301
|
Bala AA, Oukkache N, Sanchez EE, Suntravat M, Galan JA. Venoms and Extracellular Vesicles: A New Frontier in Venom Biology. Toxins (Basel) 2025; 17:36. [PMID: 39852989 PMCID: PMC11769160 DOI: 10.3390/toxins17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases.
Collapse
Affiliation(s)
- Auwal A. Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco;
| | - Elda E. Sanchez
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Montamas Suntravat
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Jacob A. Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| |
Collapse
|
302
|
Wang R, Hastings WJ, Saliba JG, Bao D, Huang Y, Maity S, Kamal Ahmad OM, Hu L, Wang S, Fan J, Ning B. Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution. ACS NANO 2025; 19:73-100. [PMID: 39704725 PMCID: PMC11752498 DOI: 10.1021/acsnano.4c11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Spatial omics methods are extensions of traditional histological methods that can illuminate important biomedical mechanisms of physiology and disease by examining the distribution of biomolecules, including nucleic acids, proteins, lipids, and metabolites, at microscale resolution within tissues or individual cells. Since, for some applications, the desired resolution for spatial omics approaches the nanometer scale, classical tools have inherent limitations when applied to spatial omics analyses, and they can measure only a limited number of targets. Nanotechnology applications have been instrumental in overcoming these bottlenecks. When nanometer-level resolution is needed for spatial omics, super resolution microscopy or detection imaging techniques, such as mass spectrometer imaging, are required to generate precise spatial images of target expression. DNA nanostructures are widely used in spatial omics for purposes such as nucleic acid detection, signal amplification, and DNA barcoding for target molecule labeling, underscoring advances in spatial omics. Other properties of nanotechnologies include advanced spatial omics methods, such as microfluidic chips and DNA barcodes. In this review, we describe how nanotechnologies have been applied to the development of spatial transcriptomics, proteomics, metabolomics, epigenomics, and multiomics approaches. We focus on how nanotechnology supports improved resolution and throughput of spatial omics, surpassing traditional techniques. We also summarize future challenges and opportunities for the application of nanotechnology to spatial omics methods.
Collapse
Affiliation(s)
- Ruixuan Wang
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Waylon J. Hastings
- Department
of Psychiatry and Behavioral Science, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Julian G. Saliba
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Duran Bao
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanyu Huang
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Sudipa Maity
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Omar Mustafa Kamal Ahmad
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Logan Hu
- Groton
School, 282 Farmers Row, Groton, Massachusetts 01450, United States
| | - Shengyu Wang
- St.
Margaret’s Episcopal School, 31641 La Novia Avenue, San
Juan Capistrano, California92675, United States
| | - Jia Fan
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Bo Ning
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
303
|
Ye J, Wang JG, Liu RQ, Shi Q, Wang WX. Association between intra-pancreatic fat deposition and diseases of the exocrine pancreas: A narrative review. World J Gastroenterol 2025; 31:101180. [PMID: 39811515 PMCID: PMC11684206 DOI: 10.3748/wjg.v31.i2.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/26/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Intrapancreatic fat deposition (IPFD) has garnered increasing attention in recent years. The prevalence of IPFD is relatively high and associated with factors such as obesity, age, and sex. However, the pathophysiological mechanisms underlying IPFD remain unclear, with several potential contributing factors, including oxidative stress, alterations in the gut microbiota, and hormonal imbalances. IPFD was found to be highly correlated with the occurrence and prognosis of exocrine pancreatic diseases. Although imaging techniques remain the primary diagnostic approach for IPFD, an expanding array of biomarkers and clinical scoring systems have been identified for screening purposes. Currently, effective treatments for IPFD are not available; however, existing medications, such as glucagon-like peptide-1 receptor agonists, and new therapeutic approaches explored in animal models have shown considerable potential for managing this disease. This paper reviews the pathogenesis of IPFD, its association with exocrine pancreatic diseases, and recent advancements in its diagnosis and treatment, emphasizing the significant clinical relevance of IPFD.
Collapse
Affiliation(s)
- Jing Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jian-Guo Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Rong-Qiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qiao Shi
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei-Xing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
304
|
Burroughs RW, Percival CJ, Vitek NS. Reduced Dietary Protein Induces Changes in the Dental Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632248. [PMID: 39868298 PMCID: PMC11761009 DOI: 10.1101/2025.01.13.632248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth's norm of reaction. Determining the identity of those mechanisms and the relative importance of each of them is one of the main challenges to understanding phenotypic plasticity. Quantitative proteomics combined with experimental studies allow for the identification of potential molecular contributors to a plastic response through quantification of expressed gene products. Here, we present the results of a quantitative proteomics analysis of mature upper first molars (M1s) in Mus musculus from a controlled feeding experiment. Pregnant and nursing mothers were fed either a low-dietary protein (10%) treatment diet or control (20%) diet. Expression of tooth-related proteins, immune system proteins, and actin-based myosin proteins were significantly altered in our low-dietary protein sample. The recovery of expression change in tooth development proteins was anticipated and consistent with previous proteomic studies. We also identified differential immune protein response along with systematic reduction in actin-based myosin protein expression, which are novel discoveries for tooth proteomics studies. We propose that studies which aim to elucidate specific mechanisms of molar phenotypic plasticity should prioritize investigations into the relationships between IGF regulation and tooth development and actin-based myosin expression and tooth development. Research Highlights A low-protein diet during development results in significantly altered protein expression for major dental building proteins, immune system proteins, and actin-based myosin proteins within Mus musculus .
Collapse
|
305
|
Panda VK, Mishra B, Mahapatra S, Swain B, Malhotra D, Saha S, Khanra S, Mishra P, Majhi S, Kumari K, Nath AN, Saha S, Jena S, Kundu GC. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:234. [PMID: 39858015 PMCID: PMC11763662 DOI: 10.3390/cancers17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure. These receptors mediate various downstream signaling pathways such as MAPK, including MEK/ERK signaling pathways that promote common pro-oncogenic signaling, whereas dysregulation of PI3K/Akt, Wnt/β-catenin, and JAK/STAT activates key oncogenic events such as drug resistance, CSC enrichment, and metabolic reprogramming. Additionally, these cascades orchestrate an intricate interplay between stromal cells, immune cells, and tumor cells. Metabolic reprogramming and adaptations contribute to aggressive breast cancer and are unresponsive to therapy. Herein, recent insights into the novel signaling pathways operating within the breast TME that aid in their advancement are emphasized and current developments in practices targeting the breast TME to enhance treatment efficacy are reviewed.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Swarnali Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sarmistha Jena
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
306
|
Tran NB, Chang TK, Chi NDP, Lai KY, Chen HT, Fong YC, Liaw CC, Tang CH. Ugonin inhibits chondrosarcoma metastasis through suppressing cathepsin V via promoting miR-4799-5p expression. Int J Biol Sci 2025; 21:1144-1157. [PMID: 39897041 PMCID: PMC11781170 DOI: 10.7150/ijbs.106827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Chondrosarcoma is a rare type of bone cancer that develops in cartilage cells. In recent years, the incidence of chondrosarcomas has steadily increased worldwide. During the advanced stages, chondrosarcoma carries a significant risk of metastasis and exhibits resistance to both chemotherapy and radiation therapy. Hence, the development of potent treatments for chondrosarcoma is an urgent requirement. Ugonin V is a flavonoid compound that has been extracted from the plant Helminthostachys zeylanica (L.) Hook. This study examined the molecular therapeutic effects of ugonin V on chondrosarcoma metastasis. Analysis of the GSE30835 dataset, which consists of chondrosarcoma tissues and normal cartilage, revealed significant upregulation of three cathepsin proteases in chondrosarcoma, namely cathepsin (CTS) A, L, and V. Notably, ugonin V specifically suppressed cathepsin V mRNA expression. We also found that ugonin V strongly inhibits chondrosarcoma cell motility by regulating CTSV expression. In addition, through miRNA sequencing, we observed that ugonin V targets CTSV via miR-4799-5p to effectively suppress chondrosarcoma cell migration and invasion. Our in vitro and in vivo studies provide an initial investigation of the involvement of cathepsin V and miR-4799-5p in chondrosarcoma metastasis after ugonin V treatmen.
Collapse
Affiliation(s)
- Nguyen Bao Tran
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, 404
| | - Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, 252
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan, 104
| | - Nguyen Duong Phuong Chi
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, Taiwan, 404
| | - Kuan-Ying Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan, 404
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan, 404
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan, 404
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan, 404
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Taichung, Yunlin, Taiwan, 651
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan, 807
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, 404
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan, 404333
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan, 404
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan, 41354
| |
Collapse
|
307
|
Srinivasan R, Ramadoss R, Kandasamy V, Ranganadin P, Green SR, Kasirajan A, Pillai AB. Exploring the regulatory role of small RNAs in modulating host-pathogen interactions: implications for bacterial and viral infections. Mol Biol Rep 2025; 52:115. [PMID: 39799541 DOI: 10.1007/s11033-024-10214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections. In the context of viral infections, miRNAs are involved in regulating viral replication, pathogenesis, and immune evasion. Similarly, tiRNAs have recently emerged as novel players in bacterial and viral infections such as modulating bacterial growth, adaptation to stress conditions, host antiviral responses, and impacting viral replication and pathogenesis. This review provides a comprehensive analysis of the potential of miRNA expression profiles as diagnostic biomarkers to differentiate between bacterial and viral infections. Further discusses the key pathways through which small RNAs regulate bacterial and viral infection-related diseases.
