251
|
Qin S, Hu X, Lin S, Xiao J, Wang Z, Jia J, Song X, Liu K, Ren Z, Wang Y. Hsp90 Inhibitors Prevent HSV-1 Replication by Directly Targeting UL42-Hsp90 Complex. Front Microbiol 2022; 12:797279. [PMID: 35185822 PMCID: PMC8851068 DOI: 10.3389/fmicb.2021.797279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type I (HSV-1) is a member of the Alphaherpesvirinae family, which could initiate labial herpes caused by the reactivation of HSV-1 primary infection, and secondary infection even causes herpes encephalitis. The study presented here demonstrates that Hsp90 inhibitors (AT-533 and 17-AAG) directly targeted the HSV-1 UL42-Hsp90 complex, and Hsp90 interacted with HSV-1 UL42 in silicon and experiment. Interestingly, Hsp90 inhibitors also reduced virus titers of ACV-resistant clinical HSV-1 strains (153 and blue strain), revealing that HSV-1 UL42 would be a new target against ACV-resistant HSV-1 strains. Altogether, this present study indicates that Hsp90 inhibitors prevent HSV-1 proliferation by regulating the interaction between Hsp90 and HSV-1 UL42, suggesting a promising target for anti-HSV-1 therapies in the replication.
Collapse
Affiliation(s)
- Shurong Qin
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao Hu
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shimin Lin
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhe Ren
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
252
|
Eddins DJ, Bassit LC, Chandler JD, Haddad NS, Musall KL, Yang J, Kosters A, Dobosh BS, Hernández MR, Ramonell RP, Tirouvanziam RM, Lee FEH, Zandi K, Schinazi RF, Ghosn EEB. Inactivation of SARS-CoV-2 and COVID-19 Patient Samples for Contemporary Immunology and Metabolomics Studies. Immunohorizons 2022; 6:144-155. [PMID: 35173021 PMCID: PMC9164212 DOI: 10.4049/immunohorizons.2200005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/13/2023] Open
Abstract
Due to the severity of COVID-19 disease, the U.S. Centers for Disease Control and Prevention and World Health Organization recommend that manipulation of active viral cultures of SARS-CoV-2 and respiratory secretions from COVID-19 patients be performed in biosafety level (BSL)3 laboratories. Therefore, it is imperative to develop viral inactivation procedures that permit samples to be transferred to lower containment levels (BSL2), while maintaining the fidelity of complex downstream assays to expedite the development of medical countermeasures. In this study, we demonstrate optimal conditions for complete viral inactivation following fixation of infected cells with commonly used reagents for flow cytometry, UVC inactivation in sera and respiratory secretions for protein and Ab detection, heat inactivation following cDNA amplification for droplet-based single-cell mRNA sequencing, and extraction with an organic solvent for metabolomic studies. Thus, we provide a suite of viral inactivation protocols for downstream contemporary assays that facilitate sample transfer to BSL2, providing a conceptual framework for rapid initiation of high-fidelity research as the COVID-19 pandemic continues.
Collapse
Affiliation(s)
- Devon J Eddins
- Lowance Center for Human Immunology, Division of Immunology and Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Leda C Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; and
| | - Natalie S Haddad
- Lowance Center for Human Immunology, Division of Immunology and Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kathryn L Musall
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Junkai Yang
- Lowance Center for Human Immunology, Division of Immunology and Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Astrid Kosters
- Lowance Center for Human Immunology, Division of Immunology and Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Brian S Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; and
| | - Mindy R Hernández
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Richard P Ramonell
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Rabindra M Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; and
| | - F Eun-Hyung Lee
- Lowance Center for Human Immunology, Division of Immunology and Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Keivan Zandi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Eliver E B Ghosn
- Lowance Center for Human Immunology, Division of Immunology and Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA;
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
253
|
Bhat T, Cao A, Yin J. Virus-like Particles: Measures and Biological Functions. Viruses 2022; 14:383. [PMID: 35215979 PMCID: PMC8877645 DOI: 10.3390/v14020383] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases.
Collapse
Affiliation(s)
| | | | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA; (T.B.); (A.C.)
| |
Collapse
|
254
|
El-Fakharany EM, Abu-Serie MM, Habashy NH, El-Deeb NM, Abu-Elreesh GM, Zaki S, Abd-EL-Haleem D. Inhibitory Effects of Bacterial Silk-like Biopolymer on Herpes Simplex Virus Type 1, Adenovirus Type 7 and Hepatitis C Virus Infection. J Funct Biomater 2022; 13:17. [PMID: 35225980 PMCID: PMC8883917 DOI: 10.3390/jfb13010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Bacterial polymeric silk is produced by Bacillus sp. strain NE and is composed of two proteins, called fibroin and sericin, with several biomedical and biotechnological applications. In the current study and for the first time, the whole bacterial silk proteins were found capable of exerting antiviral effects against herpes simplex virus type-1 (HSV-1), adenovirus type 7 (AD7), and hepatitis C virus (HCV). The direct interaction between bacterial silk-like proteins and both HSV-1 and AD7 showed potent inhibitory activity against viral entry with IC50 values determined to be 4.1 and 46.4 μg/mL of protein, respectively. The adsorption inhibitory activity of the bacterial silk proteins showed a blocking activity against HSV-1 and AD7 with IC50 values determined to be 12.5 and 222.4 ± 1.0 μg/mL, respectively. However, the bacterial silk proteins exhibited an inhibitory effect on HSV-1 and AD7 replication inside infected cells with IC50 values of 9.8 and 109.3 μg/mL, respectively. All these results were confirmed by the ability of the bacterial silk proteins to inhibit viral polymerases of HSV-1 and AD7 with IC50 values of 164.1 and 11.8 μg/mL, respectively. Similarly, the inhibitory effect on HCV replication in peripheral blood monocytes (PBMCs) was determined to be 66.2% at concentrations of 100 μg/mL of the bacterial silk proteins. This antiviral activity against HCV was confirmed by the ability of the bacterial silk proteins to reduce the ROS generation inside the infected cells to be 50.6% instead of 87.9% inside untreated cells. The unique characteristics of the bacterial silk proteins such as production in large quantities via large-scale biofermenters, low costs of production, and sustainability of bacterial source offer insight into its use as a promising agent in fighting viral infection and combating viral outbreaks.
Collapse
Affiliation(s)
- Esmail M. El-Fakharany
- Proteins Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| | - Noha H. Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Nehal M. El-Deeb
- Biopharmacetical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| | - Gadallah M. Abu-Elreesh
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (G.M.A.-E.); (S.Z.); (D.A.-E.-H.)
| | - Sahar Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (G.M.A.-E.); (S.Z.); (D.A.-E.-H.)
| | - Desouky Abd-EL-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (G.M.A.-E.); (S.Z.); (D.A.-E.-H.)
| |
Collapse
|
255
|
Lanzarini NM, Federigi I, Marinho Mata R, Neves Borges MD, Mendes Saggioro E, Cioni L, Verani M, Carducci A, Costa Moreira J, Ferreira Mannarino C, Pereira Miagostovich M. Human adenovirus in municipal solid waste leachate and quantitative risk assessment of gastrointestinal illness to waste collectors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:308-317. [PMID: 34922305 DOI: 10.1016/j.wasman.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Leachate is a variable effluent from waste management systems generated during waste collection and on landfills. Twenty-two leachate samples from waste collection trucks and a landfill were collected from March to December 2019 in the municipality of Rio de Janeiro (Brazil) and were analyzed for Human Adenovirus (HAdV), bacterial indicators and physico-chemical parameters. For viral analysis, samples were concentrated by ultracentrifugation and processed for molecular analysis using QIAamp Fast DNA Stool mini kit® for DNA extraction followed by nested-PCR and qPCR/PMA-qPCR TaqMan® system. HAdV was detected by nested-PCR in 100% (9/9) and 83.33% (12/13) of the truck and landfill leachate samples, respectively. Viral concentrations ranged from 8.31 × 101 to 6.68 × 107 genomic copies per 100 ml by qPCR and PMA-qPCR. HAdV species A, B, C, and F were characterized using nucleotide sequencing. HAdV were isolated in A549 culture cells in 100% (9/9) and 46.2% (6/13) from truck and landfill leachate samples, respectively. Regardless of the detection methods, HAdV concentration was predicted by the quantity of total suspended solids. A quantitative microbial risk assessment was performed to measure the probability of gastrointestinal (GI) illness attributable to inadvertent oral ingestion of truck leachate, revealing the higher probability of disease for the direct splashing into the oral cavity (58%) than for the gloved hand-to-mouth (33%). In a scenario where waste collectors do not wear gloves as protective personal equipment, the risk increases to 67%. This is the first study revealing infectious HAdV in solid waste leachate and indicates a potential health risk for waste collectors.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil; Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil.
| | - Ileana Federigi
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Rafaela Marinho Mata
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil; Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria Denise Neves Borges
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lorenzo Cioni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy
| | - Marco Verani
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Annalaura Carducci
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Josino Costa Moreira
- Center for Studies on Workers' Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Camille Ferreira Mannarino
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
256
|
Chikungunya Virus’ High Genomic Plasticity Enables Rapid Adaptation to Restrictive A549 Cells. Viruses 2022; 14:v14020282. [PMID: 35215875 PMCID: PMC8879786 DOI: 10.3390/v14020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging arthropod-borne virus that has spread globally during the last two decades. The virus is mainly transmitted by Aedes aegypti and Aedes albopictus mosquitos and is thus capable of replicating in both human and mosquito cells. CHIKV has a broad tropism in vivo, capable of replicating in various tissues and cell types but largely excluding blood cells. This was reflected in vitro by a broad array of adherent cell lines supporting CHIKV infection. One marked exception to this general rule is the resistance of the lung cancer-derived A549 cell line to CHIKV infection. We verified that A549 cells were restrictive to infection by multiple alphaviruses while being completely permissive to flavivirus infection. The adaptive growth of a primary CHIKV strain through multiple passages allowed the emergence of a CHIKV strain that productively infected A549 cells while causing overt cytopathic effects and without a fitness cost for replication in otherwise CHIKV-susceptible cells. Whole genome sequencing of polyclonal and monoclonal preparations of the adapted virus showed that a limited number of mutations consistently emerged in both structural (2 mutations in E2) and non-structural proteins (1 mutation in nsP1 and 1 mutation in nsP2). The introduction of the adaptive mutations, individually or in combinations, into a wild-type molecular clone of CHIKV allowed us to determine the relative contributions of the mutations to the new phenotype. We found that the mutations in the E2 envelope protein and non-structural proteins contributed significantly to the acquired phenotype. The nsP mutations were introduced in a split-genome trans-replicase assay to monitor their effect on viral genome replication efficiency. Interestingly, neither mutation supported increased viral genomic replication in either Vero or A549 cells.
Collapse
|
257
|
Wolfgruber S, Loibner M, Puff M, Melischnig A, Zatloukal K. SARS-CoV2 neutralizing activity of ozone on porous and non-porous materials. N Biotechnol 2022; 66:36-45. [PMID: 34626837 PMCID: PMC8492887 DOI: 10.1016/j.nbt.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/19/2023]
Abstract
The COVID-19 pandemic has generated a major need for non-destructive and environmentally friendly disinfection methods. This work presents the development and testing of a disinfection process based on gaseous ozone for SARS-CoV-2-contaminated porous and non-porous surfaces. A newly developed disinfection chamber was used, equipped with a CeraPlas™ cold plasma generator that produces ozone during plasma ignition. A reduction of more than log 6 of infectious virus could be demonstrated for virus-contaminated cotton and FFP3 face masks as well as glass slides after exposure to 800 ppm ozone for 10-60 min, depending on the material. In contrast to other disinfectants, ozone can be produced quickly and cost-effectively, and its environmentally friendly breakdown product oxygen does not leave harmful residues. Disinfection with ozone could help to overcome delivery difficulties of personal protective equipment by enabling safe reuse with further applications, thereby reducing waste generation, and may allow regular disinfection of personal items with non-porous surfaces.
