sprayed as a pesticide to control citrus diseases, this metal accumulates in the soil. Thereby, we evaluated the effects of Cu leaf absorption after spray of different metal sources, as well as roots absorption on growth, nutritional status, and oxidative stress of young sweet orange trees. Two experiments were carried out under greenhouse conditions. The first experiment was set up with varying Cu levels to the soil (nil Cu, 0.5, 2.0, 4.0 and 8.0 g of Cu per plant as CuSO4.5H2O), whereas the second experiment with Cu application via foliar sprays (0.5 and 2.0 g of Cu per plant) and comparing two metal sources (CuSO4.5H2O or Cu(OH)2). Copper was mainly accumulated in roots with soil supply, but an increase of oxidative stress levels was observed in leaves. On the other hand, Cu concentrations were higher in leaves that received foliar sprays, mainly as Cu(OH)2. However, when sulfate was foliar sprayed, plants exhibited more symptoms of injuries in the canopy with decreased chlorophyll contents and increased hydrogen peroxide and lipid peroxidation levels. Copper toxicity was characterized by sap leakage from the trunk and twigs, which is the first report of this specific Cu excess symptom in woody trees. Despite plants with 8.0 g of Cu soil-applied exhibiting the sap leakage, growth of new plant parts was more vigorous with lower oxidative stress levels and injuries compared to those with 4.0 g of Cu soil-applied (without sap leakage). With the highest level of Cu applied via foliar as sulfate, Cu was eliminated by plant roots, increasing the rhizospheric soil metal levels. Despite citrus likely exhibiting different mechanisms to reduce the damages caused by metal toxicity, such as responsive enzymatic antioxidant system, metal accumulation in the roots, and metal exclusion by roots, excess Cu resulted in damages on plant growth and metabolism when the metal was taken up either by roots or leaves.
Collapse
Affiliation(s)
- Franz Walter Rieger Hippler
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, Cordeirópolis, SP, 13490-970, Brazil.
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (USP), CP 09, Piracicaba, SP, 13418-900, Brazil.
| | - Guilherme Petená
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, Cordeirópolis, SP, 13490-970, Brazil
| | - Rodrigo Marcelli Boaretto
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, Cordeirópolis, SP, 13490-970, Brazil
| | - José Antônio Quaggio
- Centro de Solos e Recursos Ambientais, Instituto Agronômico (IAC), Av. Barão de Itapura, 1481, CP 28, Campinas, SP, 13020-902, Brazil
| | - Ricardo Antunes Azevedo
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (USP), CP 09, Piracicaba, SP, 13418-900, Brazil
| | - Dirceu Mattos-Jr
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, Cordeirópolis, SP, 13490-970, Brazil.
| |
Collapse
|
280
|
Kanojia A, Dijkwel PP. Abiotic Stress Responses are Governed by Reactive Oxygen Species and Age. ANNUAL PLANT REVIEWS ONLINE 2018:295-326. [PMID: 0 DOI: 10.1002/9781119312994.apr0611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
281
|
Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci Rep 2018; 8:5955. [PMID: 29654242 PMCID: PMC5899091 DOI: 10.1038/s41598-017-14419-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
The impact of water-stress on chloroplast development was studied by applying polyethylene glycol 6000 to the roots of 5-day-old etiolated rice (Oryza sativa) seedlings that were subsequently illuminated up to 72 h. Chloroplast development in drought environment led to down-regulation of light-harvesting Chl-proteins. Photosynthetic proteins of Photosystem II (PSII) and oxygen evolving complex i.e., Cytb559, OEC16, OEC23 and OEC33 as well as those of PSI such as PSI-III, PSI-V, and PSI-VI, decreased in abundance. Consequently, due to reduced light absorption by antennae, the electron transport rates of PSII and PSI decreased by 55% and 25% respectively. Further, seedling development in stress condition led to a decline in the ratio of variable (Fv) to maximum (Fm) Chl a fluorescence, as well in the quantum yield of PSII photochemistry. Addition of Mg2+ to the thylakoid membranes suggested that Mg2+-induced grana stacking was not affected by water deficit. Proteomic analysis revealed the down-regulation of proteins involved in electron transport and in carbon reduction reactions, and up-regulation of antioxidative enzymes. Our results demonstrate that developing seedlings under water deficit could downsize their light-harvesting capacity and components of photosynthetic apparatus to prevent photo-oxidative stress, excess ROS generation and membrane lipid peroxidation.