Collapse
Affiliation(s)
- Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Vanathy Kandasamy
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Pajanivel Ranganadin
- Department of Pulmonary Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Siva Ranganathan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Anand Kasirajan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
- Institute of Advanced Virology, Trivandrum, Kerala, 695 317, India.
| |
Collapse
|
308
|
Essid A, Elbini I, Ksiksi R, Harrab N, Moslah W, Jendoubi I, Doghri R, Zid MF, Luis J, Srairi-Abid N. Decavanadate Compound Displays In Vitro and In Vivo Antitumor Effect on Melanoma Models. Bioinorg Chem Appl 2025; 2025:6680022. [PMID: 39834888 PMCID: PMC11742080 DOI: 10.1155/bca/6680022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
The efficacy of available treatments for melanoma is limited by side effects and the rapidly emerging resistance to treatment. In this context, the decavanadate compounds represent promising tools to design efficient therapeutic agents. In our study, we synthesized a dimagnesium disodium decavanadate icosahydrate compound (Mg2Na2V10O28·20H2O) and investigated its structure stability as well as its antimelanoma effects. Results showed that the Mg2Na2V10O28·20H2O compound is structured in a monoclinic system with the space group C2/c, stabilized by oxygen vertices, hydrogen bonds, and van der Waals interactions. Interestingly, we found that this newly synthesized compound reduced the viability of human (IGR39, IGR37, and SKMEL28) and murine (B16-F10) melanoma cells in a dose-dependent manner. The IC50 values ranged from 7.3 to 18 μM after 24 h and decreased to 1.4 μM after 72 h of treatment. Notably, this effect was more important than that of cisplatin (IC50 = 3 μM after 72 h of treatment), a chemotherapeutic agent, commonly used in the treatment of malignant melanoma. Furthermore, the cytotoxicity of the decavanadate compound was relatively weak on normal human keratinocytes (HaCaT), with a light effect (IC50 >> 70 μM) observed after 24 h of treatment. Thus, the Mg2Na2V10O28·20H2O compound displayed an advantage over cisplatin, which was reported to be much more aggressive to the keratinocyte cell line (IC50 = 23.9 μM). Moreover, it inhibited dose-dependently the adhesion of IGR39 cells to collagen (IC50 = 2.67 μM) and fibronectin, as well as their migration with an IC50 value of 2.23 μM. More interestingly, its in vivo administration to B16-F10 allografted mice, at the nontoxic dose of 50 μg (2.5 mg/kg), prevented and suppressed by 70% the tumor growth, compared to the nontreated mice. Moreover, this compound has also allowed a recovery against inflammation induced in mice by a mixture of DMBA and croton oil. Thus, all our results showed the potential of the Mg2Na2V10O28·20H2O compound to prevent and efficiently treat the growth and metastasis of melanoma.
Collapse
Affiliation(s)
- Amine Essid
- Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia
| | - Ines Elbini
- Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia
| | - Regaya Ksiksi
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, El Manar II, Tunis 2092, Tunisia
| | - Nardine Harrab
- Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia
| | - Wassim Moslah
- Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia
| | - Imen Jendoubi
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, El Manar II, Tunis 2092, Tunisia
| | - Raoudha Doghri
- Laboratoire de Médecine de Précision, Médecine Personnalisée et Investigation en Oncologie (LR21SP01), Service d'Anatomie Pathologique, Institut Salah Azaiez, Bab Saadoun, Tunis 1006, Tunisia
| | - Mohamed-Faouzi Zid
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, El Manar II, Tunis 2092, Tunisia
| | - José Luis
- Institut de Neurophysiopathologie, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, Marseille 13005, France
| | - Najet Srairi-Abid
- Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
309
|
Zhou N, Shi X, Wang R, Wang C, Lan X, Liu G, Li W, Zhou Y, Ning Y. Proteomic patterns associated with ketamine response in major depressive disorders. Cell Biol Toxicol 2025; 41:26. [PMID: 39792340 PMCID: PMC11723896 DOI: 10.1007/s10565-024-09981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by persistent feelings of sadness and loss of interest. Ketamine has been widely used to treat MDD owing to its rapid effect in relieving depressive symptoms. Importantly, not all patients respond to ketamine treatment. Identifying sub-populations who will benefit from ketamine, as well as those who may not, prior to treatment initiation, would significantly advance precision medicine in patients with MDD. METHODS Here, we used mass spectrometry-based plasma proteomics to analyze matched pre- and post-ketamine treatment samples from a cohort of 30 MDD patients whose treatment outcomes and demographic and clinical characteristics were considered. RESULTS Ketamine responders and non-responders were identified according to their individual outcomes after two weeks of treatment. We analyzed proteomic alterations in post-treatment samples from responders and non-responders and identified a collection of six proteins pivotal to the antidepressive effect of ketamine. Subsequent co-regulation analysis revealed that pathways related to immune response were involved in ketamine response. By comparing the proteomic profiles of samples from the same individuals at the pre- and post-treatment time points, dynamic proteomic rearrangements induced by ketamine revealed that immune-related processes were activated in association with its antidepressive effect. Furthermore, receiver operating characteristic curve analysis of pre-treatment samples revealed three proteins with strong predictive performance in determining the response of patients to ketamine before receiving treatment. CONCLUSIONS These findings provide valuable knowledge about ketamine response, which will ultimately lead to more personalized and effective treatments for patients. TRIAL REGISTRATION The study was registered in the Chinese Clinical Trials Registry (ChiCTR-OOC-17012239) on May 26, 2017.
Collapse
Affiliation(s)
- Nan Zhou
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Xiaolei Shi
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Runhua Wang
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Chengyu Wang
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Xiaofeng Lan
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Guanxi Liu
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Weicheng Li
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Yanling Zhou
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.
| | - Yuping Ning
- Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
310
|
Ősz F, Nazir A, Takács-Vellai K, Farkas Z. Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in C. elegans. Antioxidants (Basel) 2025; 14:76. [PMID: 39857410 PMCID: PMC11761250 DOI: 10.3390/antiox14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using Caenorhabditis elegans as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels. We highlight the utility of redox sensors in C. elegans for in vivo studies of reactive oxygen species, offering both quantitative and qualitative insights. Finally, we examine the potential of C. elegans as a platform for testing ETC-targeting drug candidates, including OXPHOS inhibitors, which represent promising avenues in cancer therapeutics. This review underscores the translational relevance of ETC research in C. elegans, bridging fundamental biology and therapeutic innovation.
Collapse
Affiliation(s)
- Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India;
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| |
Collapse
|
311
|
Li P, Pulugulla S, Das S, Oh J, Spolski R, Lin JX, Leonard WJ. A new pipeline SPICE identifies novel JUN-IKZF1 composite elements. eLife 2025; 12:RP88833. [PMID: 39786853 PMCID: PMC11717359 DOI: 10.7554/elife.88833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.
Collapse
Affiliation(s)
- Peng Li
- Amgen IncRockvilleUnited States
| | - Sree Pulugulla
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Sonali Das
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| |
Collapse
|
312
|
Hu T, Ma H, Xiao Y, Sun R, Li C, Shan L, Zhang B. Chromosome-Level Genome Assembly of Five Emberiza Species Reveals the Genomic Characteristics and Intrinsic Drivers of Adaptive Radiation. Mol Ecol Resour 2025:e14063. [PMID: 39776321 DOI: 10.1111/1755-0998.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Emberiza buntings (Aves: Emberizidae) exhibit extensive diversity and rapid diversification within the Old World, particularly in the eastern Palearctic, making them valuable models for studying rapid radiation among sympatric species. Despite their ecological and morphological diversity, there remains a significant gap in understanding the genomic underpinnings driving their rapid speciation. To fill this gap, we assembled high-quality chromosome-level genomes of five representative Emberiza species (E. aureola, E. pusilla, E. rustica, E. rutila and E. spodocephala). Comparative genomic analysis revealed distinct migration-related evolutionary adaptations in their genomes, including variations in lipid metabolism, oxidative stress response, locomotor ability and circadian regulation. These changes may facilitate the rapid occupation of emerging ecological niches and provide opportunities for species diversification. Additionally, these five species exhibited abnormal abundances of long terminal repeat retrotransposons (LTRs), comprising over 20% of their genomes, with insertion times corresponding to their divergence (~2.5 million years ago). The presence of LTRs influenced genome size, chromosomal structure and single-gene expression, suggesting their role in promoting the rapid diversification of Emberiza species. These findings offer valuable insights into the adaptive radiation of Emberiza and establish a robust theoretical foundation for further exploration of the patterns and mechanisms underlying their diversification.
Collapse
Affiliation(s)
- Tingli Hu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Haohao Ma
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yongxuan Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Ruolei Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Chunlin Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Lei Shan
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
313
|
Bastola S, Pavlyukov MS, Sharma N, Ghochani Y, Nakano MA, Muthukrishnan SD, Yu SY, Kim MS, Sohrabi A, Biscola NP, Yamashita D, Anufrieva KS, Kovalenko TF, Jung G, Ganz T, O'Brien B, Kawaguchi R, Qin Y, Seidlits SK, Burlingame AL, Oses-Prieto JA, Havton LA, Goldman SA, Hjelmeland AB, Nakano I, Kornblum HI. Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma. Nat Commun 2025; 16:471. [PMID: 39773984 PMCID: PMC11707362 DOI: 10.1038/s41467-024-55487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity. Mechanistically, Endocan exerts at least part of its functions via direct binding and activation of the PDGFRA receptor. Subsequent downstream signaling enhances chromatin accessibility of the Myc promoter and upregulates Myc expression inducing stable phenotypic changes in GBM cells. Furthermore, Endocan confers radioprotection on GBM cells in vitro and in vivo. Inhibition of Endocan-PDGFRA signaling with ponatinib increases survival in the Esm1 wild-type but not in the Esm1 knock-out mouse GBM model. Our findings identify Endocan and its downstream signaling axis as a potential target to subdue GBM recurrence and highlight the importance of vascular-tumor interactions for GBM development.
