301
|
Rybin VO, Sabri A, Short J, Braz JC, Molkentin JD, Steinberg SF. Cross-regulation of novel protein kinase C (PKC) isoform function in cardiomyocytes. Role of PKC epsilon in activation loop phosphorylations and PKC delta in hydrophobic motif phosphorylations. J Biol Chem 2003; 278:14555-64. [PMID: 12566450 DOI: 10.1074/jbc.m212644200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies identify conventional protein kinase C (PKC) isoform phosphorylations at conserved residues in the activation loop and C terminus as maturational events that influence enzyme activity and targeting but are not dynamically regulated by second messengers. In contrast, this study identifies phorbol 12-myristoyl 13-acetate (PMA)- and norepinephrine-induced phosphorylations of PKC epsilon (at the C-terminal hydrophobic motif) and PKC delta (at the activation loop) as events that accompany endogenous novel PKC (nPKC) isoform activation in neonatal rat cardiomyocytes. Agonist-induced nPKC phosphorylations are prevented (and the kinetics of PMA-dependent PKC down-regulation are slowed) by pharmacologic inhibitors of nPKC kinase activity. PKC delta is recovered from PMA-treated cultures with increased in vitro lipid-independent kinase activity (and altered substrate specificity); the PMA-dependent increase in PKC delta kinase activity is attenuated when PKC delta activation loop phosphorylation is prevented. To distinguish roles of individual nPKC isoforms in nPKC phosphorylations, wild-type (WT) and dominant negative (DN) PKC delta and PKC epsilon mutants were introduced into cardiomyocyte cultures using adenovirus-mediated gene transfer. WT-PKC delta and WT-PKC epsilon are highly phosphorylated at activation loop and hydrophobic motif sites, even in the absence of allosteric activators. DN-PKC delta is phosphorylated at the activation loop but not the hydrophobic motif; DN-PKC epsilon is phosphorylated at the hydrophobic motif but not the activation loop. Collectively, these results identify a role for PKC epsilon in nPKC activation loop phosphorylations and PKC delta in nPKC hydrophobic motif phosphorylations. Agonist-induced nPKC isoform phosphorylations that accompany activation/translocation of the enzyme contribute to the regulation of PKC delta kinase activity, may influence nPKC isoform trafficking/down-regulation, and introduce functionally important cross-talk for nPKC signaling pathways in cardiomyocytes.
Collapse
Affiliation(s)
- Vitalyi O Rybin
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
302
|
Littler CM, Morris KG, Fagan KA, McMurtry IF, Messing RO, Dempsey EC. Protein kinase C-epsilon-null mice have decreased hypoxic pulmonary vasoconstriction. Am J Physiol Heart Circ Physiol 2003; 284:H1321-31. [PMID: 12505875 DOI: 10.1152/ajpheart.00795.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PKC contributes to regulation of pulmonary vascular reactivity in response to hypoxia. The role of individual PKC isozymes is less clear. We used a knockout (null, -/-) mouse to test the hypothesis that PKC-epsilon is important in acute hypoxic pulmonary vasoconstriction (HPV). We asked whether deletion of PKC-epsilon would decrease acute HPV in adult C57BL6xSV129 mice. In isolated, salt solution-perfused lung, reactivity to acute hypoxic challenges (0% and 3% O(2)) was compared with responses to angiotensin II (ANG II) and KCl. PKC-epsilon -/- mice had decreased HPV, whereas responses to ANG II and KCl were preserved. Inhibition of nitric oxide synthase (NOS) with nitro-l-arginine augmented HPV in PKC-epsilon +/+ but not -/- mice. Inhibition of Ca(2+)-gated K(+) channels (K(Ca)) with charybdotoxin and apamin did not enhance HPV in -/- mice relative to wild-type (+/+) controls. In contrast, the voltage-gated K(+) channel (K(V)) antagonist 4-aminopyridine increased the response of -/- mice beyond that of +/+ mice. This suggested that increased K(V) channel expression could contribute to blunted HPV in PKC-epsilon -/- mice. Therefore, expression of the O(2)-sensitive K(V) channel subunit Kv3.1b (100-kDa glycosylated form and 70-kDa core protein) was compared in whole lung and pulmonary artery smooth muscle cell (PASMC) lysates from +/+ and -/- mice. A subtle increase in Kv3.1b was detected in -/- vs. +/+ whole lung lysates. A much greater rise in Kv3.1b expression was found in -/- vs. +/+ PASMC. Thus deletion of PKC-epsilon blunts murine HPV. The decreased response could not be attributed to a general loss in vasoreactivity or derangements in NOS or K(Ca) channel activity. Instead, the absence of PKC-epsilon allows increased expression of K(V) channels (like Kv3.1b) to occur in PASMC, which likely contributes to decreased HPV.
Collapse
Affiliation(s)
- Cassana M Littler
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
303
|
Abstract
The distinct protein kinase C (PKC) multigene family (PKC gene module) is known to be the 'classic' intracellular receptor for mitogenic phorbol esters, and it is widely accepted in the scientific community that the 'PKC effect' is essential in activation, differentiation, adhesion and motility, as well as in cellular survival, of T cells. Nevertheless, the first concepts about PKC isotype heterogeneity of cellular localization and function emerged only recently, when the PKC-theta pathways were mapped to critical signaling networks that control T cell receptor (TCR)/CD3-dependent interleukin (IL)-2 production and proliferation in T lymphocytes. This review summarizes the current knowledge about T cell expressed PKC gene products, their known and/or suspected regulation and cellular effector pathways, as well as physiological functions in T lymphocytes (as determined by molecular cell biology and ongoing mouse genetic studies). Given PKCs integral role in T cell function but today's very fragmentary molecular understanding of directly PKC-mediated effector functions in transmembrane signaling, a 'molecular biosystematics' approach is suggested to resolve the isotype-selective functions of this PKC gene family. Such an approach has to be based not only on genomic/cytogenetic analysis to establish its genetic relationships but also on biochemical/cell biology and genetic studies to resolve its functional diversity and, ultimately, nonredundant roles in real T cell physiology.
Collapse
Affiliation(s)
- Gottfried Baier
- Institute of Medical Biology and Human Genetics, University of Innsbruck, Austria.
| |
Collapse
|
304
|
Abstract
Much progress has been made in understanding the function of protein kinase C-theta (PKCtheta) in the immune system since this Ca2+-independent PKC isotype was isolated in 1993 as an enzyme that is highly expressed in T lymphocytes and in muscle cells. Biochemical and genetic approaches revealed that, while dispensable for T-cell development, PKCtheta is required for the activation of mature T cells and for interleukin (IL)-2 production. This deficiency results from impaired receptor-induced stimulation of the transcription factors AP-1 and NF-kappaB. PKCtheta integrates T-cell receptor (TCR)/CD28 costimulatory signals, which are essential for productive T-cell activation and, most likely, for prevention of T-cell anergy. A unique property of PKCtheta is its highly selective recruitment to the central supramolecular activation complex (cSMAC) region of the immunological synapse (IS) in antigen-stimulated T cells. Our work revealed that this highly selective localization is not entirely dependent on phospholipase C (PLC) activity and diacylglycerol (DAG) production. Instead, a novel signaling pathway that requires functional Vav1, phosphatidylinositol 3-kinase (PI3-K), the small GTPase Rac and actin cytoskeleton reorganization regulates the localization and, perhaps, activation of PKCtheta. PKCtheta also provides a survival signal, which protects T cells from apoptosis. Additional work is required to identify the immediate targets of PKCtheta and its immune functions in vivo. This work is likely to validate PKCtheta as an attractive drug target.
Collapse
Affiliation(s)
- Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | |
Collapse
|
305
|
Parmentier JH, Smelcer P, Pavicevic Z, Basic E, Idrizovic A, Estes A, Malik KU. PKC-zeta mediates norepinephrine-induced phospholipase D activation and cell proliferation in VSMC. Hypertension 2003; 41:794-800. [PMID: 12623998 DOI: 10.1161/01.hyp.0000047873.76255.0b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Norepinephrine (NE) stimulates phospholipase D (PLD) activity and cell proliferation in vascular smooth muscle cells (VSMCs). The objective of this study was to determine the contribution of PKC-zeta to NE-induced PLD activation and cell proliferation in VSMCs. PLD activity was measured by the formation of [3H]phosphatidylethanol in VSMCs labeled with [3H]oleic acid and exposed to ethanol. A high basal PLD activity was detected, and NE increased PLD activity over basal by 70%. This increase was abolished by the broad-range PKC inhibitor Ro 31-8220 (1 micromol/L, 30 minutes) and myristoylated PKC-zeta pseudosubstrate peptide inhibitor (25 micromol/L, 1 hour). Transfection of VSMCs with PKC-zeta antisense, but not sense, oligonucleotides, which reduced PKC-zeta protein level and basal PLD activity, caused a 92% decrease in NE-induced PLD activation. NE-induced increase in PLD activity was also reduced by 61% in cells transfected with kinase-deficient FLAG-T410A-PKC-zeta plasmid but not in those transfected with wild-type PKC-zeta. NE increased immunoprecipitable PKC-zeta activity and phosphorylation, reaching a maximum at 2 and 5 minutes, respectively. NE-induced increase in PKC-zeta activity was inhibited by Ro 31-8220 and by the pseudosubstrate inhibitor. Treatment of VSMCs for 48 hours with PKC-zeta antisense, but not sense, oligonucleotides also inhibited basal and NE-stimulated cell proliferation by 54% and 57%, respectively, as measured by [3H]thymidine incorporation. The inhibitor of PLD activity n-butanol, but not its inactive analog tert-butanol, also reduced the basal and blocked NE-induced cell proliferation. These data suggest that PKC-zeta mediates PLD activation and cell proliferation elicited by NE in rabbit VSMCs.
Collapse
Affiliation(s)
- Jean-Hugues Parmentier
- Department of Pharmacology and Vascular Biology Center of Excellence, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | | | | | | | | | | | | |
Collapse
|
306
|
Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 2003; 370:361-71. [PMID: 12495431 PMCID: PMC1223206 DOI: 10.1042/bj20021626] [Citation(s) in RCA: 609] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 12/13/2002] [Accepted: 12/20/2002] [Indexed: 01/02/2023]
Abstract
Phosphorylation plays a central role in regulating the activation and signalling lifetime of protein kinases A, B (also known as Akt) and C. These kinases share three conserved phosphorylation motifs: the activation loop segment, the turn motif and the hydrophobic motif. This review focuses on how phosphorylation at each of these sites regulates the maturation, signalling and down-regulation of PKC as a paradigm for how these sites control the function of the ABC kinases.
