301
|
Kim S, Kim YE, Hong S, Kim KT, Sung DK, Lee Y, Park WS, Chang YS, Song MR. Reactive microglia and astrocytes in neonatal intraventricular hemorrhage model are blocked by mesenchymal stem cells. Glia 2019; 68:178-192. [PMID: 31441125 DOI: 10.1002/glia.23712] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Severe intraventricular hemorrhage (IVH) in premature infants triggers reactive gliosis, causing acute neuronal death and glial scar formation. Transplantation of mesenchymal stem cells (MSCs) has often showed improved CNS recovery in an IVH model, but whether this response is related to reactive glial cells is still unclear. Herein, we suggest that MSCs impede the response of reactive microglia rather than astrocytes, thereby blocking neuronal damage. Astrocytes alone showed mild reactiveness under hemorrhagic conditions mimicked by thrombin treatment, and this was not blocked by MSC-conditioned medium (MSC-CM) in vitro. In contrast, thrombin-induced microglial activation and release of proinflammatory cytokines were inhibited by MSC-CM. Interestingly, astrocytes showed greater reactive response when co-cultured with microglia, and this was abolished in the presence of MSC-CM. Gene expression profiles in microglia revealed that transcript levels of genes for immune response and proinflammatory cytokines were altered by thrombin treatment. This result coincided with the robust phosphorylation of STAT1 and p38 MAPK, which might be responsible for the production and release of proinflammatory cytokines. Furthermore, application of MSC-CM diminished thrombin-mediated phosphorylation of STAT1 and p38 MAPK, supporting the acute anti-inflammatory role of MSCs under hemorrhagic conditions. In line with this, activation of microglia and consequent cytokine release were impaired in Stat1-null mice. However, reactive response in Stat1-deficient astrocytes was maintained. Taken together, our results demonstrate that MSCs mainly block the activation of microglia involving STAT1-mediated cytokine release and subsequent reduction of reactive astrocytes.
Collapse
Affiliation(s)
- Seojeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Young Eun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Sujeong Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kyung-Tai Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
302
|
Andraka JM, Sharma N, Marchalant Y. Can krill oil be of use for counteracting neuroinflammatory processes induced by high fat diet and aging? Neurosci Res 2019; 157:1-14. [PMID: 31445058 DOI: 10.1016/j.neures.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
Most neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, demonstrate preceding or on-going inflammatory processes. Therefore, discovering effective means of counteracting detrimental inflammatory mediators in the brain could help alter aging-related disease onset and progression. Fish oil and marine-derived omega-3, long-chain polyunsaturated fatty acids (LC n-3) have shown promising anti-inflammatory effects both systemically and centrally. More specifically, krill oil (KO), extracted from small Antarctic crustaceans, is an alternative type of LC n-3 with reported health benefits including improvement of spatial memory and learning, memory loss, systemic inflammation and depression symptoms. Similar to the more widely studied fish oil, KO contains the long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which are essential for basic brain functions. Moreover, the phospholipid bound nature of fatty acids found in KO improves bioavailability and efficiency of absorption, thus supporting the belief that KO may offer a superior method of dietary n-3 delivery. Finally, KO contains astaxanthin, an antioxidant capable of reducing potentially excessive oxidative stress and inflammation within the brain. This review will discuss the potential benefits of KO over other marine-based LC n-3 on brain inflammation and cognitive function in the context of high fat diets and aging.
Collapse
Affiliation(s)
- John M Andraka
- Department of Physical Therapy, Central Michigan University, MI, USA; Neuroscience Program, Central Michigan University, MI, USA
| | - Naveen Sharma
- Neuroscience Program, Central Michigan University, MI, USA; School of Health Sciences, Central Michigan University, MI, USA
| | - Yannick Marchalant
- Neuroscience Program, Central Michigan University, MI, USA; Psychology Department, Central Michigan University, MI, USA.
| |
Collapse
|
303
|
Escartin C, Guillemaud O, Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019; 67:2221-2247. [PMID: 31429127 DOI: 10.1002/glia.23687] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Astrocytes are key cellular partners for neurons in the central nervous system. Astrocytes react to virtually all types of pathological alterations in brain homeostasis by significant morphological and molecular changes. This response was classically viewed as stereotypical and is called astrogliosis or astrocyte reactivity. It was long considered as a nonspecific, secondary reaction to pathological conditions, offering no clues on disease-causing mechanisms and with little therapeutic value. However, many studies over the last 30 years have underlined the crucial and active roles played by astrocytes in physiology, ranging from metabolic support, synapse maturation, and pruning to fine regulation of synaptic transmission. This prompted researchers to explore how these new astrocyte functions were changed in disease, and they reported alterations in many of them (sometimes beneficial, mostly deleterious). More recently, cell-specific transcriptomics revealed that astrocytes undergo massive changes in gene expression when they become reactive. This observation further stressed that reactive astrocytes may be very different from normal, nonreactive astrocytes and could influence disease outcomes. To make the picture even more complex, both normal and reactive astrocytes were shown to be molecularly and functionally heterogeneous. Very little is known about the specific roles that each subtype of reactive astrocytes may play in different disease contexts. In this review, we have interrogated researchers in the field to identify and discuss points of consensus and controversies about reactive astrocytes, starting with their very name. We then present the emerging knowledge on these cells and future challenges in this field.
Collapse
Affiliation(s)
- Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Océane Guillemaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
304
|
Halpern M, Brennand KJ, Gregory J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol Dis 2019; 132:104562. [PMID: 31381978 DOI: 10.1016/j.nbd.2019.104562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex and fatal neurodegenerative disease for which the causes of disease onset and progression remain unclear. Recent advances in human induced pluripotent stem cell (hiPSC)-based models permit the study of the genetic factors associated with ALS in patient-derived neural cell types, including motor neurons and glia. While astrocyte dysfunction has traditionally been thought to exacerbate disease progression, astrocytic dysfunction may play a more direct role in disease initiation and progression. Such non-cell autonomous mechanisms expand the potential targets of therapeutic intervention, but only a handful of ALS risk-associated genes have been examined for their impact on astrocyte dysfunction and neurodegeneration. This review summarizes what is currently known about astrocyte function in ALS and suggests ways in which hiPSC-based models can be used to more effectively study the role of astrocytes in neurodegenerative disease.
Collapse
Affiliation(s)
- Madeline Halpern
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - James Gregory
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, United States of America.
| |
Collapse
|
305
|
Li LJ, Zheng JC, Kang R, Yan JQ. Targeting Trim69 alleviates high fat diet (HFD)-induced hippocampal injury in mice by inhibiting apoptosis and inflammation through ASK1 inactivation. Biochem Biophys Res Commun 2019; 515:658-664. [DOI: 10.1016/j.bbrc.2019.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
|
306
|
Hutchinson JM, Isaacson LG. Elimination of microglia in mouse spinal cord alters the retrograde CNS plasticity observed following peripheral axon injury. Brain Res 2019; 1721:146328. [PMID: 31295468 DOI: 10.1016/j.brainres.2019.146328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 01/08/2023]
Abstract
Following the transection of peripherally located sympathetic preganglionic axons of the cervical sympathetic trunk (CST), transient retrograde neuronal and glial responses occur in the intermediolateral cell column (IML) of the spinal cord, the location of the parent neuronal cell bodies. The role of microglia in this central response to peripheral axon injury was examined in mice fed the PLX5622 diet containing colony-stimulating factor-1 receptor (CSF-1R) inhibitor for 28 days, which eliminated approximately 90% of spinal cord microglia. Microglia elimination did not impact baseline neurotransmitter expression in the IML neurons, and the typical neuronal plasticity observed following CST transection was unaffected. Oligodendrocyte precursor cells (OPCs) were significantly increased at one week post injury in the IML of mice fed the control diet, with no change in mature oligodendrocytes (OLs). Following microglia elimination, the baseline population of OPCs in the IML was increased, suggesting increased OPC proliferation. Injury in the microglia depleted mice resulted in no additional increase in OPCs. Though baseline astrocyte activation and GFAP protein expression were unaffected, microglia elimination led to increased activation and GFAP protein post injury when compared with mice fed the control diet. These results reveal that microglia regulate the baseline OPC population in the uninjured spinal cord and that activated microglia influence the activities of OL lineage cells as well as astrocytes. The regulatory roles of microglia observed in this study likely contribute to the long term survival of the IML neurons observed following the distal axon injury.
Collapse
Affiliation(s)
- Jessika M Hutchinson
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Lori G Isaacson
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
307
|
Deficiencies of microglia and TNFα in the mPFC-mediated cognitive inflexibility induced by social stress during adolescence. Brain Behav Immun 2019; 79:256-266. [PMID: 30772475 DOI: 10.1016/j.bbi.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
The crucial roles played by microglia and their release of cytokines in the regulation of brain maturation are increasingly being recognized. Adolescence is a unique period characterized by continued brain maturation, especially in the area of the prefrontal cortex. Our previous studies showed that adolescent social stress induced impairment in extradimensional set-shifting (EDS), a core component of cognitive flexibility mediated by the medial prefrontal cortex (mPFC) in adult mice. The present study further determined the role of microglia and the inflammatory cytokine tumor necrosis factor alpha (TNFα) in cognitive dysfunction. Accompanied by a deficit in EDS in adulthood, previously stressed mice showed significant reductions in the expression of the microglial molecular biomarker Iba1, cell numbers, and the levels of TNFα mRNA and protein in the mPFC. Pharmacological inhibition of TNFα signaling by direct injection of a neutralizer into the mPFC also specifically impaired EDS performance. Moreover, the cognitive and immune alterations in previously stressed adult mice were ameliorated by both acute LPS and chronic antidepressant treatment. Together, our data suggest that microglia and TNFα play important roles in cognitive flexibility and can provide attractive therapeutic targets for the treatment of cognitive deficits in psychiatric disorders.