Collapse
Affiliation(s)
- Stella Wolfgruber
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Martina Loibner
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Markus Puff
- TDK Electronics GmbH & Co OG, Deutschlandsberg, Austria
| | | | - Kurt Zatloukal
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
258
|
Liu LT, Tsai JJ, Chen CH, Lin PC, Tsai CY, Tsai YY, Hsu MC, Chuang WL, Chang JM, Hwang SJ, Chong IW. Isolation and Identification of a Rare Spike Gene Double-Deletion SARS-CoV-2 Variant From the Patient With High Cycle Threshold Value. Front Med (Lausanne) 2022; 8:822633. [PMID: 35071285 PMCID: PMC8770430 DOI: 10.3389/fmed.2021.822633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an emerging life-threatening pulmonary disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, Hubei Province, China, in December 2019. COVID-19 develops after close contact via inhalation of respiratory droplets containing SARS-CoV-2 during talking, coughing, or sneezing by asymptomatic, presymptomatic, and symptomatic carriers. This virus evolved over time, and numerous genetic variants have been reported to have increased disease severity, mortality, and transmissibility. Variants have also developed resistance to antivirals and vaccination and can escape the immune response of humans. Reverse transcription polymerase chain reaction (RT–PCR) is the method of choice among diagnostic techniques, including nucleic acid amplification tests (NAATs), serological tests, and diagnostic imaging, such as computed tomography (CT). The limitation of RT–PCR is that it cannot distinguish fragmented RNA genomes from live transmissible viruses. Thus, SARS-CoV-2 isolation by using cell culture has been developed and makes important contributions in the field of diagnosis, development of antivirals, vaccines, and SARS-CoV-2 virology research. In this research, two SARS-CoV-2 strains were isolated from four RT–PCR-positive nasopharyngeal swabs using VERO E6 cell culture. One isolate was cultured successfully with a blind passage on day 3 post inoculation from a swab with a Ct > 35, while the cells did not develop cytopathic effects without a blind passage until day 14 post inoculation. Our results indicated that infectious SARS-CoV-2 virus particles existed, even with a Ct > 35. Cultivable viruses could provide additional consideration for releasing the patient from quarantine. The results of the whole genome sequencing and bioinformatic analysis suggested that these two isolates contain a spike 68-76del+spike 675-679del double-deletion variation. The double deletion was confirmed by amplification of the regions spanning the spike gene deletion using Sanger sequencing. Phylogenetic analysis revealed that this double-deletion variant was rare (one per million in public databases, including GenBank and GISAID). The impact of this double deletion in the spike gene on the SARS-CoV-2 virus itself as well as on cultured cells and/or humans remains to be further elucidated.
Collapse
Affiliation(s)
- Li-Teh Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung-Hwa University of Medical Technology, Tainan, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ping-Chang Lin
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Yi Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yan-Yi Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Miao-Chen Hsu
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hepatobiliary and Pancreatic, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jer-Ming Chang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Department of Internal Medicine and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pulmonary Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
259
|
Huang K, Mao H, Ren P, Zhang Y, Sun X, Zou Z, Jin M. 139D in NS1 Contributes to the Virulence of H5N6 Influenza Virus in Mice. Front Vet Sci 2022; 8:808234. [PMID: 35127884 PMCID: PMC8814418 DOI: 10.3389/fvets.2021.808234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
H5N6, the highly pathogenic avian influenza A virus (IAV) of clade 2.3.4.4, causes global outbreaks in poultry. H5N6 has become the dominant IAV subtype in waterfowls and causes human infections with high mortality rates. Here, we isolated two strains of H5N6, XGD and JX, from chickens and ducks, respectively. Growth kinetics were evaluated in duck embryo fibroblasts, chicken embryo fibroblasts, Madin-Darby canine kidney cells, and A549 lung carcinoma cells. Receptor binding specificity was analyzed via sialic acid–binding activity assay. The virulence of each strain was tested in BALB/c mice, and recombinant viruses were constructed via reverse genetics to further analyze the pathogenicity. The two strains showed no significant differences in growth kinetics in vitro; however, JX was more virulent in mice than XGD. We also identified 13 mutations in six viral proteins of the two strains through genetic analysis. Our study showed that the NS1 protein played a crucial role in enhancing the virulence of JX. Specifically, the amino acid 139D in NS1 contributed to the high pathogenicity. Therefore, 139D in NS1 might provide insight into the underlying mechanism of IAV adaptation in mammals.
Collapse
Affiliation(s)
- Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Peilei Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Yufei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
- *Correspondence: Meilin Jin
| |
Collapse
|
260
|
A Combined Ultrafiltration/Diafiltration Process for the Purification of Oncolytic Measles Virus. MEMBRANES 2022; 12:membranes12020105. [PMID: 35207027 PMCID: PMC8880582 DOI: 10.3390/membranes12020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Measles virus (MV) is an important representative of a new class of cancer therapeutics known as oncolytic viruses. However, process intensification for the downstream purification of this fragile product is challenging. We previously found that a mid-range molecular weight cut-off (300 kDa) is optimal for the concentration of MV. Here, we tested continuous and discontinuous diafiltration for the purification of MV prepared in two different media to determine the influence of high and low protein loads. We found that a concentration step before diafiltration improved process economy and MV yield when using either serum-containing or serum-free medium. We also found that discontinuous diafiltration conferred a slight benefit in terms of the permeate flow, reflecting the repetitive dilution steps and the ability to break down parts of the fouling layer on the membrane. In summary, the combined ultrafiltration/diafiltration process is suitable for the purification of MV, resulting in the recovery of ~50% infectious virus particles with a total concentration factor of 8 when using 5 diavolumes of buffer.
Collapse
|
261
|
Yasugi M, Komura Y, Ishigami Y. Mechanisms underlying inactivation of SARS-CoV-2 by nano-sized electrostatic atomized water particles. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:99. [PMID: 35573750 PMCID: PMC9091134 DOI: 10.1007/s11051-022-05485-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 05/06/2023]
Abstract
UNLABELLED The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious global issue. To prevent viral transmission, it is important to disinfect contaminated environmental surfaces and aerosols. We previously demonstrated that nano-sized electrostatic atomized water particles (NEAWPs) inactivate SARS-CoV-2. Herein, we focused on the underlying mechanisms. Morphological observation by transmission electron microscopy revealed that compared with NEAWPs-untreated virus, the shapes of particles corresponding to the size of SARS-CoV-2 particles were distorted significantly when exposed to NEAWPs. The amounts of viral RNA and protein in NEAWPs-treated SARS-CoV-2 showed a significantly greater decline than those in viruses unexposed to NEAWPs. Furthermore, much less NEAWPs-treated SARS-CoV-2 than NEAWPs-untreated virus bound to host cells. These results strongly suggest that NEAWPs damage the viral envelope, as well as viral protein and RNA, thereby impairing the ability of the virus to bind to host cells. Reactive oxygen species in NEAWPs may be involved in the inactivating effects on SARS-CoV-2. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11051-022-05485-5.
Collapse
Affiliation(s)
- Mayo Yasugi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531 Japan
- Present Address: Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531 Japan
- Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka Japan
- Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Izumisano, Osaka Japan
| | - Yasuhiro Komura
- Panasonic Corporation, Living Appliances and Solutions Company, Kusatsu, Shiga Japan
| | - Yohei Ishigami
- Panasonic Corporation, Living Appliances and Solutions Company, Kusatsu, Shiga Japan
| |
Collapse
|
262
|
Alarcon-Valdes P, Sanchez-Aguillon F, Martinez-Hernandez F, Olivo-Diaz A, Maravilla P, Santillan-Benitez JG, Romero-Valdovinos M. Long-term infection passaging of Human Adenovirus 36 in monkey kidney cells. Rev Inst Med Trop Sao Paulo 2022; 64:e68. [DOI: 10.1590/s1678-9946202264068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
|
263
|
Medina GN, de Los Santos T, Díaz-San Segundo F. Generation of Replication Deficient Human Adenovirus 5 (Ad5) Vectored FMD Vaccines. Methods Mol Biol 2022; 2465:155-175. [PMID: 35118621 DOI: 10.1007/978-1-0716-2168-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adenovirus vectors offer a convenient platform for the expression of antigens and have become an attractive system for vaccine development. Currently, the most successful approach to the development of new foot-and-mouth disease (FMD) vaccines has been the production of a replication-defective human serotype 5 adenovirus that delivers the capsid and capsid processing coding regions of FMD virus (FMDV) (Ad5-FMD). A specific construct for FMDV serotype A24 has been fully developed into a commercial product fulfilling the requirements of the Center of Veterinary Biologics (CVB) of the Animal and Plant Health Inspection Service (APHIS) of the U.S. Department of Agriculture (USDA), for commercialization in the USA. In this chapter, we describe a standard protocol for the generation and small-scale production of Ad5-FMDV serotype O1Manisa vaccines. We use directional cloning to introduce the FMDV O1Manisa capsid in the Ad5-Blue vector. This is followed by the linearization of the recombinant Ad5 with Pac I and transfection into HEK293 cells for rescue and propagation, and then by increased production and purification. Finally, purified recombinant virus is characterized by determining virus yield and expression of targeted antigen in specific cell type of interest.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY, USA.
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS, USA.
| | | | | |
Collapse
|
264
|
Khalil M, Mei A, Hashemi E, Wang D, Schumacher M, Terhune S, Malarkannan S. Method to Study Adaptive NK Cells Following MCMV Infections. Methods Mol Biol 2022; 2463:195-204. [PMID: 35344176 DOI: 10.1007/978-1-0716-2160-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunological memory is a fundamental feature of the adaptive immune system that protects the host from recurrent infections from pathogens. Natural killer (NK) cells are a predominant member of the innate immune system that lack clonotypic receptors, which are essential for memory formation. However, evidence demonstrates that a unique subpopulation of NK cells develops adaptive-like features using germline-encoded receptors. Recent studies have shown that infection of cytomegalovirus (CMV) leads to clonal expansion of NKG2C+ and Ly49H+ NK cells, in humans and mouse, respectively. These activation receptors have the capability to recognize CMV-encoded proteins and facilitate a recall response upon reinfection. Although NK cells do not rearrange genes encoding their activating receptors as seen in B and T cells, they possess a selective process to generate memory features and a long-lived progeny. Here, we describe an established in vivo protocol for infecting mice with mouse cytomegalovirus (MCMV) to study an adaptive NK cell response.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Megan Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
265
|
Mediouni S, Mou H, Otsuka Y, Jablonski JA, Adcock RS, Batra L, Chung DH, Rood C, de Vera IMS, Rahaim R, Ullah S, Yu X, Getmanenko YA, Kennedy NM, Wang C, Nguyen TT, Hull M, Chen E, Bannister TD, Baillargeon P, Scampavia L, Farzan M, Valente ST, Spicer TP. Identification of potent small molecule inhibitors of SARS-CoV-2 entry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:8-19. [PMID: 35058179 PMCID: PMC8577999 DOI: 10.1016/j.slasd.2021.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.