Collapse
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0640, USA.
| |
Collapse
|
307
|
Minami T, Abid MR, Zhang J, King G, Kodama T, Aird WC. Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-delta-NF-kappa B and PKC-zeta-GATA signaling pathways. J Biol Chem 2003; 278:6976-84. [PMID: 12493764 DOI: 10.1074/jbc.m208974200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We recently demonstrated that thrombin induces the expression of vascular adhesion molecule-1 (VCAM-1) in endothelial cells by an NF-kappaB- and GATA-dependent mechanism. In the present study, we describe the signaling pathways that mediate this response. Thrombin stimulation of the VCAM-1 gene and promoter in human umbilical vein endothelial cells was inhibited by preincubation with the phosphatidylinositol 3-kinase inhibitor, LY294002, the protein kinase C (PKC)-delta inhibitor, rottlerin, a PKC-zeta peptide inhibitor, or by overexpression of dominant negative (DN)-PKC-zeta. In electrophoretic mobility shift assays, thrombin-mediated induction of NF-kappaB p65 binding to two NF-kappaB motifs in the upstream promoter region of VCAM-1 was blocked by LY294002 and rottlerin, whereas the inducible binding of GATA-2 to a tandem GATA motif was inhibited by LY294002 and the PKC-zeta peptide inhibitor. In co-transfection assays, thrombin stimulation of a minimal promoter containing multimerized VCAM-1 NF-kappaB sites was inhibited by DN-PKC-delta but not DN-PKC-zeta. In contrast, thrombin-mediated transactivation of a minimal promoter containing tandem VCAM-1 GATA motifs was inhibited by DN-PKC-zeta but not DN-PKC-delta. Finally, thrombin failed to induce VCAM-1 expression in vascular smooth muscle cells. Taken together, these data suggest that the endothelial cell-specific effect of thrombin on VCAM-1 expression involves the coordinate activity of PKC-delta-NF-kappaB and PKC-zeta-GATA signaling pathways.
Collapse
Affiliation(s)
- Takashi Minami
- Department of Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
308
|
Castrillo A, Través PG, Martín-Sanz P, Parkinson S, Parker PJ, Boscá L. Potentiation of protein kinase C zeta activity by 15-deoxy-delta(12,14)-prostaglandin J(2) induces an imbalance between mitogen-activated protein kinases and NF-kappa B that promotes apoptosis in macrophages. Mol Cell Biol 2003; 23:1196-1208. [PMID: 12556480 PMCID: PMC141130 DOI: 10.1128/mcb.23.4.1196-1208.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 06/04/2002] [Accepted: 11/21/2002] [Indexed: 02/07/2023] Open
Abstract
Activation of the macrophage cell line RAW 264.7 with lipopolysaccharide (LPS) transiently activates protein kinase C zeta (PKC zeta) and Jun N-terminal kinase (JNK) through a phosphoinositide-3-kinase (PI3-kinase)-dependent pathway. Incubation of LPS-treated cells with the cyclopentenone 15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ(2)) promoted a sustained activation of PKC zeta and JNK and inhibited I kappa B kinase (IKK) and NF-kappa B activity. Accordingly, 15dPGJ(2) induced an imbalance between JNK and IKK activities by increasing the former signaling pathway and inhibiting the latter signaling pathway. Under these conditions, apoptosis was significantly enhanced; this response was very dependent on PKC zeta and JNK activation. The effect of 15dPGJ(2) on PKC zeta activity observed in LPS-activated macrophages was not dependent on a direct action of this prostaglandin on the enzyme but was due to the activation of a step upstream of PI3-kinase. Moreover, LPS promoted the redistribution of activated PKC zeta from the cytosol to the nucleus, a process that was enhanced by treatment of the cells with 15dPGJ(2) that favored a persistent and broader distribution of PKC zeta in the nucleus. These results indicate that 15dPGJ(2) and other cyclopentenone prostaglandins, through the sustained activation of PKC zeta, might contribute significantly to the process of resolution of inflammation by promoting apoptosis of activated macrophages.
Collapse
Affiliation(s)
- Antonio Castrillo
- Instituto de Bioquímica, Centro Mixto CSIC-UCM, Facultad de Farmacia, and Centro Nacional de Investigaciones Cardiovasculares, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
309
|
Reisinger K, Kaufmann R, Gille J. Increased Sp1 phosphorylation as a mechanism of hepatocyte growth factor (HGF/SF)-induced vascular endothelial growth factor (VEGF/VPF) transcription. J Cell Sci 2003; 116:225-38. [PMID: 12482909 DOI: 10.1242/jcs.00237] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatocyte growth factor (HGF/SF)-induced expression of vascular endothelial growth factor (VEGF/VPF) has been implicated in paracrine amplification of angiogenesis, contributing to angiogenic responses during inflammation, wound healing, collateral formation and tumor growth. We have shown previously that HGF/SF-mediated VEGF/VPF expression by keratinocytes is primarily dependent on transcriptional activation, and we mapped the HGF/SF-responsive element to a GC-rich region between bp -88 and -65. Sp1-like factors bind to this element constitutively; however the VEGF/VPF promoter is transactivated by HGF/SF in the absence of induced binding activity. In experimental approaches to clarify molecular mechanisms of Sp1-dependent VEGF/VPF gene transcription, neither HGF/SF-dependent changes in nuclear expression nor in relative DNA binding activity of Sp family members to the indicated element were observed. Thus, HGF/SF was hypothesized to induce VEGF/VPF gene transcription via increased transactivation activity of Sp1 owing to biochemical modification. In immunoprecipitation studies, HGF/SF was found to increase the amount of serine-phosphorylated Sp1, revealing a likely mechanism of HGF/SF-induced VEGF/VPF expression, as phosphorylation may enhance the transcriptional activity of Sp1. The contribution of different signaling molecules to HGF/SF-induced VEGF/VPF transcription was demonstrated by the use of chemical inhibition, of expression of kinase-deficient signaling proteins, and by the use of antisense oligonucleotides. Herein, we provide evidence that PI 3-kinase, MEK1/2 and PKC-zeta play a significant role in HGF/SF-induced VEGF/VPF promoter activation. Together, our results elucidate a critical pathway of paracrine amplification of angiogenesis, suggesting that HGF/SF-induced Sp1 phosphorylation may activate VEGF/VPF promoter activity that requires the contribution of distinct signaling molecules.
Collapse
Affiliation(s)
- Kerstin Reisinger
- Department of Dermatology, Klinikum der J. W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
310
|
van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 2003; 369:199-211. [PMID: 12408751 PMCID: PMC1223095 DOI: 10.1042/bj20021528] [Citation(s) in RCA: 340] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 10/30/2002] [Accepted: 10/31/2002] [Indexed: 12/18/2022]
Abstract
The physiological role of ceramide formation in response to cell stimulation remains controversial. Here, we emphasize that ceramide is not a priori an apoptotic signalling molecule. Recent work points out that the conversion of sphingomyelin into ceramide can play a membrane structural (physical) role, with consequences for membrane microdomain function, membrane vesiculation, fusion/fission and vesicular trafficking. These processes contribute to cellular signalling. At the Golgi, ceramide takes part in a metabolic flux towards sphingomyelin, diacylglycerol and glycosphingolipids, which drives lipid raft formation and vesicular transport towards the plasma membrane. At the cell surface, receptor clustering in lipid rafts and the formation of endosomes can be facilitated by transient ceramide formation. Also, signalling towards mitochondria may involve glycosphingolipid-containing vesicles. Ceramide may affect the permeability of the mitochondrial outer membrane and the release of cytochrome c. In the effector phase of apoptosis, the breakdown of plasma membrane sphingomyelin to ceramide is a consequence of lipid scrambling, and may regulate apoptotic body formation. Thus ceramide formation serves many different functions at distinct locations in the cell. Given the limited capacity for spontaneous intracellular diffusion or membrane flip-flop of natural ceramide species, the topology and membrane sidedness of ceramide generation are crucial determinants of its impact on cell biology.
Collapse
Affiliation(s)
- Wim J van Blitterswijk
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
311
|
Sobiesiak-Mirska J, Nałecz MJ, Nałecz KA. Interaction of palmitoylcarnitine with protein kinase C in neuroblastoma NB-2a cells. Neurochem Int 2003; 42:45-55. [PMID: 12441167 DOI: 10.1016/s0197-0186(02)00067-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As reported previously [Acta Neurobiol. Exp. 57 (1997) 263], palmitoylcarnitine was observed to promote differentiation of neuroblastoma NB-2a cells with a concomitant inhibition of proliferation and of the phorbol ester stimulated activity of the protein kinase C (PKC). In the present study, palmitoylcarnitine was observed to inhibit phosphorylation of the PKC peptide substrate and to completely diminish binding of phorbol 12-myristate-13-acetate (PMA), although the effect was found to be uncompetitive. The exposure of NB-2a cells to palmitoylcarnitine in the presence of PMA resulted in a dramatic decrease in phosphorylation of the conventional and novel isozymes of PKC, mainly on serine. This effect was observed to be dose dependent. Inhibitors of serine/threonine phosphatases were not influencing the effect of palmitoylcarnitine what can point to an interaction between PKC and palmitoylcarnitine, affecting the process of autophosphorylation. These findings suggest that pamitoylcarnitine could be a natural modulator of PKC activity, thus regulating the process of cell differentiation.
Collapse
Affiliation(s)
- Joanna Sobiesiak-Mirska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteur Street 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
312
|
Moore MJ, Kanter JR, Jones KC, Taylor SS. Phosphorylation of the catalytic subunit of protein kinase A. Autophosphorylation versus phosphorylation by phosphoinositide-dependent kinase-1. J Biol Chem 2002; 277:47878-84. [PMID: 12372837 DOI: 10.1074/jbc.m204970200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of phosphoinositide-dependent kinase-1 (PDK-1) as an activating kinase for members of the AGC family of kinases has led to its implication as the activating kinase for cAMP-dependent protein kinase. It has been established in vitro that PDK-1 can phosphorylate the catalytic (C) subunit (), but the Escherichia coli-expressed C-subunit undergoes autophosphorylation. To assess which of these mechanisms occurs in mammalian cells, a set of mutations was engineered flanking the site of PDK-1 phosphorylation, Thr-197, on the activation segment of the C-subunit. Two distinct requirements appeared for autophosphorylation and phosphorylation by PDK-1. Autophosphorylation was disrupted by mutations that compromised activity (Thr-201 and Gly-200) or altered substrate recognition (Arg-194). Conversely, only residues peripheral to Thr-197 altered PDK-1 phosphorylation, including a potential hydrophobic PDK-1 binding site at the C terminus. To address the in vivo requirements for phosphorylation, select mutant proteins were transfected into COS-7 cells, and their phosphorylation state was assessed with phospho-specific antibodies. The phosphorylation pattern of these mutant proteins indicates that autophosphorylation is not the maturation mechanism in the eukaryotic cell; instead, a heterologous kinase with properties resembling the in vitro characteristics of PDK-1 is responsible for in vivo phosphorylation of PKA.