Collapse
|
308
|
Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, Xiu J, Xu Q. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway. Aging Dis 2019; 10:611-625. [PMID: 31165005 PMCID: PMC6538223 DOI: 10.14336/ad.2018.0707] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Diabetes is a systemic disease that can cause brain damage such as synaptic impairments in the hippocampus, which is partly because of neuroinflammation induced by hyperglycemia. Brain-derived neurotrophic factor (BDNF) is essential in modulating neuroplasticity. Its role in anti-inflammation in diabetes is largely unknown. In the present study, we investigated the effects of BDNF overexpression on reducing neuroinflammation and the underlying mechanism in mice with type 1 diabetes induced by streptozotocin (STZ). Animals were stereotactically microinjected in the hippocampus with recombinant adeno-associated virus (AAV) expressing BDNF or EGFP. After virus infection, four groups of mice, the EGFP+STZ, BDNF+STZ, EGFP Control and BDNF Control groups, received STZ or vehicle treatment as indicated. Three weeks later brain tissues were collected. We found that BDNF overexpression in the hippocampus significantly rescued STZ-induced decreases in mRNA and protein expression of two synaptic plasticity markers, spinophilin and synaptophysin. More interestingly, BDNF inhibited hyperglycemia-induced microglial activation and reduced elevated levels of inflammatory factors (TNF-α, IL-6). BDNF blocked the increase in HMGB1 levels and specifically, in levels of one of the HMGB1 receptors, RAGE. Downstream of HMGB1/RAGE, the increase in the protein level of phosphorylated NF-κB was also reversed by BDNF in STZ-treated mice. These results show that BDNF overexpression reduces neuroinflammation in the hippocampus of type 1 diabetic mice and suggest that the HMGB1/RAGE/NF-κB signaling pathway may contribute to alleviation of neuroinflammation by BDNF in diabetic mice.
Collapse
Affiliation(s)
- Rongrong Han
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zeyue Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Sun
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
309
|
Wang X, Liu Y, Wu X, Zhang Y, Pan R, Yu W, Wu F. Engineered endomorphin-2 gene: A novel therapy for improving morphine reinstatement in CPP model of rats by using deficient adenovirus as the vector. Biochem Biophys Res Commun 2019; 513:141-146. [DOI: 10.1016/j.bbrc.2019.03.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
|
310
|
Chunchai T, Apaijai N, Keawtep P, Mantor D, Arinno A, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Testosterone deprivation intensifies cognitive decline in obese male rats via glial hyperactivity, increased oxidative stress, and apoptosis in both hippocampus and cortex. Acta Physiol (Oxf) 2019; 226:e13229. [PMID: 30506942 DOI: 10.1111/apha.13229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
AIM The study hypothesized that testosterone deprivation aggravates cognitive decline in obesity through increasing oxidative stress, glial activation, and apoptosis. METHODS Male Wistar rats (n = 24) were fed with either normal-diet (ND) or high-fat diet (HFD) for 24 weeks. At week 13, ND-fed rats and HFD-fed rats were randomly assigned to two subgroups to receive either a sham-operation or bilateral-orchiectomy (ORX). Rats were evaluated for metabolic parameters and cognition at 4, 8, and 12 weeks after the operation. At the end of protocol, the reactive oxygen species (ROS), glial morphology, and cell apoptosis were determined in hippocampus and cortex. RESULTS Both HFD-fed groups developed obese-insulin resistance, but ND-fed rats did not. HFD-fed rats with sham-operation showed cognitive decline, when compared to ND-fed rats with sham-operation at all time points. At 4- and 8-week after ORX, the cognitive impairment of ND-fed rats and both HFD-fed groups was not different. However, 12-week after ORX, cognitive decline and of glial hyperactivity of HFD-fed rats had the greatest increase among all groups. Hippocampal ROS levels and apoptotic cells in both HFD-fed groups were equally increased, but the cortical ROS levels and apoptotic cells of HFD-fed rats with ORX were the highest ones. CONCLUSIONS These findings suggest that testosterone deprivation aggravates cognitive decline in obesity via increasing oxidative stress, glial activity and apoptosis.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Puntarik Keawtep
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Duangkamol Mantor
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Apiwan Arinno
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
311
|
Guo L, Niu M, Yang J, Li L, Liu S, Sun Y, Zhou Z, Zhou Y. GHS-R1a Deficiency Alleviates Depression-Related Behaviors After Chronic Social Defeat Stress. Front Neurosci 2019; 13:364. [PMID: 31057357 PMCID: PMC6478702 DOI: 10.3389/fnins.2019.00364] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is an important orexigenic hormone that regulates feeding, metabolism and glucose homeostasis in human and rodents. Ghrelin functions by binding to its receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), which is widely expressed inside and outside of the brain. Recent studies suggested that acyl-ghrelin, the active form of ghrelin, is a persistent biomarker for chronic stress exposure. However, how ghrelin/GHS-R1a signaling contributes to stress responses and mood regulation remains uncertain. In this study, we applied the chronic social defeat stress (CSDS) paradigm to both GHS-R1a knock-out (Ghsr-/-) mice and littermate control (Ghsr+/+) mice, and then measured their depression- and anxiety-related behaviors. We found that Ghsr+/+ mice, but not Ghsr-/- mice, displayed apparent anxiety and depression after CSDS, while two groups mice showed identical behaviors at baseline, non-stress state. By screening the central and peripheral responses of Ghsr-/- mice and Ghsr+/+ mice to chronic stress, we found similar elevations of total ghrelin and adrenocorticotropic hormone (ACTH) in the serum of Ghsr-/- mice and Ghsr+/+ mice after CSDS, but decreased interleukin-6 (IL-6) in the serum of defeated Ghsr-/- mice compared to defeated Ghsr+/+ mice. We also found increased concentration of brain derived neurotropic factor (BDNF) in the hippocampus of Ghsr-/- mice compared to Ghsr+/+ mice after CSDS. The basal levels of ghrelin, ACTH, IL-6, and BDNF were not different between Ghsr-/- mice and Ghsr+/+ mice. Our findings thus suggested that the differential expressions of BDNF and IL-6 after CSDS may contribute to less anxiety and less despair observed in GHS-R1a-deficient mice than in WT control mice. Therefore, ghrelin/GHS-R1a signaling may play a pro-anxiety and pro-depression effect in response to chronic stress, while GHS-R1a deficiency may provide resistance to depressive symptoms of CSDS.
Collapse
Affiliation(s)
- Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Physiology, Binzhou Medical University, Yantai, China
| | - Minglu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Clinic Laboratory, PKU Care Luzhong Hospital, Zibo, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Dongying No.1 Middle School, Dongying, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Shuhan Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States
| | - Zhishang Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
312
|
Weber MD, McKim DB, Niraula A, Witcher KG, Yin W, Sobol CG, Wang Y, Sawicki CM, Sheridan JF, Godbout JP. The Influence of Microglial Elimination and Repopulation on Stress Sensitization Induced by Repeated Social Defeat. Biol Psychiatry 2019; 85:667-678. [PMID: 30527629 PMCID: PMC6440809 DOI: 10.1016/j.biopsych.2018.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Stress is associated with an increased prevalence of anxiety and depression. Repeated social defeat (RSD) stress in mice increases the release of monocytes from the bone marrow that are recruited to the brain by microglia. These monocytes enhance inflammatory signaling and augment anxiety. Moreover, RSD promotes stress sensitization, in which exposure to acute stress 24 days after cessation of RSD causes anxiety recurrence. The purpose of this study was to determine whether microglia were critical to stress sensitization and exhibited increased reactivity to subsequent acute stress or immune challenge. METHODS Mice were exposed to RSD, microglia were eliminated by colony-stimulating factor 1 receptor antagonism (PLX5622) and allowed to repopulate, and responses to acute stress or immune challenge (lipopolysaccharide) were determined 24 days after RSD sensitization. RESULTS Microglia maintained a unique messenger RNA signature 24 days after RSD. Moreover, elimination of RSD-sensitized microglia prevented monocyte accumulation in the brain and blocked anxiety recurrence following acute stress (24 days). When microglia were eliminated prior to RSD and repopulated and mice were subjected to acute stress, there was monocyte accumulation in the brain and anxiety in RSD-sensitized mice. These responses were unaffected by microglial elimination/repopulation. This may be related to neuronal sensitization that persisted 24 days after RSD. Following immune challenge, there was robust microglial reactivity in RSD-sensitized mice associated with prolonged sickness behavior. Here, microglial elimination/repopulation prevented the amplified immune reactivity ex vivo and in vivo in RSD-sensitized mice. CONCLUSIONS Microglia and neurons remain sensitized weeks after RSD, and only the immune reactivity component of RSD-sensitized microglia was prevented by elimination/repopulation.
Collapse
Affiliation(s)
- Michael D Weber
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Daniel B McKim
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Anzela Niraula
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Wenyuan Yin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Carly G Sobol
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Yufen Wang
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Caroline M Sawicki
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - John F Sheridan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio.
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
313
|
Gupta AS, Waters MR, Biswas DD, Brown LN, Surace MJ, Floros C, Siebenlist U, Kordula T. RelB controls adaptive responses of astrocytes during sterile inflammation. Glia 2019; 67:1449-1461. [PMID: 30957303 DOI: 10.1002/glia.23619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/25/2019] [Accepted: 03/21/2019] [Indexed: 01/08/2023]
Abstract
In response to brain injury or infections, astrocytes become reactive, undergo striking morphological and functional changes, and secrete and respond to a spectrum of inflammatory mediators. We asked whether reactive astrocytes also display adaptive responses during sterile IL-1β-induced neuroinflammation, which may limit tissue injury associated with many disorders of the central nervous system. We found that astrocytes display days-to-weeks long specific tolerance of cytokine genes, which is coordinated by NF-κB family member, RelB. However, in contrast to innate immune cells, astrocytic tolerance does not involve epigenetic silencing of the cytokine genes. Establishment of tolerance depends on persistent higher levels of RelB in tolerant astrocytes and its phosphorylation on serine 472. Mechanistically, this phosphorylation prevents efficient removal of RelB from cytokine promoters by IκBα and helps to establish tolerance. Importantly, ablation of RelB from astrocytes in mice abolishes tolerance during experimental neuroinflammation in vivo.