Collapse
Affiliation(s)
- Sonia Mediouni
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Huihui Mou
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Yuka Otsuka
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Joseph Anthony Jablonski
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Robert Scott Adcock
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Lalit Batra
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Dong-Hoon Chung
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Christopher Rood
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ian Mitchelle S de Vera
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ronald Rahaim
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Sultan Ullah
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Xuerong Yu
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Yulia A Getmanenko
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Nicole M Kennedy
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Tu-Trinh Nguyen
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Mitchell Hull
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Emily Chen
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Thomas D Bannister
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Pierre Baillargeon
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Louis Scampavia
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Michael Farzan
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Susana T Valente
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Timothy P Spicer
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
266
|
Glazkova DV, Bogoslovskaya EV, Urusov FA, Kartashova NP, Glubokova EA, Gracheva AV, Faizuloev EB, Trunova GV, Khokhlova VA, Bezborodova OA, Pankratov AA, Leneva IA, Shipulin GA. Generation of SARS-CoV-2 Mouse Model by Transient Expression of the Human ACE2 Gene Mediated by Intranasal Administration of AAV-hACE2. Mol Biol 2022; 56:705-712. [PMID: 36217340 PMCID: PMC9534474 DOI: 10.1134/s0026893322050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022]
Abstract
One of the most important steps in the development of drugs and vaccines against a new coronavirus infection is their testing on a relevant animal model. The laboratory mouse, with well-studied immunology, is the preferred mammalian model in experimental medicine. However, mice are not susceptible to infection with SARS-CoV-2 due to the lack of human angiotensin-converting enzyme (hACE2), which is the cell receptor of SARS-CoV-2 and necessary for the entry of the virus into the cell. In present work, it was shown that intranasal administration of the adeno-associated vectors AAV9 and AAV-DJ encoding the hACE2 provided a high level of expression of ACE2 gene in the lungs of mice. In contrast, the introduction of the AAV6 vector led to a low level ACE2 expression. Infection with SARS-CoV-2 of mice expressing hACE2 in the lungs led to virus replication and development of bronchopneumonia on the 7th day after infection. Thus, a simple method for delivering the human ACE2 gene to mouse lungs by intranasal administration of the AAV vector has been proposed. This approach enabled rapid generation of mouse model for studying coronavirus infection.
Collapse
Affiliation(s)
- D. V. Glazkova
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical-Biological Agency of the Russian Federation, 119992 Moscow, Russia
| | - E. V. Bogoslovskaya
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical-Biological Agency of the Russian Federation, 119992 Moscow, Russia
| | - F. A. Urusov
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical-Biological Agency of the Russian Federation, 119992 Moscow, Russia ,Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | - N. P. Kartashova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - E. A. Glubokova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - A. V. Gracheva
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - E. B. Faizuloev
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - G. V. Trunova
- National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - V. A. Khokhlova
- National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - O. A. Bezborodova
- National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - A. A. Pankratov
- National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - I. A. Leneva
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - G. A. Shipulin
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical-Biological Agency of the Russian Federation, 119992 Moscow, Russia
| |
Collapse
|
267
|
“Re-engineering of a food oven for thermal sanitization of Personal Protective Equipment against Sars-CoV-2 virus”. SUSTAINABLE FUTURES 2022; 4:100093. [PMID: 37522104 PMCID: PMC9373476 DOI: 10.1016/j.sftr.2022.100093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 06/02/2023]
Abstract
One of the main issues addressed by the recent COVID-19 pandemic which affected the whole world is the availability of Personal Protective Equipment (PPE) (e.g., face masks, white coats, or disposable gloves). This issue impacts on sustainability from different perspectives, such as more generated waste or environmental pollution, both for manufacturing and disposal, or more inequalities deriving from who can afford and access PPE and who cannot, since many shortages were recorded during the pandemic as well as fluctuating unit prices. Moreover, quite often PPE intended for single use are improperly used more times, thus generating a biological risk of infection. In an attempt to propose an innovative solution to face this problem, in this paper the re-design of an oven originally intended for food purposes is presented, with the aim of operating a thermal sanitization of PPE. The machinery and its components are detailed, together with physical and microbiological tests performed on non-woven PPE to assess the effect of treatment on mechanical properties and viral load. The pilot machinery turned out to be effective in destroying a bovine coronavirus at 95 °C and thus reducing contaminating risk in one hour without compromising the main properties of PPE, opening perspectives for the commercialization of the solution in the near future.
Collapse
|
268
|
Lee H, Lee TY, Jeon P, Kim N, Kim JW, Yang JS, Kim KC, Lee JY. J2N-k hamster model simulates severe infection caused by severe acute respiratory syndrome coronavirus 2 in patients with cardiovascular diseases. J Virol Methods 2022; 299:114306. [PMID: 34601000 PMCID: PMC8482652 DOI: 10.1016/j.jviromet.2021.114306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Considering the global impact of the coronavirus disease 2019 (COVID-19) pandemic, generating suitable experimental models is imperative. For pre-clinical studies, researchers require animal models displaying pathological features similar to those observed in patients; therefore, establishing animal models for COVID-19 is crucial. The golden Syrian hamster model mimics conditions observed in humans with mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, a golden Syrian hamster model of severe infection has not been reported. J2N-k hamsters are utilized as a cardiomyopathy model; therefore, we used cardiomyopathic J2N-k hamsters showing conditions similar to those of severe COVID-19 complicated with cardiovascular diseases, as patients with cardiovascular diseases exhibit a higher risk of morbidity and mortality due to COVID-19 than patients without cardiovascular diseases. Unlike that in golden Syrian hamsters, SARS-CoV-2 infection was lethal in J2N-k hamsters, with a median lethal dose of 104.75 plaque-forming units for the S clade of SARS-CoV-2 (A, GenBank: MW466791.1). High viral titers and viral genomes were detected in the lungs of J2N-k and golden Syrian hamster models harvested 3 days after infection. Pathological features of SARS-CoV-2-associated lung injury were observed in both models. The J2N-k hamster model can aid in developing vaccines or therapeutics against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joo-Yeon Lee
- Division of Emerging Virus and Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 182 Osongsaengmyeong-2ro, Osong-eup, Cheongju-si, Chungbuk, Republic of Korea.
| |
Collapse
|
269
|
Huynh H, Levitz R, Huang R, Kahn JS. mTOR kinase is a therapeutic target for respiratory syncytial virus and coronaviruses. Sci Rep 2021; 11:24442. [PMID: 34952911 PMCID: PMC8709853 DOI: 10.1038/s41598-021-03814-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Therapeutic interventions targeting viral infections remain a significant challenge for both the medical and scientific communities. While specific antiviral agents have shown success as therapeutics, viral resistance inevitably develops, making many of these approaches ineffective. This inescapable obstacle warrants alternative approaches, such as the targeting of host cellular factors. Respiratory syncytial virus (RSV), the major respiratory pathogen of infants and children worldwide, causes respiratory tract infection ranging from mild upper respiratory tract symptoms to severe life-threatening lower respiratory tract disease. Despite the fact that the molecular biology of the virus, which was originally discovered in 1956, is well described, there is no vaccine or effective antiviral treatment against RSV infection. Here, we demonstrate that targeting host factors, specifically, mTOR signaling, reduces RSV protein production and generation of infectious progeny virus. Further, we show that this approach can be generalizable as inhibition of mTOR kinases reduces coronavirus gene expression, mRNA transcription and protein production. Overall, defining virus replication-dependent host functions may be an effective means to combat viral infections, particularly in the absence of antiviral drugs.
Collapse
Affiliation(s)
- HoangDinh Huynh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ruth Levitz
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rong Huang
- Department of Research Administration Children's Medical Center, Dallas, TX, 75235, USA
| | - Jeffrey S Kahn
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
270
|
FMDV Leader Protein Interacts with the NACHT and LRR Domains of NLRP3 to Promote IL-1β Production. Viruses 2021; 14:v14010022. [PMID: 35062226 PMCID: PMC8778935 DOI: 10.3390/v14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infection causes inflammatory clinical symptoms, such as high fever and vesicular lesions, even death of animals. Interleukin-1β (IL-1β) is an inflammatory cytokine that plays an essential role in inflammatory responses against viral infection. The viruses have developed multiple strategies to induce the inflammatory responses, including regulation of IL-1β production. However, the molecular mechanism underlying the induction of IL-1β by FMDV remains not fully understood. Here, we found that FMDV robustly induced IL-1β production in macrophages and pigs. Infection of Casp-1 inhibitor-treated cells and NOD-, LRR- and pyrin domain-containing 3 (NLRP3)-knockdown cells indicated that NLRP3 is essential for FMDV-induced IL-1β secretion. More importantly, we found that FMDV Lpro associates with the NACHT and LRR domains of NLRP3 to promote NLRP3 inflammasome assembly and IL-1β secretion. Moreover, FMDV Lpro induces calcium influx and potassium efflux, which trigger NLRP3 activation. Our data revealed the mechanism underlying the activation of the NLRP3 inflammasome after FMDV Lpro expression, thus providing insights for the control of FMDV infection-induced inflammation.
Collapse
|
271
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal influenza viruses are co-circulating in the human population. However, only a few cases of viral co-infection with these two viruses have been documented in humans with some people having severe disease and others mild disease. In order to examine this phenomenon, ferrets were co-infected with SARS-CoV-2 and human seasonal influenza A viruses (IAVs) (H1N1 or H3N2) and were compared to animals that received each virus alone. Ferrets were either immunologically naïve to both viruses or vaccinated with the 2019-2020 split-inactivated influenza virus vaccine. Co-infected naive ferrets lost significantly more body weight than ferrets infected with each virus alone and induced more severe inflammation in both the nose and lungs than ferrets single-infected with each virus. Co-infected naïve animals had predominantly higher IAV titers than SARS-CoV-2 titers, and IAVs efficiently transmitted to the co-housed ferrets by direct contact. Comparatively, SARS-CoV-2 failed to transmit to the ferrets that co-housed with co-infected ferrets by direct contact. Moreover, vaccination significantly reduced IAVs virus titers and shortened the viral shedding, but did not completely block influenza virus direct contact transmission. Notably, vaccination significantly ameliorated the influenza associated disease by protecting vaccinated animals from severe morbidity after IAV single infection or IAV and SARS-CoV-2 co-infection, suggesting that seasonal influenza virus vaccination is pivotal to prevent severe disease induced by IAVs and SARS-CoV-2 co-infection during the COVID-19 pandemic.
Importance
Influenza A viruses cause severe morbidity and mortality during each influenza virus season. The emergence of SARS-CoV-2 infection in the human population offers the opportunity to potential co-infections of both viruses. The development of useful animal models to asses pathogenesis, transmission, and viral evolution of these viruses as the co-infect a host is of critical importance for the development of vaccines and therapeutics. The ability to prevent the most severe effects of viral co-infections can be studied using effect co-infection ferret models described in this report.
Collapse
|
272
|
Capraz T, Kienzl NF, Laurent E, Perthold JW, Föderl-Höbenreich E, Grünwald-Gruber C, Maresch D, Monteil V, Niederhöfer J, Wirnsberger G, Mirazimi A, Zatloukal K, Mach L, Penninger JM, Oostenbrink C, Stadlmann J. Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor. eLife 2021; 10:e73641. [PMID: 34927585 PMCID: PMC8730730 DOI: 10.7554/elife.73641] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Infection and viral entry of SARS-CoV-2 crucially depends on the binding of its Spike protein to angiotensin converting enzyme 2 (ACE2) presented on host cells. Glycosylation of both proteins is critical for this interaction. Recombinant soluble human ACE2 can neutralize SARS-CoV-2 and is currently undergoing clinical tests for the treatment of COVID-19. We used 3D structural models and molecular dynamics simulations to define the ACE2 N-glycans that critically influence Spike-ACE2 complex formation. Engineering of ACE2 N-glycosylation by site-directed mutagenesis or glycosidase treatment resulted in enhanced binding affinities and improved virus neutralization without notable deleterious effects on the structural stability and catalytic activity of the protein. Importantly, simultaneous removal of all accessible N-glycans from recombinant soluble human ACE2 yields a superior SARS-CoV-2 decoy receptor with promise as effective treatment for COVID-19 patients.