Collapse
Affiliation(s)
- Michael J Moore
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0654, USA
| | | | | | | |
Collapse
|
313
|
Romero-Avila MT, Flores-Jasso CF, García-Sáinz JA. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta. Biochem J 2002; 368:581-7. [PMID: 12234252 PMCID: PMC1223020 DOI: 10.1042/bj20021052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Revised: 09/11/2002] [Accepted: 09/17/2002] [Indexed: 01/11/2023]
Abstract
Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.
Collapse
Affiliation(s)
- M Teresa Romero-Avila
- Instituto de Fisiologi;a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México D.F. 04510
| | | | | |
Collapse
|
314
|
Costa LG, Guizzetti M. Inhibition of muscarinic receptor-induced proliferation of astroglial cells by ethanol: mechanisms and implications for the fetal alcohol syndrome. Neurotoxicology 2002; 23:685-91. [PMID: 12520758 DOI: 10.1016/s0161-813x(02)00009-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In utero exposure to ethanol is deleterious to fetal brain development. Children born with the fetal alcohol syndrome (FAS) display a number of abnormalities, the most significant of which are central nervous system (CNS) dysfunctions, such as microencephaly and mental retardation. An interaction of ethanol with glial cells, particularly astrocytes, has been suggested to contribute to the developmental neurotoxicity of this alcohol. At low concentrations (10-100 mM) ethanol inhibits the proliferation of astroglial cells in vitro, particularly when stimulated by acetycholine through muscarinic M3 receptors. Of the several signal transduction pathways activated by these receptors in astrocytes or astrocytoma cells, which are involved in mitogenic signaling, only some (e.g. protein kinase C (PKC) zeta, p70S6 kinase) appear to be targeted by ethanol at the same low concentrations which effectively inhibit proliferation. Inhibition of astroglial proliferation by ethanol may contribute to the microencephaly seen in FAS.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental Health, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
315
|
Brändlin I, Eiseler T, Salowsky R, Johannes FJ. Protein kinase C(mu) regulation of the JNK pathway is triggered via phosphoinositide-dependent kinase 1 and protein kinase C(epsilon). J Biol Chem 2002; 277:45451-7. [PMID: 12223477 DOI: 10.1074/jbc.m205299200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein kinase C (PKC)-related enzyme PKC(mu)/PKD (protein kinase D) is activated by activation loop phosphorylation through PKC(eta). Here we demonstrate that PKC(mu) is activated by the direct phosphorylation of PKC(epsilon). PKC(mu) colocalizes with PKC(epsilon) in HEK293 and MCF7 cells as shown by confocal immunofluorescence analyses. PDK1, known as the upstream kinase for several PKC isozymes, associates intracellularly with PKC(epsilon) and PKC(eta). PKC(eta) is phosphorylated by PDK1 in vitro, leading to kinase activation as similarly reported for PKC(epsilon) activation by PDK1. Coexpression of PDK1, PKC(epsilon) and PKC(mu) in HEK293 cells results in PKC(mu) activation. In contrast, the coexpression of PDK1 and PKC(eta) with PKC(mu) does not activate PKC(eta) or consequently PKC(mu). PDK1/PKC(epsilon)-triggered activation of PKC(mu) inhibits JNK, a downstream effector of PKC(mu), whereas upon transient expression of PDK1, PKC(eta), and PKC(mu), JNK is not affected. These data implicate PKC(epsilon) as the biologically important upstream kinase for PKC(mu) in HEK293 cells, regulating downstream effectors. Our results further indicate a PDK1/PKC(eta)/PKC(mu) controlled negative regulation of PKC(eta) kinase activity. In this study, we show that differentially activated kinase cascades involving PDK1 and novel PKC isotypes are responsible for the regulation of PKC(mu) activity and consequently inhibit the JNK pathway.
Collapse
Affiliation(s)
- Ilona Brändlin
- Fraunhofer Institute for Interfacial Engineering, Nobelstrabetae 12, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
316
|
Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100:3767-75. [PMID: 12393646 DOI: 10.1182/blood-2002-01-0109] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent data suggest that vascular endothelial growth factor (VEGF), a cytokine involved in autocrine growth of tumor cells and tumor angiogenesis, is up-regulated and plays a potential role in myelogenous leukemias. In chronic myelogenous leukemia (CML), VEGF is expressed at high levels in the bone marrow and peripheral blood. We show here that the CML-associated oncogene BCR/ABL induces VEGF gene expression in growth factor-dependent Ba/F3 cells. Whereas starved cells were found to contain only baseline levels of VEGF mRNA, Ba/F3 cells induced to express BCR/ABL exhibited substantial amounts of VEGF mRNA. BCR/ABL also induced VEGF promoter activity and increased VEGF protein levels in Ba/F3 cells. Moreover, BCR/ABL was found to promote the expression of functionally active hypoxia-inducible factor-1 (HIF-1), a major transcriptional regulator of VEGF gene expression. BCR/ABL-induced VEGF gene expression was counteracted by the phosphoinositide 3-kinase (PI3-kinase) inhibitor LY294002 and rapamycin, an antagonist of mammalian target of rapamycin (mTOR), but not by inhibition of the mitogen-activated protein kinase pathway. Similarly, BCR/ABL-dependent HIF-1alpha expression was inhibited by the addition of LY294002 and rapamycin. Together, our data show that BCR/ABL induces VEGF- and HIF-1alpha gene expression through a pathway involving PI3-kinase and mTOR. BCR/ABL-induced VEGF expression may contribute to the pathogenesis and increased angiogenesis in CML.
Collapse
Affiliation(s)
- Matthias Mayerhofer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, The University of Vienna, Austria
| | | | | | | | | |
Collapse
|
317
|
Romanelli A, Dreisbach VC, Blenis J. Characterization of phosphatidylinositol 3-kinase-dependent phosphorylation of the hydrophobic motif site Thr(389) in p70 S6 kinase 1. J Biol Chem 2002; 277:40281-9. [PMID: 12183455 DOI: 10.1074/jbc.m205168200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phosphorylation of the highly conserved hydrophobic motif site in AGC kinases is necessary for phosphotransferase activity. Phosphorylation of this motif (FLGFT389Y) in p70 S6 kinase (S6K1) is both rapamycin- and wortmannin-sensitive, suggesting a role for both mammalian target of rapamycin- and phosphatidylinositol 3-kinase-dependent pathways. We report here that co-expression of phosphoinositide-dependent kinase-1 (PDK1) and the phosphatidylinositol 3-kinase-regulated atypical protein kinase Czeta cooperate to increase both phosphorylation of the hydrophobic motif site Thr(389), as well as the activation loop site Thr(229). Interestingly, although PDK1 alone can promote an increase in Thr(389) phosphorylation in both wild type S6K1 and a kinase-inactive mutant of S6K1, the cooperative effect between PDK1 and protein kinase Czeta required S6K1 activity. Furthermore, Akt, another phosphatidylinositol 3-kinase effector and regulator of S6K1, also increased Thr(389) phosphorylation in a S6K1 activity-dependent manner. Consistent with this, epidermal growth factor-induced Thr(389) phosphorylation in wild type S6K1 persisted for up to 120 min, whereas kinase-inactive mutants of S6K1 displayed only a reduced and transient increase in Thr(389) phosphorylation. We conclude that S6K1 activity is required for maximal Thr(389) phosphorylation by mitogens and by multiple phosphatidylinositol 3-kinase-dependent inputs including PDK1, PKCzeta, and Akt, and we propose that autophosphorylation is an important regulatory mechanism for phosphorylation of the hydrophobic motif Thr(389) site in S6K1.
Collapse
Affiliation(s)
- Angela Romanelli
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
318
|
Mwimbi XKMS, Muimo R, Treharne KJ, Sijumbila G, Green M, Mehta A. 4alpha-Phorbol negates the inhibitory effects of phorbol-12-myristate-13-acetate on human cilia and alters the phosphorylation of PKC. FEBS Lett 2002; 530:31-6. [PMID: 12387861 DOI: 10.1016/s0014-5793(02)03358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In medium 199, ciliary beat frequency (CBF) in human nasal epithelium declines to 60% of baseline by 2 h and 1 nM phorbol-12-myristate-13-acetate (PMA) doubles the rate of decline by activating protein kinase C (PKC). We find that a reported negative control for PMA, 4alpha-phorbol (1 pM-1 nM)+/-1 nM PMA, not only maintains CBF at baseline, but arrests a pre-existing PMA-induced decline in CBF and alters the profile of multiple phosphorylated PKC species. Thus, 4alpha-phorbol not only potently prevents PMA from inhibiting CBF but also has potent effects on the phosphorylation of PKC.
Collapse
Affiliation(s)
- Xowi K M S Mwimbi
- Tayside Institute of Child Health, Ninewells Hospital and Medical School, University of Dundee, UK
| | | | | | | | | | | |
Collapse
|
319
|
Zhang H, Zha X, Tan Y, Hornbeck PV, Mastrangelo AJ, Alessi DR, Polakiewicz RD, Comb MJ. Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J Biol Chem 2002; 277:39379-87. [PMID: 12151408 DOI: 10.1074/jbc.m206399200] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The substrates of most protein kinases remain unknown because of the difficulty tracing signaling pathways and identifying sites of protein phosphorylation. Here we describe a method useful in detecting subclasses of protein kinase substrates. Although the method is broadly applicable to any protein kinase for which a substrate consensus motif has been identified, we illustrate here the use of antibodies broadly reactive against phosphorylated Ser/Thr-motifs typical of AGC kinase substrates. Phosphopeptide libraries with fixed residues corresponding to consensus motifs RXRXXT*/S* (Akt motif) and S*XR (protein kinase C motif) were used as antigens to generate antibodies that recognize many different phosphoproteins containing the fixed motif. Because most AGC kinase members are phosphorylated and activated by phosphoinositide-dependent protein kinase-1 (PDK1), we used PDK1-/- ES cells to profile potential AGC kinase substrates downstream of PDK1. To identify phosphoproteins detected using the Akt substrate antibody, we characterized the antibody binding specificity to generate a specificity matrix useful in predicting antibody reactivity. Using this approach we predicted and then identified a 30-kDa phosphoprotein detected by both Akt and protein kinase C substrate antibodies as S6 ribosomal protein. Phosphospecific motif antibodies offer a new approach to protein kinase substrate identification that combines immunoreactivity data with protein data base searches based upon antibody specificity.