Collapse
|
282
|
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. Int J Mol Sci 2018; 19:E1141. [PMID: 29642631 PMCID: PMC5979409 DOI: 10.3390/ijms19041141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Nag
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| |
Collapse
|
283
|
Xie L, Gomes T, Solhaug KA, Song Y, Tollefsen KE. Linking mode of action of the model respiratory and photosynthesis uncoupler 3,5-dichlorophenol to adverse outcomes in Lemna minor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:98-108. [PMID: 29455116 DOI: 10.1016/j.aquatox.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Standard chemical toxicity testing guidelines using aquatic plant Lemna minor have been developed by several international standardisation organisations. Although being highly useful for regulatory purposes by focusing on traditional adverse endpoints, these tests provide limited information about the toxic mechanisms and modes of action (MoA). The present study aimed to use selected functional assays in L. minor after exposure to 3,5-dichlorophenol (3,5-DCP) as a model to characterise the toxic mechanisms causing growth inhibition and lethality in primary producers. The results demonstrated that 3,5-DCP caused concentration-dependent effects in chloroplasts and mitochondria. Uncoupling of oxidative phosphorylation (OXPHOS), reduction in chlorophyll (Chlorophyll a and b) content, reproduction rate and frond size were the most sensitive endpoints, followed by formation of reactive oxygen species (ROS), lipid peroxidation (LPO), reduction of carotenoid content and impairment of photosynthesis efficiency. Suppression of photosystem II (PSII) efficiency, electron transport rate (ETR), chlorophyll (a and b) contents and oxidative phosphorylation (OXPHOS) were closely correlated while ROS production and LPO were negative correlated with ETR, carotenoid content and growth parameters. A network of conceptual Adverse Outcome Pathways (AOPs) was developed to decipher the causal relationships between molecular, cellular, and apical adverse effects occurring in L. minor to form a basis for future studies with similar compounds.
Collapse
Affiliation(s)
- Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| | - Knut Asbjørn Solhaug
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
284
|
Abid M, Ali S, Qi LK, Zahoor R, Tian Z, Jiang D, Snider JL, Dai T. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep 2018. [PMID: 29545536 DOI: 10.1038/s41598-018-21441-21447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Defining the metabolic strategies used by wheat to tolerate and recover from drought events will be important for ensuring yield stability in the future, but studies addressing this critical research topic are limited. To this end, the current study quantified the physiological, biochemical, and agronomic responses of a drought tolerant and drought sensitive cultivar to periods of water deficit and recovery. Drought stress caused a reversible decline in leaf water relations, membrane stability, and photosynthetic activity, leading to increased reactive oxygen species (ROS) generation, lipid peroxidation and membrane injury. Plants exhibited osmotic adjustment through the accumulation of soluble sugars, proline, and free amino acids and increased enzymatic and non-enzymatic antioxidant activities. After re-watering, leaf water potential, membrane stability, photosynthetic processes, ROS generation, anti-oxidative activities, lipid peroxidation, and osmotic potential completely recovered for moderately stressed plants and did not fully recover in severely stressed plants. Higher photosynthetic rates during drought and rapid recovery after re-watering produced less-pronounced yield declines in the tolerant cultivar than the sensitive cultivar. These results suggested that the plant's ability to maintain functions during drought and to rapidly recover after re-watering during vegetative periods are important for determining final productivity in wheat.
Collapse
Affiliation(s)
- Muhammad Abid
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
- Department of Soil and water Conservation, Directorate General of Field, Narowal, 51800, Punjab, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Allama Iqbal Road 38000, Government College University, Faisalabad, Pakistan
| | - Lei Kang Qi
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
| | - Rizwan Zahoor
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
| | - Dong Jiang
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, Georgia, 31794, USA
| | - Tingbo Dai
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China.