Collapse
Affiliation(s)
- Angela S Gupta
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Michael R Waters
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Debolina D Biswas
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Lashardai N Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Michael J Surace
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Constantinos Floros
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, Immune Activation Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia
| |
Collapse
|
314
|
Milk Fat Globule-Epidermal Growth Factor-Factor 8 Reverses Lipopolysaccharide-Induced Microglial Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2601394. [PMID: 31001372 PMCID: PMC6436360 DOI: 10.1155/2019/2601394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress plays an important role in various neurological disorders. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a regulatory protein for microglia. However, its involvement in microglial oxidative stress has not been established. In this study, we observed microglial oxidative stress in response to lipopolysaccharide (LPS) both in vitro and in vivo. LPS induced significant elevation of TNF-α, IL-6, MDA, and ROS and reduction of GSH and SOD in the mouse brains and primary microglia, which were reversed by MFG-E8 pretreatment. MFG-E8 induced the expression of Nrf-2 and HO-1 that was reduced by LPS incubation. Moreover, LPS-increased Keap-1 expression was reversed by MFG-E8. But the above tendencies were not seen when MFG-E8 was applied alone. The current study established the involvement of MFG-E8 in antioxidant effects during neuroinflammation. It may achieve the effects through the regulation of Keap-1/Nrf-2/HO-1 pathways.
Collapse
|
315
|
Yu WB, Wang Q, Chen S, Cao L, Tang J, Ma CG, Xiao W, Xiao BG. The therapeutic potential of ginkgolide K in experimental autoimmune encephalomyelitis via peripheral immunomodulation. Int Immunopharmacol 2019; 70:284-294. [PMID: 30851709 DOI: 10.1016/j.intimp.2019.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis is a T cell-mediated inflammatory, demyelinating disease of the central nervous system, accompanied by neuronal degeneration. Based on the anti-inflammatory effects of Ginkgolide K (GK), a platelet activating factor antagonist, we explored the possible application of GK in the treatment of MS. The results showed that GK effectively ameliorated the severity of experimental autoimmune encephalomyelitis. The intervention of GK inhibited the infiltration of inflammatory cells and demyelination in the spinal cord. At the same time, the expression of the inflammation-related molecules TLR4, NF-κB, and COX2 in the spinal cord was significantly lower in the GK-treated mice, indicating that GK intervention can inhibit the inflammatory microenvironment of the spinal cord in EAE mice. In mouse spleen lymphocytes, GK increased the proportion of regulatory T cells (Treg) and reduced the proportion of T helper 17 cells (Th17), modifying the imbalance between Th17/Treg cells. Additionally, GK shifted macrophage/microglia polarization from M1 to M2 cell type. Importantly, GK inhibited the expression of chemotactic molecules CCL-2, CCL-3 and CCL-5, thereby limiting the migration of inflammatory cells to the spinal cord. Our results provide the possibility that GK may be a promising naturally small molecule compound for the future treatment of MS.
Collapse
Affiliation(s)
- Wen-Bo Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qing Wang
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, University of Shanxi Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Sheng Chen
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, University of Shanxi Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Bao-Guo Xiao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
316
|
Astroglia in Sepsis Associated Encephalopathy. Neurochem Res 2019; 45:83-99. [PMID: 30778837 PMCID: PMC7089215 DOI: 10.1007/s11064-019-02743-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Cellular pathophysiology of sepsis associated encephalopathy (SAE) remains poorly characterised. Brain pathology in SAE, which is manifested by impaired perception, consciousness and cognition, results from multifactorial events, including high levels of systemic cytokines, microbial components and endotoxins, which all damage the brain barriers, instigate neuroinflammation and cause homeostatic failure. Astrocytes, being the principal homeostatic cells of the central nervous system contribute to the brain defence against infection. Forming multifunctional anatomical barriers, astroglial cells maintain brain-systemic interfaces and restrict the damage to the nervous tissue. Astrocytes detect, produce and integrate inflammatory signals between immune cells and cells of brain parenchyma, thus regulating brain immune response. In SAE astrocytes are present in both reactive and astrogliopathic states; balance between these states define evolution of pathology and neurological outcomes. In humans pathophysiology of SAE is complicated by frequent presence of comorbidities, as well as age-related remodelling of the brain tissue with senescence of astroglia; these confounding factors further impact upon SAE progression and neurological deficits.
Collapse
|
317
|
Wu Y, Gao M, Wu J, Hu P, Xu X, Zhang Y, Wang D, Chen Z, Huang C. Sulforaphane triggers a functional elongation of microglial process via the Akt signal. J Nutr Biochem 2019; 67:51-62. [PMID: 30856464 DOI: 10.1016/j.jnutbio.2019.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/08/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Microglia are a kind of innate immune cells in the nervous system. The amoeboid morphology in microglia indicates a pro-inflammatory status, while their ramified morphologies are associated with anti-neuroinflammation. Recently, we and others have reported that drugs that trigger microglial process elongation may be beneficial for neuroinflammation inhibition. In this study, we found that sulforaphane (SFN), a compound extracted from broccoli sprouts, promotes primary cultured microglial process elongation in both normal and pro-inflammatory conditions in a reversible manner. This pro-elongation effect of SFN was also observed in the prefrontal cortex in vivo and accompanied with an attenuation of pro-inflammatory response as well as an enhancement of anti-inflammatory response in primary cultured microglia. Mechanistic studies revealed that the SFN treatment increased Akt phosphorylation levels in primary cultured microglia and Akt inhibition blocked the effect of SFN on microglial process elongation, suggesting that the regulation of microglial process by SFN is mediated by Akt activation. Functional studies showed that Akt inhibition reversed the effect of SFN on both pro- and anti-inflammatory responses in lipopolysaccharide (LPS)-stimulated microglia. In an inflammation model in vivo, SFN pretreatment not only prevented LPS-induced retractions of microglial process in the prefrontal cortex, but improved LPS-induced behavioral abnormalities in mice, including the increase in immobility time in the tail suspension test and forced swim test as well as the decrease in sucrose preference. These results indicate that the SFN inhibits microglial activation and neuroinflammation-triggered behavioral abnormalities likely through triggering Akt-mediated microglial process elongation.
Collapse
Affiliation(s)
- Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Minhui Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Peili Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Xing Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Yaru Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu Province, China 226001.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001.
| |
Collapse
|
318
|
Clyburn C, Browning KN. Role of astroglia in diet-induced central neuroplasticity. J Neurophysiol 2019; 121:1195-1206. [PMID: 30699056 DOI: 10.1152/jn.00823.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by increased adiposity that develops when energy intake outweighs expenditure, is rapidly becoming a serious health crisis that affects millions of people worldwide and is associated with severe comorbid disorders including hypertension, cardiovascular disease, and type II diabetes. Obesity is also associated with the dysregulation of central neurocircuits involved in the control of autonomic, metabolic, and cognitive functions. Systemic inflammation associated with diet-induced obesity (DIO) has been proposed to be responsible for the development of these comorbidities as well as the dysregulation of central neurocircuits. A growing body of evidence suggests, however, that exposure to a high-fat diet (HFD) may cause neuroinflammation and astroglial activation even before systemic inflammation develops, which may be sufficient to cause dysregulation of central neurocircuits involved in energy homeostasis before the development of obesity. The purpose of this review is to summarize the current literature exploring astroglial-dependent modulation of central circuits following exposure to HFD and DIO, including not only dysregulation of neurocircuits involved in energy homeostasis and feeding behavior, but also the dysregulation of learning, memory, mood, and reward pathways.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
319
|
Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, Berdysz O, Gorantla G, Oliver B, Witcher KG, Wang Y, Negray CE, Vegesna RS, Sheridan JF, Godbout JP, Robson MJ, Blakely RD, Popovich PG, Bilbo SD, Quan N. Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity 2019; 50:317-333.e6. [PMID: 30683620 DOI: 10.1016/j.immuni.2018.12.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel P Nemeth
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel B McKim
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ling Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristina G Witcher
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Yufen Wang
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christina E Negray
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rekha S Vegesna
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
320
|
Li Z, Wu F, Xu D, Zhi Z, Xu G. Inhibition of TREM1 reduces inflammation and oxidative stress after spinal cord injury (SCI) associated with HO-1 expressions. Biomed Pharmacother 2019; 109:2014-2021. [DOI: 10.1016/j.biopha.2018.08.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
|
321
|
Pharmacological activation of REV-ERBα represses LPS-induced microglial activation through the NF-κB pathway. Acta Pharmacol Sin 2019; 40:26-34. [PMID: 29950615 DOI: 10.1038/s41401-018-0064-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
REV-ERBα, the NR1D1 (nuclear receptor subfamily 1, group D, member 1) gene product, is a dominant transcriptional silencer that represses the expression of genes involved in numerous physiological functions, including circadian rhythm, inflammation, and metabolism, and plays a crucial role in maintaining immune functions. Microglia-mediated neuroinflammation is tightly associated with various neurodegenerative diseases and psychiatric disorders. However, the role of REV-ERBα in neuroinflammation is largely unclear. In this study, we investigated whether and how pharmacological activation of REV-ERBα affected lipopolysaccharide (LPS)-induced neuroinflammation in mouse microglia in vitro and in vivo. In BV2 cells or primary mouse cultured microglia, application of REV-ERBα agonist GSK4112 or SR9011 dose-dependently suppressed LPS-induced microglial activation through the nuclear factor kappa B (NF-κB) pathway. In BV2 cells, pretreatment with GSK4112 inhibited LPS-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα) kinase (IκK), thus restraining the phosphorylation and degradation of IκBα, and blocked the nuclear translocation of p65, a NF-κB subunit, thereby suppressing the expression and secretion of the proinflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor α (TNFα). Moreover, REV-ERBα agonist-induced inhibition on neuroinflammation protected neurons from microglial activation-induced damage, which were also demonstrated in mice with their ventral midbrain microinjected with GSK4112, and then stimulated with LPS. Our results reveal that enhanced REV-ERBα activity suppresses microglial activation through the NF-κB pathway in the central nervous system.