Collapse
Affiliation(s)
- Hui Zhang
- Cell Signaling Technology, Beverly, Massachusetts 01915, USA
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Xue HH, Kovanen PE, Pise-Masison CA, Berg M, Radovich MF, Brady JN, Leonard WJ. IL-2 negatively regulates IL-7 receptor alpha chain expression in activated T lymphocytes. Proc Natl Acad Sci U S A 2002; 99:13759-64. [PMID: 12354940 PMCID: PMC129770 DOI: 10.1073/pnas.212214999] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin (IL)-2 is a type I four-alpha-helical bundle cytokine that plays vital roles in antigen-mediated proliferation of peripheral blood T cells and also is critical for activation-induced cell death. We now demonstrate that IL-2 potently decreases expression of IL-7 receptor alpha chain (IL-7Ralpha) mRNA and protein. The fact that IL-7Ralpha is a component of the receptors for both IL-7 and thymic stromal lymphopoietin (TSLP) suggests that IL-2 can negatively regulate signals by each of these cytokines. Previously it was known that the IL-2 and IL-7 receptors shared the common cytokine receptor gamma chain, gamma(c), which suggested a possible competition between these cytokines for a receptor component. Our findings now suggest a previously unknown type of cross-talk between IL-2 and IL-7 signaling by showing that IL-2 signaling can diminish IL-7Ralpha expression via a phosphatidylinositol 3-kinase/Akt-dependent mechanism.
Collapse
Affiliation(s)
- Hai-Hui Xue
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 7N252, Bethesda, MD 20892-1674, USA
| | | | | | | | | | | | | |
Collapse
|
321
|
Egawa K, Maegawa H, Shi K, Nakamura T, Obata T, Yoshizaki T, Morino K, Shimizu S, Nishio Y, Suzuki E, Kashiwagi A. Membrane localization of 3-phosphoinositide-dependent protein kinase-1 stimulates activities of Akt and atypical protein kinase C but does not stimulate glucose transport and glycogen synthesis in 3T3-L1 adipocytes. J Biol Chem 2002; 277:38863-9. [PMID: 12147684 DOI: 10.1074/jbc.m203132200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is reported that 3-phosphoinositide-dependent protein kinase-1 (PDK-1) is activated in a phosphatidylinositol 3,4,5-trisphosphate-dependent manner and phosphorylates Akt, p70S6 kinase, and atypical protein kinase C (PKC), but its function on insulin signaling is still unclear. We cloned a full-length pdk-1 cDNA from a human brain cDNA library, and the adenovirus to overexpress wild type PDK-1 (PDK-1WT) or membrane-targeted PDK-1 (PDK-1CAAX) was constructed. Overexpressed PDK-1WT existed mainly at cytosol, and PDK-1CAAX was located at the plasma membrane. In 3T3-L1 adipocytes, insulin induced mobility shift of PDK-1 protein, but overexpressed PDK-1WT and CAAX were shifted at the basal state. Insulin stimulated tyrosine phosphorylation of PDK-1WT, but PDK-1CAAX was already tyrosine-phosphorylated at the basal state. Overexpression of PDK-1WT led to a full activation of PKC zeta/lambda without insulin stimulation but showed only the minimum effects to stimulate phosphorylation of Akt and GSK-3. In contrast, the overexpression of PDK-1CAAX caused phosphorylation of Akt and GSK-3 more strongly without insulin stimulation. However, PDK-1CAAX did not affect 2-deoxyglucose uptake and inhibited glycogen synthesis, surprisingly. Finally, PDK-1CAAX expression inhibited insulin-induced ERK1/2 phosphorylation in a dose-dependent manner. Taken together, the translocation of PDK-1 from cytosol to the plasma membrane is critical for Akt and GSK-3 activation. On the other hand, only atypical PKC and Akt activation was insufficient for stimulation of glucose transport, and constitutive activation of Akt-GSK-3 pathway may inhibit glycogen synthesis and MAPK cascade in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Katsuya Egawa
- Third Department of Medicine and Department of Anatomy, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Awayda MS, Platzer JD, Reger RL, Bengrine A. Role of PKCalpha in feedback regulation of Na(+) transport in an electrically tight epithelium. Am J Physiol Cell Physiol 2002; 283:C1122-32. [PMID: 12225976 DOI: 10.1152/ajpcell.00142.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been known that Na(+) channels in electrically tight epithelia are regulated by homeostatic mechanisms that maintain a steady state and allow new levels of transport to be sustained in hormonally challenged cells. Little is known about the potential pathways involved in these processes. In addition to short-term effect, recent evidence also indicates the involvement of PKC in the long-term regulation of the epithelial Na(+) channel (ENaC) at the protein level (40). To determine whether stimulation of ENaC involves feedback regulation of PKC levels, we utilized Western blot analysis to determine the distribution of PKC isoforms in polarized A6 epithelia. We found the presence of PKC isoforms in the conventional (alpha and gamma), novel (delta, eta, and epsilon), and atypical (iota, lambda, and zeta) groups. Steady-state stimulation of Na(+) transport with aldosterone was accompanied by a specific decrease of PKCalpha protein levels in both the cytoplasmic and membrane fractions. Similarly, overnight treatment with an uncharged amiloride analog (CDPC), a procedure that through feedback regulation causes a stimulation of Na(+) transport, also decreased PKCalpha levels. These effects were additive, indicating separate mechanisms that converge at the level of PKCalpha. These effects were not accompanied by changes of PKCalpha mRNA levels as determined by Northern blot analysis. We propose that this may represent a novel regulatory feedback mechanism necessary for sustaining an increase of Na(+) transport.
Collapse
Affiliation(s)
- Mouhamed S Awayda
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
323
|
Smith L, Smith JB. Lack of constitutive activity of the free kinase domain of protein kinase C zeta. Dependence on transphosphorylation of the activation loop. J Biol Chem 2002; 277:45866-73. [PMID: 12244101 DOI: 10.1074/jbc.m206420200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following the induction of apoptosis in mammalian cells, protein kinase C zeta (PKC zeta) is processed between the regulatory and catalytic domains by caspases, which increases its kinase activity. The catalytic domain fragments of PKC isoforms are considered to be constitutively active, because they lack the autoinhibitory amino-terminal regulatory domain, which includes a pseudosubstrate segment that plugs the active site. Phosphorylation of the activation loop at Thr(410) is known to be sufficient to activate the kinase function of full-length PKC zeta, apparently by inducing a conformational change, which displaces the amino-terminal pseudosubstrate segment from the active site. Amino acid substitutions for Thr(410) of the catalytic domain of PKC zeta (CAT zeta) essentially abolished the kinase function of ectopically expressed CAT zeta in mammalian cells. Similarly, substitution of Ala for a Phe of the docking motif for phosphoinositide-dependent kinase-1 prevented activation loop phosphorylation and abolished the kinase activity of CAT zeta. Treatment of purified CAT zeta with the catalytic subunit of protein phosphatase 1 decreased activation loop phosphorylation and kinase activity. Recombinant CAT zeta from bacteria lacked detectable kinase activity. Phosphoinositide-dependent kinase-1 phosphorylated the activation loop and activated recombinant CAT zeta from bacteria. Treatment of HeLa cells with fetal bovine serum markedly increased the phosphothreonine 410 content of CAT zeta and stimulated its kinase activity. These findings indicate that the catalytic domain of PKC zeta is intrinsically inactive and dependent on the transphosphorylation of the activation loop.
Collapse
Affiliation(s)
- Lucinda Smith
- Department of Pharmacology and Toxicology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
324
|
Bradford MD, Soltoff SP. P2X7 receptors activate protein kinase D and p42/p44 mitogen-activated protein kinase (MAPK) downstream of protein kinase C. Biochem J 2002; 366:745-55. [PMID: 12057008 PMCID: PMC1222820 DOI: 10.1042/bj20020358] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Revised: 06/03/2002] [Accepted: 06/11/2002] [Indexed: 11/17/2022]
Abstract
Protein kinase D (PKD), also called protein kinase Cmu (PKCmu), is a serine/threonine kinase that has unique enzymic and structural properties distinct from members of the PKC family of proteins. In freshly isolated rat parotid acinar salivary cells, extracellular ATP rapidly increased the activity and phosphorylation of PKD. The stimulation by ATP required high concentrations, was mimicked by the P2X(7) receptor ligand BzATP [2'- and 3'-O-(4-benzoylbenzoyl)ATP], and was blocked by Mg(2+) and 4,4'-di-isothiocyano-2,2'-stilbene disulphonate (DIDS), suggesting that activation of PKD was mediated by P2X(7) receptors, which are ligand-gated non-selective cation channels. Phorbol ester (PMA) and the activation of muscarinic and substance P receptors also increased PKD activity. PKC inhibitors blocked ligand-dependent PKD activation and phosphorylation, determined by in vitro phosphorylation studies and by phospho-specific antibodies to two activation loop sites (Ser(744) and Ser(748)) and an autophosphorylation site (Ser(916)). ATP and BzATP also increased the tyrosine phosphorylation and activity of PKCdelta, and these stimuli also increased extracellular signal-regulated protein kinase (ERK) 1/2 activity in a PKC-dependent manner. PKD activation was not promoted by pervanadate (an inhibitor of tyrosine phosphatases) and was not blocked by PP1 (an inhibitor of Src family kinases) or genistein (a tyrosine kinase inhibitor), suggesting that tyrosine kinases and phosphatases did not play a major role in PKD activation. P2X(7) receptor-mediated signalling events were not dependent on Ca(2+) entry. These studies indicate that PKC is involved in cellular signalling initiated by P2X(7) receptors as well as by G-protein-coupled receptors, and demonstrate that PKD and ERK1/2 are activated in similar PKC-dependent signalling pathways initiated by these diverse receptor types.