Collapse
Affiliation(s)
- Soniya Bastola
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marat S Pavlyukov
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Neel Sharma
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yasmin Ghochani
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mayu A Nakano
- Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sree Deepthi Muthukrishnan
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sang Yul Yu
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Min Soo Kim
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alireza Sohrabi
- Department of Bioengineering, University of Texas at Austin, Austin, TX, USA
| | - Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, Japan
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine of Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia
| | | | - Grace Jung
- Department of Medicine, Center for Iron Disorders, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tomas Ganz
- Department of Medicine, Center for Iron Disorders, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Beatrice O'Brien
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Riki Kawaguchi
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Interdepartmental Program in Bioinformatics, Program in Neurogenetics, Department of Neurology and Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yue Qin
- Interdepartmental Program in Bioinformatics, Program in Neurogenetics, Department of Neurology and Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Leif A Havton
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, James J Peters VA Medical Center, Bronx, NY, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Harada Hospital, Iruma, Saitama, Japan.
| | - Harley I Kornblum
- The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
314
|
Pashkina E, Bykova M, Berishvili M, Lazarev Y, Kozlov V. Hyaluronic Acid-Based Drug Delivery Systems for Cancer Therapy. Cells 2025; 14:61. [PMID: 39851489 PMCID: PMC11764402 DOI: 10.3390/cells14020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
In recent years, hyaluronic acid (HA) has attracted increasing attention as a promising biomaterial for the development of drug delivery systems. Due to its unique properties, such as high biocompatibility, low toxicity, and modifiability, HA is becoming a basis for the creation of targeted drug delivery systems, especially in the field of oncology. Receptors for HA overexpressed in subpopulations of cancer cells, and one of them, CD44, is recognized as a molecular marker for cancer stem cells. This review examines the role of HA and its receptors in health and tumors and analyzes existing HA-based delivery systems and their use in various types of cancer. The development of new HA-based drug delivery systems will bring new opportunities and challenges to anti-cancer therapy.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Maria Berishvili
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Yaroslav Lazarev
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| |
Collapse
|
315
|
Li K, Song Y, Fan Y, Zhang H, Chu M, Liu Y. Transcriptome integration analysis revealed that miR-103-3p regulates goat myoblast proliferation by targeting FGF18. BMC Genomics 2025; 26:16. [PMID: 39773020 PMCID: PMC11706129 DOI: 10.1186/s12864-024-11183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myoblasts serve as the fundamental building blocks of muscle fibers, and there is a positive correlation between the diameter of myofibers during the juvenile phase and the rate of muscle growth, which does not change in adulthood. However, the molecular mechanisms governing myofiber diameter across various developmental stages in goats remain largely unclear. RESULTS In this study, we examined miRNA expression in the longissimus dorsi muscle tissue of goats at two distinct ages: one month, a period characterized by robust muscle growth, and nine months, when muscle development plateaus in adulthood. A total of 408 known miRNAs and 86 novel miRNAs were identified, with 32 miRNAs exhibiting differential expression between the two groups. A functional enrichment analysis of these targeted genes revealed significant enrichment in pathways closely correlated with skeletal muscle growth, development, and senescence. Notably, chi-miR-103-3p was identified among the DE miRNAs and appeared to play an important role in skeletal myoblast proliferation. Bioinformatics analysis, complemented by dual luciferase activity assays revealed that chi-miR-103-3p specifically targets the 3'UTR of FGF18. Subsequent cell transfection experiments demonstrated that chi-miR-103-3p suppresses the expression of FGF18 in goat myoblasts, thereby inhibiting cell proliferation. Moreover, FGF18 was observed to enhance the proliferation of goat myoblasts. CONCLUSIONS Collectively, our data indicated that the elevated expression of chi-miR-103-3p in adult goat myoblasts significantly repressed FGF18 expression, thereby limiting rapid muscle growth. Proliferation and differentiation of myoblasts can affect myofiber number and cell volume expansion. These findings lay the foundation for further elucidation of the molecular mechanisms underlying muscle growth and development across different life stages of goats. Additionally, it could be a potential molecular marker for improving muscle production in goats.
Collapse
Affiliation(s)
- Kunyu Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yize Song
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yekai Fan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
316
|
Puurand M, Llorente A, Linē A, Kaambre T. Exercise-induced extracellular vesicles in reprogramming energy metabolism in cancer. Front Oncol 2025; 14:1480074. [PMID: 39834935 PMCID: PMC11743358 DOI: 10.3389/fonc.2024.1480074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation. The mechanisms of how exercise modulates cancer energy metabolism and the tumor microenvironment through systemic effects mediated, in part, by extracellular vesicles (EVs) are still unknown. By transferring bioactive cargo such as miRNAs, proteins and metabolites, exercise-induced EVs may influence cancer cells by altering glycolysis and oxidative phosphorylation, potentially shifting metabolic plasticity - a hallmark of cancer. This short review explores the roles of EVs in cancer as mediators to reprogram cellular energy metabolism through exchanging information inside the tumor microenvironment, influencing immune cells, fibroblast and distant cells. Considering this knowledge, further functional studies into exercise-induced EVs and cellular energy production pathways could inform more specific exercise interventions to enhance cancer therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | - Aija Linē
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
317
|
Lopes V, Figueiredo J, Carneiro P, Gouveia M, Travasso RDM, Carvalho J. A 3D Computational Study on the Formation and Progression of Tumor Cells in Diffuse Gastric Cancer. Bull Math Biol 2025; 87:28. [PMID: 39755811 DOI: 10.1007/s11538-024-01405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and α -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development. In this model, we have implemented a cellular Potts approach that contemplates cell adhesion to other cells and to the extracellular matrix, cell extrusion from the gastric epithelia, and subsequent proliferation. We demonstrate that early disease features are determined by decreased adhesion of mutant cells to their normal epithelial neighbors, with concomitant increased attachment to matrix components. Importantly, our simulation shows how mechanical pressure and uncontrolled proliferation of mutant cells lead to modifications in cell shape and in gastric gland morphology. In conclusion, this work underscores the potential of computational models to elucidate the role of cellular and noncellular components in gastric cancer that may be relevant targets in therapeutic interventions.
Collapse
Affiliation(s)
- Valéria Lopes
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal
| | - Joana Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
| | - Marcos Gouveia
- INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciencia, Rua Dr. Roberto Frias, Porto, Portugal
| | - Rui D M Travasso
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.
| |
Collapse
|
318
|
Fahs HZ, Refai FS, Gopinadhan S, Moussa Y, Gan HH, Hunashal Y, Battaglia G, Cipriani PG, Ciancia C, Rahiman N, Kremb S, Xie X, Pearson YE, Butterfoss GL, Maizels RM, Esposito G, Page AP, Gunsalus KC, Piano F. A new class of natural anthelmintics targeting lipid metabolism. Nat Commun 2025; 16:305. [PMID: 39746976 PMCID: PMC11695593 DOI: 10.1038/s41467-024-54965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Parasitic helminths are a major global health threat, infecting nearly one-fifth of the human population and causing significant losses in livestock and crops. Resistance to the few anthelmintic drugs is increasing. Here, we report a set of avocado fatty alcohols/acetates (AFAs) that exhibit nematocidal activity against four veterinary parasitic nematode species: Brugia pahangi, Teladorsagia circumcincta and Heligmosomoides polygyrus, as well as a multidrug resistant strain (UGA) of Haemonchus contortus. AFA shows significant efficacy in H. polygyrus infected mice. In C. elegans, AFA exposure affects all developmental stages, causing paralysis, impaired mitochondrial respiration, increased reactive oxygen species production and mitochondrial damage. In embryos, AFAs penetrate the eggshell and induce rapid developmental arrest. Genetic and biochemical tests reveal that AFAs inhibit POD-2, encoding an acetyl CoA carboxylase, the rate-limiting enzyme in lipid biosynthesis. These results uncover a new anthelmintic class affecting lipid metabolism.
Collapse
Affiliation(s)
- Hala Zahreddine Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Fathima S Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Suma Gopinadhan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yasmine Moussa
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Yamanappa Hunashal
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Gennaro Battaglia
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", 80138, Naples, Italy
| | - Patricia G Cipriani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Claire Ciancia
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Nabil Rahiman
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stephan Kremb
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Xin Xie
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yanthe E Pearson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Gennaro Esposito
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland, UK
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | - Fabio Piano
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
319
|
Motamedi-Tehrani J, Peyghan R, Shahriari A, Razijalali M, Ebrahimi E. The influence of ammonia-N and salinity levels on oxidative stress markers, hepatic enzymes, and acid phosphatase activity in Nile tilapia (Oreochromis niloticus). Sci Rep 2025; 15:559. [PMID: 39748070 PMCID: PMC11695930 DOI: 10.1038/s41598-024-84136-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
The point of our study was to examine the interaction of ammonia-N poisoning and salinity on serum enzymes and oxidative stress factors of blood and liver in Nile tilapia (Oreochromis niloticus). The 50% lethal concentration (LC50) in 96 h was 0.86 mg/L of ammonia-N. A random allocation was used to divide the fish into 12 treatments. These treatments encompassed various combinations of acute ammonia-N levels (0 and 50% of LC50-96 h), sub-acute ammonia-N levels (30% of LC50-96 h), and salinity levels (0, 4, 8, and 12 ppt). The experimental design employed a factorial arrangement of 3 × 4.The findings revealed that the amounts of aspartate transferase (AST) and alanine transaminase (ALT) in treatments 3 and 4 increased significantly compared to the treatment 2 (4 ppt) and control. Salinity levels did not affect serum glutathione levels (GSH), nevertheless the reduction of serum GSH and levels of total antioxidant capacity (TAC) and superoxide dismutase (SOD) and catalase activities (CAT) in ammonia poisoning treatments, 5 and 9, compared to the control, states ammonia can stimulate oxidative stress in fish. Similar to the serum measurements, increasing salinity in acute ammonia poisoning treatments (5, 6, 7 and 8) caused an increasing effect on the liver TAC value, which was presumably due to the improving effect of salinity in reducing ambient ammonia. The findings indicate that while elevated salinity levels can be beneficial in mitigating the effects of ammonia toxicity in water, the combined presence of salinity, ammonia, and their interaction had detrimental impacts on the physiological well-being of fish over a 96-hour testing period.