Collapse
|
322
|
Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav 2018; 177:34-60. [PMID: 30590091 DOI: 10.1016/j.pbb.2018.12.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA.
| | - Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| |
Collapse
|
323
|
Yang Q, Zhou J. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2018; 67:1017-1035. [DOI: 10.1002/glia.23571] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Qiao‐qiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
| | - Jia‐wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Shanghai 200031 China
| |
Collapse
|
324
|
Cunningham C, Dunne A, Lopez-Rodriguez AB. Astrocytes: Heterogeneous and Dynamic Phenotypes in Neurodegeneration and Innate Immunity. Neuroscientist 2018; 25:455-474. [PMID: 30451065 DOI: 10.1177/1073858418809941] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Astrocytes are the most numerous cell type in the brain and perform several essential functions in supporting neuronal metabolism and actively participating in neural circuit and behavioral function. They also have essential roles as innate immune cells in responding to local neuropathology, and the manner in which they respond to brain injury and degeneration is the subject of increasing attention in neuroscience. Although activated astrocytes have long been thought of as a relatively homogenous population, which alter their phenotype in a relatively stereotyped way upon central nervous system injury, the last decade has revealed substantial heterogeneity in the basal state and significant heterogeneity of phenotype during reactive astrocytosis. Thus, phenotypic diversity occurs at two distinct levels: that determined by regionality and development and that determined by temporally dynamic changes to the environment of astrocytes during pathology. These inflammatory and pathological states shape the phenotype of these cells, with different consequences for destruction or recovery of the local tissue, and thus elucidating these phenotypic changes has significant therapeutic implications. In this review, we will focus on the phenotypic heterogeneity of astrocytes in health and disease and their propensity to change that phenotype upon subsequent stimuli.
Collapse
Affiliation(s)
- Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland.,School of Medicine, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| |
Collapse
|
325
|
Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain. Proc Natl Acad Sci U S A 2018; 115:12525-12530. [PMID: 30401738 DOI: 10.1073/pnas.1807958115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is highly abundant in the brain and confers protection against numerous neurological diseases, yet the fundamental mechanisms regulating the enrichment of DHA in the brain remain unknown. Here, we have discovered that a member of the long-chain acyl-CoA synthetase family, Acsl6, is required for the enrichment of DHA in the brain by generating an Acsl6-deficient mouse (Acsl6-/-). Acsl6 is highly enriched in the brain and lipid profiling of Acsl6-/- tissues reveals consistent reductions in DHA-containing lipids in tissues highly abundant with Acsl6. Acsl6-/- mice demonstrate motor impairments, altered glutamate metabolism, and increased astrogliosis and microglia activation. In response to a neuroinflammatory lipopolysaccharide injection, Acsl6-/- brains show similar increases in molecular and pathological indices of astrogliosis compared with controls. These data demonstrate that Acsl6 is a key mediator of neuroprotective DHA enrichment in the brain.
Collapse
|
326
|
Rigillo G, Vilella A, Benatti C, Schaeffer L, Brunello N, Blom JMC, Zoli M, Tascedda F. LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response. Brain Behav Immun 2018; 74:277-290. [PMID: 30244035 DOI: 10.1016/j.bbi.2018.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 01/23/2023] Open
Abstract
Epigenetic modifications of DNA and histone proteins are emerging as fundamental mechanisms by which neural cells adapt their transcriptional response to environmental cues, such as, immune stimuli or stress. In particular, histone H3 phospho(Ser10)-acetylation(Lys14) (H3S10phK14ac) has been linked to activation of specific gene expression. The purpose of this study was to investigate the role of H3S10phK14ac in a neuroinflammatory condition. Adult male rats received a intraperitoneal injection of lipopolysaccharide (LPS) (830 μg/Kg/i.p., n = 6) or vehicle (saline 1 mL/kg/i.p., n = 6) and were sacrificed 2 or 6 h later. We showed marked region- and time-specific increases in H3S10phK14ac in the hypothalamus and hippocampus, two principal target regions of LPS. These changes were accompanied by a marked transcriptional activation of interleukin (IL) 1β, IL-6, Tumour Necrosis Factor (TNF) α, the inducible nitric oxide synthase (iNOS) and the immediate early gene c-Fos. By means of chromatin immunoprecipitation, we demonstrated an increased region- and time-specific association of H3S10phK14ac with the promoters of IL-6, c-Fos and iNOS genes, suggesting that part of the LPS-induced transcriptional activation of these genes is regulated by H3S10phK14ac. Finally, by means of multiple immunofluorescence approach, we showed that increased H3S10phK14ac is cell type-specific, being neurons and reactive microglia, the principal histological types involved in this response. Present data point to H3S10phK14ac as a principal epigenetic regulator of neural cell response to systemic LPS and underline the importance of distinct time-, region- and cell-specific epigenetic mechanisms that regulate gene transcription to understand the mechanistic complexity of neuroinflammatory response to immune challenges.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Laurent Schaeffer
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, viale Antonio Allegri 9, 42121 Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
327
|
Sevoflurane attenuates systemic inflammation compared with propofol, but does not modulate neuro-inflammation: A laboratory rat study. Eur J Anaesthesiol 2018; 34:764-775. [PMID: 28759530 DOI: 10.1097/eja.0000000000000668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Septic encephalopathy is believed to be a result of neuro-inflammation possibly triggered by endotoxins, such as lipopolysaccharides (LPS). Modulation of the immune system is a property of volatile anaesthetics. OBJECTIVE We aimed to investigate the systemic and cerebral inflammatory response in a LPS-induced sepsis model in rats. We compared two different sedation strategies, intravenous propofol and the volatile anaesthetic sevoflurane, with the hypothesis that the latter may attenuate neuro-inflammatory processes. DESIGN Laboratory rat study. SETTING Basic research laboratories at the University Hospital Zurich and University Zurich Irchel between August 2014 and June 2016. PATIENTS A total of 32 adult male Wistar rats. INTERVENTIONS After tracheotomy and mechanical ventilation, the anaesthetised rats were monitored before sepsis was induced by using intravenous LPS or phosphate-buffered saline as control. Rats were sedated with propofol (10 mg kg h) or sevoflurane (2 vol%) continuously for 12 h. MAIN OUTCOME MEASURES Systemic inflammatory markers such as cytokine-induced neutrophil chemo-attractant protein 1, monocyte chemo-tactic protein-1 and IL-6 were determined. The same cytokines were measured in brain tissue. Cellular response in the brain was assessed by defining neutrophil accumulation with myeloperoxidase and also activation of microglia with ionised calcium-binding adaptor molecule-1 and astrocytes with glial fibrillary acidic protein. Finally, brain injury was determined. RESULTS Animals were haemodynamically stable in both sedation groups treated with LPS. Blood cytokine peak values were lower in the sevoflurane-LPS compared with propofol-LPS animals. In brain tissue of LPS animals, chemoattractant protein-1 was the only significantly increased cytokine (P = 0.003), however with no significance between propofol and sevoflurane. After LPS challenge, cerebral accumulation of neutrophils was observed. Microglia activation was pronounced in the hippocampus of animals treated with LPS (P = 0.006). LPS induced prominent astrogliosis (P < 0.001). There was no significant difference in microglia or astrocyte activation or apoptosis in the brain between sevoflurane and propofol. CONCLUSION We have shown that systemic attenuation of inflammation by the volatile anaesthetic sevoflurane did not translate into attenuated neuro-inflammation in this LPS-induced inflammation model. TRIAL REGISTRATION Animal approval No. 134/2014, Veterinäramt Zürich.
Collapse
|
328
|
Liu HY, Yue J, Hu LN, Cheng LF, Wang XS, Wang XJ, Feng B. Chronic minocycline treatment reduces the anxiety-like behaviors induced by repeated restraint stress through modulating neuroinflammation. Brain Res Bull 2018; 143:19-26. [DOI: 10.1016/j.brainresbull.2018.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022]
|
329
|
Wang XH, Liu Q, Shao ZT. Deletion of JDP2 improves neurological outcomes of traumatic brain injury (TBI) in mice: Inactivation of Caspase-3. Biochem Biophys Res Commun 2018; 504:805-811. [DOI: 10.1016/j.bbrc.2018.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
|
330
|
Smolders S, Notter T, Smolders SMT, Rigo JM, Brône B. Controversies and prospects about microglia in maternal immune activation models for neurodevelopmental disorders. Brain Behav Immun 2018; 73:51-65. [PMID: 29870753 DOI: 10.1016/j.bbi.2018.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Activation of the maternal immune system during pregnancy is a well-established risk factor for neuropsychiatric disease in the offspring, yet, the underlying mechanisms leading to altered brain function remain largely undefined. Microglia, the resident immune cells of the brain, are key to adequate development of the central nervous system (CNS), and are prime candidates to mediate maternal immune activation (MIA)-induced brain abnormalities. As such, the effects of MIA on the immunological phenotype of microglia has been widely investigated. However, contradicting results due to differences in read-out and methodological approaches impede final conclusions on MIA-induced microglial alterations. The aim of this review is to critically discuss the evidence for an activated microglial phenotype upon MIA.