Collapse
Affiliation(s)
- Michelle D Bradford
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, MA 02215, USA
| | | |
Collapse
|
325
|
Roelants FM, Torrance PD, Bezman N, Thorner J. Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integrity. Mol Biol Cell 2002; 13:3005-28. [PMID: 12221112 PMCID: PMC124139 DOI: 10.1091/mbc.e02-04-0201] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Saccharomyces cerevisiae Pkh1 and Pkh2 are functionally redundant homologs of mammalian protein kinase, phosphoinositide-dependent protein kinase-1. They activate two closely related, functionally redundant enzymes, Ypk1 and Ykr2 (homologs of mammalian protein kinase, serum- and glucocorticoid-inducible protein kinase). We found that Ypk1 has a more prominent role than Ykr2 in mediating their shared essential function. Considerable evidence demonstrated that Pkh1 preferentially activates Ypk1, whereas Pkh2 preferentially activates Ykr2. Loss of Pkh1 (but not Pkh2) reduced Ypk1 activity; conversely, Pkh1 overexpression increased Ypk1 activity more than Pkh2 overexpression. Loss of Pkh2 reduced Ykr2 activity; correspondingly, Pkh2 overexpression increased Ykr2 activity more than Pkh1 overexpression. When overexpressed, a catalytically active C-terminal fragment (kinase domain) of Ypk1 was growth inhibitory; loss of Pkh1 (but not Pkh2) alleviated toxicity. Loss of Pkh2 (but not Pkh1) exacerbated the slow growth phenotype of a ypk1Delta strain. This Pkh1-Ypk1 and Pkh2-Ykr2 dichotomy is not absolute because all double mutants (pkh1Delta ypk1Delta, pkh2Delta ypk1Delta, pkh1Delta ykr2Delta, and pkh2Delta ykr2Delta) were viable. Compartmentation contributes to selectivity because Pkh1 and Ypk1 were located exclusively in the cytosol, whereas Pkh2 and Ykr2 entered the nucleus. At restrictive temperature, ypk1-1(ts) ykr2Delta cells lysed rapidly, but not in medium containing osmotic support. Dosage and extragenic suppressors were selected. Overexpression of Exg1 (major exoglucanase), or loss of Kex2 (endoprotease involved in Exg1 processing), rescued growth at high temperature. Viability was also maintained by PKC1 overexpression or an activated allele of the downstream protein kinase (BCK1-20). Conversely, absence of Mpk1 (distal mitogen-activated protein kinase of the PKC1 pathway) was lethal in ypk1-1(ts) ykr2Delta cells. Thus, Pkh1-Ypk1 and Pkh2-Ykr2 function in a novel pathway for cell wall integrity that acts in parallel with the Pkc1-dependent pathway.
Collapse
Affiliation(s)
- Françoise M Roelants
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720-3202, USA
| | | | | | | |
Collapse
|
326
|
Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol 2002; 16:1931-42. [PMID: 12145346 DOI: 10.1210/me.2002-0074] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vasodilator actions of insulin are mediated by signaling pathways involving phosphatidylinositol 3-kinase (PI 3-kinase) and Akt that lead to activation of endothelial nitric oxide synthase (eNOS) in endothelium. Signaling molecules immediately upstream and downstream from PI 3-kinase involved with production of NO in response to insulin have not been previously identified. In this study, we evaluated roles of insulin receptor substrate 1 (IRS-1) and phosphoinositide-dependent kinase 1 (PDK-1) in production of NO. The fluorescent dye 4,5-diamine fluorescein diacetate was used to directly measure NO in NIH-3T3(IR) cells transiently cotransfected with eNOS and various IRS-1 or PDK-1 constructs. In control cells, transfected with only eNOS, insulin stimulated a rapid dose-dependent increase in NO. Overexpression of wild-type IRS-1 increased the maximal insulin response 3-fold. Overexpression of IRS1-F6 (mutant that does not bind PI 3-kinase) or an antisense ribozyme against IRS-1 substantially inhibited insulin-stimulated production of NO. Likewise, overexpression of wild-type PDK-1 enhanced insulin-stimulated production of NO, whereas a kinase-inactive mutant PDK-1 inhibited this action of insulin. Qualitatively similar results were observed in vascular endothelial cells. Production of NO by a calcium-dependent mechanism in response to lysophosphatidic acid was unaffected by either wild-type or mutant IRS-1 and PDK-1. We conclude that IRS-1 and PDK-1 play necessary roles in insulin-signaling pathways leading to activation of eNOS. Furthermore, classical Ca2+-mediated pathways for activation of eNOS are separable from IRS-1- and PDK-1-dependent insulin-signaling pathways.
Collapse
Affiliation(s)
- Monica Montagnani
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1755, USA
| | | | | | | | | |
Collapse
|
327
|
San-Antonio B, Iñiguez MA, Fresno M. Protein kinase Czeta phosphorylates nuclear factor of activated T cells and regulates its transactivating activity. J Biol Chem 2002; 277:27073-80. [PMID: 12021260 DOI: 10.1074/jbc.m106983200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although several isoforms of protein kinase C (PKC) have been implicated in T lymphocyte activation events, little is known about their mode of action. To address the role of PKCzeta in T cell activation, we have generated Jurkat T cell transfectants expressing either the wild type (J-PKCzeta) or "kinase-dead" mutant (J-PKCzeta(mut)) versions of this protein. Expression of PKCzeta but not PKCzeta(mut) increased transcriptional activation mediated by the NF-kappaB or nuclear factor of activated T cells (NFAT). PKCzeta cooperates with calcium ionophore and with NFAT1 or NFAT2 proteins to enhance transcriptional activation of a NFAT reporter construct. However, neither NFAT nuclear translocation nor DNA binding were in J-PKCzeta cells. Our results show that PKCzeta enhanced transcriptional activity mediated by Gal4-NFAT1 fusion proteins containing the N-terminal transactivation domain of human NFAT1. Interestingly, PKCzeta synergizes with calcineurin to induce transcriptional activation driven by the NFAT1 transactivation domain. Co-precipitation experiments showed physical interaction between PKCzeta and NFAT1 or NFAT2 isoforms. Even more, PKCzeta was able to phosphorylate recombinant glutathione S-transferase-NFAT1 (1-385) protein. These data reveal a new role of PKCzeta in T cells through the control of NFAT function by modulating the activity of its transactivation domain.
Collapse
Affiliation(s)
- Belén San-Antonio
- Centro de Biologia Molecular, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
328
|
Ting HC, Christian SL, Burgess AE, Gold MR. Activation and phosphatidylinositol 3-kinase-dependent phosphorylation of protein kinase C-epsilon by the B cell antigen receptor. Immunol Lett 2002; 82:205-15. [PMID: 12036603 DOI: 10.1016/s0165-2478(02)00044-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein kinase C (PKC) enzymes play an important role in B cell antigen receptor (BCR) signaling, linking the BCR to the activation of mitogen-activated protein kinases as well as the NF-kappa B, and AP-1 transcription factors. There are eleven different PKC isoforms, each of which is likely to have a unique set of substrates and hence a unique role in signal transduction. Although PKC-alpha, PKC-beta, PKC-delta, and PKC-zeta have been shown to be targets of BCR signaling, the full spectrum of PKC enzymes that are activated by the BCR remains to be determined. In this report, we show that PKC-epsilon is a target of BCR signaling. We found that PKC-epsilon is highly expressed in B cells and that BCR engagement causes PKC-epsilon to translocate from the cytosol to cellular membranes. This presumably reflects the binding of PKC-epsilon to its membrane-associated lipid activator, diacylglycerol. We also found that BCR engagement resulted in the phosphatidylinositol 3-kinase-dependent phosphorylation of PKC-epsilon. This modification may promote the full activation of PKC-epsilon. Activation of PKC-epsilon could be a key event in BCR signaling since PKC-epsilon has been strongly linked to cell survival and proliferation in other cell types.
Collapse
Affiliation(s)
- Helen C Ting
- Department of Microbiology and Immunology, University of British Columbia, 6174 University Blvd., Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
329
|
Robin P, Boulven I, Desmyter C, Harbon S, Leiber D. ET-1 stimulates ERK signaling pathway through sequential activation of PKC and Src in rat myometrial cells. Am J Physiol Cell Physiol 2002; 283:C251-60. [PMID: 12055094 DOI: 10.1152/ajpcell.00601.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we analyzed in rat myometrial cells the signaling pathways involved in the endothelin (ET)-1-induced extracellular signal-regulated kinase (ERK) activation required for the induction of DNA synthesis. We found that inhibition of protein kinase C (PKC) by Ro-31-8220 abolished ERK activation. Inhibition of phospholipase C (PLC) by U-73122 or of phosphoinositide (PI) 3-kinase by wortmannin partially reduced ERK activation. A similar partial inhibition was observed after treatment with pertussis toxin or PKC downregulation by phorbol ester treatment. The effect of wortmannin was additive with that produced by PKC downregulation but not with that due to pertussis toxin. These results suggest that both diacylglycerol-sensitive PKC, activated by PLC products, and diacylglycerol-insensitive PKC, possibly activated by a G(i)-PI 3-kinase-dependent process, are involved in ET-1-induced ERK activation. These two pathways were found to be activated mainly through the ET(A) receptor subtype. ET-1 and phorbol ester stimulated Src activity in a PKC-dependent manner, both responses being abolished in the presence of Ro-31-8220. Inhibition of Src kinases by PP1 abrogated phorbol ester- and ET-1-induced ERK activation. Finally, ET-1 activated Ras in a PP1- and Ro-31-8220-sensitive manner. Altogether, our results indicate that ET-1 induces ERK activation in rat myometrial cells through the sequential stimulation of PKC, Src, and Ras.
Collapse
Affiliation(s)
- Philippe Robin
- Laboratoire de Signalisation et Régulations Cellulaires, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8619, Université de Paris-Sud, 91405 Orsay cedex, France
| | | | | | | | | |
Collapse
|
330
|
Takahashi A, Kureishi Y, Yang J, Luo Z, Guo K, Mukhopadhyay D, Ivashchenko Y, Branellec D, Walsh K. Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Mol Cell Biol 2002; 22:4803-14. [PMID: 12052887 PMCID: PMC133891 DOI: 10.1128/mcb.22.13.4803-4814.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Blood vessel recruitment is an important feature of normal tissue growth. Here, we examined the role of Akt signaling in coordinating angiogenesis with skeletal muscle hypertrophy. Hypertrophy of C2C12 myotubes in response to insulin-like growth factor 1 or insulin and dexamethasone resulted in a marked increase in the secretion of vascular endothelial growth factor (VEGF). Myofiber hypertrophy and hypertrophy-associated VEGF synthesis were specifically inhibited by the transduction of a dominant-negative mutant of the Akt1 serine-threonine protein kinase. Conversely, transduction of constitutively active Akt1 increased myofiber size and led to a robust induction of VEGF protein production. Akt-mediated control of VEGF expression occurred at the level of transcription, and the hypoxia-inducible factor 1 regulatory element was dispensable for this regulation. The activation of Akt1 signaling in normal mouse gastrocnemius muscle was sufficient to promote myofiber hypertrophy, which was accompanied by an increase in circulating and tissue-resident VEGF levels and high capillary vessel densities at focal regions of high Akt transgene expression. In a rabbit hind limb model of vascular insufficiency, intramuscular activation of Akt1 signaling promoted collateral and capillary vessel formation and an accompanying increase in limb perfusion. These data suggest that myogenic Akt signaling controls both fiber hypertrophy and angiogenic growth factor synthesis, illustrating a mechanism through which blood vessel recruitment can be coupled to normal tissue growth.