| |
Collapse
|
285
|
Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep 2018; 8:4615. [PMID: 29545536 PMCID: PMC5854670 DOI: 10.1038/s41598-018-21441-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/15/2018] [Indexed: 11/26/2022] Open
Abstract
Defining the metabolic strategies used by wheat to tolerate and recover from drought events will be important for ensuring yield stability in the future, but studies addressing this critical research topic are limited. To this end, the current study quantified the physiological, biochemical, and agronomic responses of a drought tolerant and drought sensitive cultivar to periods of water deficit and recovery. Drought stress caused a reversible decline in leaf water relations, membrane stability, and photosynthetic activity, leading to increased reactive oxygen species (ROS) generation, lipid peroxidation and membrane injury. Plants exhibited osmotic adjustment through the accumulation of soluble sugars, proline, and free amino acids and increased enzymatic and non-enzymatic antioxidant activities. After re-watering, leaf water potential, membrane stability, photosynthetic processes, ROS generation, anti-oxidative activities, lipid peroxidation, and osmotic potential completely recovered for moderately stressed plants and did not fully recover in severely stressed plants. Higher photosynthetic rates during drought and rapid recovery after re-watering produced less-pronounced yield declines in the tolerant cultivar than the sensitive cultivar. These results suggested that the plant’s ability to maintain functions during drought and to rapidly recover after re-watering during vegetative periods are important for determining final productivity in wheat.
Collapse
|
286
|
Dalio RJD, Máximo HJ, Oliveira TS, Azevedo TDM, Felizatti HL, Campos MDA, Machado MA. Molecular Basis of Citrus sunki Susceptibility and Poncirus trifoliata Resistance Upon Phytophthora parasitica Attack. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:386-398. [PMID: 29125028 DOI: 10.1094/mpmi-05-17-0112-fi] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coevolution has shaped the molecular basis of an extensive number of defense mechanisms in plant-pathogen interactions. Phytophthora parasitica, a hemibiothrophic oomycete pathogen and the causal agent of citrus root rot and gummosis, interacts differently with Citrus sunki and Poncirus trifoliata, two commonly favored citrus rootstocks that are recognized as susceptible and resistant, respectively, to P. parasitica. The molecular core of these interactions remains elusive. Here, we provide evidence on the defense strategies employed by both susceptible and resistant citrus rootstocks, in parallel with P. parasitica deployment of effectors. Time course expression analysis (quantitative real-time polymerase chain reaction) of several defense-related genes were evaluated during i) plant disease development, ii) necrosis, and iii) pathogen effector gene expression. In C. sunki, P. parasitica deploys effectors, including elicitins, NPP1 (necrosis-inducing Phytophthora protein 1), CBEL (cellulose-binding elicitor and lectin activity), RxLR, and CRN (crinkler), and, consequently, this susceptible plant activates its main defense signaling pathways that result in the hypersensitive response and necrosis. Despite the strong plant-defense response, it fails to withstand P. parasitica invasion, confirming its hemibiothrophic lifestyle. In Poncirus trifoliata, the effectors were strongly expressed, nevertheless failing to induce any immunity manipulation and disease development, suggesting a nonhost resistance type, in which the plant relies on preformed biochemical and anatomical barriers.
Collapse
Affiliation(s)
| | - Heros José Máximo
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | - Tiago Silva Oliveira
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | | | - Henrique Leme Felizatti
- 2 Instituto de Matemática, Estatística e Computação Científica, Universidade de Campinas, Campinas-SP, Brazil; and
| | | | | |
Collapse
|
287
|
Ranjan A, Jayaraman D, Grau C, Hill JH, Whitham SA, Ané J, Smith DL, Kabbage M. The pathogenic development of Sclerotinia sclerotiorum in soybean requires specific host NADPH oxidases. MOLECULAR PLANT PATHOLOGY 2018; 19:700-714. [PMID: 28378935 PMCID: PMC6638103 DOI: 10.1111/mpp.12555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 05/15/2023]
Abstract
The plant membrane-localized NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), play crucial roles in various cellular activities, including plant disease responses, and are a major source of reactive oxygen species (ROS). Sclerotinia sclerotiorum is a cosmopolitan fungal pathogen that causes Sclerotinia stem rot (SSR) in soybean. Via a key virulence factor, oxalic acid, it induces programmed cell death (PCD) in the host plant, a process that is reliant on ROS generation. In this study, using protein sequence similarity searches, we identified 17 soybean RBOHs (GmRBOHs) and studied their contribution to SSR disease development, drought tolerance and nodulation. We clustered the soybean RBOH genes into six groups of orthologues based on phylogenetic analysis with their Arabidopsis counterparts. Transcript analysis of all 17 GmRBOHs revealed that, of the six identified groups, group VI (GmRBOH-VI) was specifically and drastically induced following S. sclerotiorum challenge. Virus-induced gene silencing (VIGS) of GmRBOH-VI using Bean pod mottle virus (BPMV) resulted in enhanced resistance to S. sclerotiorum and markedly reduced ROS levels during disease development. Coincidently, GmRBOH-VI-silenced plants were also found to be drought tolerant, but showed a reduced capacity to form nodules. Our results indicate that the pathogenic development of S. sclerotiorum in soybean requires the active participation of specific host RBOHs, to induce ROS and cell death, thus leading to the establishment of disease.