Collapse
Affiliation(s)
| | - Rahim Peyghan
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Razijalali
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Eisa Ebrahimi
- Department of Fisheries, Faculty of Natural Resources, Isfahan University of Technology, Isfahan, 84156-8311, Iran
| |
Collapse
|
320
|
Liu C, Wang X, Ong HS, Ang M, Chee SP, Ching J, Chua KV, Han SHY, Mehta JS, Zhou L, Liu YC. Aqueous Proteomic and Metabolomic Profiles in Low-Energy vs High-Energy Femtosecond Laser-Assisted Cataract Surgery. Invest Ophthalmol Vis Sci 2025; 66:10. [PMID: 39775700 PMCID: PMC11717129 DOI: 10.1167/iovs.66.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose To investigate the aqueous proteomics and metabolomics in low-energy and high-energy femtosecond laser-assisted cataract surgery (FLACS). Methods In this prospective observational study, 72 patients were randomized to 3 groups: low-energy FLACS, high-energy FLACS, and conventional phacoemulsification (controls). Aqueous was collected after femtosecond laser treatment or at the beginning of surgery (controls). Proteomic analysis was conducted using a data-independent acquisition method, whereas aqueous metabolomics were analyzed with liquid chromatography-tandem mass spectrometry. Bioinformatics analyses were performed to integrate the results of proteomics and metabolomics. Results Compared with low-energy FLACS, significantly elevated aqueous hemoglobin subunit beta, G protein subunit beta, carbonic anhydrase 1, and asymmetric dimethylarginine were observed in high-energy FLACS, suggesting significantly greater oxidative stress, inflammation, immunity, metabolism, and mitochondrial fatty acids oxidation. Compared with controls, significantly increased aqueous proteins and metabolites related to immune and inflammation (beta-crystallin B1, hemoglobin subunit beta, putrescine, and spermine) and oxidative stress (heat shock proteins, peroxiredoxins, and long-chain acylcarnitines) were observed in FLACS. Joint pathway analysis revealed nicotinate/nicotinamide metabolism and riboflavin metabolism were significantly overexpressed in high-energy FLACS compared with low-energy FLACS, whereas the pentose phosphate pathway and glycolysis were the most significant pathways when comparing FLACS with controls. Conclusions FLACS induced higher immunological and inflammatory responses, oxidative stress reactions, and mitochondrial fatty acid oxidative stress compared with controls. These differential effects were more pronounced when a higher laser energy was used.
Collapse
Affiliation(s)
- Chang Liu
- Singapore Eye Research Institute, Singapore
| | - Xinyue Wang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Hon Shing Ong
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Soon-Phaik Chee
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore
| | | | | | - Jodhbir S. Mehta
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Lei Zhou
- School of Optometry; Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Yu-Chi Liu
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- National Taiwan University, Taiwan
| |
Collapse
|
321
|
Rivas CH, Liu F, Zhang XHF. The Roles of Myeloid Cells in Breast Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:397-412. [PMID: 39821035 DOI: 10.1007/978-3-031-70875-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter reviews tumor-associated myeloid cells, including macrophages, neutrophils, and other innate immune cells, and their multifaceted roles in supporting breast cancer progression and metastasis. In primary tumors, myeloid cells play key roles in promoting tumor epithelial-mesenchymal transition (EMT) and invasion. They can facilitate intravasation (entry into the bloodstream) and colonization, disrupting the endothelial cell layer and reshaping the extracellular matrix. They can also stimulate angiogenesis, suppress immune cell responses, and enhance cancer cell adaptability. In the bloodstream, circulating myeloid cells enable the survival of disseminated tumor cells via immunosuppressive effects and physical shielding. At the metastatic sites, they prime the premetastatic niche, facilitate tumor cell extravasation, and support successful colonization and outgrowth. Mechanistically, myeloid cells enhance cancer cell survival, dormancy escape, proliferation, and mesenchymal-epithelial transition (MET). Nonetheless, substantial gaps in our understanding persist regarding the functional and spatiotemporal diversity, as well as the evolutionary patterns, of myeloid cells during metastatic progression. Myeloid cell plasticity and differential responses to therapies present key barriers to successful treatments. Identifying specific pro-tumoral myeloid cell subpopulations and disrupting their interactions with cancer cells represent promising therapeutic opportunities. Emerging evidence suggests combining immunomodulators or stromal normalizers with conventional therapies could help overcome therapy-induced immunosuppression and improve patient outcomes. Overall, further elucidating myeloid cell heterogeneity and function throughout the process of breast cancer progression and metastasis will enable more effective therapeutic targeting of these critical stromal cells.
Collapse
Affiliation(s)
- Charlotte Helena Rivas
- Cancer and Cell Biology Program, Graduate School of Biomedical Sciences, San Antonio, TX, USA
| | - Fengshuo Liu
- Cancer and Cell Biology Program, Graduate School of Biomedical Sciences, San Antonio, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Berkeley, CA, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
322
|
Muzaffer U, Nisar N, Ali SI, Kareem O, Paul V. Immunotoxicogenomics: Moving from observation to prediction. IMMUNOTOXICOGENOMICS 2025:181-206. [DOI: 10.1016/b978-0-443-18502-1.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
323
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
324
|
Keshmirshekan F, Mohamadi-Zarch SM, Bagheri SM. A Review of Anticancer Potential of Conferone, Diversin and Ferutinin; Which One is Stronger for Cancer Therapy? Anticancer Agents Med Chem 2025; 25:378-387. [PMID: 39482921 DOI: 10.2174/0118715206328175241022081832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND One of the growing diseases in today's human societies is cancer, which has become a major challenge, especially in industrialized and developing countries. Cancer treatments are diverse, but they usually use surgery, chemotherapy, and radiotherapy to improve patients. Existing drugs are usually expensive and, in some cases, are not effective due to drug resistance and side effects. Finding compounds of natural origin can be somewhat effective and useful in helping doctors to treat this disease. Ferula plants, which are traditionally used as spices or for medicinal purposes, can be a good source for finding anti-cancer compounds due to their various compounds, such as monoterpenes, sulfide compounds, and polyphenols. Several studies have shown that compounds found in Ferula plants have significant anticancer effects on various types of cancer cells. OBJECTIVE This article was compiled with the aim of collecting evidence and articles related to the anti-cancer effects of three compounds obtained from these plants, namely Conferone, Diversin, and Ferutinin. METHODS This review article was prepared by searching the terms Conferone, Diversin, Ferutinin and cancer and related information was collected through searching electronic databases such as ISI Web of Knowledge, PubMed and Google Scholar until the March of 2024. CONCLUSION The results of this review showed that relatively comprehensive studies have been conducted in this field and these studies have shown that these compounds can be used in the design of future anticancer drugs. Among the examined compounds, conferone showed that it has the best effect on cancer cells.
Collapse
Affiliation(s)
- Fariborz Keshmirshekan
- Yazd Neuroendocrine Research Center, Faculty of Medeicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed-Mahdi Mohamadi-Zarch
- Yazd Neuroendocrine Research Center, Faculty of Medeicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyyed Majid Bagheri
- Yazd Neuroendocrine Research Center, Faculty of Medeicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
325
|
Tomizawa SI, Kuroha K, Ono M, Nakajima K, Ohbo K. A behind-the-scenes role of BDNF in the survival and differentiation of spermatogonia. Asian J Androl 2025; 27:37-43. [PMID: 39177410 PMCID: PMC11784946 DOI: 10.4103/aja202457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/17/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Mouse spermatogenesis entails the maintenance and self-renewal of spermatogonial stem cells (SSCs), which require a complex web-like signaling network transduced by various cytokines. Although brain-derived neurotrophic factor (BDNF) is expressed in Sertoli cells in the testis, and its receptor tropomyosin receptor kinase B (TrkB) is expressed in the spermatogonial population containing SSCs, potential functions of BDNF for spermatogenesis have not been uncovered. Here, we generate BDNF conditional knockout mice and find that BDNF is dispensable for in vivo spermatogenesis and fertility. However, in vitro , we reveal that BDNF -deficient germline stem cells (GSCs) exhibit growth potential not only in the absence of glial cell line-derived neurotrophic factor (GDNF), a master regulator for GSC proliferation, but also in the absence of other factors, including epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin. GSCs grown without these factors are prone to differentiation, yet they maintain expression of promyelocytic leukemia zinc finger ( Plzf ), an undifferentiated spermatogonial marker. Inhibition of phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and Src pathways all interfere with the growth of BDNF-deficient GSCs. Thus, our findings suggest a role for BDNF in maintaining the undifferentiated state of spermatogonia, particularly in situations where there is a shortage of growth factors.
Collapse
Affiliation(s)
- Shin-ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
326
|
Hsieh HH, Kuo MZ, Chen IA, Lin CJ, Hsu V, HuangFu WC, Wu TY. Epigenetic Modifications as Novel Therapeutic Strategies of Cancer Chemoprevention by Phytochemicals. Pharm Res 2025; 42:69-78. [PMID: 39775615 DOI: 10.1007/s11095-024-03810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Epigenetic modifications, such as aberrant DNA methylation, histone alterations, non-coding RNA remodeling, and modulation of transcription factors, are pivotal in the pathogenesis of diverse malignancies. Reactive oxygen species (ROS) have the capacity to impact these epigenetic mechanisms, including DNA methylation, throughout the different stages of cancer development. Therefore, the aim of this review is to address the impact of. METHODS Published papers were searched in Pubmed and Google Scholar databases using the keywords "epigenetic", or "DNA methylation", or "phytochemicals", or "chemoprevention" to prepare this review. RESULTS There is mounting evidence indicating that diminishing ROS accumulation within cells can regulate the function of DNA methyltransferases (DNMTs). Moreover, activation of the cellular defense system can impede and potentially reverse the progression of tumors in cancerous cells. As a result, ROS scavengers, antioxidants, and demethylating agents have emerged as potential therapeutic approaches for specific types of cancer. Additionally, dietary phytochemicals present in fruits, vegetables, and herbs, which have been utilized for centuries, exhibit the capability to modulate transcription factors, decrease inflammation, deliver antioxidant benefits, induce cell-cycle arrest, and stimulate apoptosis. CONCLUSION These phytochemicals can also renew and reprogram the expression of genes that suppress cancer. Thus, prolonged exposure to phytochemicals at low doses represents an innovative therapeutic tactic for the prevention of cancer.