Collapse
Affiliation(s)
- Tümay Capraz
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Nikolaus F Kienzl
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Elisabeth Laurent
- Institute of Molecular Biotechnology, Department of Biotechnology and Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Jan W Perthold
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | | | - Clemens Grünwald-Gruber
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Daniel Maresch
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Vanessa Monteil
- Karolinska Institute, Department of Laboratory MedicineStockholmSweden
| | | | | | - Ali Mirazimi
- Karolinska Institute, Department of Laboratory MedicineStockholmSweden
- National Veterinary InstituteUppsalaSweden
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of GrazGrazAustria
| | - Lukas Mach
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Josef M Penninger
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. BohrViennaAustria
- Department of Medical Genetics, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Stadlmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life SciencesViennaAustria
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. BohrViennaAustria
| |
Collapse
|
273
|
Wang Y, Wu Y, Wang Q, Zhu J, Shi W, Han Z, Zhang Y, Chen K. Virucidal effect of povidone-iodine against SARS-CoV-2 in vitro. J Int Med Res 2021; 49:3000605211063695. [PMID: 34914884 PMCID: PMC8689632 DOI: 10.1177/03000605211063695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To evaluate the antiviral activity of the oral disinfectant povidone-iodine (PVP-I) against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV2) in vitro. Methods The cytotoxic effects of PVP-I were determined in Vero and Calu-3 cell lines using that by Cell Counting Kit-8 assay. Viral load in the cell culture medium above infected cells was quantitated using real-time polymerase chain reaction. The cytopathic effect (CPE) and viral infective rate were observed by immunofluorescence microscopy. Results PVP-I at a concentration >0.5 mg/ml in contact with SARS-CoV-2 for 30 s, 1 min, 2 min and 5 min showed up to 99% viral inhibition. For in vitro testing, upon exposure for 1 min, PVP-I showed a virucidal effect. PVP-I had no cytotoxic effects at the range of concentrations tested (0.125–1 mg/ml; CC50 > 2.75 mM) in Vero and Calu-3 cells. Conclusion These results demonstrate that the ideal contact time was 1 min and the optimal concentration was 1 mg/ml, which provides an experimental basis for the use of oral disinfectants in dental hospitals.
Collapse
Affiliation(s)
- Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yutong Wu
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, China
| | - Qingjing Wang
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, China
| | - Jiajie Zhu
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, China
| | - Wen Shi
- Department of Microbiology, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Zetao Han
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Keda Chen
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
274
|
African swine fever virus regulates host energy and amino acid metabolism to promote viral replication. J Virol 2021; 96:e0191921. [PMID: 34908441 DOI: 10.1128/jvi.01919-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever is one of the most serious viral diseases caused by African swine fever virus (ASFV). The metabolic changes induced by ASFV infection remain unknown. Here, PAMs infected with ASFV was analyzed by ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 90 metabolites were significantly changed after ASFV infection, and most of them belong to amino acids and TCA cycle intermediates. ASFV infection induced increase of most of amino acids in host during the early stages of infection, and amino acids decreased in the late stages of infection. ASFV infection did not significantly affected glycolysis pathway, whereas it induced the increase of citrate, succinate, α-ketoglutarate, and oxaloacetate levels in the TCA cycle, suggesting that ASFV infection promoted TCA cycle. The activity of aspartate aminotransferase and glutamate production were significantly elevated in ASFV-infected cells and pigs, resulting in reversible transition between TCA cycle and amino acids synthesis. Aspartate, glutamate, and TCA cycle were essential for ASFV replication. In addition, ASFV infection induced an increase in lactate level using lactate dehydrogenase, which led to low expression of IFN-β and increased of ASFV replication. Our data, for the first time, indicated that ASFV infection controls IFN-β production through RIG-I-mediated signaling pathways. These data identified a novel mechanism evolved by ASFV to inhibit host innate immune responses, and will provide insights for development of new preventive or therapeutic strategies targeting the altered metabolic pathways. IMPORTANCE In order to promote viral replication, viruses often cause severe immunosuppression and seize organelles to synthesize a large number of metabolites required for self-replication. African swine fever virus (ASFV) has developed many strategies to evade host innate immune responses. However, the impact of ASFV infection on host cellular metabolism remains unknown. Here, for the first time, we analyzed the metabolomic profiles of ASFV-infected PAMs cells. ASFV infection increased host TCA cycle and amino acids metabolism. Aspartate, glutamate, and TCA cycle promoted ASFV replication. ASFV infection also induced the increase of lactate production to inhibit innate immune responses for self-replication. This study identified novel immune evasion mechanisms utilized by ASFV and provided viewpoints on ASFV-host interactions, which is critical for guiding the design of new prevention strategies against ASFV targeting the altered metabolic pathways.
Collapse
|
275
|
Romera SA, Perez R, Marandino A, LuciaTau R, Campos F, Roehe PM, Thiry E, Maidana SS. Whole-genome analysis of natural interspecific recombinant between bovine alphaherpesviruses 1 and 5. Virus Res 2021; 309:198656. [PMID: 34915090 DOI: 10.1016/j.virusres.2021.198656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Bovine alphaherpesviruses 1 and 5 (BoHV-1 and BoHV-5) are closely related viruses that co-circulate in South America and recombine in the field. The complete genomes of three natural gB gene recombinant viruses between BoHV-1 and BoHV-5 were obtained by Illumina next-generation sequencing. Complete genome sequences of the three recombinant strains (RecA1, RecB2, and RecC2) have a similar size of approximately 138.3kb and a GC content of 75%. The genome structure corresponds to herpesvirus class D, with 69 open reading frames (ORFs) arranged in the same order as other bovine alphaherpesviruses related to BoHV-1. Their genomes were included in recombination network studies indicating statistically significant recombination evidence both based on the whole genome, as well as in the sub-regions. The novel recombinant region of 3074 nt of the RecB2 and RecC2 strains includes the complete genes of the myristylated tegument protein (UL11) and the glycoprotein M (UL10) and part of the helicase (UL9) gene, and it seems to have originated independently of the first recombinant event involving the gB gene. Phylogenetic analyzes performed with the amino acid sequences of UL9, UL 10, and UL11 indicated that RecB2 and RecC2 recombinants are closely related to the minor parental virus (BoHV-1.2b). On the contrary, RecA1 groups with the major parental (BoHV-5), thus confirming the absence of recombination in this region for this recombinant. One breakpoint in the second recombinant region lies in the middle of the UL9 reading frame, originating a chimeric enzyme half encoded by BoHV-5 and BoHV-1.2b parental strains. The chimeric helicases of both recombinants are identical and have 96.8 and 96.3% similarity with the BoHV-5 and BoHV-1 parents, respectively. In vitro characterization suggests that recombinants have delayed exit from the cell compared to parental strains. However, they produce the similar viral titer as their putative parents suggesting the accumulation of viral particles for the cell exit delayed on time. Despite in vitro different behavior, these natural recombinant viruses have been maintained in the bovine population for more than 30 years, indicating that recombination could be playing an important role in the biological diversity of these viral species. Our findings highlight the importance of studying whole genome diversity in the field and determining the role that homologous recombination plays in the structure of viral populations. A whole-genome recombinant characterization is a suitable tool to help understand the emergence of new viral forms with novel pathogenic features.
Collapse
Affiliation(s)
- Sonia Alejandra Romera
- Instituto de Virología e Innovaciones Tecnológicas IVIT (INTA-CONICET), Castelar, Buenos Aires, Argentina; Cátedra de Inmunología, Universidad del Salvador, Provincia de Buenos Aires, Argentina; Cátedra de Inmunogenética, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad de Morón, Morón, Buenos Aires, Argentina
| | - Ruben Perez
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rocio LuciaTau
- Instituto de Virología e Innovaciones Tecnológicas IVIT (INTA-CONICET), Castelar, Buenos Aires, Argentina
| | - Fabricio Campos
- Laboratory of Bioinformatics & Biotechnology, Campus de Gurupi, Federal University of Tocantins, Gurupi, Tocantins, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research on Animal Health center and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Silvina Soledad Maidana
- Instituto de Virología e Innovaciones Tecnológicas IVIT (INTA-CONICET), Castelar, Buenos Aires, Argentina; Cátedra de Inmunogenética, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad de Morón, Morón, Buenos Aires, Argentina.
| |
Collapse
|
276
|
van Vloten JP, Minott JA, McAusland TM, Ingrao JC, Santry LA, McFadden G, Petrik JJ, Bridle BW, Wootton SK. Production and purification of high-titer OrfV for preclinical studies in vaccinology and cancer therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:434-447. [PMID: 34786436 PMCID: PMC8579082 DOI: 10.1016/j.omtm.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Poxviruses have been used extensively as vaccine vectors for human and veterinary medicine and have recently entered the clinical realm as immunotherapies for cancer. We present a comprehensive method for producing high-quality lots of the poxvirus Parapoxvirus ovis (OrfV) for use in preclinical models of vaccinology and cancer therapy. OrfV is produced using a permissive sheep skin-derived cell line and is released from infected cells by repeated freeze-thaw combined with sonication. We present two methods for isolation and purification of bulk virus. Isolated virus is concentrated to high titer using polyethylene glycol to produce the final in vivo-grade product. We also describe methods for quantifying OrfV infectious virions and determining genomic copy number to evaluate virus stocks. The methods herein will provide researchers with the ability to produce high-quality, high-titer OrfV for use in preclinical studies, and support the translation of OrfV-derived technologies into the clinic.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joelle C Ingrao
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant McFadden
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
277
|
Rhee C, Kang Y, Han B, Kim YW, Her M, Jeong W, Kim S. Virucidal efficacy of seven active substances in commercial disinfectants used against H9N2 low pathogenic avian influenza virus. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
278
|
Romagnoli R, Gruttadauria S, Tisone G, Maria Ettorre G, De Carlis L, Martini S, Tandoi F, Trapani S, Saracco M, Luca A, Manzia TM, Visco Comandini U, De Carlis R, Ghisetti V, Cavallo R, Cardillo M, Grossi PA. Liver transplantation from active COVID-19 donors: A lifesaving opportunity worth grasping? Am J Transplant 2021; 21:3919-3925. [PMID: 34467627 PMCID: PMC8653300 DOI: 10.1111/ajt.16823] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 01/25/2023]
Abstract
COVID-19 pandemic dramatically impacted transplantation landscape. Scientific societies recommend against the use of donors with active SARS-CoV-2 infection. Italian Transplant Authority recommended to test recipients/donors for SARS-CoV-2-RNA immediately before liver transplant (LT) and, starting from November 2020, grafts from deceased donors with active SARS-CoV-2 infection were allowed to be considered for urgent-need transplant candidates with active/resolved COVID-19. We present the results of the first 10 LTs with active COVID-19 donors within an Italian multicenter series. Only two recipients had a positive molecular test at LT and one of them remained positive up to 21 days post-LT. None of the other eight recipients was found to be SARS-CoV-2 positive during follow-up. IgG against SARS-CoV-2 at LT were positive in 80% (8/10) of recipients, and 71% (5/7) showed neutralizing antibodies, expression of protective immunity related to recent COVID-19. In addition, testing for SARS-CoV-2 RNA on donors' liver biopsy at transplantation was negative in 100% (9/9), suggesting a very low risk of transmission with LT. Immunosuppression regimen remained unchanged, according to standard protocol. Despite the small number of cases, these data suggest that transplanting livers from donors with active COVID-19 in informed candidates with SARS-CoV-2 immunity, might contribute to safely increase the donor pool.