Collapse
Affiliation(s)
- Silke Smolders
- Uhasselt - BIOMED, Hasselt, Belgium; Laboratory of Neuronal Differentiation, VIB Center for the Biology of Disease, Leuven and Center for Human Genetics, KU Leuven Leuven, Belgium.
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Sophie M T Smolders
- Uhasselt - BIOMED, Hasselt, Belgium; INSERM, UMR S 1130, Université Pierre et Marie Curie Paris, France; CNRS, UMR 8246, Université Pierre et Marie Curie Paris, France; UM 119 NPS, Université Pierre et Marie Curie Paris, France.
| | | | | |
Collapse
|
331
|
Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X. PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron 2018; 100:183-200.e8. [PMID: 30269986 DOI: 10.1016/j.neuron.2018.08.030] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitability by promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.
Collapse
Affiliation(s)
- Lihui Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Di Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ying Miao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Jun Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuzi Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangying Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Yang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Humingzhu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Yuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
332
|
Lee JY, Joo B, Nam JH, Nam HY, Lee W, Nam Y, Seo Y, Kang HJ, Cho HJ, Jang YP, Kim J, We YM, Koo JW, Hoe HS. An Aqueous Extract of Herbal Medicine ALWPs Enhances Cognitive Performance and Inhibits LPS-Induced Neuroinflammation via FAK/NF-κB Signaling Pathways. Front Aging Neurosci 2018; 10:269. [PMID: 30319390 PMCID: PMC6168635 DOI: 10.3389/fnagi.2018.00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that Liuwei Dihuang pills (LWPs) can positively affect learning, memory and neurogenesis. However, the underlying molecular mechanisms are not understood. In the present study, we developed ALWPs, a mixture of Antler and LWPs, and investigated whether ALWPs can affect neuroinflammatory responses. We found that ALWPs (500 mg/ml) inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine IL-1β mRNA levels in BV2 microglial cells but not primary astrocytes. ALWPs significantly reduced LPS-induced cell-surface levels of TLR4 to alter neuroinflammation. An examination of the molecular mechanisms by which ALWPs regulate the LPS-induced proinflammatory response revealed that ALWPs significantly downregulated LPS-induced levels of FAK phosphorylation, suggesting that ALWPs modulate FAK signaling to alter LPS-induced IL-1β levels. In addition, treatment with ALWPs followed by LPS resulted in decreased levels of the transcription factor NF-κB in the nucleus compared with LPS alone. Moreover, ALWPs significantly suppressed LPS-induced BV2 microglial cell migration. To examine whether ALWPs modulate learning and memory in vivo, wild-type C57BL/6J mice were orally administered ALWPs (200 mg/kg) or PBS daily for 3 days, intraperitoneally injected (i.p.) with LPS (250 μg/kg) or PBS, and assessed in Y maze and NOR tests. We observed that oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly rescued short- and long-term memory. More importantly, oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly reduced microglial activation in the hippocampus and cortex. Taken together, our results suggest that ALWPs can suppress neuroinflammation-associated cognitive deficits and that ALWPs have potential as a drug for neuroinflammation/neurodegeneration-related diseases, including Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Bitna Joo
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Hye Yeon Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Wonil Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Yongtaek Seo
- Division of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Hye-Jin Kang
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Young Pyo Jang
- Division of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Young-Man We
- College of Korean Medicine, Wonkwang University, Iksan, South Korea
- Oriental Medical Clinic Center, Hyoo Medical Clinic, Seoul, South Korea
| | - Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
333
|
Yan BC, Xu P, Gao M, Wang J, Jiang D, Zhu X, Won MH, Su PQ. Changes in the Blood-Brain Barrier Function Are Associated With Hippocampal Neuron Death in a Kainic Acid Mouse Model of Epilepsy. Front Neurol 2018; 9:775. [PMID: 30258402 PMCID: PMC6143688 DOI: 10.3389/fneur.2018.00775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
The kainic acid (KA)-induced epilepsy experimental model is widely used to study the mechanisms underlying this disorder. Recently, the blood-brain barrier (BBB) has become an innovative alternative treatment target for epilepsy patients. KA causes neuronal injury and BBB damage in this experimental epilepsy model but the mechanisms underlying epilepsy-related neuronal injury, autophagy, and BBB damage remain unclear. Therefore, the present study investigated the relationships among neuronal injury, the expressions of autophagy-related proteins, and changes in BBB-related proteins during the acute phase of epilepsy to further understand the mechanisms and pharmacotherapy of epilepsy. NeuN immunohistochemistry and Fluoro-Jade B (FJ-B) staining in the hippocampal CA3 region revealed that neuronal death induced by intraventricular injections of 10 μg/kg KA was greater than that induced by 3 μg/kg KA. In addition, there were transient increases in the levels of microtubule-associated protein light chain 3-II (LC3I/II) and Beclin-1, which are autophagy-related proteins involved in neuronal death, in this region 24 h after the administration of 10 μg/kg KA. There were also morphological changes in BBB-related cells such as astrocytes, endothelial cells (ECs), and tight junctions (TJs). More specifically, there was a significant increase in the activation of astrocytes 72 h after the administration of 10 μg/kg KA as well as continuous increases in the expressions of platelet endothelial cell adhesion molecule-1 (PECAM-1) and BBB-related TJ proteins (Zonula occludens-1 and Claudin-5) until 72 h after KA treatment. These results suggest that the overexpression of autophagy-related proteins and astrocytes and transient increases in the expressions of BBB-related TJ proteins may be closely related to autophagic neuronal injury. These findings provide a basis for the identification of novel therapeutic targets for patients with epilepsy.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China.,Department of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pei Xu
- Department of Neurology, Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Haian, China
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Jie Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Dan Jiang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Xiaolu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Pei Qing Su
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
334
|
Reduced Microglial Activity and Enhanced Glutamate Transmission in the Basolateral Amygdala in Early CNS Autoimmunity. J Neurosci 2018; 38:9019-9033. [PMID: 30185466 DOI: 10.1523/jneurosci.0398-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Emotional dysfunction is common in multiple sclerosis (MS) patients and in mouse models of MS, including experimental autoimmune encephalomyelitis (EAE); however, the etiology of these behaviors is poorly understood. To identify CNS changes associated with these behaviors, we focused on the basolateral amygdala (BLA) because of its central role in the regulation of emotional behavior. Whole-cell recordings were performed in the principal neurons of the BLA in early EAE, before demyelination, T-cell invasion, and motor dysfunction. EAE female mice displayed increased frequency of mEPSCs, with no alteration in amplitude or evoked EPSC paired-pulse ratio compared with controls. We found an increase in the AMPA-NMDA ratio and dendritic spine density, indicating increased numbers of glutamatergic synapses. We saw similar electrophysiological changes in BLA principal neurons after microglia were either inactivated (minocycline) or depleted (Mac1-Saporin) in the BLA. Microglia regulate synapses through pruning, directed by complement protein 3 (C3) expression. C3 was downregulated in the BLA in EAE. Ultrastructural analysis of microglia revealed more complex ramifications and reduced extracellular digestion of cellular elements. We also observed reduced IBA-1 and CD68 staining and lack of proinflammatory cytokine expression in the amygdala. Thus, early EAE is a state of microglial "deactivation" associated with reduced synaptic pruning. This contrasts with the prototypic microglial activation commonly associated with inflammatory CNS disease. Additionally, these data support a role for the acquired immune system to influence both neuronal and microglial function in early CNS autoimmunity.SIGNIFICANCE STATEMENT Microglia help regulate synaptic homeostasis, but there has been little evidence for how this might be important in neuroinflammatory diseases. The data from this study reveal increased synaptic activity and spine density in early stages of experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis) in the basolateral amygdala, a nucleus important in the types of behavioral changes we have previously described. These electrophysiological and morphological effects occurred without significant elevation of local inflammatory cytokines or local demyelination. Unexpectedly, in the context of inflammatory state, we found that microglia were "deactivated." This study provides strong evidence for a link between microglial activity and synaptic function; the conclusions contrast with the generally accepted view that microglia are activated in inflammatory disease.