Collapse
Affiliation(s)
- Hui-Hsia Hsieh
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, Taiwan
- School of Pharmacy, China Medical University, Taichung City, Taiwan
| | - Min-Zhan Kuo
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - I-An Chen
- Department of English, National Taichung University of Education, Taichung City, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Victor Hsu
- Bergen County Academies, Hackensack, NJ, USA
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Development, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan.
| | - Tien-Yuan Wu
- School of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
327
|
Szkudelski T, Szkudelska K. The relevance of the heme oxygenase system in alleviating diabetes-related hormonal and metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167552. [PMID: 39490940 DOI: 10.1016/j.bbadis.2024.167552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes heme degradation. HO dysfunction is linked to various pathological conditions, including diabetes. Results of animal studies indicate that HO expression and activity are downregulated in experimentally induced diabetes. This is associated with severe hormonal and metabolic disturbances. However, these pathological changes have been shown to be reversed by therapy with HO activators. In animals with experimentally induced diabetes, HO was upregulated by genetic manipulation or by pharmacological activators such as hemin and cobalt protoporphyrin. Induction of HO alleviated elevated blood glucose levels and improved insulin action, among other effects. This effect resulted from beneficial changes in the main insulin-sensitive tissues, i.e., the skeletal muscle, the liver, and the adipose tissue. The action of HO activators was due to positive alterations in pivotal signaling molecules and regulatory enzymes. Furthermore, diabetes-related oxidative and inflammatory stress was reduced due to HO induction. HO upregulation was effective in various animal models of type 1 and type 2 diabetes. These data suggest the possibility of testing HO activators as a potential tool for alleviating hormonal and metabolic disorders in people with diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
328
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
329
|
Romero-Zerbo SY, Valverde N, Claros S, Zamorano-Gonzalez P, Boraldi F, Lofaro FD, Lara E, Pavia J, Garcia-Fernandez M, Gago B, Martin-Montañez E. New molecular mechanisms to explain the neuroprotective effects of insulin-like growth factor II in a cellular model of Parkinson's disease. J Adv Res 2025; 67:349-359. [PMID: 38341032 PMCID: PMC11725160 DOI: 10.1016/j.jare.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION One of the hallmarks of Parkinsońs Disease (PD) is oxidative distress, leading to mitochondrial dysfunction and neurodegeneration. Insulin-like growth factor II (IGF-II) has been proven to have antioxidant and neuroprotective effects in some neurodegenerative diseases, including PD. Consequently, there isgrowing interest in understanding the different mechanisms involved in the neuroprotective effect of this hormone. OBJECTIVES To clarify the mechanism of action of IGF-II involved in the protective effect of this hormone. METHODS The present study was carried out on a cellular model PD based on the incubation of dopaminergic cells (SN4741) in a culture with the toxic 1-methyl-4-phenylpyridinium (MPP+), in the presence of IGF-II. This model undertakes proteomic analyses in order to understand which molecular cell pathways might be involved in the neuroprotective effect of IGF-II. The most important proteins found in the proteomic study were tested by Western blot, colorimetric enzymatic activity assay and immunocytochemistry. Along with the proteomic study, mitochondrial morphology and function were also studied by transmission electron microscopy and oxygen consumption rate. The cell cycle was also analysed using 7AAd/BrdU staining, and flow cytometry. RESULTS The results obtained indicate that MPP+, MPP++IGF-II treatment and IGF-II, when compared to control, modified the expression of 197, 246 proteins and 207 respectively. Some of these proteins were found to be involved in mitochondrial structure and function, and cell cycle regulation. Including IGF-II in the incubation medium prevents the cell damage induced by MPP+, recovering mitochondrial function and cell cycle dysregulation, and thereby decreasing apoptosis. CONCLUSION IGF-II improves mitochondrial dynamics by promoting the association of Mitofilin with mitochondria, regaining function and redox homeostasis. It also rebalances the cell cycle, reducing the amount of apoptosis and cell death by the regulation of transcription factors, such as Checkpoint kinase 1.
Collapse
Affiliation(s)
- Silvana-Yanina Romero-Zerbo
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Nadia Valverde
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Silvia Claros
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Pablo Zamorano-Gonzalez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Federica Boraldi
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Francesco-Demetrio Lofaro
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Jose Pavia
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Maria Garcia-Fernandez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Belen Gago
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Elisa Martin-Montañez
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| |
Collapse
|
330
|
Subramanian C, McNamara K, Croslow SW, Tan Y, Hess D, Kiseljak-Vassiliades K, Wierman ME, Sweedler JV, Cohen MS. Novel repurposing of sulfasalazine for the treatment of adrenocortical carcinomas, probably through the SLC7A11/xCT-hsa-miR-92a-3p-OIP5-AS1 network pathway. Surgery 2025; 177:108832. [PMID: 39424480 DOI: 10.1016/j.surg.2024.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/04/2024] [Accepted: 07/13/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Recent multigenomic analysis of adrenocortical carcinomas (ACCs) identified SLC7A11/xCT as a novel biomarker. The Food and Drug Administration-approved anti-inflammatory drug, sulfasalazine (SAS), induces ferroptosis by blocking SLC7A11 expression. We hypothesize that SAS could be repurposed to target ACC cells. METHODS Expression of SLC7A11 and its association with ACC survival was analyzed using Gene Expression Profiling Interactive Analysis (GEPIA). The validated ACC cell lines NCI-H295R, ACC1, and ACC2 were grown in 2D culture. In vitro studies included the CellTiter-Glo assay to calculate viability, Western blot (WB) analysis for apoptosis and other target protein changes, reverse transcriptase polymerase chain reaction for steroidogenic enzyme changes, C11BODIPY for lipid peroxidation, and mass spectrometry for changes in lipids. RESULTS The Cancer Genome Atlas Program database analysis in GEPIA showed that SLC7A11 and linked long noncoding RNA OAP5-AS1 are highly expressed in ACC tumors versus normal adrenals (n = 77 vs 128; P < .05). This was associated with poor overall and disease-free survival with hazard ratios of 4.3 and 5.2 for SLC7A11 and 4.8 and 2.7 for OAP5-AS1, respectively. ACC cell line half-inhibitory maximum concentration values after 72-hour SAS treatment ranged from 412 nM (ACC1) to 799 nM (ACC2), and all showed cleavage of poly (ADP-ribose) polymerase, upregulation of p-Akt and p-ERK, and downregulation of GPX4 and SLC7A11 (P < .05) by WB analysis. Sphere formation, migration, and invasion assay showed inhibition, and lipid peroxidation using C11BODIPY, increase in intracellular iron, induction of oxidative stress, and significant upregulation of oxidized polyunsaturated fatty acid phospholipids (P < .05 each) by mass spectrometry suggests induction of ferroptosis. CONCLUSION SAS downregulates tSLC7A11 in ACCs, targets the Akt/ERK pathway and lipid metabolism, and induces cell death in vitro, warranting additional translational studies to define its therapeutic potential in ACC.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL
| | - Kelli McNamara
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL
| | - Seth W Croslow
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, IL
| | - Yanqi Tan
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, IL
| | - Daniel Hess
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, IL
| | - Mark S Cohen
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL; Department of Surgery, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL.
| |
Collapse
|
331
|
Muñoz JP. The impact of endocrine-disrupting chemicals on stem cells: Mechanisms and implications for human health. J Environ Sci (China) 2025; 147:294-309. [PMID: 39003048 DOI: 10.1016/j.jes.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 07/15/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile.
| |
Collapse
|
332
|
Gonzalez-Cano SI, Peña-Rosas U, Muñoz-Arenas G, Torres-Cinfuentes DM, Treviño S, Moran-Raya C, Flores G, Guevara J, Diaz A. Neuroprotective Effect of Curcumin-Metavanadate in the Hippocampus of Aged Rats. Synapse 2025; 79:e70008. [PMID: 39748146 DOI: 10.1002/syn.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Brain aging is a multifactorial process that includes a reduction in the biological and metabolic activity of individuals. Oxidative stress and inflammatory processes are characteristic of brain aging. Given the current problems, the need arises to implement new therapeutic approaches. Polyoxidovanadates (POV), as well as curcumin, have stood out for their participation in a variety of biological activities. This work aimed to evaluate the coupling of metavanadate and curcumin (Cuma-MV) on learning, memory, redox balance, neuroinflammation, and cell death in the hippocampal region (CA1 and CA3) and dentate gyrus (DG) of aged rats. Rats 18 months old were administered a daily dose of curcumin (Cuma), sodium metavanadate (MV), or Cuma-MV for two months. The results demonstrated that administration of Cuma-MV for 60 days in aged rats improved short- and long-term recognition memory, decreased reactive oxygen species, and substantially improved lipoperoxidation in the hippocampus. Furthermore, the activity of superoxide dismutase and catalase increased in animals treated with Cuma-MV. It is important to highlight that the treatment with Cuma-MV exhibited a significantly greater effect than the treatments with MV or Cuma in all the parameters evaluated. Finally, we conclude that Cuma-MV represents a potential therapeutic option in the prevention and treatment of cognitive decline associated with aging.
Collapse
Affiliation(s)
| | - Ulises Peña-Rosas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Guadalupe Muñoz-Arenas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | | | - Samuel Treviño
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Carolina Moran-Raya
- Institute of Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
333
|
Roland N, Neumann A, Baricault B, Dayani P, Duranteau L, Fontanel S, Yoldjian I, Froelich S, Zureik M, Weill A. High-Dose Cyproterone Acetate and Intracranial Meningioma: Impact of the Risk Minimisation Measures Implemented in France in 2018-2019. Pharmacoepidemiol Drug Saf 2025; 34:e70078. [PMID: 39777815 PMCID: PMC11706701 DOI: 10.1002/pds.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE To measure the impact of national regulatory actions implemented in France in August 2018 and June 2019 to reduce the risk of meningioma associated with the use of cyproterone acetate (CPA). METHODS Using the French National Healthcare database, we calculated the monthly number of CPA users among cisgender women, men and transgender women in 2010-2021, the monthly proportion of users with cerebral imaging screening, and the annual rate of meningioma surgery associated with CPA use. CPA discontinuations and switches were analysed. RESULTS Between 2018 and 2021, the number of individuals exposed to CPA fell by 85% (55 000 in August 2018 versus 7900 users of high-dose CPA in December 2021), corresponding to two waves of decrease in both use and initiation. This drop was greater among cisgender women (88%) than men (69%) or transgender women (50%). Cerebral imaging screening increased from 11% in June 2018 to 70% in June 2021 for ciswomen (13%-51% for men, 9%-60% for transwomen). After CPA discontinuation, no massive shift to a single product was observed, but, instead, dispersion towards other hormonal therapies. The overall annual rate of meningioma surgery associated with CPA exposure spectacularly decreased between 2017 and 2021 (-93% for ciswomen and -86% for men). CONCLUSION In France, high-dose CPA use sharply decreased after the implementation of national regulatory measures without a massive switch to other hormonal therapies. The increase in cerebral imaging screening did not result in an increase in meningioma surgery associated with CPA, but rather a massive drop of over 90%.
