301
|
Engelsdorf T, Hamann T. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. ANNALS OF BOTANY 2014; 114:1339-47. [PMID: 24723447 PMCID: PMC4195549 DOI: 10.1093/aob/mcu043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/18/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases. SCOPE AND CONCLUSIONS This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
302
|
Campbell M, Suttle J, Douches DS, Buell CR. Treatment of potato tubers with the synthetic cytokinin 1-(α-ethylbenzyl)-3-nitroguanidine results in rapid termination of endodormancy and induction of transcripts associated with cell proliferation and growth. Funct Integr Genomics 2014; 14:789-99. [PMID: 25270889 DOI: 10.1007/s10142-014-0404-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 12/01/2022]
Abstract
Perennial plants undergo repression of meristematic activity in a process called dormancy. Dormancy is a complex metabolic process with implications for plant breeding and crop yield. Endodormancy, a specific subclass of dormancy, is characteristic of internal physiological mechanisms resulting in growth suppression. In this study, we examine transcriptional changes associated with the natural cessation of endodormancy in potato tuber meristems and in endodormant tubers treated with the cytokinin analog 1-(α-ethylbenzyl)-3-niroguanidine (NG), which terminates dormancy. RNA-sequencing was used to examine transcriptome changes between endodormant and non-dormant meristems from four different harvest years. A total of 35,091 transcripts were detected with 2132 differentially expressed between endodormant and non-dormant tuber meristems. Endodormant potato tubers were treated with the synthetic cytokinin NG and transcriptome changes analyzed using RNA-seq after 1, 4, and 7 days following NG exposure. A comparison of natural cessation of dormancy and NG-treated tubers demonstrated that by 4 days after NG exposure, potato meristems exhibited transcriptional profiles similar to the non-dormant state with elevated expression of multiple histones, a variety of cyclins, and other genes associated with proliferation and cellular replication. Three homologues encoding for CYCD3 exhibited elevated expression in both non-dormant and NG-treated potato tissues. These results suggest that NG terminates dormancy and induces expression cell cycle-associated transcripts within 4 days of treatment.
Collapse
Affiliation(s)
- Michael Campbell
- Penn State Erie, The Behrend College, School of Science, 4205 College Drive, Erie, PA, 16563, USA,
| | | | | | | |
Collapse
|
303
|
Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 2014; 24:1887-92. [PMID: 25127214 DOI: 10.1016/j.cub.2014.06.064] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022]
Abstract
Among the myriad cues that constantly inform plant growth and development, mechanical forces are unique in that they are an intrinsic result of cellular turgor pressure and also imposed by the environment. Although the key role of mechanical forces in shaping plant architecture from the cellular level to the level of organ formation is well established, the components of the early mechanical signal transduction machinery remain to be defined at the molecular level. Here, we show that an Arabidopsis mutant lacking the receptor-like kinase FERONIA (FER) shows severely altered Ca(2+) signaling and growth responses to different forms of mechanical perturbation. Ca(2+) signals are either abolished or exhibit qualitatively different signatures in feronia (fer) mutants exposed to local touch or bending stimulation. Furthermore, mechanically induced upregulation of known touch-responsive genes is significantly decreased in fer mutants. In addition to these defects in mechanical signaling, fer mutants also exhibit growth phenotypes consistent with impaired mechanical development, including biased root skewing, an inability to penetrate hard agar layers, and abnormal growth responses to impenetrable obstacles. Finally, high-resolution kinematic analysis of root growth revealed that fer mutants show pronounced spatiotemporal fluctuations in root cell expansion profiles with a timescale of minutes. Based on these results, we propose that FER is a key regulator of mechanical Ca(2+) signaling and that FER-dependent mechanical signaling functions to regulate growth in response to external or intrinsic mechanical forces.