Collapse
Affiliation(s)
- Ashish Ranjan
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | - Craig Grau
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - John H. Hill
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Jean‐Michel Ané
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
- Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Damon L. Smith
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Mehdi Kabbage
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
288
|
Wang M, Lee J, Choi B, Park Y, Sim HJ, Kim H, Hwang I. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment. FRONTIERS IN PLANT SCIENCE 2018; 9:176. [PMID: 29515601 PMCID: PMC5826348 DOI: 10.3389/fpls.2018.00176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 05/27/2023]
Abstract
Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT), and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Juhun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Bongsoo Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Youngmin Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Environmental Toxicology Research Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, South Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
289
|
Savi DC, Shaaban KA, Gos FMWR, Ponomareva LV, Thorson JS, Glienke C, Rohr J. Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from Vochysia divergens Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites. Sci Rep 2018; 8:3122. [PMID: 29449610 PMCID: PMC5814415 DOI: 10.1038/s41598-018-21400-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
Microorganisms associated with plants are highly diverse and can produce a large number of secondary metabolites, with antimicrobial, anti-parasitic and cytotoxic activities. We are particularly interested in exploring endophytes from medicinal plants found in the Pantanal, a unique and widely unexplored wetland in Brazil. In a bio-prospecting study, strains LGMF1213 and LGMF1215 were isolated as endophytes from Vochysia divergens, and by morphological and molecular phylogenetic analyses were characterized as Phaeophleospora vochysiae sp. nov. The chemical assessment of this species reveals three major compounds with high biological activity, cercoscosporin (1), isocercosporin (2) and the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone (3). Besides the isolation of P. vochysiae as endophyte, the production of cercosporin compounds suggest that under specific conditions this species causes leaf spots, and may turn into a pathogen, since leaf spots are commonly caused by species of Cercospora that produce related compounds. In addition, the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone showed considerable antimicrobial activity and low cytotoxicity, which needs further exploration.
Collapse
Affiliation(s)
- Daiani C Savi
- Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210. CEP, 81531-970, Curitiba, PR, Brazil.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA.,Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | - Francielly Maria Wilke Ramos Gos
- Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210. CEP, 81531-970, Curitiba, PR, Brazil
| | - Larissa V Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA.,Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA.,Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | - Chirlei Glienke
- Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210. CEP, 81531-970, Curitiba, PR, Brazil.
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA.
| |
Collapse
|
290
|
Bashar KK. Hormone dependent survival mechanisms of plants during post-waterlogging stress. PLANT SIGNALING & BEHAVIOR 2018; 13:e1529522. [PMID: 30289381 PMCID: PMC6204803 DOI: 10.1080/15592324.2018.1529522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 05/20/2023]
Abstract
Waterlogging stress has two phases like waterlogging phase and post-waterlogging phase where both are injurious to plants. Susceptible plants normally die at post-waterlogging phase due to damaged root system, sudden rexoygenation, dehydration and photoinhibition of the desubmerged tissues. Formation of reactive oxygen species (ROS) is the main result of reoxygenation stress that can cause oxidative damage of the functional tissues responsible for normal physiological activities. There are almost all types of hormones responsible to recover plants from these destructive phenomenons. Among these hormones ethylene and abscisic acid (ABA) are the main regulators to overcome the reoxygenation and drought like stresses in plants at post-waterlogging condition. The balanced crosstalk among the hormones is highly important for the survival of plants at these stresses. So this paper is completely a precise summary of hormonal homeostasis of post-waterlogged plants through physiological, biochemical and signaling pathways.