Collapse
Affiliation(s)
- Akihiro Takahashi
- Division of Cardiovascular Research, St. Elizabeth's Medical Center of Boston, School of Medicine, Tufts University, 02135, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Guizzetti M, Costa LG. Effect of ethanol on protein kinase Czeta and p70S6 kinase activation by carbachol: a possible mechanism for ethanol-induced inhibition of glial cell proliferation. J Neurochem 2002; 82:38-46. [PMID: 12091463 DOI: 10.1046/j.1471-4159.2002.00942.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The signal transduction pathways that mediate the mitogenic response of muscarinic acetylcholine receptors in astroglial cells have not been fully elucidated. In this study we investigated the activation of p70S6 kinase (p70S6K) by carbachol in 1321 N1 astroctyoma cells. Carbachol induced a dose- and time-dependent activation of p70S6K, as evidenced by increased phosphorylation at Thr-389, Thr-421 and Ser-424, by increased p70S6K activity, and by a shift in its molecular weight. Activation of p70S6K was mediated by M3 muscarinic acetylcholine receptors (mAChRs) and was inhibited by two phosphatidylinositol-3-kinase (PI3-K) inhibitors, by a pseudosubstrate to protein kinase C (PKC) zeta, and by the p70S6K inhibitor rapamycin. Carbachol-induced DNA synthesis was strongly inhibited by rapamycin, suggesting that p70S6K activation plays an important role in carbachol-induced cell proliferation. Ethanol (25-100 mm) has been shown to inhibit carbachol-induced proliferation of astroglial cells. In the same range of concentrations, ethanol also inhibits carbachol-induced activation of PKCzeta and of p70S6K. On the other hand, inhibition of PI3-kinase was only observed at higher ethanol concentrations. These results indicate that activation of the PKCzeta--> p70S6K pathway by M3 mAChRs may play a role in the increased DNA synthesis and may represent a target for ethanol-induced inhibition of astroglial cell proliferation.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Environmental Health, University of Washington, 4229 Roosevelt Way NE #100, Seattle, WA 98105, USA.
| | | |
Collapse
|
332
|
Yart A, Roche S, Wetzker R, Laffargue M, Tonks N, Mayeux P, Chap H, Raynal P. A function for phosphoinositide 3-kinase beta lipid products in coupling beta gamma to Ras activation in response to lysophosphatidic acid. J Biol Chem 2002; 277:21167-78. [PMID: 11916960 DOI: 10.1074/jbc.m110411200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although Gbetagamma is thought to mediate mitogen-activated protein kinase (MAPK) activation in response to G protein-coupled receptor stimulation, the mechanisms involved in this pathway have not been clearly defined. Phosphoinositide 3-kinase (PI3K) has been proposed as an early intermediate in this process, but its role has remained elusive. We have observed that dominant negative mutants of p110beta, but not of p110gamma, inhibited MAPK stimulation in response to lysophosphatidic acid (LPA). The role of p110beta was located upstream from Ras. To determine which of the lipid or protein kinase activities of p110beta were important for Ras activation, we produced a mutant p110beta lacking the lipid but not the protein kinase activity. This protein displayed a dominant negative activity similar to a kinase-dead mutant, indicating that p110beta lipid kinase activity was essentially involved in Ras activation. In agreement, overexpression of the lipid phosphatase PTEN was found to specifically inhibit Ras stimulation induced by LPA. In addition, we have observed that the PH domain-containing adapter protein Gab1, which is involved in p110beta activation during LPA stimulation, is also implicated in this pathway downstream of p110beta. Indeed, both membrane redistribution and phosphorylation of Gab1 were reduced in the presence of PI3K inhibitors or dominant negative p110beta. Downstream of Gab1, the tyrosine phosphatase SHP2 was found to mediate Ras activation in response to LPA and to be recruited through PI3K and Gab1, because transfection of Gab1 mutant deficient for SHP2 binding inhibited Ras activation without interfering with PI3K activation. We conclude that LPA-induced Ras activation is mediated by a p110beta/Gab1/SHP2 pathway. Moreover, we present data indicating that p110beta is effectively the target of betagamma in this pathway, suggesting that the p110beta/Gab1/SHP2 pathway provides a novel link between betagamma and Ras by integrating two early events of LPA signaling, i.e. Gbetagamma release and tyrosine kinase receptor transactivation.
Collapse
Affiliation(s)
- Armelle Yart
- INSERM U326, IFR 30, Hôpital Purpan, Toulouse 31059, France
| | | | | | | | | | | | | | | |
Collapse
|
333
|
Yamada T, Katagiri H, Asano T, Tsuru M, Inukai K, Ono H, Kodama T, Kikuchi M, Oka Y. Role of PDK1 in insulin-signaling pathway for glucose metabolism in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2002; 282:E1385-94. [PMID: 12006370 DOI: 10.1152/ajpendo.00486.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the role of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in the insulin-signaling pathway for glucose metabolism, wild-type (wt), the kinase-dead (kd), or the plecstrin homology (PH) domain deletion (DeltaPH) mutant of PDK1 was expressed using an adenovirus gene transduction system in 3T3-L1 adipocytes. wt-PDK1 and kd-PDK1 were found in both membrane and cytosol fractions, whereas DeltaPH-PDK1, which exhibited PDK1 activity similar to that of wt-PDK1, was detected exclusively in the cytosol fraction. Insulin dose dependently activated protein kinase B (PKB) but did not change atypical protein kinase C (aPKC) activity in control cells. aPKC activity was not affected by expression of wt-, kd-, or DeltaPH-PDK1 in either the presence or the absence of insulin. Overexpression of wt-PDK1 enhanced insulin-induced activation of PKB as well as insulin-induced phosphorylation of glycogen synthase kinase (GSK)3alpha/beta, a direct downstream target of PKB, although insulin-induced glycogen synthesis was not significantly enhanced by wt-PDK1 expression. Neither DeltaPH-PDK1 nor kd-PDK1 expression affected PKB activity, GSK3 phosphorylation, or glycogen synthesis. Thus membrane localization of PDK1 via its PH domain is essential for insulin signaling through the PDK1-PKB-GSK3alpha/beta pathway. Glucose transport activity was unaffected by expression of wt-PDK1, kd-PDK1, or DeltaPH-PDK1 in either the presence or the absence of insulin. These findings suggest the presence of a signaling pathway for insulin-stimulated glucose transport in which PDK1 to PKB or aPKC is not involved.
Collapse
Affiliation(s)
- Tetsuya Yamada
- Division of Molecular Metabolism and Diabetes, Department of Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Bauer B, Baier G. Protein kinase C and AKT/protein kinase B in CD4+ T-lymphocytes: new partners in TCR/CD28 signal integration. Mol Immunol 2002; 38:1087-99. [PMID: 12044776 DOI: 10.1016/s0161-5890(02)00011-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell biological responses appear to involve the complex interaction of T-cell surface receptors, intracellular signaling molecules and the cytoskeleton. Both the serine/threonine protein kinase families protein kinase C (PKC) and protein kinase B or RAC-PK (AKT/PKB) have been implicated in signal transmission leading to activation, differentiation as well as cellular survival of T-lymphocytes. The PKC gene family consists of nine diverse isotypes (PKC alpha, beta, gamma, delta, epsilon, xi, eta, theta; and iota), the AKT/PKB gene family includes three kinases (AKT1/PKB alpha, AKT2/PKB beta, AKT3/PKB gamma). Here, we attempt to summarize the regulation as well as downstream signaling pathways of PKC and AKT/PKB isotypes, that may act additive in TCR/CD28 induced proliferation and survival of peripheral CD4+ T-lymphocytes.
Collapse
Affiliation(s)
- Birgit Bauer
- Institute for Medical Biology and Human Genetics, University of Innsbruck, Schoepfstr. 41, A-6020 Innsbruck, Austria
| | | |
Collapse
|
335
|
Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci 2002. [PMID: 11978812 DOI: 10.1523/jneurosci.22-09-03359.2002] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several signal transduction pathways have been implicated in the induction of long-term potentiation (LTP), yet the signal transduction mechanisms behind the maintenance-expression phase of LTP are still poorly understood. We investigated the role of phosphatidylinositol 3-kinase (PI3-kinase) in LTP at Schaffer collateral/commissural fiber-CA1 synapses in rat hippocampal slices using biochemical approaches and extracellular electrophysiological recordings. We observed that PI3-kinase activity was induced in the CA1 region during LTP of field EPSPs (fEPSPs) and that two structurally unrelated PI3-kinase inhibitors, LY294002 and wortmannin, abated established LTP, suggesting that PI3-kinase is involved in the maintenance-expression phase of LTP. However, LTP recovered after washout of the reversible PI3-kinase inhibitor LY294002, confirming that LTP maintenance and expression are distinct events and indicating that PI3-kinase activity is required for LTP expression rather than for its maintenance. Interestingly, preincubation with LY294002 did not prevent LTP induction. In fact, if LY294002 was withdrawn 5 min after high-frequency stimulation, an LTP of fEPSP was seen. Last, a voltage-dependent calcium channel-dependent form of LTP in the CA1 could also be reversibly abated by LY294002, raising the possibility that PI3-kinase could be required for the expression of multiple forms of synaptic potentiation.
Collapse
|
336
|
Wick MJ, Wick KR, Chen H, He H, Dong LQ, Quon MJ, Liu F. Substitution of the autophosphorylation site Thr516 with a negatively charged residue confers constitutive activity to mouse 3-phosphoinositide-dependent protein kinase-1 in cells. J Biol Chem 2002; 277:16632-8. [PMID: 11877406 DOI: 10.1074/jbc.m112402200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK-1)is a serine/threonine kinase that has been found to phosphorylate and activate several members of the AGC protein kinase family including protein kinase B (Akt), p70 S6 kinase, and protein kinase Czeta. However, the mechanism(s) by which PDK-1 is regulated remains unclear. Here we show that mouse PDK-1 (mPDK-1) undergoes autophosphorylation in vitro on both serine and threonine residues. In addition, we have identified Ser(399) and Thr(516) as the major mPDK-1 autophosphorylation sites in vitro. Furthermore, we have found that these two residues, as well as Ser(244) in the activation loop, are phosphorylated in cells and demonstrated that Ser(244) is a major in vivo phosphorylation site. Abolishment of phosphorylation at Ser(244), but not at Ser(399) or Thr(516), led to a significant decrease of mPDK-1 autophosphorylation and kinase activity in vitro, indicating that autophosphorylation at Ser(399) or Thr(516) is not essential for mPDK-1 autokinase activity. However, overexpression of mPDK-1(T516E), but not of mPDK-1(S244E) or mPDK-1(S399D), in Chinese hamster ovary and HEK293 cells was sufficient to induce Akt phosphorylation at Thr(308) to a level similar to that of insulin stimulation. Furthermore, this increase in phosphorylation was independent of the Pleckstrin homology domain of Akt. Taken together, our results suggest that mPDK-1 undergoes autophosphorylation at multiple sites and that this phosphorylation may be essential for PDK-1 to interact with and phosphorylate its downstream substrates in vivo.