Collapse
Affiliation(s)
- Han-Wei Shih
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cheng Dai
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gabriele B Monshausen
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
304
|
Ismail A, Seo M, Takebayashi Y, Kamiya Y, Eiche E, Nick P. Salt adaptation requires efficient fine-tuning of jasmonate signalling. PROTOPLASMA 2014; 251:881-98. [PMID: 24297515 DOI: 10.1007/s00709-013-0591-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/20/2013] [Indexed: 05/21/2023]
Abstract
Understanding the mechanism by which plants sense, signal and respond to salinity stress is of great interest to plant biologists. In stress signalling, often the same molecules are involved in both damage-related and adaptive events. To dissect this complexity, we compared the salinity responses of two grapevine cell lines differing in their salinity tolerance. We followed rapid changes in the cellular content of sodium and calcium, apoplastic alkalinisation and slower responses in the levels of jasmonic acid, its active isoleucine conjugate and abscisic acid, as well as of stilbenes. Differences in timing and sensitivity to either the lanthanoid Gd or exogenous calcium provide evidence for an adaptive role of early sodium uptake through non-selective cation channels acting upstream of Ca(2+) and H(+) fluxes. We find a correlation of salt sensitivity with unconstrained jasmonate (JA) signalling, whereas salt adaptation correlates with tight control of jasmonic acid and its isoleucine conjugate, accompanied by accumulation of abscisic acid and suppression of stilbenes that trigger defence-related cell death. The data are discussed by a model where efficient fine-tuning of JA signalling determines whether cells will progress towards adaptation or programme cell death.
Collapse
Affiliation(s)
- Ahmed Ismail
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
| | | | | | | | | | | |
Collapse
|
305
|
Ismail A, Takeda S, Nick P. Life and death under salt stress: same players, different timing? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2963-79. [PMID: 24755280 DOI: 10.1093/jxb/eru159] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salinity does not only stress plants but also challenges human life and the economy by posing severe constraints upon agriculture. To understand salt adaptation strategies of plants, it is central to extend agricultural production to salt-affected soils. Despite high impact and intensive research, it has been difficult to dissect the plant responses to salt stress and to define the decisive key factors for the outcome of salinity signalling. To connect the rapidly accumulating data from different systems, treatments, and organization levels (whole-plant, cellular, and molecular), and to identify the appropriate correlations among them, a clear conceptual framework is required. Similar to other stress responses, the molecular nature of the signals evoked after the onset of salt stress seems to be general, as with that observed in response to many other stimuli, and should not be considered to confer specificity per se. The focus of the current review is therefore on the temporal patterns of signals conveyed by molecules such as Ca(2+), H(+), reactive oxygen species, abscisic acid, and jasmonate. We propose that the outcome of the salinity response (adaptation versus cell death) depends on the timing with which these signals appear and disappear. In this context, the often-neglected non-selective cation channels are relevant. We also propose that constraining a given signal is as important as its induction, as it is the temporal competence of signalling (signal on demand) that confers specificity.
Collapse
Affiliation(s)
- Ahmed Ismail
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Shin Takeda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
306
|
Abstract
The definition of shape in multicellular organisms is a major issue of developmental biology. It is well established that morphogenesis relies on genetic regulation. However, cells, tissues, and organism behaviors are also bound by the laws of physics, which limit the range of possible deformations organisms can undergo but also define what organisms must do to achieve specific shapes. Besides experiments, theoretical models and numerical simulations of growing tissues are powerful tools to investigate the link between genetic regulation and mechanics. Here, we provide an overview of the main mechanical models of plant morphogenesis developed so far, from subcellular scales to whole tissues. The common concepts and discrepancies between the various models are discussed.
Collapse
Affiliation(s)
- Olivier Ali
- Virtual Plants INRIA Team, UMR AGAP, 34398 Montpellier, France
| | | | | | | |
Collapse
|
307
|
Sablowski R, Carnier Dornelas M. Interplay between cell growth and cell cycle in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2703-14. [PMID: 24218325 DOI: 10.1093/jxb/ert354] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Collapse
Affiliation(s)
- Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marcelo Carnier Dornelas
- Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, CEP 13083-862, Brazil
| |
Collapse
|
308
|
Chevalier C, Bourdon M, Pirrello J, Cheniclet C, Gévaudant F, Frangne N. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2731-46. [PMID: 24187421 DOI: 10.1093/jxb/ert366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The growth of a plant organ depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will make up the organ; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by means of endoreduplication appears to be of great importance in plants. Endoreduplication is widespread in plants and supports the process of differentiation of cells and organs. Its functional role in plant cells is not fully understood, although it is commonly associated with ploidy-dependent cell expansion. During the development of tomato fruit, cells from the (fleshy) pericarp tissue become highly polyploid, reaching a DNA content barely encountered in other plant species (between 2C and 512C). Recent investigations using tomato fruit development as a model provided new data in favour of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication does act as a morphogenetic factor supporting cell growth during tomato fruit development.