Collapse
Affiliation(s)
- Kazi Khayrul Bashar
- Biotechnologist, Bangladesh Jute Research Institute, Dhaka, Bangladesh
- CONTACT Kazi Khayrul Bashar Biotechnologist, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| |
Collapse
|
291
|
Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat Commun 2017; 8:2265. [PMID: 29273780 PMCID: PMC5741621 DOI: 10.1038/s41467-017-02340-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023] Open
Abstract
In addition to acting as a cellular energy source, ATP can also act as a damage-associated molecular pattern in both animals and plants. Stomata are leaf pores that control gas exchange and, therefore, impact critical functions such as photosynthesis, drought tolerance, and also are the preferred entry point for pathogens. Here we show the addition of ATP leads to the rapid closure of leaf stomata and enhanced resistance to the bacterial pathogen Psuedomonas syringae. This response is mediated by ATP recognition by the receptor DORN1, followed by direct phosphorylation of the NADPH oxidase RBOHD, resulting in elevated production of reactive oxygen species and stomatal closure. Mutation of DORN1 phosphorylation sites on RBOHD eliminates the ability of ATP to induce stomatal closure. The data implicate purinergic signaling via DORN1 in the control of stomatal aperture with important implications for the control of plant photosynthesis, water homeostasis, pathogen resistance, and ultimately yield. Extracellular ATP acts as a damage-associated molecular pattern that triggers signaling responses to wounding and environmental stimuli in plants. Here Chen et al. show that ATP perception by DORN1 can trigger stomatal closure mediated via RBOHD phosphorylation and ROS production.
Collapse
|
292
|
Soboleva A, Schmidt R, Vikhnina M, Grishina T, Frolov A. Maillard Proteomics: Opening New Pages. Int J Mol Sci 2017; 18:E2677. [PMID: 29231845 PMCID: PMC5751279 DOI: 10.3390/ijms18122677] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs) represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer's disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus), proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Rico Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06108 Halle, Germany.
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
293
|
Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:761-773. [PMID: 28906064 DOI: 10.1111/tpj.13718] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) play fundamental roles in plant responses to pathogen infection, including modulation of cell death processes and defense-related gene expression. Cell death triggered as part of the hypersensitive response enhances resistance to biotrophic pathogens, but favors the virulence of necrotrophs. Even though the involvement of ROS in the orchestration of defense responses is well established, the relative contribution of specific subcellular ROS sources to plant resistance against microorganisms with different pathogenesis strategies is not completely known. The aim of this work was to investigate the role of chloroplastic ROS in plant defense against a typical necrotrophic fungus, Botrytis cinerea. For this purpose, we used transgenic Nicotiana tabacum (tobacco) lines expressing a plastid-targeted cyanobacterial flavodoxin (pfld lines), which accumulate lower chloroplastic ROS in response to different stresses. Tissue damage and fungal growth were significantly reduced in infected leaves of pfld plants, as compared with infected wild-type (WT) counterparts. ROS build-up triggered by Botrytis infection and associated with chloroplasts was significantly decreased (70-80%) in pfld leaves relative to the wild type. Phytoalexin accumulation and expression of pathogenesis-related genes were induced to a lower degree in pfld plants than in WT siblings. The impact of fungal infection on photosynthetic activity was also lower in pfld leaves. The results indicate that chloroplast-generated ROS play a major role in lesion development during Botrytis infection. This work demonstrates that the modulation of chloroplastic ROS levels by the expression of a heterologous antioxidant protein can provide a significant degree of protection against a canonical necrotrophic fungus.
Collapse
Affiliation(s)
- Franco R Rossi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Adriana R Krapp
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Fabiana Bisaro
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Santiago J Maiale
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Fernando L Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Néstor Carrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
294
|
Girard IJ, Tong C, Becker MG, Mao X, Huang J, de Kievit T, Fernando WGD, Liu S, Belmonte MF. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5079-5091. [PMID: 29036633 PMCID: PMC5853404 DOI: 10.1093/jxb/erx338] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/14/2017] [Indexed: 05/12/2023]
Abstract
Brassica napus is one of the world's most valuable oilseeds and is under constant pressure by the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, the causal agent of white stem rot. Despite our growing understanding of host pathogen interactions at the molecular level, we have yet to fully understand the biological processes and underlying gene regulatory networks responsible for determining disease outcomes. Using global RNA sequencing, we profiled gene activity at the first point of infection on the leaf surface 24 hours after pathogen exposure in susceptible (B. napus cv. Westar) and tolerant (B. napus cv. Zhongyou 821) plants. We identified a family of ethylene response factors that may contribute to host tolerance to S. sclerotiorum by activating genes associated with fungal recognition, subcellular organization, and redox homeostasis. Physiological investigation of redox homeostasis was further studied by quantifying cellular levels of the glutathione and ascorbate redox pathway and the cycling enzymes associated with host tolerance to S. sclerotiorum. Functional characterization of an Arabidopsis redox mutant challenged with the fungus provides compelling evidence into the role of the ascorbate-glutathione redox hub in the maintenance and enhancement of plant tolerance against fungal pathogens.