Collapse
Affiliation(s)
- Renato Romagnoli
- Liver Transplant Center -General Surgery 2U, University of Turin, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Giuseppe Tisone
- Surgical Sciences and Medical Sciences, University of Rome-Tor Vergata, Rome, Italy
| | - Giuseppe Maria Ettorre
- POIT Transplant Department, San Camillo Hospital and National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Luciano De Carlis
- General Surgery and Abdominal Transplantation Unit, Hepatology, University of Milano-Bicocca and Niguarda-Cà Granda Hospital, Milan, Italy
| | - Silvia Martini
- Gastrohepatology Unit, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Tandoi
- Liver Transplant Center -General Surgery 2U, University of Turin, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Trapani
- Italian National Transplant Center, Istituto Superiore di Sanità, Rome, Italy
| | - Margherita Saracco
- Gastrohepatology Unit, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Luca
- Abdominal Surgery and Organ Transplantation Unit, ISMETT, Palermo, Italy
| | - Tommaso Maria Manzia
- Surgical Sciences and Medical Sciences, University of Rome-Tor Vergata, Rome, Italy
| | - Ubaldo Visco Comandini
- POIT Transplant Department, San Camillo Hospital and National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Riccardo De Carlis
- General Surgery and Abdominal Transplantation Unit, Hepatology, University of Milano-Bicocca and Niguarda-Cà Granda Hospital, Milan, Italy
| | - Valeria Ghisetti
- Laboratory of Microbiology and Virology, Ospedale Amedeo di Savoia, ASL “Città di Torino”, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University of Turin, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Massimo Cardillo
- Italian National Transplant Center, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Antonio Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy,Correspondence Paolo A. Grossi, Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy.
| |
Collapse
|
279
|
Interactions between Cryptosporidium parvum and bovine corona virus during sequential and simultaneous infection of HCT-8 cells. Microbes Infect 2021; 24:104909. [PMID: 34813933 DOI: 10.1016/j.micinf.2021.104909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/16/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
Neonatal diarrhoea in calves is one of the major health problems in the cattle industry. Although co-infections are often associated with greater severity of disease, there is limited information on any impact on the pathogens themselves. Herein, we studied Cryptosporidium parvum and bovine coronavirus (BCoV) in human HCT-8 cells, inoculated either sequentially or simultaneously, to investigate any influence from the co-infections. Quantitative results from (RT)-qPCR showed that prior inoculation with either of the two pathogens had no influence on the other. However, the results from simultaneous co-inoculation showed that entry of viral particles was higher when C. parvum sporozoites were present, although elevated virus copy numbers were no longer evident after 24 h. The attachment of BCoV to the sporozoites was probably due to specific binding, as investigations with bovine norovirus or equine herpes virus-1 showed no attachment between sporozoites and these viruses. Flow cytometry results at 72 h post inoculation revealed that C. parvum and BCoV infected 1-11% and 10-20% of the HCT-8 cells, respectively, with only 0.04% of individual cells showing double infections. The results from confocal microscopy corroborated those results, showing an increase in foci of infection from 24-72 h post inoculation for both pathogens, but with few double infected cells.
Collapse
|
280
|
Bohan D, Van Ert H, Ruggio N, Rogers KJ, Badreddine M, Aguilar Briseño JA, Elliff JM, Rojas Chavez RA, Gao B, Stokowy T, Christakou E, Kursula P, Micklem D, Gausdal G, Haim H, Minna J, Lorens JB, Maury W. Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathog 2021; 17:e1009743. [PMID: 34797899 PMCID: PMC8641883 DOI: 10.1371/journal.ppat.1009743] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/03/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2. Phosphatidylserine (PS) receptors bind PS and mediate uptake of apoptotic bodies. Many enveloped viruses utilize this PS/PS receptor mechanism to adhere to and internalize into the endosomal compartment of cells. For viruses that have a mechanism(s) of endosomal escape, apoptotic mimicry is a productive route of virus entry. This clever use of this uptake mechanism by enveloped viruses is termed apoptotic mimicry. We evaluated if PS receptors serve as cell surface receptors for SARS-CoV-2 and found that the PS receptors, AXL, TIM-1 and TIM-4, facilitated virus infection when the SARS-CoV-2 cognate receptor, ACE2, was present. Consistent with the established mechanism of PS receptor utilization by other viruses, PS liposomes competed with SARS-CoV-2 for binding and entry. PS is readily detectable on the surface of SARS-CoV-2 virions, and contrary to prior reports we were unable to identify any interaction between AXL and SARS-CoV-2 spike. Pharmacological inhibition of AXL activity and knockout of AXL expression suggest it is the preferred PS receptor during SARS-CoV-2 entry. We propose that AXL is an under-appreciated but potentially important host factor facilitating SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Hanora Van Ert
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Natalie Ruggio
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kai J. Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Mohammad Badreddine
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - José A. Aguilar Briseño
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jonah M. Elliff
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | | | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tomasz Stokowy
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Eleni Christakou
- Department of Biomedicine, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | - Hillel Haim
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James B. Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
281
|
African Swine Fever Virus Bearing an I226R Gene Deletion Elicits Robust Immunity in Pigs to African Swine Fever. J Virol 2021; 95:e0119921. [PMID: 34495696 PMCID: PMC8577359 DOI: 10.1128/jvi.01199-21] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by African swine fever virus (ASFV), leading to devastating economic losses in epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and surrounding suspected pigs. An ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable for numerous reasons. Here, we report another ASF vaccine candidate, named SY18ΔI226R, bearing a deletion of the I226R gene with a replacement of an enhanced green fluorescent protein (eGFP) expression cassette at the right end of the viral genome. This deletion results in the complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with a dosage of either 104.0 or 107.0 50% tissue culture infective doses (TCID50). Apparent viremia with a gradual decline was monitored, while virus shedding was detected only occasionally in oral or anal swabs. ASFV-specific antibody appeared at 9 days postinoculation. After intramuscular challenge with its parental strain ASFV SY18 at 21 days postinoculation, all the challenged pigs survived, without obvious febrile or abnormal clinical signs. No viral DNA could be detected upon the dissection of any tissue when viremia disappeared. These results indicated that SY18ΔI226R is safe in swine and elicits robust immunity to virulent ASFV infection. IMPORTANCE Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use for several reasons, especially ones concerning biosafety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by intramuscular challenge with 102.5 or 104.0 TCID50 of its virulent parental virus. Furthermore, the nucleic acid of the gene-deleted virus and its virulent parental virus was rarely detected from oral or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal, and efficacious vaccine candidate for genotype II ASF.
Collapse
|
282
|
Ghasemi S, Naderi Saffar K, Ebrahimi F, Khatami P, Monazah A, Alizadeh GA, Ettehadi HA, Rad I, Nojehdehi S, Kehtari M, Kouhkan F, Barjasteh H, Moradi S, Ghorbani MH, Khodaie A, Papizadeh M, Najafi R, Naghneh E, Sadeghi D, Karimi Rahjerdi A. Development of Inactivated FAKHRAVAC ® Vaccine against SARS-CoV-2 Virus: Preclinical Study in Animal Models. Vaccines (Basel) 2021; 9:vaccines9111271. [PMID: 34835202 PMCID: PMC8622747 DOI: 10.3390/vaccines9111271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
The recent viral infection disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global public health crisis. Iran, as one of the countries that reported over five million infected cases by September 2021, has been concerned with the urgent development of effective vaccines against SARS-CoV-2. In this paper, we report the results of a study on potency and safety of an inactivated SARS-CoV-2 vaccine candidate (FAKHRAVAC) in a preclinical study so as to confirm its potential for further clinical evaluation. Here, we developed a pilot-scale production of FAKHRAVAC, a purified inactivated SARS-CoV-2 virus vaccine candidate that induces neutralizing antibodies in Balb/c mice, guinea pigs, rabbits, and non-human primates (Rhesus macaques—RM). After obtaining ethical code of IR.IUMS.REC.1399.566, immunizations of animals were conducted by using either of three different vaccine dilutions; High (H): 10 μg/dose, Medium (M): 5 μg/dose, and Low (L): 1 μg/dose, respectively. In the process of screening for viral seeds, viral strains that resulted in the most severe clinical manifestation in patients have been isolated for vaccine development. The viral seed produced the optimal immunity against SARS-CoV-2 virus, which suggests a possible broader neutralizing ability against SARS-CoV-2 strains. The seroconversion rate at the H-, M-, and L-dose groups of all tested animals reached 100% by 28 days after immunization. These data support the eligibility of FAKHRAVAC vaccine candidate for further evaluation in a clinical trial.
Collapse
Affiliation(s)
- Soheil Ghasemi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Kosar Naderi Saffar
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Firooz Ebrahimi
- Department of Biology, Faculty of Basic Sciences, Imam Hussein University, Tehran 1698715461, Iran; (F.E.); (D.S.)
| | - Pezhman Khatami
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Arina Monazah
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Ghorban-Ali Alizadeh
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Hossein-Ali Ettehadi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Iman Rad
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Shahrzad Nojehdehi
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Mousa Kehtari
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Hesam Barjasteh
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Sohrab Moradi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Mohammad-Hosein Ghorbani
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Ali Khodaie
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Moslem Papizadeh
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Roghayeh Najafi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Ehsan Naghneh
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Davood Sadeghi
- Department of Biology, Faculty of Basic Sciences, Imam Hussein University, Tehran 1698715461, Iran; (F.E.); (D.S.)
| | - Ahmad Karimi Rahjerdi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
- Correspondence: or
| |
Collapse
|
283
|
Kwon KY, Cheeseman S, Frias-De-Diego A, Hong H, Yang J, Jung W, Yin H, Murdoch BJ, Scholle F, Crook N, Crisci E, Dickey MD, Truong VK, Kim TI. A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral Fabrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104298. [PMID: 34550628 DOI: 10.1002/adma.202104298] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Indexed: 05/24/2023]
Abstract
Fabrics are widely used in hospitals and many other settings for bedding, clothing, and face masks; however, microbial pathogens can survive on surfaces for a long time, leading to microbial transmission. Coatings of metallic particles on fabrics have been widely used to eradicate pathogens. However, current metal particle coating technologies encounter numerous issues such as nonuniformity, processing complexity, and poor adhesion. To overcome these issues, an easy-to-control and straightforward method is reported to coat a wide range of fabrics by using gallium liquid metal (LM) particles to facilitate the deposition of liquid metal copper alloy (LMCu) particles. Gallium particles coated on the fabric provide nucleation sites for forming LMCu particles at room temperature via galvanic replacement of Cu2+ ions. The LM helps promote strong adhesion of the particles to the fabric. The presence of the LMCu particles can eradicate over 99% of pathogens (including bacteria, fungi, and viruses) within 5 min, which is significantly more effective than control samples coated with only Cu. The coating remains effective over multiple usages and against contaminated droplets and aerosols, such as those encountered in facemasks. This facile coating method is promising for generating robust antibacterial, antifungal, and antiviral fabrics and surfaces.
Collapse
Affiliation(s)
- Ki Yoon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Samuel Cheeseman
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Alba Frias-De-Diego
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Haeleen Hong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jiayi Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hong Yin
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Billy J Murdoch
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Elisa Crisci
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vi Khanh Truong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
284
|
Lv Y, Zhang CD, Wang YL, Zhou DM, Zhu MY, Hao XQ, Wang JH, Gu WZ, Shen HQ, Lou JG, Wu BQ, Chen PC, Zhao ZY. Synergism of rMV-Hu191 with cisplatin to treat gastric cancer by acid sphingomyelinase-mediated apoptosis requiring integrity of lipid raft microdomains. Gastric Cancer 2021; 24:1293-1306. [PMID: 34251544 PMCID: PMC8502160 DOI: 10.1007/s10120-021-01210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND DDP-based chemotherapy is one of the first-line treatment in GC. However, the therapeutic efficacy of DDP is limited due to side effects. Therefore, it is of great significance to develop novel adjuvants to synergize with DDP. We had demonstrated previously that rMV-Hu191 had antitumor activity in GC. Here we examined the synergism of rMV-Hu191 with DDP in vitro and in vivo. METHODS Cellular proliferation, the synergistic effect and cell apoptosis were evaluated by CCK-8 assay, ZIP analysis and flow cytometry, respectively. The protein levels and location of ASMase were monitored by western blot and immunofluorescence assay. shRNA and imipramine were used to regulate the expression and activity of ASMase. MβCD was administrated to disrupt lipid rafts. Mice bearing GC xenografts were used to confirm the synergism in vivo. RESULTS From our data, combinational therapy demonstrated synergistic cytotoxicity both in resistant GC cell lines from a Chinese patient and drug-nonresistant GC cell lines, and increased cell apoptosis, instead of viral replication. Integrity of lipid rafts and ASMase were required for rMV-Hu191- and combination-induced apoptosis. The ASMase was delivered to the lipid raft microdomains at the initial stage of rMV-Hu191 treatment. In vivo GC mice xenografts confirmed the synergism of combinational treatment, together with increased apoptosis and trivial side-effects. CONCLUSIONS This is the first study to demonstrate that rMV-Hu191 combined with DDP could be used as a potential therapeutic strategy in GC treatment and the ASMase and the integrity of lipid rafts are required for the synergistic effects.