Collapse
Affiliation(s)
- Christian Chevalier
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Matthieu Bourdon
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Julien Pirrello
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Catherine Cheniclet
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France CNRS, Bordeaux Imaging Center, UMS 3420, F-33000 Bordeaux, France
| | - Frédéric Gévaudant
- University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Nathalie Frangne
- University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| |
Collapse
|
309
|
Fridman Y, Elkouby L, Holland N, Vragović K, Elbaum R, Savaldi-Goldstein S. Root growth is modulated by differential hormonal sensitivity in neighboring cells. Genes Dev 2014; 28:912-20. [PMID: 24736847 PMCID: PMC4003282 DOI: 10.1101/gad.239335.114] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coherent plant growth requires spatial integration of hormonal pathways and cell wall remodeling activities. However, the mechanisms governing sensitivity to hormones and how cell wall structure integrates with hormonal effects are poorly understood. We found that coordination between two types of epidermal root cells, hair and nonhair cells, establishes root sensitivity to the plant hormones brassinosteroids (BRs). While expression of the BR receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) in hair cells promotes cell elongation in all tissues, its high relative expression in nonhair cells is inhibitory. Elevated ethylene and deposition of crystalline cellulose underlie the inhibitory effect of BRI1. We propose that the relative spatial distribution of BRI1, and not its absolute level, fine-tunes growth.
Collapse
Affiliation(s)
- Yulia Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | | | | | | | | |
Collapse
|
310
|
Rodiuc N, Vieira P, Banora MY, de Almeida Engler J. On the track of transfer cell formation by specialized plant-parasitic nematodes. FRONTIERS IN PLANT SCIENCE 2014; 5:160. [PMID: 24847336 PMCID: PMC4017147 DOI: 10.3389/fpls.2014.00160] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/07/2014] [Indexed: 05/02/2023]
Abstract
Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.
Collapse
Affiliation(s)
- Natalia Rodiuc
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEBBrasília, Brasil
| | - Paulo Vieira
- NemaLab – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| | | | - Janice de Almeida Engler
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEBBrasília, Brasil
- Institut National de la Recherche Agronomique, Plant, Health and Environment, Plant-Nematodes Interaction Team, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISASophia-Antipolis, France
| |
Collapse
|
311
|
Vanholme B, Vanholme R, Turumtay H, Goeminne G, Cesarino I, Goubet F, Morreel K, Rencoret J, Bulone V, Hooijmaijers C, De Rycke R, Gheysen G, Ralph J, De Block M, Meulewaeter F, Boerjan W. Accumulation of N-acetylglucosamine oligomers in the plant cell wall affects plant architecture in a dose-dependent and conditional manner. PLANT PHYSIOLOGY 2014; 165:290-308. [PMID: 24664205 PMCID: PMC4012587 DOI: 10.1104/pp.113.233742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/21/2014] [Indexed: 05/18/2023]
Abstract
To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane.
Collapse
|
312
|
Jin H, Do J, Shin SJ, Choi JW, Choi YI, Kim W, Kwon M. Exogenously applied 24-epi brassinolide reduces lignification and alters cell wall carbohydrate biosynthesis in the secondary xylem of Liriodendron tulipifera. PHYTOCHEMISTRY 2014; 101:40-51. [PMID: 24582278 DOI: 10.1016/j.phytochem.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/30/2013] [Accepted: 02/03/2014] [Indexed: 05/06/2023]
Abstract
The roles of brassinosteroids (BRs) in vasculature development have been implicated based on an analysis of Arabidopsis BR mutants and suspension cells of Zinnia elegans. However, the effects of BRs in vascular development of a woody species have not been demonstrated. In this study, 24-epi brassinolide (BL) was applied to the vascular cambium of a vertical stem of a 2-year-old Liriodendron, and the resulting chemical and anatomical phenotypes were characterized to uncover the roles of BRs in secondary xylem formation of a woody species. The growth in xylary cells was clearly promoted when treated with BL. Statistical analysis indicated that the length of both types of xylary cells (fiber and vessel elements) increased significantly after BL application. Histochemical analysis demonstrated that BL-induced growth promotion involved the acceleration of cell division and cell elongation. Histochemical and expression analysis of several lignin biosynthetic genes indicated that most genes in the phenylpropanoid pathway were significantly down-regulated in BL-treated stems compared to that in control stems. Chemical analysis of secondary xylem demonstrated that BL treatment induced significant modification in the cell wall carbohydrates, including biosynthesis of hemicellulose and cellulose. Lignocellulose crystallinity decreased significantly, and the hemicellulose composition changed with significant increases in galactan and arabinan. Thus, BL has regulatory roles in the biosynthesis and modification of secondary cell wall components and cell wall assembly during secondary xylem development in woody plants.