Collapse
Affiliation(s)
- Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chaobo Tong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xingyu Mao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Junyan Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Teresa de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
295
|
Wittkopp TM, Schmollinger S, Saroussi S, Hu W, Zhang W, Fan Q, Gallaher SD, Leonard MT, Soubeyrand E, Basset GJ, Merchant SS, Grossman AR, Duanmu D, Lagarias JC. Bilin-Dependent Photoacclimation in Chlamydomonas reinhardtii. THE PLANT CELL 2017; 29:2711-2726. [PMID: 29084873 PMCID: PMC5728120 DOI: 10.1105/tpc.17.00149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/26/2017] [Accepted: 10/27/2017] [Indexed: 05/18/2023]
Abstract
In land plants, linear tetrapyrrole (bilin)-based phytochrome photosensors optimize photosynthetic light capture by mediating massive reprogramming of gene expression. But, surprisingly, many green algal genomes lack phytochrome genes. Studies of the heme oxygenase mutant (hmox1) of the green alga Chlamydomonas reinhardtii suggest that bilin biosynthesis in plastids is essential for proper regulation of a nuclear gene network implicated in oxygen detoxification during dark-to-light transitions. hmox1 cannot grow photoautotrophically and photoacclimates poorly to increased illumination. We show that these phenotypes are due to reduced accumulation of photosystem I (PSI) reaction centers, the PSI electron acceptors 5'-monohydroxyphylloquinone and phylloquinone, and the loss of PSI and photosystem II antennae complexes during photoacclimation. The hmox1 mutant resembles chlorophyll biosynthesis mutants phenotypically, but can be rescued by exogenous biliverdin IXα, the bilin produced by HMOX1. This rescue is independent of photosynthesis and is strongly dependent on blue light. RNA-seq comparisons of hmox1, genetically complemented hmox1, and chemically rescued hmox1 reveal that tetrapyrrole biosynthesis and known photoreceptor and photosynthesis-related genes are not impacted in the hmox1 mutant at the transcript level. We propose that a bilin-based, blue-light-sensing system within plastids evolved together with a bilin-based retrograde signaling pathway to ensure that a robust photosynthetic apparatus is sustained in light-grown Chlamydomonas.
Collapse
Affiliation(s)
- Tyler M Wittkopp
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Department of Biology, Stanford University, Stanford, California 94305
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Shai Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Wei Hu
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Weiqing Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuling Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Michael T Leonard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Eric Soubeyrand
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Gilles J Basset
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Deqiang Duanmu
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
296
|
Brondani GE, Oliveira LSDE, Konzen ER, Silva ALLDA, Costa JL. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned. AN ACAD BRAS CIENC 2017; 90:2409-2423. [PMID: 29044323 DOI: 10.1590/0001-3765201720170284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/29/2017] [Indexed: 01/01/2023] Open
Abstract
We addressed a major challenge in the in vitro clonal propagation of Corymbia citriodora, Eucalyptus urophylla and E. benthamii by using an ex vitro adventitious rooting strategy in a mini-incubator. Mini-incubators were placed in four environments for rooting. A shade house with no fogging system and a greenhouse with no ventilation but with a fogging environment had the best performance in terms of rooting, root growth and survival of microcuttings. Daily recording of the temperature within each mini-incubator in each environment allowed the verification of negative correlations between the maximum average temperature and the survival, adventitious rooting and root growth. The ideal maximum air temperature for the efficient production of clonal plants was 28.4°C (± 5.5°C), and the minimum was 20.3°C (± 6.2°C). E. benthamii was more sensitive to higher temperatures than C. citriodora and E. urophylla. Nevertheless, placing mini-incubators in the shade house with no fogging system resulted in a stable and uniform performance among the three species, with 100.0% survival and 81.4% rooting. Histological sections of the adventitious roots revealed connection with the stem vascular cambium. Therefore, our experimental system demonstrated the potential of mini-incubators coupled with the proper environment to optimize the adventitious rooting performance of microcuttings.