Collapse
Affiliation(s)
- Noémie Roland
- EPI‐PHARE Scientific Interest Group in Epidemiology of Health Products (French National Agency for the Safety of Medicines and Health Products—ANSM, French National Health Insurance—CNAM)Saint‐DenisFrance
| | - Anke Neumann
- EPI‐PHARE Scientific Interest Group in Epidemiology of Health Products (French National Agency for the Safety of Medicines and Health Products—ANSM, French National Health Insurance—CNAM)Saint‐DenisFrance
| | - Bérangère Baricault
- EPI‐PHARE Scientific Interest Group in Epidemiology of Health Products (French National Agency for the Safety of Medicines and Health Products—ANSM, French National Health Insurance—CNAM)Saint‐DenisFrance
| | - Pauline Dayani
- French National Agency for the Safety of Medicines and Health Products (ANSM)Saint‐DenisFrance
| | - Lise Duranteau
- Department of Medical GynaecologyBicêtre Hospital, AP‐HP, Paris Saclay UniversityLe Kremlin‐BicêtreFrance
| | | | - Isabelle Yoldjian
- French National Agency for the Safety of Medicines and Health Products (ANSM)Saint‐DenisFrance
| | - Sébastien Froelich
- Department of NeurosurgeryLariboisière University Hospital, AP‐HP, Paris‐Cité UniversityParisFrance
| | - Mahmoud Zureik
- EPI‐PHARE Scientific Interest Group in Epidemiology of Health Products (French National Agency for the Safety of Medicines and Health Products—ANSM, French National Health Insurance—CNAM)Saint‐DenisFrance
- University of Paris‐Saclay, Inserm, Anti‐Infective Evasion and Pharmaco‐Epidemiology, CESP (Center for Research in Epidemiology and Population Health)Montigny le BretonneuxFrance
| | - Alain Weill
- EPI‐PHARE Scientific Interest Group in Epidemiology of Health Products (French National Agency for the Safety of Medicines and Health Products—ANSM, French National Health Insurance—CNAM)Saint‐DenisFrance
| |
Collapse
|
334
|
Wang Z, Liu Y, Asemi Z. Quercetin and microRNA Interplay in Apoptosis Regulation: A New Therapeutic Strategy for Cancer? Curr Med Chem 2025; 32:939-957. [PMID: 38018191 DOI: 10.2174/0109298673259466231031050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
Cancer is known as a global problem for the health and economy. Following cancer onset, apoptosis is the primary mechanism countering the tumor cells' growth. Most anticancer agents initiate apoptosis to remove tumor cells. Phytochemicals have appeared as a beneficial treatment option according to their less adverse effects. In recent decades, quercetin has been highlighted due to its high pharmacological benefits, and various literature has suggested it as a potential anti-proliferative agent against different kinds of cancers. The microRNAs (miRNAs) play key roles in cancer treatment, progression, and apoptosis. This review reviewed the effect of quercetin on miRNAs contributing to the induction or inhibition of apoptosis in cancers.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yanqing Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zatollah Asemi
- Department of Nutrition, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
335
|
Rayevsky A, Platonov M, Elijah B, Volochnyuk D, Veklich T, Cherenok S, Rodik R, Kalchenko V, Kosterin S. Structural Insight on the Selectivity of Calyx[4]Arene-Based Inhibitors of Mg 2+-Dependent Atp-Hydrolases. Mol Inform 2025; 44:e202400200. [PMID: 39635768 DOI: 10.1002/minf.202400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Located in plasma membranes, ATP hydrolases are involved in several dynamic transport processes, helping to control the movement of ions across cell membranes. ATP hydrolase acts as a transport protein, converting energy from ATP hydrolysis into transport molecules against their concentration gradients. In addition to energy metabolism and active transport, ATP hydrolase is essential for maintaining cellular homeostasis and cell function. This study focused on the domain architecture model of P-type ATPases, which participate in the reaction cycles of ATP hydrolysis carried out by membrane transport systems - Na+, K+-ATPase and Ca2+, Mg2+-ATPase. Targeted modulation of Na+, K+-ATPase and Ca2+, Mg2+-ATPase by unnatural drugs is of greatest interest due to the lack of known effectors. This new discovery presents a convenient model based on our recent experimental studies of the membrane structures and myocytes of the uterine smooth muscle, the myometrium. This current study strongly supports the fact that nanosized calix[4]arenes functionalised on the upper rings of the macrocycle with biologically active phosphonic acid fragments can serve as selective and potent inhibitors of cation-transporting electroenzymes. This is how we discovered that calix[4]arene of methylenebisphosphonic acid C-97 and calix[4]arene of bis-aminophosphonic acid C-107 selectively and effectively (I0.5 <100 nM) inhibit the activity of Mg2+, ATP-dependent electrogenic Na+ K+ plasma membrane pump. As drug discovery in the field of Mg2+-ATPase inhibitors is uncharted territory, basic research holds the key to explaining and predicting the mechanism of interaction and action of different classes of compounds. In light of the presented results, new calix[4]arene compounds can be used as potent inhibitors of Mg2+, ATP-dependent electrogenic ion pumps.
Collapse
Affiliation(s)
- Alexey Rayevsky
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
- Institute of Molecular Biology and Genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Maksym Platonov
- Institute of Molecular Biology and Genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Bulgakov Elijah
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Dmytro Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Glushkova Ave, Kyiv, 03022, Ukraine
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Tetyana Veklich
- Palladin Institute of Biochemistry NAS of Ukraine, 9 Leontovich str., Kyiv, 01054, Ukraine
| | - Sergiy Cherenok
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Roman Rodik
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Vitaliy Kalchenko
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Sergiy Kosterin
- Palladin Institute of Biochemistry NAS of Ukraine, 9 Leontovich str., Kyiv, 01054, Ukraine
| |
Collapse
|
336
|
Allerkamp HH, Bondarenko AI, Tawfik I, Kamali-Simsek N, Horvat Mercnik M, Madreiter-Sokolowski CT, Wadsack C. In vitro examination of Piezo1-TRPV4 dynamics: implications for placental endothelial function in normal and preeclamptic pregnancies. Am J Physiol Cell Physiol 2025; 328:C227-C244. [PMID: 39652778 DOI: 10.1152/ajpcell.00794.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
Mechanosensation is essential for endothelial cell (EC) function, which is compromised in early-onset preeclampsia (EPE), impacting offspring health. The ion channels Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) are coregulated mechanosensors in ECs. Current evidence suggests that both channels could mediate aberrant placental endothelial function in EPE. Using isolated fetoplacental ECs (fpECs) from early control (EC) and EPE pregnancies, we show functional coexpression of both channels and that Ca2+ influx and membrane depolarization in response to chemical channel activation is reduced in EPE fpECs. Downstream of channel activation, Piezo1 alone can induce phosphorylation of endothelial nitric oxide synthase (eNOS) in fpECs, while combined activation of Piezo1 and TRPV4 only affects eNOS phosphorylation in EPE fpECs. Additionally, combined activation reduces the barrier integrity of fpECs and has a stronger effect on EPE fpECs. This implies altered Piezo1-TRPV4 coregulation in EPE. Mechanistically, we suggest this to be driven by changes in the arachidonic acid metabolism in EPE fpECs as identified by RNA sequencing. Targeting of Piezo1 and TRPV4 might hold potential for EPE treatment options in the future.NEW & NOTEWORTHY This study shows Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) coexpression and functionality within primary human fetoplacental endothelial cells (fpECs), mediating nitric oxide (NO) production and barrier integrity. In early-onset preeclampsia (EPE), fpEC channel functionality and coregulation are impaired, affecting Ca2+ signaling and endothelial barrier function. Combined channel activation significantly reduces endothelial barrier integrity and increases NO production in EPE. Changes in arachidonic acid metabolism are suggested as a key underlying factor mediating impaired channel functionality in EPE fpECs.
Collapse
Affiliation(s)
- Hanna H Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Ines Tawfik
- Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | | | | | | | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
337
|
Henson BAB, Li F, Álvarez-Huerta JA, Wedamulla PG, Palacios AV, Scott MRM, Lim DTE, Scott WMH, Villanueva MTL, Ye E, Straus SK. Novel active Trp- and Arg-rich antimicrobial peptides with high solubility and low red blood cell toxicity designed using machine learning tools. Int J Antimicrob Agents 2025; 65:107399. [PMID: 39645171 DOI: 10.1016/j.ijantimicag.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Given the rising number of multidrug-resistant (MDR) bacteria, there is a need to design synthetic antimicrobial peptides (AMPs) that are highly active, non-hemolytic, and highly soluble. Machine learning tools allow the straightforward in silico identification of non-hemolytic antimicrobial peptides. METHODS Here, we utilized a number of these tools to rank the best peptides from two libraries comprised of: 1) a total of 8192 peptides with sequence bhxxbhbGAL, where b is the basic amino acid R or K, h is a hydrophobic amino acid, i.e. G, A, L, F, I, V, Y, or W and x is Q, S, A, or V; and 2) a total of 512 peptides with sequence RWhxbhRGWL, where b and h are as for the first library and x is Q, S, A, or G. The top 100 sequences from each library, as well as 10 peptides predicted to be active but hemolytic (for a total of 220 peptides), were SPOT synthesized and their IC50 values were determined against S. aureus USA 300 (MRSA). RESULTS Of these, 6 AMPs with low IC50's were characterized further in terms of: MICs against MRSA, E. faecalis, K. pneumoniae, E.coli and P. aeruginosa; RBC lysis; secondary structure in mammalian and bacterial model membranes; and activity against cancer cell lines HepG2, CHO, and PC-3. CONCLUSION Overall, the approach yielded a large family of active antimicrobial peptides with high solubility and low red blood cell toxicity. It also provides a framework for future designs and improved machine learning tools.