Collapse
|
335
|
Li XQ, Yu Q, Chen FS, Tan WF, Zhang ZL, Ma H. Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway. J Neuroinflammation 2018; 15:250. [PMID: 30172256 PMCID: PMC6119253 DOI: 10.1186/s12974-018-1271-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background Ischaemia reperfusion (IR) induces multiple pathophysiological changes. In addition to its classical role in regulating tumourigenesis, the feedback loop formed by p53 and its driven target p53-upregulated modulator of apoptosis (PUMA) was recently demonstrated to be the common node tightly controlling various cellular responses during myocardial IR. However, the roles of the p53-PUMA feedback loop in the spinal cord remain unclear. This study aimed to elucidate the roles of p53-PUMA feedback interactions in the spinal cord after IR, specifically investigating their regulation of caspase 3-mediated apoptosis and nuclear factor (NF)-κB-mediated cytokine release. Methods SD rats subjected to 12 min of aortic arch occlusion served as IR models. Neurological assessment as well as p53 and PUMA mRNA and protein expression analyses were performed at 12-h intervals during a 48-h reperfusion period. The cellular distributions of p53 and PUMA were determined via double immunofluorescence staining. The effects of the p53-PUMA feedback loop on modulating hind-limb function; the number of TUNEL-positive cells; and protein levels of caspase 3, NF-κB and cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, were evaluated by intrathecal treatment with PUMA-specific or scramble siRNA and pifithrin (PFT)-α. Blood-spinal cord barrier (BSCB) breakdown was examined by Evans blue (EB) extravasation and water content analyses. Results IR induced significant behavioural deficits as demonstrated by deceased Tarlov scores, which displayed trends opposite those of PUMA and p53 protein and mRNA expression. Upregulated PUMA and p53 fluorescent labels were widely distributed in neurons, astrocytes and microglia. Injecting si-PUMA and PFT-α exerted significant anti-apoptosis effects as shown by the reduced number of TUNEL-positive cells, nuclear abnormalities and cleaved caspase 3 levels at 48 h post-IR. Additionally, p53 colocalized with NF-κB within the cell. Similarly, injecting si-PUMA and PFT-α exerted anti-inflammatory effects as shown by the decreased NF-κB translocation and release of IL-1β and TNF-α. Additionally, injecting si-PUMA and PFT-α preserved the BSCB integrity as determined by decreased EB extravasation and spinal water content. However, injecting si-Con did not induce any of the abovementioned effects. Conclusions Inhibition of aberrant p53-PUMA feedback loop activation by intrathecal treatment with si-PUMA and PFT-α prevented IR-induced neuroapoptosis, inflammatory responses and BSCB breakdown by inactivating caspase 3-mediated apoptosis and NF-κB-mediated cytokine release.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Qian Yu
- Department of Thoracic Surgery, Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, Liaoning, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Wen-Fei Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
336
|
Overexpression of TUSC7 inhibits the inflammation caused by microglia activation via regulating miR-449a/PPAR-γ. Biochem Biophys Res Commun 2018; 503:1020-1026. [DOI: 10.1016/j.bbrc.2018.06.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
|
337
|
Ativie F, Komorowska JA, Beins E, Albayram Ö, Zimmer T, Zimmer A, Tejera D, Heneka M, Bilkei-Gorzo A. Cannabinoid 1 Receptor Signaling on Hippocampal GABAergic Neurons Influences Microglial Activity. Front Mol Neurosci 2018; 11:295. [PMID: 30210289 PMCID: PMC6121063 DOI: 10.3389/fnmol.2018.00295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Microglia, the resident immune cells of the brain, play important roles in defending the brain against pathogens and supporting neuronal circuit plasticity. Chronic or excessive pro-inflammatory responses of microglia damage neurons, therefore their activity is tightly regulated. Pharmacological and genetic studies revealed that cannabinoid type 1 (CB1) receptor activity influences microglial activity, although microglial CB1 receptor expression is very low and activity-dependent. The CB1 receptor is mainly expressed on neurons in the central nervous system (CNS)-with an especially high level on GABAergic interneurons. Here, we determined whether CB1 signaling on this neuronal cell type plays a role in regulating microglial activity. We compared microglia density, morphology and cytokine expression in wild-type (WT) and GABAergic neuron-specific CB1 knockout mice (GABA/CB1-/-) under control conditions (saline-treatment) and after 3 h, 24 h or repeated lipopolysaccharide (LPS)-treatment. Our results revealed that hippocampal microglia from saline-treated GABA/CB1-/- mice resembled those of LPS-treated WT mice: enhanced density and larger cell bodies, while the size and complexity of their processes was reduced. No further reduction in the size or complexity of microglia branching was detected after LPS-treatment in GABA/CB1-/- mice, suggesting that microglia in naïve GABA/CB1-/- mice were already in an activated state. This result was further supported by correlating the level of microglial tumor necrosis factor α (TNFα) with their size. Acute LPS-treatment elicited in both genotypes similar changes in the expression of pro-inflammatory cytokines (TNFα, interleukin-6 (IL-6) and interleukin 1β (IL-1β)). However, TNFα expression was still significantly elevated after repeated LPS-treatment in WT, but not in GABA/CB1-/- mice, indicating a faster development of tolerance to LPS. We also tested the possibility that the altered microglia activity in GABA/CB1-/- mice was due to an altered expression of neuron-glia interaction proteins. Indeed, the level of fractalkine (CX3CL1), a neuronal protein involved in the regulation of microglia, was reduced in hippocampal GABAergic neurons in GABA/CB1-/- mice, suggesting a disturbed neuronal control of microglial activity. Our result suggests that CB1 receptor agonists can modulate microglial activity indirectly, through CB1 receptors on GABAergic neurons. Altogether, we demonstrated that GABAergic neurons, despite their relatively low density in the hippocampus, have a specific role in the regulation of microglial activity and cannabinoid signaling plays an important role in this arrangement.
Collapse
Affiliation(s)
- Frank Ativie
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Joanna A Komorowska
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eva Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Önder Albayram
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Till Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dario Tejera
- Department of Neurodegenerative Diseases & Gerontopsychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Heneka
- Department of Neurodegenerative Diseases & Gerontopsychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
338
|
Lisboa SF, Niraula A, Resstel LB, Guimaraes FS, Godbout JP, Sheridan JF. Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2. Neuropsychopharmacology 2018; 43:1924-1933. [PMID: 29786066 PMCID: PMC6046035 DOI: 10.1038/s41386-018-0064-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 11/10/2022]
Abstract
Psychosocial stress contributes to the development of psychiatric disorders. Repeated social defeat (RSD) is a murine stressor that causes a release of inflammatory monocytes into circulation. Moreover, RSD-induced anxiety-like behavior is dependent on the recruitment of these monocytes to the brain. Activation of the endocannabinoid (ECB) system may modulate both neuroendocrine and inflammatory responses mediated by stress. Therefore, we hypothesized that a cannabinoid receptor agonist would attenuate RSD-induced inflammation, anxiety, and stress sensitization. To test this hypothesis, mice received an injection of the synthetic cannabinoid1/2 receptor agonist, WIN55,212-2 (WIN; 1 mg/kg, intraperitoneally) daily for six consecutive days, 30 min before each exposure to RSD. Anxiety-like behavior, immune activation, neuroinflammation, and microglial reactivity were determined 14 h after RSD. RSD-induced anxiety-like behavior in the open field and in the EPM was reversed by WIN55,212-2. Moreover, WIN55,212-2 reduced the accumulation of inflammatory monocytes in circulation and brain after RSD and attenuated RSD-induced interleukin-1β (IL-1β) messenger RNA (mRNA) expression in microglia/macrophages. Increased ex vivo reactivity of microglia/monocytes to lipopolysaccharides (LPS) after RSD was also attenuated by WIN55,212-2. Next, fear expression, extinction, and recall were evaluated 24 and 48 h, respectively, after contextual fear conditioning, which took place 7 days after RSD. Here, RSD caused prolonged fear expression and impaired fear extinction recall, which was associated with increased IL-1β mRNA in the brain. Moreover, these stress-induced effects were reversed by WIN55,212-2. In conclusion, activation of cannabinoid receptors limited the immune and neuroinflammatory responses to RSD and reversed the short-term and long-term behavioral deficits associated with RSD.
Collapse
Affiliation(s)
- Sabrina Francesca Lisboa
- Department of Pharmacology, University of Sao Paulo (USP), Ribeirão Preto, São Paulo, 14049900, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, São Paulo, 14049900, Brazil.
| | - Anzela Niraula
- 0000 0001 2285 7943grid.261331.4Division of Biosciences, Ohio State University, Columbus, OH 43210 USA
| | - Leonardo Barbosa Resstel
- 0000 0004 1937 0722grid.11899.38Department of Pharmacology, University of Sao Paulo (USP), Ribeirão Preto, São Paulo 14049900 Brazil ,0000 0004 1937 0722grid.11899.38Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, São Paulo 14049900 Brazil
| | - Francisco Silveira Guimaraes
- 0000 0004 1937 0722grid.11899.38Department of Pharmacology, University of Sao Paulo (USP), Ribeirão Preto, São Paulo 14049900 Brazil ,0000 0004 1937 0722grid.11899.38Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, São Paulo 14049900 Brazil
| | - Jonathan P. Godbout
- 0000 0001 2285 7943grid.261331.4Division of Biosciences, Ohio State University, Columbus, OH 43210 USA ,0000 0001 2285 7943grid.261331.4Department of Neuroscience, Ohio State University, Columbus, OH 43210 USA ,0000 0001 2285 7943grid.261331.4Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210 USA
| | - John F. Sheridan
- 0000 0001 2285 7943grid.261331.4Division of Biosciences, Ohio State University, Columbus, OH 43210 USA ,0000 0001 2285 7943grid.261331.4Department of Neuroscience, Ohio State University, Columbus, OH 43210 USA ,0000 0001 2285 7943grid.261331.4Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
339
|
Arauchi R, Hashioka S, Tsuchie K, Miyaoka T, Tsumori T, Limoa E, Azis IA, Oh‐Nishi A, Miura S, Otsuki K, Kanayama M, Izuhara M, Nagahama M, Kawano K, Araki T, Liaury K, Abdullah RA, Wake R, Hayashida M, Inoue K, Horiguchi J. Gunn rats with glial activation in the hippocampus show prolonged immobility time in the forced swimming test and tail suspension test. Brain Behav 2018; 8:e01028. [PMID: 29953737 PMCID: PMC6085916 DOI: 10.1002/brb3.1028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Recent studies imply that glial activation plays a role in the pathogenesis of psychiatric disorders, such as schizophrenia and major depression. We previously demonstrated that Gunn rats with hyperbilirubinemia show congenital gliosis and schizophrenia-like behavior. METHODS As it has been suggested that major depression involves glial activation associated with neuroinflammation, we examined whether Gunn rats show depression-like behavior using the forced swimming test (FST) and the tail suspension test (TST). In addition, we quantitatively evaluated both microgliosis and astrogliosis in the hippocampus of Gunn rats using immunohistochemistry analysis of the microglial marker ionized calcium-binding adaptor molecule (Iba) 1 and the astrocytic marker S100B. RESULTS Both the FST and TST showed that immobility time of Gunn rats was significantly longer than that of normal control Wistar rats, indicating that Gunn rats are somewhat helpless, a sign of depression-like behavior. In the quantification of immunohistochemical analysis, Iba1immunoreactivity in the dentate gyrus (DG), cornu ammonis (CA) 1, and CA3 and the number of Iba1-positive cells in the CA1 and CA3 were significantly increased in Gunn rats compared to Wistar rats. S100B immunoreactivity in the DG, CA1, and CA3 and the number of S100B-positive cells in the DG and CA3 were significantly increased in Gunn rats compared to Wistar rats. CONCLUSION Our findings suggest that both microglia and astrocyte are activated in Gunn rats and their learned helplessness could be related to glial activation.