Collapse
Affiliation(s)
- Gilvano E Brondani
- Federal University of Lavras, Department of Forest Sciences, Campus Universitário, P.O. Box 3037, 37200-000 Lavras, MG, Brazil
| | - Leandro S DE Oliveira
- Federal University of Minas Gerais, Institute of Agronomic Sciences, Av. Universitária, 1000, 39404-547 Montes Claros, MG, Brazil
| | - Enéas R Konzen
- Federal University of Lavras, Department of Forest Sciences, Campus Universitário, P.O. Box 3037, 37200-000 Lavras, MG, Brazil
| | - André L L DA Silva
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Coronel Francisco H. dos Santos, 100, Jardim das Américas, 81531-990 Curitiba, PR, Brazil
| | - Jefferson L Costa
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Coronel Francisco H. dos Santos, 100, Jardim das Américas, 81531-990 Curitiba, PR, Brazil
| |
Collapse
|
297
|
Nagy E, Hegedűs G, Taller J, Kutasy B, Virág E. Illumina sequencing of the chloroplast genome of common ragweed ( Ambrosia artemisiifolia L.). Data Brief 2017; 15:606-611. [PMID: 29085876 PMCID: PMC5655400 DOI: 10.1016/j.dib.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
Common ragweed (Ambrosia artemisiifolia L.) is the most widespread weed and the most dangerous pollen allergenic plant in large areas of the temperate zone. Since herbicides like PSI and PSII inhibitors have their target genes in the chloroplast genome, understanding the chloroplast genome may indirectly support the exploration of herbicide resistance and development of novel control methods. The aim of the present study was to sequence and reconstruct for the chloroplast genome of A. artemisiifolia and establish a molecular dataset. We used an Illumina MiSeq protocol to sequence the chloroplast genome of isolated intact organelles of ragweed plants grown in our experimental garden. The assembled chloroplast genome was found to be 152,215 bp (GC: 37.6%) in a quadripartite structure, where 80 protein coding genes, 30 tRNA and 4 rRNA genes were annotated in total. We also report the complete sequence of 114 genes encoded in A. artemisiifolia chloroplast genome supported by both MIRA and Velvet de novo assemblers and ordered to Helianthus annuus L. using the Geneious software.
Collapse
Affiliation(s)
- Erzsébet Nagy
- University of Pannonia, Georgikon Faculty, Department of Plant Science and Biotechnology, Keszthely, Hungary
| | - Géza Hegedűs
- University of Pannonia, Georgikon Faculty, Department of Economic Methodology, Keszthely, Hungary
| | - János Taller
- University of Pannonia, Georgikon Faculty, Department of Plant Science and Biotechnology, Keszthely, Hungary
| | - Barbara Kutasy
- University of Pannonia, Georgikon Faculty, Department of Plant Science and Biotechnology, Keszthely, Hungary
| | - Eszter Virág
- University of Pannonia, Georgikon Faculty, Department of Plant Science and Biotechnology, Keszthely, Hungary
| |
Collapse
|
298
|
Jin R, Kim BH, Ji CY, Kim HS, Li HM, Ma DF, Kwak SS. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:45-54. [PMID: 28603083 DOI: 10.1016/j.plaphy.2017.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 05/02/2023]
Abstract
Dehydration-responsive element-binding/C-repeat-binding factor (DREB/CBF) proteins regulate the transcription of genes involved in cold acclimation in several species. However, little is known about the physiological functions of CBF proteins in the low temperature-sensitive crop sweetpotato. We previously reported that the DREB1/CBF-like sweetpotato gene SwDREB1/IbCBF3 is involved in responses to diverse abiotic stresses. In this study, we confirmed that IbCBF3 is localized to the nucleus and binds to the C-repeat/dehydration-responsive elements (CRT/DRE) in the promoters of cold-regulated (COR) genes. We generated transgenic sweetpotato plants overexpressing IbCBF3 under the control of the CaMV 35S promoter (referred to as SC plants) and evaluated their responses to various abiotic stresses. IbCBF3 expression was dramatically induced by cold and drought but much less strongly induced by high salinity and ABA. We further characterized two SC lines (SC3 and SC6) with high levels of IbCBF3 transcript. The SC plants displayed enhanced tolerance to cold, drought, and oxidative stress on the whole-plant level. Under cold stress treatment (4 °C for 48 h), severe wilting and chilling injury were observed in the leaves of wild-type (WT) plants, whereas SC plants were not affected by cold stress. In addition, the COR genes were significantly upregulated in SC plants compared with the WT. The SC plants also showed significantly higher tolerance to drought stress than the WT, which was associated with higher photosynthesis efficiency and lower hydrogen peroxide levels. These results indicate that IbCBF3 is a functional transcription factor involved in the responses to various abiotic stresses in sweetpotato.