Collapse
Affiliation(s)
- Michael J Wick
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
337
|
Weng YI, Shukla SD. Angiotensin II activation of focal adhesion kinase and pp60c-Src in relation to mitogen-activated protein kinases in hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:285-97. [PMID: 12031795 DOI: 10.1016/s0167-4889(02)00189-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated signaling pathways leading to angiotensin II (Ang II) activation of mitogen-activated protein kinase (MAPK) in hepatocytes. MAPK activation by Ang II was abolished by the Ang II type 1 (AT1) receptor antagonist losartan, but not by the Ang II type 2 (AT2) receptor antagonist PD123319. Ang II (100 nM) induced a rapid phosphorylation of Src (peak approximately 2 min) and focal adhesion kinase (FAK, peak approximately 5 min) followed by a decrease to basal levels in 30 min. An increased association between FAK and Src in response to Ang II was detected after 1 min, which declined to basal levels after 30 min. Treatment with the Src kinase inhibitor PP-1 inhibited FAK phosphorylation. Downregulation of PKC, intracellular Ca2+ chelator BAPTA or inhibitors of PKC, Src kinase, MAPK kinase (MEK), Ca2+/calmodulin dependent protein kinase, phosphatidylinositol 3-kinase all blocked Ang II-induced MAPK phosphorylation. In contrast to other cells, there was no evidence for the role of EGF receptor transactivation in the activation of MAPK by Ang II. However, PDGF receptor phosphorylation is involved in the Ang II stimulated MAPK activation. Furthermore, Src/FAK and Ca/CaM kinase activation serve as potential links between the Ang II receptor and MAPK activation. These studies offer insight into the signaling network upstream of MAPK activation by AT1 receptor in hepatocytes.
Collapse
Affiliation(s)
- Yu-I Weng
- Department of Pharmacology, School of Medicine, University of Missouri-Columbia, One Hospital Drive, Rm. M517B Med. Sci. Bldg., 65212, USA
| | | |
Collapse
|
338
|
Standaert ML, Kanoh Y, Sajan MP, Bandyopadhyay G, Farese RV. Cbl, IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC-lambda, and glucose transport in 3T3/L1 adipocytes. Endocrinology 2002; 143:1705-16. [PMID: 11956152 DOI: 10.1210/endo.143.5.8812] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The thiazolidenedione, rosiglitazone, increases basal and/or insulin-stimulated glucose transport in various cell types by diverse but uncertain mechanisms that may involve insulin receptor substrate (IRS)-1-dependent PI3K. Presently, in 3T3/L1 adipocytes, rosiglitazone induced sizable increases in basal glucose transport that were: dependent on PI3K, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and PKC-lambda; accompanied by increases in tyrosine phosphorylation of Cbl and Cbl-dependent increases in PI3K and PKC-lambda activity; but not accompanied by increases in IRS-1/2-dependent PI3K or protein kinase B activity. Additionally, rosiglitazone increased IRS-1 and IRS-2 levels, thereby enhancing insulin effects on IRS-1- and IRS-2-dependent PI3K and downstream signaling factors PKC-lambda and protein kinase B. Our findings suggest that Cbl participates in mediating effects of rosiglitazone on PI3K, PDK-1, and PKC-lambda and the glucose transport system and that this Cbl-dependent pathway complements the IRS-1 and IRS-2 pathways for activating PI3K, PDK-1, and PKC-lambda during combined actions of rosiglitazone and insulin in 3T3/L1 cells.
Collapse
Affiliation(s)
- Mary L Standaert
- Research Service, J. A. Haley Veterans' Hospital, 13000 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
339
|
Kalesnikoff J, Baur N, Leitges M, Hughes MR, Damen JE, Huber M, Krystal G. SHIP negatively regulates IgE + antigen-induced IL-6 production in mast cells by inhibiting NF-kappa B activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4737-46. [PMID: 11971024 DOI: 10.4049/jimmunol.168.9.4737] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate in this study that IgE + Ag-induced proinflammatory cytokine production is substantially higher in Src homology-2-containing inositol 5'-phosphatase (SHIP)(-/-) than in SHIP(+/+) bone marrow-derived mast cells (BMMCs). Focusing on IL-6, we found that the repression of IL-6 mRNA and protein production in SHIP(+/+) BMMCs requires the enzymatic activity of SHIP, because SHIP(-/-) BMMCs expressing wild-type, but not phosphatase-deficient (D675G), SHIP revert the IgE + Ag-induced increase in IL-6 mRNA and protein down to levels seen in SHIP(+/+) BMMCs. Comparing the activation of various signaling pathways to determine which ones might be responsible for the elevated IL-6 production in SHIP(-/-) BMMCs, we found the phosphatidylinositol 3-kinase/protein kinase B (PKB), extracellular signal-related kinase (Erk), p38, c-Jun N-terminal kinase, and protein kinase C (PKC) pathways are all elevated in IgE + Ag-induced SHIP(-/-) cells. Moreover, inhibitor studies suggested that all these pathways play an essential role in IL-6 production. Looking downstream, we found that IgE + Ag-induced IL-6 production is dependent on the activity of NF-kappa B and that I kappa B phosphorylation/degradation and NF-kappa B translocation, DNA binding and transactivation are much higher in SHIP(-/-) BMMCs. Interestingly, using various pathway inhibitors, it appears that the phosphatidylinositol 3-kinase/PKB and PKC pathways elevate IL-6 mRNA synthesis, at least in part, by enhancing the phosphorylation of I kappa B and NF-kappa B DNA binding while the Erk and p38 pathways enhance IL-6 mRNA synthesis by increasing the transactivation potential of NF-kappa B. Taken together, our data are consistent with a model in which SHIP negatively regulates NF-kappa B activity and IL-6 synthesis by reducing IgE + Ag-induced phosphatidylinositol-3,4,5-trisphosphate levels and thus PKB, PKC, Erk, and p38 activation.
Collapse
Affiliation(s)
- Janet Kalesnikoff
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
340
|
Cenni V, Döppler H, Sonnenburg ED, Maraldi N, Newton AC, Toker A. Regulation of novel protein kinase C epsilon by phosphorylation. Biochem J 2002; 363:537-45. [PMID: 11964154 PMCID: PMC1222506 DOI: 10.1042/0264-6021:3630537] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activity and intracellular localization of protein kinase C (PKC) family members are controlled by phosphorylation at three highly conserved sites in the catalytic kinase domain. In the case of the novel PKCepsilon isoform, these are Thr(566) in the activation loop, Thr(710) in the turn motif and Ser(729) in the C-terminal hydrophobic motif. In the present study, we analysed the contribution of the phosphoinositide-dependent kinase 1 (PDK-1) and PKCepsilon kinase activity in controlling the phosphorylation of Thr(566) and Ser(729). In NIH 3T3 fibroblasts, PKCepsilon migrated as a single band, and stimulation with platelet-derived growth factor resulted in the appearance of a second band with a slower electrophoretic mobility, concomitant with an increase in phosphorylation of Thr(566) and Ser(729). Cells transfected with an active PDK-1 allele also resulted in increased PKCepsilon Thr(566) and Ser(729) phosphorylation, whereas an active myristoylated PKCepsilon mutant was constitutively phosphorylated at these sites. Protein kinase-inactive mutants of PKCepsilon were not phosphorylated at Ser(729) in cells, and phosphorylation of this site leads to dephosphorylation of the activation-loop Thr(566), an effect which can be reversed with either okadaic acid or co-transfection with active PDK-1. In vitro, PDK-1 catalysed the phosphorylation of purified PKCepsilon in the presence of mixed micelles containing either diacylglycerol or PtdIns(3,4,5)P(3), concomitant with an increase in Ser(729) phosphorylation. These studies reveal that the mechanism of phosphorylation of a novel PKC is the same as that for conventional PKCs: PDK-1 phosphorylation of the activation loop triggers autophosphorylation of the hydrophobic motif. However, the regulation of this phosphorylation is different for novel and conventional PKCs. Specifically, the phosphorylation of novel PKCs is regulated rather than constitutive.
Collapse
Affiliation(s)
- Vittoria Cenni
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | | | | | | | | | | |
Collapse
|
341
|
Balafanova Z, Bolli R, Zhang J, Zheng Y, Pass JM, Bhatnagar A, Tang XL, Wang O, Cardwell E, Ping P. Nitric oxide (NO) induces nitration of protein kinase Cepsilon (PKCepsilon ), facilitating PKCepsilon translocation via enhanced PKCepsilon -RACK2 interactions: a novel mechanism of no-triggered activation of PKCepsilon. J Biol Chem 2002; 277:15021-7. [PMID: 11839754 DOI: 10.1074/jbc.m112451200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of protein kinase C (PKC) epsilon by nitric oxide (NO) has been implicated in the development of cardioprotection. However, the cellular mechanisms underlying the activation of PKCepsilon by NO remain largely unknown. Nitration of protein tyrosine residues has been shown to alter functions of a variety of proteins, and NO-derived peroxynitrite is known as a strong nitrating agent. In this investigation, we demonstrate that NO donors promote translocation and activation of PKCepsilon in an NO- and peroxynitrite-dependent fashion. NO induces peroxynitrite-mediated tyrosine nitration of PKCepsilon in rabbit cardiomyocytes in vitro, and nitrotyrosine residues were also detected on PKCepsilon in vivo in the rabbit myocardium preconditioned with NO donors. Furthermore, coimmunoprecipitation of PKCepsilon and its receptor for activated C kinase, RACK2, illustrated a peroxynitrite-dependent increase in PKCepsilon-RACK2 interactions in NO donor-treated cardiomyocytes. Moreover, using an enzyme-linked immunosorbent assay-based protein-protein interaction assay, PKCepsilon proteins treated with the peroxynitrite donor SIN-1 exhibited enhanced binding to RACK2 in an acellular environment. Our data demonstrate that post-translational modification of PKCepsilon by NO donors, namely nitration of PKCepsilon, facilitates its interaction with RACK2 and promotes translocation and activation of PKCepsilon. These findings offer a plausible novel mechanism by which NO activates the PKC signaling pathway.