Collapse
Affiliation(s)
- Yao Lv
- Gastroenterology Department, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310051 Zhejiang China
| | - Chu-di Zhang
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Yi-long Wang
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Dong-ming Zhou
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Meng-ying Zhu
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Xiao-qiang Hao
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Jin-hu Wang
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Wei-zhong Gu
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Hong-qiang Shen
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Jin-gan Lou
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| | - Ben-qing Wu
- University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, 518000 China
| | - Pei-chun Chen
- University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, 518000 China
| | - Zheng-yan Zhao
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 31005 Zhejiang China
| |
Collapse
|
285
|
Jo E, Kim H, König A, Yang J, Yoon SK, Windisch MP. Determination of infectious hepatitis B virus particles by an end-point dilution assay identifies a novel class of inhibitors. Antiviral Res 2021; 196:105195. [PMID: 34736995 DOI: 10.1016/j.antiviral.2021.105195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022]
Abstract
The quantification of infectious virus particles is fundamental to perform in vitro virology studies. To determine the number of hepatitis B virus (HBV) genome-containing particles in vitro, the genome equivalents (GEq) are measured using quantitative PCR (qPCR). However, in addition to infectious virions, HBV DNA-containing, non-infectious HBV particles are also produced in vitro, which can lead to an over-estimation of the number of infectious HBV particles when analyzed by qPCR. Here, we establish an end-point dilution assay that can precisely determine the number of infectious HBV particles. The cell-based HBV infection assay uses a 384-well plate format and enables the calculation of the 50% tissue culture infective dose (TCID50) in a semi-automated manner. Cell culture-derived HBV (HBVcc), produced by either stable HBV-replicating cells (HepAD38) or HBV-infected HepG2-NTCP cells, as well as patient-derived HBV sera were serially diluted and used to infect naïve target cells. Applying the end-point dilution assay, we infected HepG2-NTCP cells with PEG precipitated HBV derived from HepAD38-and HepG2-NTCPsec+ cell supernatants, calculated the TCID50/mL, converted to plaque-forming units (PFUs), and generated the specific infectivity (ratio of PFU/GEq). As a result, a TCID50/mL of 7.22 × 106 and 2.16 × 106, and the specific infectivity of 1/13,816 and 1/8798 were calculated for HepAD38 and HepG2-NTCPsec+ cell supernatants, respectively. The specific infectivity further increased by approximately 2-fold after removal of non-infectious "naked" particles by immunoprecipitation. Purification of HepAD38 cell supernatants by heparin columns increased the TCID50/mL and specific infectivity by 18- and 15-fold, respectively. Interestingly, non-purified patient-derived HBV sera from two individuals had a specific infectivity of 1/88 and 1/3609. After converting TCID50 to multiplicity of infection (MOI) values, we inoculated HepG2-NTCP cells with HBVcc based on GEq or MOI values and demonstrated that MOI-based infection leads to more reproducible infection rates. Furthermore, the assay was validated using serially diluted lamivudine, an HBV replication inhibitor, inhibiting HBV DNA secretion and infectious viral progeny by approx. 56- and 470-fold, respectively. Interestingly, we identified dexmedetomidine (DMM), an alpha-2 adrenergic agonist, inhibiting the secretion of infectious viral progeny by approx. 6-fold, without interfering in the secretion of HBV DNA. Taken together, we developed an assay that is suitable for the standard quantification of infectious HBV particles. We identified DMM as a novel inhibitor that exclusively interferes with the secretion of infectious HBV particles without affecting the secretion of HBV genomes. This end-point dilution assay enables the precise determination of the number of infectious HBV particles, assessment of the specific infectivity and stability of HBV particles, and identification of novel classes of HBV inhibitors.
Collapse
Affiliation(s)
- Eunji Jo
- Applied Molecular Virology Laboratory, Discovery Biology Division, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea.
| | - Hyun Kim
- Applied Molecular Virology Laboratory, Discovery Biology Division, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea; Division of Bio-Medical Science and Technology, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| | - Alexander König
- Applied Molecular Virology Laboratory, Discovery Biology Division, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea.
| | - Jaewon Yang
- Applied Molecular Virology Laboratory, Discovery Biology Division, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea.
| | - Seung Kew Yoon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea; Catholic University Liver Research Center, The Catholic University of Korea, Seoul, South Korea.
| | - Marc P Windisch
- Applied Molecular Virology Laboratory, Discovery Biology Division, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea; Division of Bio-Medical Science and Technology, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
286
|
Ma B, Gundy PM, Gerba CP, Sobsey MD, Linden KG. UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources. Appl Environ Microbiol 2021; 87:e0153221. [PMID: 34495736 PMCID: PMC8552892 DOI: 10.1128/aem.01532-21] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023] Open
Abstract
Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC's action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions.
Collapse
Affiliation(s)
- Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Patricia M. Gundy
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Charles P. Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Mark D. Sobsey
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karl G. Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
287
|
Windsor IW, Dudley DM, O'Connor DH, Raines RT. Ribonuclease zymogen induces cytotoxicity upon HIV-1 infection. AIDS Res Ther 2021; 18:77. [PMID: 34702287 PMCID: PMC8549155 DOI: 10.1186/s12981-021-00399-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting RNA is a promising yet underdeveloped modality for the selective killing of cells infected with HIV-1. The secretory ribonucleases (RNases) found in vertebrates have cytotoxic ribonucleolytic activity that is kept in check by a cytosolic ribonuclease inhibitor protein, RI. METHODS We engineered amino acid substitutions that enable human RNase 1 to evade RI upon its cyclization into a zymogen that is activated by the HIV-1 protease. In effect, the zymogen has an HIV-1 protease cleavage site between the termini of the wild-type enzyme, thereby positioning a cleavable linker over the active site that blocks access to a substrate. RESULTS The amino acid substitutions in RNase 1 diminish its affinity for RI by 106-fold and confer high toxicity for T-cell leukemia cells. Pretreating these cells with the zymogen leads to a substantial drop in their viability upon HIV-1 infection, indicating specific toxicity toward infected cells. CONCLUSIONS These data demonstrate the utility of ribonuclease zymogens as biologic prodrugs.
Collapse
Affiliation(s)
- Ian W Windsor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
288
|
Figueroa F, Vega-Gibson A, Catrileo J, Gaete-Argel A, Riquelme-Barrios S, Alonso-Palomares LA, Tapia LI, Valiente-Echeverría F, Soto-Rifo R, Acevedo ML. N 6 -Methyladenosine Negatively Regulates Human Respiratory Syncytial Virus Replication. Front Cell Dev Biol 2021; 9:739445. [PMID: 34671602 PMCID: PMC8521026 DOI: 10.3389/fcell.2021.739445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification described in eukaryotic mRNA and several viral RNA including human respiratory syncytial virus (HRSV). Here, we evaluated the impact of m6A writers, erasers and readers on HRSV genomic RNA accumulation and inclusion bodies assembly during viral replication. We observed that the METTL3/METTL14 m6A writer complex plays a negative role in HRSV protein synthesis and viral titers, while m6A erasers FTO and ALKBH5 had the opposite effect. We also observed that m6A readers YTHDF1-3 bind to the viral genomic RNA inducing a decrease in its intracellular levels and thus, inhibiting viral replication. Finally, we observed that overexpression of YTHDFs proteins caused a decrease in the size of inclusion bodies (IBs), accompanied by an increase in their number. METTL3 knockdown cells showed an opposite effect indicating that the dynamics of IBs assembly and coalescence are strongly affected by m6A readers in a mechanism dependent on m6A writers. Taken together, our results demonstrated that the m6A modification negatively affects HRSV replication, possibly through a mechanism involving the assembly of inclusion bodies, the main factories of viral genomic RNA synthesis.
Collapse
Affiliation(s)
- Fabian Figueroa
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alonso Vega-Gibson
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Joseline Catrileo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastian Riquelme-Barrios
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis Antonio Alonso-Palomares
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena I Tapia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Hospital Roberto del Río, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Monica L Acevedo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
289
|
Boldogkői Z, Csabai Z, Tombácz D, Janovák L, Balassa L, Deák Á, Tóth PS, Janáky C, Duda E, Dékány I. Visible Light-Generated Antiviral Effect on Plasmonic Ag-TiO 2-Based Reactive Nanocomposite Thin Film. Front Bioeng Biotechnol 2021; 9:709462. [PMID: 34660548 PMCID: PMC8513738 DOI: 10.3389/fbioe.2021.709462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The recent coronavirus pandemic pointed out the vulnerability of humanity to new emerging infectious diseases. Experts warn that future pandemics may emerge more frequently with greater devastating effects on population health and the world economy. Although viruses are unable to propagate on lifeless surfaces, they can retain their infectivity and spread further on contact with these surfaces. The objective of our study is to analyze photoreactive composite films that exert antiviral effects upon illumination. Reactive plasmonic titanium dioxide-based polymeric nanocomposite film was prepared with a thickness of 1–1.5 µm, which produces reactive oxygen species (ROS) under visible light irradiation (λ ≥ 435 nm). These species are suitable for photooxidation of adsorbed organic molecules (e.g., benzoic acid) on the nanocomposite surface. Moreover, high molecular weight proteins are also degraded or partially oxidized in this process on the composite surface. Since the Ag0-TiO2/polymer composite film used showed excellent reactivity in the formation of OH• radicals, the photocatalytic effect on high molecular weight (M = ∼66.000 Da) bovine serum albumin (BSA) protein was investigated. Given that changes in the structure of the protein were observed upon exposure to light, we assumed virucidal effect of the illuminated photoreactive composite film. We tested this hypothesis using an airborne-transmitted herpesvirus. As a result, we obtained a drastic decrease in infection capability of the virus on the photoreactive surface compared to the control surface.
Collapse
Affiliation(s)
- Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Lilla Balassa
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Péter S Tóth
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Ernő Duda
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| |
Collapse
|
290
|
Kebede W, Bitew M, Bari FD, Edao BM, Mohammed H, Yami M, Getachew B, Abayneh T, Gelaye E. Immunogenicity and Efficacy Evaluation of Vero Cell-Adapted Infectious Bursal Disease Virus LC-75 Vaccine Strain. VETERINARY MEDICINE-RESEARCH AND REPORTS 2021; 12:261-270. [PMID: 34631492 PMCID: PMC8493110 DOI: 10.2147/vmrr.s326479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022]
Abstract
Introduction Infectious bursal disease virus (IBDV) is an avian viral pathogen that causes infectious bursal disease (IBD) of chickens. The disease has been endemic in Ethiopia since 2002, and vaccination has been practiced as the major means of disease prevention and control. An IBD vaccine is produced in Ethiopia using primary chicken embryo fibroblast (CEF) cell, which is time-consuming, laborious, and uneconomical. The present study was carried out to develop cell-based IBDV LC-75 vaccine using Vero cells and to evaluate the safety, immunogenicity and protection level. Methods Identity of the vaccine seed was confirmed with gene-specific primers using reverse transcription polymerase chain reaction (RT-PCR). Confluent monolayer of Vero cells was infected with vaccine virus and serial passage continued till passage 10. A characteristic virus-induced cytopathic effect (CPE) was observed starting from passage 2 on the third day post-infection. The infectious titer of adapted virus showed a linear increment along the passage level. The virus-induced specific antibody was determined using indirect ELISA after vaccination of chicks through ocular route. Results The antibody titer measured from Vero cells vaccinated chicks revealed similar level with the currently available CEF cell-based vaccine, hence no significant difference. Chicks vaccinated with Vero cell adapted virus showed complete protection against very virulent IBDV, while unvaccinated group had 60% morbidity and 25% mortality. Conclusion It is concluded that the IBDV vaccine strain well adapted on Vero cells and found to be immunogenic induces antibody development and successfully protects chicks against challenge with the circulating field IBDV isolate. Hence, it is recommended to produce IBD vaccine using Vero cell culture at the industrial scale to conquer the limitations caused by using CEF cells and thus to vaccinate chicks population to protect against the circulating IBDV infection.