Collapse
Affiliation(s)
| | | | - Keiko Tsuchie
- Department of PsychiatryShimane UniversityIzumoJapan
| | | | - Toshiko Tsumori
- Department of NursingPrefectural University of HiroshimaMiharaJapan
| | - Erlyn Limoa
- Department of PsychiatryShimane UniversityIzumoJapan
- Department of PsychiatryHasanuddin UniversityMakassarSouth SulawesiIndonesia
| | - Ilhamuddin A. Azis
- Department of PsychiatryShimane UniversityIzumoJapan
- Department of PsychiatryHasanuddin UniversityMakassarSouth SulawesiIndonesia
| | | | - Shoko Miura
- Department of PsychiatryShimane UniversityIzumoJapan
| | - Koji Otsuki
- Department of PsychiatryShimane UniversityIzumoJapan
| | | | | | | | | | - Tomoko Araki
- Department of PsychiatryShimane UniversityIzumoJapan
| | - Kristian Liaury
- Department of PsychiatryHasanuddin UniversityMakassarSouth SulawesiIndonesia
| | - Rostia A. Abdullah
- Department of PsychiatryShimane UniversityIzumoJapan
- Department of PsychiatryHasanuddin UniversityMakassarSouth SulawesiIndonesia
| | - Rei Wake
- Department of PsychiatryShimane UniversityIzumoJapan
| | | | - Ken Inoue
- Health Service CenterKochi UniversityKochiJapan
| | - Jun Horiguchi
- Department of PsychiatryShimane UniversityIzumoJapan
| |
Collapse
|
340
|
Kwon JH, Gaire BP, Park SJ, Shin DY, Choi JW. Identifying lysophosphatidic acid receptor subtype 1 (LPA 1) as a novel factor to modulate microglial activation and their TNF-α production by activating ERK1/2. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1237-1245. [PMID: 30071304 DOI: 10.1016/j.bbalip.2018.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 11/29/2022]
Abstract
Microglia regulate immune responses in the brain, and their activation is key to the pathogenesis of diverse neurological diseases. Receptor-mediated lysophosphatidic acid (LPA) signaling has been known to regulate microglial biology, but it is still unclear which receptor subtypes guide the biology, particularly, microglial activation. Here, we investigated the pathogenic aspects of LPA receptor subtype 1 (LPA1) in microglial activation using a systemic lipopolysaccharide (LPS) administration-induced septic mouse model in vivo and LPS-stimulated rat primary microglia in vitro. LPA1 knockdown in the brain with its specific shRNA lentivirus attenuated the sepsis-induced microglia activation, morphological transformation, and proliferation. LPA1 knockdown also resulted in the downregulation of TNF-α, at both mRNA and protein levels in septic brains, but not IL-1β or IL-6. In rat primary microglia, genetic or pharmacological blockade of LPA1 attenuated gene upregulation and secretion of TNF-α in LPS-stimulated cells. In particular, the latter was associated with the suppressed TNF-α converting enzyme (TACE) activity. We reaffirmed these biological aspects using a BV2 microglial cell line in which LPA1 expression was negligible. LPA1 overexpression in BV2 cells led to significant increments in TNF-α production upon stimulation with LPS, whereas inhibiting LPA1 reversed the production. We further identified ERK1/2, but not p38 MAPK or Akt, as the underlying effector pathway after LPA1 activation in both septic brains and stimulated microglia. The current findings of the novel role of LPA1 in microglial activation along with its mechanistic aspects could be applied to understanding the pathogenesis of diverse neurological diseases that involve microglial activation.
Collapse
Affiliation(s)
- Jin Hyun Kwon
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-799, Republic of Korea
| | - Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-799, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong-Yoon Shin
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-799, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-799, Republic of Korea.
| |
Collapse
|
341
|
Seminotti B, Zanatta Â, Ribeiro RT, da Rosa MS, Wyse ATS, Leipnitz G, Wajner M. Disruption of Brain Redox Homeostasis, Microglia Activation and Neuronal Damage Induced by Intracerebroventricular Administration of S-Adenosylmethionine to Developing Rats. Mol Neurobiol 2018; 56:2760-2773. [PMID: 30058022 DOI: 10.1007/s12035-018-1275-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats. AdoMet provoked significant lipid and protein oxidation, decreased glutathione concentrations, and altered the activity of important antioxidant enzymes in cerebral cortex and striatum. AdoMet also increased reactive oxygen (2',7'-dichlorofluorescein oxidation increase) and nitrogen (nitrate and nitrite levels increase) species generation in cerebral cortex. Furthermore, the antioxidants N-acetylcysteine and melatonin prevented most of AdoMet-induced pro-oxidant effects in both cerebral structures. Finally, we verified that AdoMet produced microglia activation by increasing Iba1 staining and TAU phosphorylation, as well as reduced synaptophysin levels in cerebral cortex. Taken together, it is presumed that impairment of redox homeostasis possibly associated with microglia activation and neuronal dysfunction caused by AdoMet may represent deleterious pathomechanisms involved in the pathophysiology of brain damage in S-adenosylhomocysteine hydrolase deficiency.
Collapse
Affiliation(s)
- Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ângela Zanatta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mateus Struecker da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
342
|
Hashioka S, Inoue K, Hayashida M, Wake R, Oh-Nishi A, Miyaoka T. Implications of Systemic Inflammation and Periodontitis for Major Depression. Front Neurosci 2018; 12:483. [PMID: 30072865 PMCID: PMC6058051 DOI: 10.3389/fnins.2018.00483] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that infection and persistent low-grade inflammation in peripheral tissues are important pathogenic factors in major depression. Major depression is frequently comorbid with systemic inflammatory diseases/conditions such as rheumatoid arthritis, allergies of different types, multiple sclerosis, cardiovascular disease, inflammatory bowel disease, chronic liver disease, diabetes, and cancer, in which pro-inflammatory cytokines are overexpressed. A number of animal studies demonstrate that systemic inflammation induced by peripheral administration of lipopolysaccharide increases the expression of pro-inflammatory cytokines in both the periphery and brain and causes abnormal behavior similar to major depression. Systemic inflammation can cause an increase in CNS levels of pro-inflammatory cytokines associated with glial activation, namely, neuroinflammation, through several postulated pathways. Such neuroinflammation can in turn induce depressive moods and behavioral changes by affecting brain functions relevant to major depression, especially neurotransmitter metabolism. Although various clinical studies imply a causal relationship between periodontitis, which is one of the most common chronic inflammatory disorders in adults, and major depression, the notion that periodontitis is a risk factor for major depression is still unproven. Additional population-based cohort studies or prospective clinical studies on the relationship between periodontitis and major depression are needed to substantiate the causal link of periodontitis to major depression. If such a link is established, periodontitis may be a modifiable risk factor for major depression by simple preventive oral treatment.
Collapse
Affiliation(s)
| | - Ken Inoue
- Health Service Center, Kochi University, Kochi, Japan
| | | | - Rei Wake
- Department of Psychiatry, Shimane University, Izumo, Japan
| | - Arata Oh-Nishi
- Department of Psychiatry, Shimane University, Izumo, Japan
| | | |
Collapse
|
343
|
Boitsova EB, Morgun AV, Osipova ED, Pozhilenkova EA, Martinova GP, Frolova OV, Olovannikova RY, Tohidpour A, Gorina YV, Panina YA, Salmina AB. The inhibitory effect of LPS on the expression of GPR81 lactate receptor in blood-brain barrier model in vitro. J Neuroinflammation 2018; 15:196. [PMID: 29973231 PMCID: PMC6030740 DOI: 10.1186/s12974-018-1233-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) is one of the main constituents of the cell wall of gram-negative bacteria. As an endotoxin, LPS induces neuroinflammation, which is associated with the blood-brain barrier impairment. Lactate is a metabolite with some significant physiological functions within the neurovascular unit/blood-brain barrier (BBB). Accumulation of extracellular and cerebrospinal fluid lactate is a specific feature of bacterial meningitis. However, the role of lactate production, transport, and sensing by lactate receptors GPR81 in the pathogenesis of bacterial neuroinflammation is still unknown. METHODS In this study, we analyzed effects of LPS on the expression of GPR81 and MCT-1 and proliferation of cerebral endothelial cells in the BBB model in vitro. We used molecular profiling methods to measure the expression of GPR81, MCT-1, IL-1β, and Ki67 in the cerebral endothelium after treatment with different concentrations of LPS followed by measuring the level of extracellular lactate, transendothelial electric resistance, and permeability of the endothelial cell layer. RESULTS Our findings showed that exposure to LPS results in neuroinflammatory changes associated with decreased expression of GPR81 and MCT-1 in endothelial cells, as well as overproduction of IL-1β and elevation of lactate concentrations in the extracellular space in a dose-dependent manner. LPS treatment reduced JAM tight junction protein expression in cerebral endothelial cells and altered BBB structural integrity in vitro. CONCLUSION The impairment of lactate reception and transport might contribute to the alterations of BBB structural and functional integrity caused by LPS-mediated neuroinflammation.