Collapse
Affiliation(s)
- Zarema Balafanova
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Villalba M, Bi K, Hu J, Altman Y, Bushway P, Reits E, Neefjes J, Baier G, Abraham RT, Altman A. Translocation of PKC[theta] in T cells is mediated by a nonconventional, PI3-K- and Vav-dependent pathway, but does not absolutely require phospholipase C. J Cell Biol 2002; 157:253-63. [PMID: 11956228 PMCID: PMC2199257 DOI: 10.1083/jcb.200201097] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PKCtheta plays an essential role in activation of mature T cells via stimulation of AP-1 and NF-kappaB, and is known to selectively translocate to the immunological synapse in antigen-stimulated T cells. Recently, we reported that a Vav/Rac pathway which depends on actin cytoskeleton reorganization mediates selective recruitment of PKCtheta to the membrane or cytoskeleton and its catalytic activation by anti-CD3/CD28 costimulation. Because this pathway acted selectively on PKCtheta, we addressed here the question of whether the translocation and activation of PKCtheta in T cells is regulated by a unique pathway distinct from the conventional mechanism for PKC activation, i.e., PLC-mediated production of DAG. Using three independent approaches, i.e., a selective PLC inhibitor, a PLCgamma1-deficient T cell line, or a dominant negative PLCgamma1 mutant, we demonstrate that CD3/CD28-induced membrane recruitment and COOH-terminal phosphorylation of PKCtheta are largely independent of PLC. In contrast, the same inhibitory strategies blocked the membrane translocation of PKCalpha. Membrane or lipid raft recruitment of PKCtheta (but not PKCalpha) was absent in T cells treated with phosphatidylinositol 3-kinase (PI3-K) inhibitors or in Vav-deficient T cells, and was enhanced by constitutively active PI3-K. 3-phosphoinositide-dependent kinase-1 (PDK1) also upregulated the membrane translocation of PKCtheta;, but did not associate with it. These results provide evidence that a nonconventional PI3-K- and Vav-dependent pathway mediates the selective membrane recruitment and, possibly, activation of PKCtheta in T cells.
Collapse
Affiliation(s)
- Martin Villalba
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
344
|
Abstract
Compartmentalization of cyclic AMP-dependent protein kinase (PKA) is achieved through association with A-kinase anchoring proteins (AKAPs). AKAPs are a group of structurally diverse proteins with the common function of binding to the regulatory subunit of PKA and confining the holoenzyme to discrete locations within the cell. This mode of regulation ensures that PKA is exposed to isolated cAMP gradients, which allows for efficient catalytic activation and accurate substrate selection. Several AKAPs coordinate multiple members of signaling cascades, effectively assembling upstream activators and downstream effectors within the same macromolecular complex. Consequently, AKAPs may serve as points of integration for numerous signaling pathways. This review details the most recent advances in our understanding of the various biological functions dependent upon AKAP-anchored signaling complexes.
Collapse
|
345
|
Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, Cantley LC, Izumo S. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 2002; 22:2799-809. [PMID: 11909972 PMCID: PMC133704 DOI: 10.1128/mcb.22.8.2799-2809.2002] [Citation(s) in RCA: 387] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the least-understood areas in biology is the determination of the size of animals and their organs. In Drosophila, components of the insulin receptor phosphoinositide 3-kinase (PI3K) pathway determine body, organ, and cell size. Several biochemical studies have suggested that Akt/protein kinase B is one of the important downstream targets of PI3K. To examine the role of Akt in the regulation of organ size in mammals, we have generated and characterized transgenic mice expressing constitutively active Akt (caAkt) or kinase-deficient Akt (kdAkt) specifically in the heart. The heart weight of caAkt transgenic mice was increased 2.0-fold compared with that of nontransgenic mice. The increase in heart size was associated with a comparable increase in myocyte cell size in caAkt mice. The kdAkt mutant protein attenuated the constitutively active PI3K-induced overgrowth of the heart, and the caAkt mutant protein circumvented cardiac growth retardation induced by a kinase-deficient PI3K mutant protein. Rapamycin attenuated caAkt-induced overgrowth of the heart, suggesting that the mammalian target of rapamycin (mTOR) or effectors of mTOR mediated caAkt-induced heart growth. In conclusion, Akt is sufficient to induce a marked increase in heart size and is likely to be one of the effectors of the PI3K pathway in mediating heart growth.
Collapse
Affiliation(s)
- Tetsuo Shioi
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
346
|
Tian X, Rusanescu G, Hou W, Schaffhausen B, Feig LA. PDK1 mediates growth factor-induced Ral-GEF activation by a kinase-independent mechanism. EMBO J 2002; 21:1327-38. [PMID: 11889038 PMCID: PMC125928 DOI: 10.1093/emboj/21.6.1327] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Revised: 12/21/2001] [Accepted: 01/28/2002] [Indexed: 01/26/2023] Open
Abstract
Ras proteins transduce extracellular signals to intracellular signaling pathways by binding to and promoting the activation of at least three classes of downstream signaling molecules: Raf kinases, phosphoinositide-3-kinase (PI3-K) and Ral guanine nucleotide exchange factors (Ral-GEFs). Previous work has demonstrated that epidermal growth factor (EGF) activates Ral-GEFs, at least in part, by a Ras-mediated redistribution of the GEFs to their target, Ral-GTPases, in the plasma membrane. Here we show that Ral-GEF stimulation by EGF involves an additional mechanism, PI3-K-dependent kinase 1 (PDK1)-induced enhancement of Ral-GEF catalytic activity. Remarkably, this PDK1 function is not dependent upon its kinase activity. Instead, the non-catalytic N-terminus of PDK1 mediates the formation of an EGF-induced complex with the N-terminus of the Ral-GEF, Ral-GDS, thereby relieving its auto-inhibitory effect on the catalytic domain of Ral-GDS. These results elucidate a novel function for PDK1 and demonstrate that two Ras effector pathways cooperate to promote Ral-GTPase activation.
Collapse
Affiliation(s)
| | | | | | | | - Larry A. Feig
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
Corresponding author e-mail:
| |
Collapse
|
347
|
Nairn AC, Matsushita M, Nastiuk K, Horiuchi A, Mitsui K, Shimizu Y, Palfrey HC. Elongation factor-2 phosphorylation and the regulation of protein synthesis by calcium. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:91-129. [PMID: 11575162 DOI: 10.1007/978-3-662-09889-9_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- A C Nairn
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
348
|
Brändlin I, Hübner S, Eiseler T, Martinez-Moya M, Horschinek A, Hausser A, Link G, Rupp S, Storz P, Pfizenmaier K, Johannes FJ. Protein kinase C (PKC)eta-mediated PKC mu activation modulates ERK and JNK signal pathways. J Biol Chem 2002; 277:6490-6. [PMID: 11741879 DOI: 10.1074/jbc.m106083200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC), a family of lipid-activated serine kinases, is involved in multiple functions in the regulation of growth control. The PKC-related isoform PKC mu/PKD has been implicated in mitogenic signal cascades because of the activation of p42/p44 MAPK leading to Elk1-mediated gene transcription, and PKC mu/PKD has been shown to be activated via a PKC-dependent pathway. By using confocal analyses, we demonstrate here that PKC mu partially colocalizes with PKC eta in different cell types. Colocalization depends on the presence of the PKC mu pleckstrin homology domain. Coexpression of constitutively active PKC eta with PKC mu leads to a significant enhancement of the PKC mu substrate phosphorylation capacity as a result of an increased phosphorylation of the activation loop Ser(738/742) of PKC mu, whereas Ser(910) autophosphorylation remains unaffected. In vitro phosphorylation experiments show that PKC eta directly phosphorylates PKC mu on activation loop serines. Consequently, the p42 MAPK cascade is triggered leading to an increase in reporter gene activity driven by a serum-responsive element in HEK293 cells. At the same time, PKC eta-mediated JNK activation is reduced, providing evidence for a mutual regulation of PKC mu/PKC eta affecting different arms of the p38/ERK/JNK pathways. Our data provide evidence for the sequential involvement of selective PKC isoforms in kinase cascades and identify the relevant domains in PKC mu for interaction with and activation by PKC eta as pleckstrin homology domain and activation loop.
Collapse
Affiliation(s)
- Ilona Brändlin
- Fraunhofer Institute for Interfacial Engineering, Nobelstrasse 12, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Abstract
The recent discovery of thrombopoietin has enhanced our understanding of both hematopoiesis and platelet production. Thrombopoietin supports hematopoietic stem cell survival and expansion as well as promoting all aspects of megakaryocyte development. The hormone displays many structural similarities to other members of the hematopoietic cytokine family and some notable differences, and regulation of its expression requires both receptor-mediated removal and other mechanisms. Thrombopoietin induces receptor dimerization and tyrosine phosphorylation, and a series of signaling events including activation of JAK/STAT, Shc/Ras/MAPK and PI3K/Akt; these pathways overlap with those induced by other cytokines, but the differences that lead to the unique biological effects of the hormone are gradually being uncovered. Our growing appreciation of how cytokine signaling pathways are translated into megakaryocyte development is discussed.
Collapse
Affiliation(s)
- Amy E Geddis
- Division of Hematology, University of Washington School of Medicine, Box 357710, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | |
Collapse
|
350
|
Curnock AP, Logan MK, Ward SG. Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology 2002; 105:125-36. [PMID: 11872087 PMCID: PMC1782650 DOI: 10.1046/j.1365-2567.2002.01345.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of chemokines in mediating directional cell migration is well established, but more recently it has become evident that chemokines are able to couple to distinct signalling pathways that are involved in not only chemotaxis, but also cell growth and transcriptional activation. The signalling pathway controlled by the phosphoinositide 3-kinase (PI3K) family of lipid kinases has been the focus of much attention with respect to their role in chemokine-mediated functional responses. Indeed, there now exists convincing biochemical, pharmacological and genetic evidence that both CC and CXC chemokines stimulate PI3K-dependent chemotaxis of inflammatory cells such as eosinophils, macrophages, neutrophils and T lymphocytes. This review considers the role of individual PI3Ks (e.g. the p85/p110 heterodimer, PI3Kgamma and PI3KC2alpha) as well their downstream effector targets in mediating chemokine-stimulated cell migration.
Collapse
Affiliation(s)
- Adam P Curnock
- Department of Pharmacy and Pharmacology, Bath University, Claverton Down, Bath, Avon BA2 7AY, UK
| | | | | |
Collapse
|