Collapse
Affiliation(s)
| | | | - Fufa Dawo Bari
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Bedaso Mammo Edao
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | | | - Martha Yami
- National Veterinary Institute, Bishoftu, Ethiopia
| | | | | | | |
Collapse
|
291
|
Sabbaghi A, Malek M, Abdolahi S, Miri SM, Alizadeh L, Samadi M, Mohebbi SR, Ghaemi A. A formulated poly (I:C)/CCL21 as an effective mucosal adjuvant for gamma-irradiated influenza vaccine. Virol J 2021; 18:201. [PMID: 34627297 PMCID: PMC8501930 DOI: 10.1186/s12985-021-01672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several studies on gamma-irradiated influenza A virus (γ-Flu) have revealed its superior efficacy for inducing homologous and heterologous virus-specific immunity. However, many inactivated vaccines, notably in nasal delivery, require adjuvants to increase the quality and magnitude of vaccine responses. METHODS To illustrate the impacts of co-administration of the gamma-irradiated H1N1 vaccine with poly (I:C) and recombinant murine CCL21, either alone or in combination with each other, as adjuvants on the vaccine potency, mice were inoculated intranasally 3 times at one-week interval with γ-Flu alone or with any of the three adjuvant combinations and then challenged with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific humoral, mucosal, and cell-mediated immunity, as well as cytokine profiles in the spleen (IFN-γ, IL-12, and IL-4), and in the lung homogenates (IL-6 and IL-10) were measured by ELISA. The proliferative response of restimulated splenocytes was also determined by MTT assay. RESULTS The findings showed that the co-delivery of the γ-Flu vaccine and CCL21 or Poly (I:C) significantly increased the vaccine immunogenicity compared to the non-adjuvanted vaccine, associated with more potent protection following challenge infection. However, the mice given a combination of CCL21 with poly (I:C) had strong antibody- and cell-mediated immunity, which were considerably higher than responses of mice receiving the γ-Flu vaccine with each adjuvant separately. This combination also reduced inflammatory mediator levels (notably IL-10) in lung homogenate samples. CONCLUSIONS The results indicate that adjuvantation with the CCL21 and poly (I:C) can successfully induce vigorous vaccine-mediated protection, suggesting a robust propensity for CCL21 plus poly (I:C) as a potent mucosal adjuvant.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Masoud Malek
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mehdi Samadi
- Department of Medical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran.
| |
Collapse
|
292
|
Gilchuk IM, Bangaru S, Kose N, Bombardi RG, Trivette A, Li S, Turner HL, Carnahan RH, Ward AB, Crowe JE. Human antibody recognition of H7N9 influenza virus HA following natural infection. JCI Insight 2021; 6:e152403. [PMID: 34437301 PMCID: PMC8525637 DOI: 10.1172/jci.insight.152403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Avian H7N9 influenza viruses cause sporadic outbreaks of human infections and threaten to cause a major pandemic. The breadth of B cell responses to natural infection and the dominant antigenic sites recognized during first exposure to H7 HA following infection are incompletely understood. Here, we studied the B cell response to H7 HA of 2 individuals who had recovered from natural H7N9 virus infection. We used competition binding, hydrogen-deuterium mass spectrometry, and single-particle negative stain electron microscopy to identify the patterns of molecular recognition of the antibody responses to H7 HA. We found that circulating H7-reactive B cells recognized a diverse antigenic landscape on the HA molecule, including HA head domain epitopes in antigenic sites A and B and in the trimer interface-II region and epitopes in the stem region. Most H7 antibodies exhibited little heterosubtypic breadth, but many recognized a wide diversity of unrelated H7 strains. We tested the antibodies for functional activity and identified clones with diverse patterns of inhibition, including neutralizing, hemagglutination- or egress-inhibiting, or HA trimer–disrupting activities. Thus, the human B cell response to primary H7 natural infection is diverse, highly functional, and broad for recognition of diverse H7 strains.
Collapse
Affiliation(s)
| | - Sandhya Bangaru
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | - Sheng Li
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center and.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California, USA
| | - James E Crowe
- Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
293
|
Cappuccilli M, Bruno PF, Spazzoli A, Righini M, Flachi M, Semprini S, Grumiro L, Marino MM, Schiavone P, Fabbri E, Fantini M, Buscaroli A, Rigotti A, La Manna G, Sambri V, Mosconi G. Persistence of Antibody Responses to the SARS-CoV-2 in Dialysis Patients and Renal Transplant Recipients Recovered from COVID-19. Pathogens 2021; 10:1289. [PMID: 34684237 PMCID: PMC8541005 DOI: 10.3390/pathogens10101289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nephropathic subjects with impaired immune responses show dramatically high infection rates of coronavirus disease 2019 (COVID-19). This work evaluated the ability to acquire and maintain protective antibodies over time in 26 hemodialysis patients and 21 kidney transplant recipients. The subjects were followed-up through quantitative determination of circulating SARS-CoV-2 S1/S2 IgG and neutralizing antibodies in the 6-month period after clinical and laboratory recovery. A group of 143 healthcare workers with no underlying chronic pathologies or renal diseases recovered from COVID was also evaluated. In both dialysis and transplanted patients, antibody titers reached a zenith around the 3rd month, and then a decline occurred on average between the 270th and 300th day. Immunocompromised patients who lost antibodies around the 6th month were more common than non-renal subjects, although the difference was not significant (38.5% vs. 26.6%). Considering the decay of antibody levels below the positivity threshold (15 AU/mL) as "failure", a progressive loss of immunisation was found in the overall population starting 6 months after recovery. A longer overall antibody persistence was observed in severe forms of COVID-19 (p = 0.0183), but within each group, given the small number of patients, the difference was not significant (dialysis: p = 0.0702; transplant: p = 0.1899). These data suggest that immunocompromised renal patients recovered from COVID-19 have weakened and heterogeneous humoral responses that tend to decay over time. Despite interindividual variability, an association emerged between antibody persistence and clinical severity, similar to the subjects with preserved immune function.
Collapse
Affiliation(s)
- Maria Cappuccilli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.C.); (G.L.M.)
| | - Paolo Ferdinando Bruno
- Nephrology and Dialysis Unit, AUSL Romagna Morgagni-Pierantoni Hospital, 47121 Forlì, Italy; (P.F.B.); (A.S.)
| | - Alessandra Spazzoli
- Nephrology and Dialysis Unit, AUSL Romagna Morgagni-Pierantoni Hospital, 47121 Forlì, Italy; (P.F.B.); (A.S.)
| | - Matteo Righini
- Nephrology and Dialysis Unit, AUSL Romagna S. Maria delle Croci Hospital, 48121 Ravenna, Italy; (M.R.); (A.B.)
| | - Marta Flachi
- Nephrology and Dialysis Unit, AUSL Romagna Infermi Hospital, 47923 Rimini, Italy; (M.F.); (A.R.)
| | - Simona Semprini
- Unit of Microbiology, AUSL Romagna Laboratory, 47023 Pievesestina, Italy; (S.S.); (L.G.); (M.M.M.); (P.S.); (V.S.)
| | - Laura Grumiro
- Unit of Microbiology, AUSL Romagna Laboratory, 47023 Pievesestina, Italy; (S.S.); (L.G.); (M.M.M.); (P.S.); (V.S.)
| | - Maria Michela Marino
- Unit of Microbiology, AUSL Romagna Laboratory, 47023 Pievesestina, Italy; (S.S.); (L.G.); (M.M.M.); (P.S.); (V.S.)
| | - Pasqua Schiavone
- Unit of Microbiology, AUSL Romagna Laboratory, 47023 Pievesestina, Italy; (S.S.); (L.G.); (M.M.M.); (P.S.); (V.S.)
| | - Elisabetta Fabbri
- Local Healthcare Authority of Romagna (AUSL Romagna), 48121 Ravenna, Italy; (E.F.); (M.F.)
| | - Michela Fantini
- Local Healthcare Authority of Romagna (AUSL Romagna), 48121 Ravenna, Italy; (E.F.); (M.F.)
| | - Andrea Buscaroli
- Nephrology and Dialysis Unit, AUSL Romagna S. Maria delle Croci Hospital, 48121 Ravenna, Italy; (M.R.); (A.B.)
| | - Angelo Rigotti
- Nephrology and Dialysis Unit, AUSL Romagna Infermi Hospital, 47923 Rimini, Italy; (M.F.); (A.R.)
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.C.); (G.L.M.)
| | - Vittorio Sambri
- Unit of Microbiology, AUSL Romagna Laboratory, 47023 Pievesestina, Italy; (S.S.); (L.G.); (M.M.M.); (P.S.); (V.S.)
| | - Giovanni Mosconi
- Nephrology and Dialysis Unit, AUSL Romagna Morgagni-Pierantoni Hospital, 47121 Forlì, Italy; (P.F.B.); (A.S.)
| |
Collapse
|
294
|
Mikaty G, Coullon H, Fiette L, Pizarro-Cerdá J, Carniel E. The invasive pathogen Yersinia pestis disrupts host blood vasculature to spread and provoke hemorrhages. PLoS Negl Trop Dis 2021; 15:e0009832. [PMID: 34610007 PMCID: PMC8519436 DOI: 10.1371/journal.pntd.0009832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Yersinia pestis is a powerful pathogen with a rare invasive capacity. After a flea bite, the plague bacillus can reach the bloodstream in a matter of days giving way to invade the whole organism reaching all organs and provoking disseminated hemorrhages. However, the mechanisms used by this bacterium to cross and disrupt the endothelial vascular barrier remain poorly understood. In this study, an innovative model of in vivo infection was used to focus on the interaction between Y. pestis and its host vascular system. In the draining lymph nodes and in secondary organs, bacteria provoked the porosity and disruption of blood vessels. An in vitro model of endothelial barrier showed a role in this phenotype for the pYV/pCD1 plasmid that carries a Type Three Secretion System. This work supports that the pYV/pCD1 plasmid is responsible for the powerful tissue invasiveness capacity of the plague bacillus and the hemorrhagic features of plague. The plague bacillus, Yersinia pestis, is a powerful pathogen with a rare invasive capacity and is among the few bacteria capable to provoke disseminated hemorrhages. However, the mechanisms used by this bacterium to cross and disrupt the endothelial vascular barrier remain poorly understood. Recent technical progress in microscopy, associated with the use of original fluorescent mutant in mice, allowed us to develop an innovative model of infection in vivo. This model permitted to look directly into the interaction between Y. pestis and its host vascular system, in 3D reconstructed tissues without physical alteration. We were able to observe the degradation of blood vessels in the draining lymph nodes and to visualize the spreading of the bacteria into secondary organs directly through the vascular barrier. Classical in vitro experiments validated the in vivo observation and demonstrated the role of some of the bacterial components in this phenotype. This work shows an unprecedented visualization of the pathogenesis of Y. pestis and decipher part of the powerful invasiveness capacity of the plague bacillus and the hemorrhagic features of plague.