Collapse
Affiliation(s)
- Bridget A B Henson
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fucong Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Poornima G Wedamulla
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arianna Valdes Palacios
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Max R M Scott
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Thiam En Lim
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - W M Hayden Scott
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Monica T L Villanueva
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Ye
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
338
|
Kovalev DS, Amidei A, Akinbo-Jacobs OI, Linley J, Crandall T, Endsley L, Grippo AJ. Protective effects of exercise on responses to combined social and environmental stress in prairie voles. Ann N Y Acad Sci 2025; 1543:102-116. [PMID: 39565719 PMCID: PMC11779585 DOI: 10.1111/nyas.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The combination of social and environmental stressors significantly influences psychological and physical health in males and females, and contributes to both depression and cardiovascular diseases. Animal models support these findings. Voluntary exercise may protect against some forms of stress; however, the protective effects of exercise against social stressors require further investigation. This study evaluated the influence of exercise on the impact of combined social and environmental stressors in socially monogamous prairie voles. Following a period of social isolation plus additional chronic environmental stress, prairie voles were either allowed access to a running wheel in a larger cage for 2 weeks or remained in sedentary conditions. A behavioral stress task was conducted prior to and following exercise or sedentary conditions. Heart rate (HR) and HR variability were evaluated after exercise or sedentary conditions. Group-based analyses indicated that exercise prevented elevated resting HR and promoted autonomic control of the heart. Exercise was also effective against social and environmental stress-induced forced swim test immobility. Some minor sex differences in behavior were observed in response to exercise intensity. This research informs our understanding of the protective influence of physical exercise against social and environmental stressors in male and female humans.
Collapse
Affiliation(s)
- Dmitry S. Kovalev
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Alex Amidei
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | | | - Jessica Linley
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Teva Crandall
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Linnea Endsley
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| |
Collapse
|
339
|
Zuo Q, Kang Y. Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:347-370. [PMID: 39821033 DOI: 10.1007/978-3-031-70875-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis. The different molecular subtypes of breast cancer exhibit distinct metabolic genotypes and phenotypes, offering opportunities for subtype-specific therapeutic approaches. Cancer-associated metabolic phenotypes encompass dysregulated nutrient uptake, opportunistic nutrient acquisition strategies, altered utilization of glycolysis and TCA cycle intermediates, increased nitrogen demand, metabolite-driven gene regulation, and metabolic interactions with the microenvironment. The tumor microenvironment, consisting of stromal cells, immune cells, blood vessels, and extracellular matrix components, influences metabolic adaptations through modulating nutrient availability, oxygen levels, and signaling pathways. Metastasis, the process of cancer spread, involves intricate steps that present unique metabolic challenges at each stage. Successful metastasis requires cancer cells to navigate varying nutrient and oxygen availability, endure oxidative stress, and adapt their metabolic processes accordingly. The metabolic reprogramming observed in breast cancer is regulated by oncogenes, tumor suppressor genes, and signaling pathways that integrate cellular signaling with metabolic processes. Understanding the metabolic adaptations associated with metastasis holds promise for identifying therapeutic targets to disrupt the metastatic process and improve patient outcomes. This chapter explores the metabolic alterations linked to breast cancer metastasis and highlights the potential for targeted interventions in this context.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
340
|
Zhou K, Gao L, Ge P, Wang L, Liu L, Ye J, Xu H, Wang L, Song L. CgmiR307 involved in the regulation of Nrf2-dependent oxidative response in the Pacific oyster Crassostrea gigas under high-temperature stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105306. [PMID: 39710087 DOI: 10.1016/j.dci.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
miRNA, a type of endogenous small non-coding RNA, is involved in the response to various environmental stresses through post-transcriptional regulation. In the present study, the role of CgmiR307 in the regulation of oxidative response under high-temperature stress by targeting CgNrf2 was investigated in the Pacific oyster Crassostrea gigas. The binding site of CgmiR307 were predicted at 1799-1818 bp in the 3'-UTR of CgNrf2, and the binding activity of CgmiR307 with the mRNA of CgNrf2 was further proved by the dual-luciferase reporter assay. The expression levels of CgmiR307 and CgNrf2 in gill were significantly higher than in other tissues, and exhibited significant fluctuations and variations after exposure to 28 °C. There was a significant reduction in the expression levels of CgSOD, and CgCAT in gill, as well as the activities of SOD, CAT, and T-AOC, while ROS and MDA contents significantly increased in CgNrf2-RNAi oysters. After CgmiR307 agomir injection and high-temperature stress, the expression levels of CgNrf2, CgSOD and CgCAT in gill, the activities of SOD and CAT and T-AOC decreased significantly, while ROS and MDA content significantly increased. After CgmiR307 antagomir injection and high-temperature stress, the changes in the parameters of oxidative response shown exactly the opposite trend. These results demonstrated that CgmiR307 was involved in the regulation of oxidative response by inhibiting the mRNA expression of CgNrf2 under high-temperature stress.
Collapse
Affiliation(s)
- Keli Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Pingan Ge
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiayu Ye
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Hairu Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
341
|
Kaur A, Singh S, Mujwar S, Singh TG. Molecular Mechanisms Underlying the Therapeutic Potential of Plant-Based α-Amylase Inhibitors for Hyperglycemic Control in Diabetes. Curr Diabetes Rev 2025; 21:e020724231486. [PMID: 38956911 DOI: 10.2174/0115733998304373240611110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Diabetes mellitus (DM), arising from pancreatic β-cell dysfunction and disrupted alpha-amylase secretion, manifests as hyperglycemia. Synthetic inhibitors of alphaamylase like acarbose manage glucose but pose adverse effects, prompting interest in plantderived alternatives rich in antioxidants and anti-inflammatory properties. OBJECTIVE The current review investigates plant-based alpha-amylase inhibitors, exploring their potential therapeutic roles in managing DM. Focusing on their ability to modulate postprandial hyperglycemia by regulating alpha-amylase secretion, it assesses their efficacy, health benefits, and implications for diabetes treatment. METHODS This review examines plant-derived alpha-amylase inhibitors as prospective diabetic mellitus treatments using PubMed, Google Scholar, and Scopus data. RESULTS Plant-derived inhibitors, including A. deliciosa, B. egyptiaca, and N. nucifera, exhibit anti-inflammatory and antioxidant properties, effectively reducing alpha-amylase levels in diabetic conditions. Such alpha-amylase inhibitors showed promising alternative treatment in managing diabetes with reduced adverse effects. CONCLUSION The current literature concludes that plant-derived alpha-amylase inhibitors present viable therapeutic avenues for diabetes management by modulating alpha-amylase secretion by regulating inflammatory, oxidative stress, and apoptotic mechanisms involved in the pathogenesis of diabetes. Further investigation into their formulations and clinical efficacy may reveal their more comprehensive diabetes therapeutic significance, emphasizing their potential impact on glucose regulation and overall health.
Collapse
Affiliation(s)
- Amritpal Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
342
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2025; 32:37-55. [PMID: 37620540 PMCID: PMC11742659 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
343
|
Kovalenko EA, Makhnovich EV, Pervunina AV, Gileva EA, Bogolepova AN. [Non-invasive biomarkers for early diagnosis of Alzheimer's disease in bodily fluids]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:8-16. [PMID: 39930671 DOI: 10.17116/jnevro20251250118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
One of the urgent problems of modern health care is Alzheimer's disease (AD) and its early diagnosis. This is due to the rapid global spread of AD, the lack of pathogenetic therapy, and the ability to stabilize the progression of cognitive impairment in the early stages of the disease. Currently, only an autopsy can confirm the diagnosis of AD with 100% reliability, and classical laboratory and instrumental methods of diagnosis verification are difficult to implement in routine clinical practice due to several limitations. That is why the study of new and available biomarkers identified in human bodily fluids is promising for the early diagnosis of AD. The review addresses the problem of AD verification using markers in human bodily fluids, which can be obtained in a non-invasive way. Potential biomarkers of AD in saliva, tear fluid, urine, and nasal secretion are reviewed, and their prognostic values as AD indicators in the early stage are evaluated.
Collapse
Affiliation(s)
- E A Kovalenko
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - E V Makhnovich
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - A V Pervunina
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - E A Gileva
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - A N Bogolepova
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
344
|
Chang H, Wang Y, Hui L, Diao Y, Ma P, Li X, Wang F. iTRAQ proteomic analysis of the anterior insula in morphine-induced conditioned place preference rats with high-frequency deep brain stimulation intervention. Addict Biol 2025; 30:e70014. [PMID: 39835462 PMCID: PMC11747870 DOI: 10.1111/adb.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/06/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions. We have previously performed isobaric tags for relative and absolute quantitation (iTRAQ) labelling coupled with 2D-LC MS/MS in anterior insular samples from rats treated with saline control, morphine or morphine plus DBS, and the identified expression of eight proteins are altered by morphine and reversed by high-frequency DBS (HF-DBS). In this study, we analysed the proteomic data in more details. A total of 5575 proteins were identified. Relative to the saline group, the morphine group showed 14 down-regulated and three up-regulated proteins. There were 118 proteins increased and 87 proteins decreased between DBS implanted animals and morphine group. Several differentially expressed proteins were verified with parallel reaction monitoring (PRM) assay. Based on Gene Ontology enrichment an KEGG pathway analyses, the majority of these differentially expressed proteins (DEPs) were involved in protein metabolic process, G-protein coupled receptor signalling pathway, calcium-mediated signalling, neurotransmitter transport, dopaminergic synapse and mTOR signalling pathway. These data offer a comprehensive understanding of the proteomic changes associated with morphine addiction and DBS therapy in addicted animal models, which is important for the development of DBS interventions for drug addiction.
Collapse
Affiliation(s)
- Haigang Chang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Yaxiao Wang
- Department of UltrasoundThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Lei Hui
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Yuling Diao
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Pengju Ma
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Xiangsheng Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
345
|
Qian X, Jin X, He J, Zhang J, Hu S. Exploring lipidomic profiles and their correlation with hormone receptor and HER2 status in breast cancer. Oncol Lett 2025; 29:34. [PMID: 39512509 PMCID: PMC11542162 DOI: 10.3892/ol.2024.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated lipid metabolism promotes the progression of various cancer types, including breast cancer. The present study aimed to explore the lipidomic profiles of patients with breast cancer, providing insights into the correlation between lipid compositions and tumor subtypes characterized by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status. Briefly, 30 patients with breast cancer were categorized into four groups based on their HR and HER2 status: HR+ no HER2 expression (HER2-0), HR+ HER2-low; HR+ HER2-positive (pos) and HR- HER2-pos. The lipidomic profiles of these patients were analyzed using high-throughput liquid chromatography-mass spectrometry. The data were processed through principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and random forest (RF) classification to assess the lipidomic variations and significant lipid features among these groups. The profiles of the lipids, particularly triglycerides (TG) such as TG(16:0-18:1-18:1)+NH4, were significantly different across the groups. PCA and PLS-DA identified unique lipid profiles in the HR+ HER2-pos and HR+ HER2-0 groups, while RF highlighted phosphatidylinositol-3,4,5-trisphosphate(21:2)+NH4 as a crucial lipid feature for accurate patient grouping. Advanced statistical analysis showed significant correlations between lipid carbon chain length and the number of double bonds within the classifications, providing insights into the role of structural lipid properties in tumor biology. Additionally, a clustering heatmap and network analysis indicated significant lipid-lipid interactions. Pathway enrichment analysis showed critical biological pathways, such as the 'Assembly of active LPL and LIPC lipase complexes', which has high enrichment ratio and statistical significance. In conclusion, the present study underscored that lipidomic profiling is crucial in understanding the metabolic alterations associated with different breast cancer subtypes. These findings highlighted specific lipid features and interactions that may serve as potential biomarkers for breast cancer classification and target pathways for therapeutic intervention. Furthermore, advanced lipidomic analyses can be integrated to decipher complex biological data, offering a foundation for further research into the role of lipid metabolism in cancer progression.