Collapse
Affiliation(s)
- Elizaveta B. Boitsova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V. Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Elena D. Osipova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Elena A. Pozhilenkova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Galina P. Martinova
- Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga V. Frolova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Raissa Ya Olovannikova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Abolghasem Tohidpour
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yana V. Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia A. Panina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B. Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
344
|
Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res 2018; 197:470-477. [PMID: 29352709 DOI: 10.1016/j.schres.2018.01.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/26/2017] [Accepted: 01/01/2018] [Indexed: 12/20/2022]
Abstract
With the advent of sequencing technology, characterization of schizophrenia with underlying probing of gut microbiome can provide abundant clues for diagnosis and prognosis of schizophrenia. In this study, we first compared the difference of gut microbiota between schizophrenia patients and healthy controls by 16S rRNA sequencing. We further explored whether gut microbiota can be used as a biomarker to assist in the diagnosis of schizophrenia. We restricted inclusion criteria strictly to control confounding bias. Finally, we investigated differences in fecal microbiota between 64 schizophrenia patients and 53 healthy controls. At the phylum level, we found that the abundance of Proteobacteria in the schizophrenia patients was significantly increased. At the genus level, the relative abundance of Succinivibrio, Megasphaera, Collinsella, Clostridium, Klebsiella and Methanobrevibacter was significantly higher whereas the abundance of Blautia, Coprococcus, Roseburia was decreased compared to health controls. The receiver operating characteristic curve analysis demonstrated that 12 significant microbiota biomarkers were capable of being used as diagnostic factors for distinguishing the schizophrenia cohort from those in the control cohort (AUC = 0.837). We performed PICRUSt analysis and found that several metabolic pathways differed significantly between healthy controls and schizophrenia patients, including vitamin B6 and fatty acid. In conclusion, there are some difference of gut microbiota between schizophrenia patients and healthy controls and the insights from this study could be used to develop microbiota-based diagnosis for schizophrenia.
Collapse
|
345
|
Suppression of NLRP3 inflammasome attenuates stress-induced depression-like behavior in NLGN3-deficient mice. Biochem Biophys Res Commun 2018; 501:933-940. [DOI: 10.1016/j.bbrc.2018.05.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
|
346
|
Chunchai T, Chattipakorn N, Chattipakorn SC. The possible factors affecting microglial activation in cases of obesity with cognitive dysfunction. Metab Brain Dis 2018; 33:615-635. [PMID: 29164373 DOI: 10.1007/s11011-017-0151-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
Obesity has reached epidemic proportions in many countries around the world. Several studies have reported that obesity can lead to the development of cognitive decline. There is increasing evidence to demonstrate that microglia play a crucial role in cognitive decline in cases of obesity, Alzheimer's disease and also in the aging process. Although there have been several studies into microglia over the past decades, the mechanistic link between microglia and cognitive decline in obese models is still not fully understood. In this review, the current available evidence from both in vitro and in vivo investigations regarding the association between the alteration in microglial activity in different obese models with respect to cognition are included. The metabolite profiles from obesity, adiposity, dietary and hormone affected microglial activation and its function in the brain are comprehensively summarized. In addition, the possible roles of microglial activation in relation to cognitive dysfunction are also presented and discussed. To ensure a balanced perspective controversial reports regarding these issues are included and discussed.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
347
|
de Abreu MS, Giacomini ACVV, Zanandrea R, Dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018; 92:1-12. [PMID: 29609110 DOI: 10.1016/j.psyneuen.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Despite the high prevalence of neural and immune disorders, their etiology and molecular mechanisms remain poorly understood. As the zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in biomedical research, mounting evidence suggests these fish as a useful tool to study neural and immune mechanisms and their interplay. Here, we discuss zebrafish neuro-immune mechanisms and their pharmacological and genetic modulation, the effect of stress on cytokines, as well as relevant models of microbiota-brain interplay. As many human brain diseases are based on complex interplay between the neural and the immune system, here we discuss zebrafish models, as well as recent successes and challenges, in this rapidly expanding field. We particularly emphasize the growing utility of zebrafish models in translational immunopsychiatry research, as they improve our understanding of pathogenetic neuro-immune interactions, thereby fostering future discovery of potential therapeutic agents.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rodrigo Zanandrea
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | | | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Research Institute of Physiology and Basic Medicine SB RAS, and Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine SB RAS, Novosibirsk, Russia.
| |
Collapse
|
348
|
Zhou Y, Wang G, Li D, Wang Y, Wu Q, Shi J, Zhang F. Dual modulation on glial cells by tetrahydroxystilbene glucoside protects against dopamine neuronal loss. J Neuroinflammation 2018; 15:161. [PMID: 29801454 PMCID: PMC5970496 DOI: 10.1186/s12974-018-1194-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Microglia-mediated neuroinflammation is recognized to mainly contribute to the pathogenesis of Parkinson’s disease (PD). Tetrahydroxystilbene glucoside (TSG) has been proved to be beneficial for health with a great number of pharmacological properties. We examined the effects of TSG against dopamine (DA) neuronal loss towards development of a PD treatment strategy. Methods Substantia nigral stereotaxic single injection of lipopolysaccharide (LPS)-induced rat DA neuronal damage was employed to investigate TSG-produced neuroprotection. In addition, primary rat midbrain neuron-glia co-cultures were performed to explore the underlying mechanisms. Results Daily intraperitoneal injection of TSG for seven consecutive days significantly attenuated LPS-induced loss of DA neurons in the substantia nigra. In addition, glia-dependent mechanisms were responsible for TSG-mediated neuroprotection. First, TSG ameliorated microglia-mediated neuroinflammation and the subsequent production of various pro-inflammatory and neurotoxic factors. Second, astroglial neurotrophic factor neutralization weakened TSG-mediated neuroprotection, showing that TSG was protective in part via increasing astroglia-derived neurotrophic factor secretion. Conclusions TSG protects DA neurons against LPS-induced neurotoxicity through dual modulation on glial cells by attenuating microglia-mediated neuroinflammation and enhancing astroglia-derived neurotrophic effects. These findings might open new alternative avenues for PD treatment.
Collapse
Affiliation(s)
- Yanzhen Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Ear-Nose-Throat Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanying Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
349
|
Trépanier MO, Hopperton KE, Giuliano V, Masoodi M, Bazinet RP. Increased brain docosahexaenoic acid has no effect on the resolution of neuroinflammation following intracerebroventricular lipopolysaccharide injection. Neurochem Int 2018; 118:115-126. [PMID: 29792954 DOI: 10.1016/j.neuint.2018.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022]
Abstract
Resolution of inflammation in the periphery was once thought to be a passive process, but new research now suggests it is an active process mediated by specialized pro-resolving lipid mediators (SPM) derived from omega-3 polyunsaturated fatty acids (n-3 PUFA). However, this has yet to be illustrated in neuroinflammation. The purpose of this study was to measure resolution of neuroinflammation and to test whether increasing brain docosahexaenoic acid (DHA) affects the resolution of neuroinflammation. C57Bl/6 mice, fat-1 mice and their wildtype littermates, fed either fish oil or safflower oil, received lipopolysaccharide (LPS) in the left lateral ventricle. Animals were then euthanized at various time points for immunohistochemistry, gene expression, and lipidomic analyses. Peak microglial activation was observed at 5 days post-surgery and the resolution index was 10 days. Of the approximately 350 genes significantly changed over the 28 days post LPS injection, 130 were uniquely changed at 3 days post injection. No changes were observed in the bioactive mediator pools. However, a few lysophospholipid species were decreased at 24hr post surgery. When brain DHA is increased, microglial cell density did not resolve faster and did not alter gene expression. In conclusion, resolution of neuroinflammation appears to be independent of SPM. Increasing brain DHA had no effect in this model.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Vanessa Giuliano
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Mojgan Masoodi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada; Lipid Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada.
| |
Collapse
|
350
|
Kostuk EW, Cai J, Iacovitti L. Regional microglia are transcriptionally distinct but similarly exacerbate neurodegeneration in a culture model of Parkinson's disease. J Neuroinflammation 2018; 15:139. [PMID: 29751760 PMCID: PMC5948771 DOI: 10.1186/s12974-018-1181-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Background Parkinson’s disease (PD) is characterized by selective degeneration of dopaminergic (DA) neurons of the substantia nigra pars compacta (SN) while neighboring ventral tegmental area (VTA) DA neurons are relatively spared. Mechanisms underlying the selective protection of the VTA and susceptibility of the SN are still mostly unknown. Here, we demonstrate the importance of balance between astrocytes and microglia in the susceptibility of SN DA neurons to the PD mimetic toxin 1-methyl-4-phenylpyridinium (MPP+). Methods Previously established methods were used to isolate astrocytes and microglia from the cortex (CTX), SN, and VTA, as well as embryonic midbrain DA neurons from the SN and VTA. The transcriptional profile of isolated microglia was examined for 21 canonical pro- and anti-inflammatory cytokines by qRT-PCR with and without MPP+ exposure. Homo- and heterotypic co-cultures of neurons and astrocytes were established, and the effect of altering the ratio of astrocytes and microglia in vitro on the susceptibility of midbrain DA neurons to the PD mimetic toxin MPP+ was investigated. Results We found that regionally isolated microglia (SN, VTA, CTX) exhibit basal differences in their cytokine profiles and that activation of these microglia with MPP+ results in differential cytokine upregulation. The addition of microglia to cultures of SN neurons and astrocytes was not sufficient to cause neurodegeneration; however, when challenged with MPP+, all regionally isolated microglia resulted in exacerbation of MPP+ toxicity which was alleviated by inhibition of microglial activation. Furthermore, we demonstrated that isolated VTA, but not SN, astrocytes were able to mediate protection of both SN and VTA DA neurons even in the presence of exacerbatory microglia; however, this protection could be reversed by increasing the numbers of microglia present. Conclusion These results suggest that the balance of astrocytes and microglia within the midbrain is a key factor underlying the selective vulnerability of SN DA neurons seen in PD pathogenesis and that VTA astrocytes mediate protection of DA neurons which can be countered by greater numbers of deleterious microglia. Electronic supplementary material The online version of this article (10.1186/s12974-018-1181-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric Wildon Kostuk
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA
| | - Jingli Cai
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA. .,Department of Neurology, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA. .,Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|