Collapse
Affiliation(s)
- Guillain Mikaty
- Institut Pasteur, Yersinia Research Unit, Paris, France
- * E-mail:
| | | | - Laurence Fiette
- Institut Pasteur, Unité d’histopathologie humaine et modèles animaux, Paris, France
| | | | | |
Collapse
|
295
|
Shet M, Hong R, Igo D, Cataldo M, Bhaskar S. In Vitro Evaluation of the Virucidal Activity of Different Povidone-Iodine Formulations Against Murine and Human Coronaviruses. Infect Dis Ther 2021; 10:2777-2790. [PMID: 34581973 PMCID: PMC8477977 DOI: 10.1007/s40121-021-00536-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Polyvinylpyrrolidone–iodine (PVP-I) demonstrates broad-spectrum anti-infective activity and is available in different formulations for oral rinse and topical use in medical and personal care settings. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the need to supplement available preventive strategies. Methods We assessed virucidal activity of PVP-I formulations, including 0.5% (w/v) solution, 5.0% (w/v) solution, 7.5% (w/v) scrub, and 10.0% (w/v) solution, versus placebos when challenged with coronaviruses in two in vitro studies. Murine coronavirus strain A59 (American Type Culture Collection [ATCC]® VR-764™), human coronavirus strain OC43 (ZeptoMetrix Corp. #0810024CF), human coronavirus strain NL63 (ZeptoMetrix Corp. #0810228CF), and human coronavirus strain 229E (ATCC® VR-740™) were used as surrogates for SARS-CoV-2. Both studies used the American Society for Testing and Materials in vitro time-kill method. Results All active PVP-I formulations in study 1 demonstrated virucidal activity at 15 s, with mean log10 reduction of greater than 4.56 or greater than 99.99% inactivation; a cytotoxic effect against the National Collection of Type Cultures clone 1469 host cells was observed with 5.0% (w/v) solution, 7.5% (w/v) scrub, and 10.0% (w/v) solution. Active PVP-I formulations in study 2 demonstrated effective virucidal activity against coronaviruses in less than 15 s; log10 reduction in viral titer for each coronavirus strain was consistently higher for 10.0% (w/v) solution and 0.5% (w/v) solution versus 7.5% (w/v) scrub. Conclusion Both studies demonstrated in vitro virucidal activity of PVP-I formulations when challenged with SARS-CoV-2 surrogate coronaviruses. Although promising, further investigations are needed to evaluate SARS-CoV-2 inactivation.
Collapse
Affiliation(s)
- Manjunath Shet
- Imbrium Therapeutics, 201 Tresser Blvd, Stamford, CT, 06901, USA
| | - Rosa Hong
- Avrio Health L.P., 201 Tresser Blvd, Stamford, CT, 06901, USA
| | - David Igo
- Imbrium Therapeutics, 201 Tresser Blvd, Stamford, CT, 06901, USA
| | - Marc Cataldo
- Purdue Pharma L.P., 201 Tresser Blvd, Stamford, CT, 06901, USA.
| | - Sailaja Bhaskar
- Imbrium Therapeutics, 201 Tresser Blvd, Stamford, CT, 06901, USA
| |
Collapse
|
296
|
Long J, Teng B, Zhang W, Li L, Zhang M, Chen Y, Yao Z, Meng X, Wang X, Qin L, Lai Y. Preclinical evaluation of acute systemic toxicity of magnesium incorporated poly(lactic-co-glycolic acid) porous scaffolds by three-dimensional printing. BIOMATERIALS TRANSLATIONAL 2021; 2:272-284. [PMID: 35836655 PMCID: PMC9255806 DOI: 10.12336/biomatertransl.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/31/2021] [Accepted: 08/20/2021] [Indexed: 11/11/2022]
Abstract
Biodegradable polymer scaffolds combined with bioactive components which accelerate osteogenesis and angiogenesis have promise for use in clinical bone defect repair. The preclinical acute toxicity evaluation is an essential assay of implantable biomaterials to assess the biosafety for accelerating clinical translation. We have successfully developed magnesium (Mg) particles and beta-tricalcium phosphate (β-TCP) for incorporation into poly(lactic-co-glycolic acid) (PLGA) porous composite scaffolds (PTM) using low-temperature rapid prototyping three-dimensional-printing technology. The PTM scaffolds have been fully evaluated and found to exhibit excellent osteogenic capacity for bone defect repair. The preclinical evaluation of acute systemic toxicities is essential and important for development of porous scaffolds to facilitate their clinical translation. In this study, acute systemic toxicity of the PTM scaffolds was evaluated in mice by intraperitoneal injection of the extract solutions of the scaffolds. PTM composite scaffolds with different Mg and β-TCP content (denoted as PT5M, PT10M, and PT15M) were extracted with different tissue culture media, including normal saline, phosphate-buffered saline , and serum-free minimum essential medium , to create the extract solutions. The evaluation was carried out following the National Standard. The acute toxicity was fully evaluated through the collection of extensive data, including serum/organs ion concentration, fluorescence staining, and in vivo median lethal dose measurement. Mg in major organs (heart, liver, and lung), and Mg ion concentrations in serum of mice, after intraperitoneal injection of the extract solutions, were measured and showed that the extract solutions of PT15M caused significant elevation of serum Mg ion concentrations, which exceeded the safety threshold and led to the death of the mice. In contrast, the extract solutions of PT5M and PT10M scaffolds did not cause the death of the injected mice. The median lethal dose of Mg ions in vivo for mice was determined for the first time in this study to be 110.66 mg/kg, and the safety level of serum magnesium toxicity in mice is 5.4 mM, while the calcium serum safety level is determined as 3.4 mM. The study was approved by the Animal Care and Use Committee of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (approval No. SIAT-IRB-170401-YGS-LYX-A0346) on April 5, 2017. All these results showed that the Mg ion concentration of intraperitoneally-injected extract solutions was a determinant of mouse survival, and a high Mg ion concentration (more than 240 mM) was the pivotal factor contributing to the death of the mice, while changes in pH value showed a negligible effect. The comprehensive acute systemic toxicity evaluation for PTM porous composite scaffolds in this study provided a reference to guide the design and optimization of this composite scaffold and the results demonstrated the preclinical safety of the as-fabricated PTM scaffold with appropriate Mg content, strongly supporting the official registration process of the PTM scaffold as a medical device for clinical translation.
Collapse
Affiliation(s)
- Jing Long
- Centre for Translational Medicine and Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Bin Teng
- Centre for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Wei Zhang
- Centre for Translational Medicine and Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Long Li
- Centre for Translational Medicine and Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China,Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Guangdong, Guangdong Province, China
| | - Ming Zhang
- Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Guangdong, Guangdong Province, China
| | - Yingqi Chen
- Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Guangdong, Guangdong Province, China
| | - Zhenyu Yao
- Centre for Translational Medicine and Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xiangbo Meng
- Centre for Translational Medicine and Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xinluan Wang
- Centre for Translational Medicine and Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Ling Qin
- Centre for Translational Medicine and Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuxiao Lai
- Centre for Translational Medicine and Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China,Centre for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China,Corresponding author: Yuxiao Lai,
| |
Collapse
|
297
|
Lee TY, Lee H, Kim N, Jeon P, Kim JW, Lim HY, Yang JS, Kim KC, Lee JY. Comparison of SARS-CoV-2 variant lethality in human angiotensin-converting enzyme 2 transgenic mice. Virus Res 2021; 305:198563. [PMID: 34530046 PMCID: PMC8437746 DOI: 10.1016/j.virusres.2021.198563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
This study compared the lethality of severe acute respiratory syndrome coronavirus 2 variants belonging to the S, V, L, G, GH, and GR clades using K18-human angiotensin-converting enzyme 2 heterozygous mice. To estimate the 50% lethal dose (LD50) of each variant, increasing viral loads (100–104 plaque-forming units [PFU]) were administered intranasally. Mouse weight and survival were monitored for 14 days. The LD50 of the GH and GR clades was significantly lower than that of other clades at 50 PFU. These findings suggest that the GH and GR clades, which are prevalent worldwide, are more virulent than the other clades.
Collapse
Affiliation(s)
- Tae-Young Lee
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Cheongju-si, Chungbuk, Republic of Korea
| | - Hansaem Lee
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Cheongju-si, Chungbuk, Republic of Korea
| | - Nayoung Kim
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Cheongju-si, Chungbuk, Republic of Korea
| | - Pyeonghwa Jeon
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Cheongju-si, Chungbuk, Republic of Korea
| | - Jun-Won Kim
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Cheongju-si, Chungbuk, Republic of Korea
| | - Hee-Young Lim
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Cheongju-si, Chungbuk, Republic of Korea
| | - Jeong-Sun Yang
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Cheongju-si, Chungbuk, Republic of Korea
| | - Kyung-Chang Kim
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Cheongju-si, Chungbuk, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea.
| |
Collapse
|
298
|
Molecular Characterization and Cross-Reactivity of Feline Calicivirus Circulating in Southwestern China. Viruses 2021; 13:v13091812. [PMID: 34578393 PMCID: PMC8473038 DOI: 10.3390/v13091812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Feline calicivirus (FCV) is an important pathogen of cats that has two genogroups (GI and GII). To investigate the prevalence and molecular characteristics of FCVs in southwestern China, 162 nasal swab samples were collected from cats in animal shelters and pet hospitals. In total, 38 of the clinical samples (23.46%) were identified as FCV positive using nested RT-PCR. Phylogenetic analyses using 10 capsid protein VP1 sequences revealed that 8 GI and 2 GII strains formed two independent clusters. Additionally, three separated FCVs that were not clustered phylogenetically (two GI and one GII strains) were successfully isolated from clinical samples and their full-length genomes were obtained. Phylogenetic and recombinant analyses of a GI FCV revealed genomic breakpoints in ORF1 and ORF2 regions with evidence for recombinant events between GI sub-genogroups, which is reported in China for the first time. Furthermore, sera obtained from mice immunized independently with the three FCV isolates and a commercial vaccine were used to evaluate the cross-reactivity of neutralizing antibodies. The three separate FCVs were neutralized by each other at a 1:19 to 1:775 titer range, whereas the triple-inactivated vaccine was at a titer of 1:16, which suggested that different genogroup/sub-genogroup FCV strains exhibit significantly different titers of neutralizing antibodies, including the commercial FCV vaccine. Thus, our study revealed the genetic diversity and complex cross-reactivity levels of FCVs in southwestern China, which provides new insights for application in vaccination strategies.
Collapse
|
299
|
Kulkarni R, Chen WC, Lee Y, Kao CF, Hu SL, Ma HH, Jan JT, Liao CC, Liang JJ, Ko HY, Sun CP, Lin YS, Wang YC, Wei SC, Lin YL, Ma C, Chao YC, Chou YC, Chang W. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021; 16:e0257191. [PMID: 34499677 PMCID: PMC8428573 DOI: 10.1371/journal.pone.0257191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yin-Shoiou Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chiuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Academi Sinica SPF Animal Facility, Academia Sinica, Taipei, Taiwan
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
300
|
Shivkumar M, Adkin P, Owen L, Laird K. Investigation of the stability and risks of fomite transmission of human coronavirus OC43 on leather. FEMS Microbiol Lett 2021; 368:6359717. [PMID: 34459482 PMCID: PMC8499771 DOI: 10.1093/femsle/fnab112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Limited research exists on the potential for leather to act as a fomite of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or endemic coronaviruses including human coronavirus (HCoV) OC43; this is important for settings such as the shoe manufacturing industry. Antiviral coating of leather hides could limit such risks. This study aimed to investigate the stability and transfer of HCoVOC43 on different leathers, as a surrogate for SARS-CoV-2, and assess the antiviral efficacy of a silver-based leather coating. The stability of HCoV-OC43 (6.6 log10) on patent, full-grain calf, corrected grain finished and nubuck leathers (silver additive-coated and uncoated) was measured by titration on BHK-21 cells. Transfer from leather to cardboard and stainless steel was determined. HCoV-OC43 was detectable for 6 h on patent, 24 h on finished leather and 48 h on calf leather; no infectious virus was recovered from nubuck. HCoV-OC43 transferred from patent, finished and calf leathers onto cardboard and stainless steel up to 2 h post-inoculation (≤3.1–5.5 log10), suggesting that leathers could act as fomites. Silver additive-coated calf and finished leathers were antiviral against HCoV-OC43, with no infectious virus recovered after 2 h and limited transfer to other surfaces. The silver additive could reduce potential indirect transmission of HCoV-OC43 from leather.
Collapse
Affiliation(s)
- Maitreyi Shivkumar
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Pat Adkin
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Lucy Owen
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Katie Laird
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| |
Collapse
|