Collapse
Affiliation(s)
- Xiaojun Qian
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaolin Jin
- Health Management Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Jiaying He
- Health Management Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Junjing Zhang
- Health Management Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Shan Hu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
346
|
Gorla M, Guleria DS. Rho GTPase Signaling: A Molecular Switchboard for Regulating the Actin Cytoskeleton in Axon Guidance. J Cell Physiol 2025; 240:e70005. [PMID: 39888031 DOI: 10.1002/jcp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Axon pathfinding is a highly dynamic process regulated by the interactions between cell-surface guidance receptors and guidance cues present in the extracellular environment. During development, precise axon pathfinding is crucial for the formation of functional neural circuits. The spatiotemporal expression of axon guidance receptors helps the navigating axon make correct decisions in a complex environment comprising both attractive and repulsive guidance cues. Axon guidance receptors initiate distinct signaling cascades that eventually influence the cytoskeleton at the growing tip of an axon, called the growth cone. The actin cytoskeleton is the primary target of these guidance signals and plays a key role in growth cone motility, exploration, and behavior. Of the many regulatory molecules that modulate the actin cytoskeleton in response to distinct guidance signals, Rho GTPases play central roles. Rho GTPases are molecular switchboards; their ON (GTP-bound) and OFF (GDP-bound) switches are controlled by their interactions with proteins that regulate the exchange of GDP for GTP or with the proteins that promote GTP hydrolysis. Various upstream signals, including axon guidance signals, regulate the activity of these Rho GTPase switch regulators. As cycling molecular switches, Rho GTPases interact with and control the activities of downstream effectors, which directly influence actin reorganization in a context-dependent manner. A deeper exploration of the spatiotemporal dynamics of Rho GTPase signaling and the molecular basis of their involvement in regulating growth cone actin cytoskeleton can unlock promising therapeutic strategies for neurodevelopmental disorders linked to dysregulated Rho GTPase signaling. This review not only provides a comprehensive overview of the field but also highlights recent discoveries that have considerably advanced our understanding of the complex regulatory roles of Rho GTPases in modulating actin cytoskeleton arrangement at the growth cone during axon guidance.
Collapse
Affiliation(s)
- Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India
| | | |
Collapse
|
347
|
Zhou JX, Zheng ZY, Peng ZX, Yang YT, Ni HG. Predictive model in silicon and pathogenicity mechanism of metabolic syndrome: Impacts of heavy metal exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:124001. [PMID: 39746257 DOI: 10.1016/j.jenvman.2024.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Although the association between heavy metals in human and the development of metabolic syndrome (MetS) have been extensively studied, the pathogenic mechanism of MetS affected by metals is not clear to date. In this study, a predictive model was developed with machine learning base on the large-scale dataset. These proposed models were evaluated via comparatively analysis of their accuracy and robustness. With the optimal model, two metals significantly correlated with MetS were screened and were employed to infer the pathogenicity mechanism of MetS via molecular docking. Significant associations between heavy metals and MetS were found. Molecular docking provided insights into the interactions between metal ions and key protein receptors involved in metabolic regulation, suggesting a mechanism by which heavy metals interfere with metabolic functions. Specifically, Ba and Cd affect the development of MetS thru their interactions with insulin and estrogen receptors. This study attempted to explore heavy metals' potential roles in MetS at the molecular level. These findings emphasize the importance of addressing environmental exposures in the prevention and treatment of MetS.
Collapse
Affiliation(s)
- Jing-Xuan Zhou
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zi-Yi Zheng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhao-Xing Peng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yu-Ting Yang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
348
|
Famta P, Shah S, Dey B, Kumar KC, Bagasariya D, Vambhurkar G, Pandey G, Sharma A, Srinivasarao DA, Kumar R, Guru SK, Raghuvanshi RS, Srivastava S. Despicable role of epithelial-mesenchymal transition in breast cancer metastasis: Exhibiting de novo restorative regimens. CANCER PATHOGENESIS AND THERAPY 2025; 3:30-47. [PMID: 39872366 PMCID: PMC11764040 DOI: 10.1016/j.cpt.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2025]
Abstract
Breast cancer (BC) is the most prevalent cancer in women globally. Anti-cancer advancements have enabled the killing of BC cells through various therapies; however, cancer relapse is still a major limitation and decreases patient survival and quality of life. Epithelial-to-mesenchymal transition (EMT) is responsible for tumor relapse in several cancers. This highly regulated event causes phenotypic, genetic, and epigenetic changes in the tumor microenvironment (TME). This review summarizes the recent advancements regarding EMT using de-differentiation and partial EMT theories. We extensively review the mechanistic pathways, TME components, and various anti-cancer adjuvant and neo-adjuvant therapies responsible for triggering EMT in BC tumors. Information regarding essential clinical studies and trials is also discussed. Furthermore, we also highlight the recent strategies targeting various EMT pathways. This review provides a holistic picture of BC biology, molecular pathways, and recent advances in therapeutic strategies.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Biswajit Dey
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dadi A. Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | | | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
349
|
So YJ, Jeong H, Kim KH, Ko SG. In Vitro Assays for the Assessment of Safety and Toxicity in Pharmacopuncture Derived from Animal. J Pharmacopuncture 2024; 27:308-321. [PMID: 39741569 PMCID: PMC11656061 DOI: 10.3831/kpi.2024.27.4.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/05/2024] [Accepted: 09/19/2024] [Indexed: 01/03/2025] Open
Abstract
Objectives Among the various treatment methods involving the use of natural substances, pharmacopuncture using animal venom is a relatively new form of acupuncture that has been developed in South Korea and is gaining popularity worldwide. Pharmacopuncture with animal venom is widely used in clinical practice; therefore, ensuring its procedural safety is crucial. This study aimed to evaluate the safety and toxicity of pharmacopuncture using animal venom. Methods In October 2021, nine samples of animal venom-derived pharmacopuncture products were randomly collected from four External Herbal Dispensaries (EHDs). These samples underwent sterility and microbial limit testing to ensure they were free from microbial contamination. Toxicity tests were conducted using three different cell lines to evaluate cytotoxic effects. Results The sterility and microbial limit tests showed no microbial growth in any of the pharmacopuncture samples. However, the toxicity tests revealed that bee venom exhibited strong cytotoxicity. Furthermore, samples containing Bovis Calculus, Fel Ursi, and Moschus also demonstrated varying degrees of cytotoxic effects. Conclusion This study is the first to analyze the safety and toxicity of animal venom-derived pharmacopuncture products, providing evidence for its procedural safety. Although the samples analyzed were limited to four EHDs, these findings highlight the importance of further research on the safety and toxicity of pharmacopuncture to ensure its clinical application is both effective and safe.
Collapse
Affiliation(s)
- Yu-Jin So
- College of Korean Medicine, Woosuk University, Wanju, Republic of Korea
| | - Hyein Jeong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyeong Han Kim
- Department of Preventive Medicine, College of Korean Medicine, Woosuk University, Wanju, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
350
|
Abah MO, Ogenyi DO, Zhilenkova AV, Essogmo FE, Ngaha Tchawe YS, Uchendu IK, Pascal AM, Nikitina NM, Rusanov AS, Sanikovich VD, Pirogova YN, Boroda A, Moiseeva AV, Sekacheva MI. Innovative Therapies Targeting Drug-Resistant Biomarkers in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC). Int J Mol Sci 2024; 26:265. [PMID: 39796121 PMCID: PMC11720203 DOI: 10.3390/ijms26010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
A thorough study of Clear Cell Renal Cell Carcinoma (ccRCC) shows that combining tyrosine kinase inhibitors (TKI) with immune checkpoint inhibitors (ICI) shows promising results in addressing the tumor-promoting influences of abnormal immunological and molecular biomarkers in metastatic Clear Cell Renal Cell Carcinoma (ccRCC). These abnormal biomarkers enhance drug resistance, support tumor growth, and trigger cancer-related genes. Ongoing clinical trials are testing new treatment options that appear more effective than earlier ones. However, more research is needed to confirm their long-term safety use and potential side effects. This study highlights vital molecular and immunological biomarkers associated with drug resistance in Clear Cell Renal Cell Carcinoma (ccRCC). Furthermore, this study identifies a number of promising drug candidates and biomarkers that serve as significant contributors to the enhancement of the overall survival of ccRCC patients. Consequently, this article offers pertinent insights on both recently completed and ongoing clinical trials, recommending further toxicity study for the prolonged use of this treatment strategy for patients with metastatic ccRCC, while equipping researchers with invaluable information for the progression of current treatment strategies.
Collapse
Affiliation(s)
- Moses Owoicho Abah
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Department of Cancer Bioinformatics and Molecular Biology, Royal Society of Clinical and Academic Researchers (ROSCAR) International, Abuja 900104, Nigeria
| | - Deborah Oganya Ogenyi
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Angelina V. Zhilenkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Freddy Elad Essogmo
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yvan Sinclair Ngaha Tchawe
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Ikenna Kingsley Uchendu
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Akaye Madu Pascal
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Natalia M. Nikitina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander S. Rusanov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Varvara D. Sanikovich
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yuliya N. Pirogova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander Boroda
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Aleksandra V. Moiseeva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Marina I. Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| |
Collapse
|