Collapse
Affiliation(s)
- Rong Jin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea; Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou 221121, Jiangsu, China
| | - Beg Hab Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Hong Min Li
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou 221121, Jiangsu, China
| | - Dai Fu Ma
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou 221121, Jiangsu, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea.
| |
Collapse
|
299
|
Prasad A, Kumar A, Matsuoka R, Takahashi A, Fujii R, Sugiura Y, Kikuchi H, Aoyagi S, Aikawa T, Kondo T, Yuasa M, Pospíšil P, Kasai S. Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. PeerJ 2017; 5:e3050. [PMID: 28761775 PMCID: PMC5527980 DOI: 10.7717/peerj.3050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 01/13/2023] Open
Abstract
Background The growth and development of plants is deleteriously affected by various biotic and abiotic stress factors. Wounding in plants is caused by exposure to environmental stress, mechanical stress, and via herbivory. Typically, oxidative burst in response to wounding is associated with the formation of reactive oxygen species, such as the superoxide anion radical (O2•−), hydrogen peroxide (H2O2) and singlet oxygen; however, few experimental studies have provided direct evidence of their detection in plants. Detection of O2•− formation in plant tissues have been performed using various techniques including electron paramagnetic resonance spin-trap spectroscopy, epinephrine-adrenochrome acceptor methods, staining with dyes such as tetrazolium dye and nitro blue tetrazolium (NBT); however, kinetic measurements have not been performed. In the current study, we provide evidence of O2•− generation and its kinetics in the leaves of spinach (Spinacia oleracea) subjected to wounding. Methods Real-time monitoring of O2•− generation was performed using catalytic amperometry. Changes in oxidation current for O2•− was monitored using polymeric iron-porphyrin-based modified carbon electrodes (φ = 1 mm) as working electrode with Ag/AgCl as the reference electrode. Result The results obtained show continuous generation of O2•− for minutes after wounding, followed by a decline. The exogenous addition of superoxide dismutase, which is known to dismutate O2•− to H2O2, significantly suppressed the oxidation current. Conclusion Catalytic amperometric measurements were performed using polymeric iron-porphyrin based modified carbon electrode. We claim it to be a useful tool and a direct method for real-time monitoring and precise detection of O2•− in biological samples, with the potential for wide application in plant research for specific and sensitive detection of O2•−.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic.,Biomedical Engineering Research Center, Tohoku Institute of Technology, Sendai, Japan
| | - Aditya Kumar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | - Akemi Takahashi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Ryo Fujii
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Yamato Sugiura
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | | | - Tatsuo Aikawa
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of Technology, Sendai, Japan.,Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| |
Collapse
|
300
|
Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:856-867. [PMID: 27801967 DOI: 10.1111/tpj.13299] [Citation(s) in RCA: 1157] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) play a key role in the acclimation process of plants to abiotic stress. They primarily function as signal transduction molecules that regulate different pathways during plant acclimation to stress, but are also toxic byproducts of stress metabolism. Because each subcellular compartment in plants contains its own set of ROS-producing and ROS-scavenging pathways, the steady-state level of ROS, as well as the redox state of each compartment, is different at any given time giving rise to a distinct signature of ROS levels at the different compartments of the cell. Here we review recent studies on the role of ROS in abiotic stress in plants, and propose that different abiotic stresses, such as drought, heat, salinity and high light, result in different ROS signatures that determine the specificity of the acclimation response and help tailor it to the exact stress the plant encounters. We further address the role of ROS in the acclimation of plants to stress combination as well as the role of ROS in mediating rapid systemic signaling during abiotic stress. We conclude that as long as cells maintain high enough energy reserves to detoxify ROS, ROS is beneficial to plants during abiotic stress enabling them to adjust their metabolism and mount a proper acclimation response.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Rosa M Rivero
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario Espinardo, Ed. 25, 30100, Espinardo, Murcia, Spain
| | - Eduardo Blumwald
- Department of Plant Sciences, Mail Stop 5, University of California, 1 Shields Ave, Davis, CA, 95616, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| |
Collapse
|