Collapse
Affiliation(s)
- Hyunjung Jin
- Department of Biosystems Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Jihye Do
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Soo-Jeong Shin
- Department of Wood and Paper Science, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Joon Weon Choi
- Department of Forest Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young Im Choi
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-350, Republic of Korea
| | - Wook Kim
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Mi Kwon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
313
|
Bashline L, Lei L, Li S, Gu Y. Cell wall, cytoskeleton, and cell expansion in higher plants. MOLECULAR PLANT 2014; 7:586-600. [PMID: 24557922 DOI: 10.1093/mp/ssu018] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.
Collapse
Affiliation(s)
- Logan Bashline
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
314
|
Cohen MF, Gurung S, Fukuto JM, Yamasaki H. Controlled free radical attack in the apoplast: a hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:120-6. [PMID: 24467903 PMCID: PMC3929055 DOI: 10.1016/j.plantsci.2013.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/16/2013] [Accepted: 12/09/2013] [Indexed: 05/21/2023]
Abstract
Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca(2+) dependency of rapid abscission may reflect the stabilization Ca(2+) confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides.
Collapse
Affiliation(s)
- Michael F Cohen
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA.
| | - Sushma Gurung
- Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA.
| | - Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Japan.
| |
Collapse
|
315
|
Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proc Natl Acad Sci U S A 2014; 111:2830-5. [PMID: 24497510 DOI: 10.1073/pnas.1320457111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.
Collapse
|
316
|
Zagorchev L, Kamenova P, Odjakova M. The role of plant cell wall proteins in response to salt stress. ScientificWorldJournal 2014; 2014:764089. [PMID: 24574917 PMCID: PMC3916024 DOI: 10.1155/2014/764089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022] Open
Abstract
Contemporary agriculture is facing new challenges with the increasing population and demand for food on Earth and the decrease in crop productivity due to abiotic stresses such as water deficit, high salinity, and extreme fluctuations of temperatures. The knowledge of plant stress responses, though widely extended in recent years, is still unable to provide efficient strategies for improvement of agriculture. The focus of study has been shifted to the plant cell wall as a dynamic and crucial component of the plant cell that could immediately respond to changes in the environment. The investigation of plant cell wall proteins, especially in commercially important monocot crops revealed the high involvement of this compartment in plants stress responses, but there is still much more to be comprehended. The aim of this review is to summarize the available data on this issue and to point out the future areas of interest that should be studied in detail.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| | - Plamena Kamenova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| | - Mariela Odjakova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| |
Collapse
|
317
|
de Castro M, Largo-Gosens A, Alvarez JM, García-Angulo P, Acebes JL. Early cell-wall modifications of maize cell cultures during habituation to dichlobenil. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:127-35. [PMID: 24331427 DOI: 10.1016/j.jplph.2013.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 05/15/2023]
Abstract
Studies involving the habituation of plant cell cultures to cellulose biosynthesis inhibitors have achieved significant progress as regards understanding the structural plasticity of cell walls. However, since habituation studies have typically used high concentrations of inhibitors and long-term habituation periods, information on initial changes associated with habituation has usually been lost. This study focuses on monitoring and characterizing the short-term habituation process of maize (Zea mays) cell suspensions to dichlobenil (DCB). Cellulose quantification and FTIR spectroscopy of cell walls from 20 cell lines obtained during an incipient DCB-habituation process showed a reduction in cellulose levels which tended to revert depending on the inhibitor concentration and the length of time that cells were in contact with it. Variations in the cellulose content were concomitant with changes in the expression of several ZmCesA genes, mainly involving overexpression of ZmCesA7 and ZmCesA8. In order to explore these changes in more depth, a cell line habituated to 1.5μM DCB was identified as representative of incipient DCB habituation and selected for further analysis. The cells of this habituated cell line grew more slowly and formed larger clusters. Their cell walls were modified, showing a 33% reduction in cellulose content, that was mainly counteracted by an increase in arabinoxylans, which presented increased extractability. This result was confirmed by immunodot assays graphically plotted by heatmaps, since habituated cell walls had a more extensive presence of epitopes for arabinoxylans and xylans, but also for homogalacturonan with a low degree of esterification and for galactan side chains of rhamnogalacturonan I. Furthermore, a partial shift of xyloglucan epitopes toward more easily extractable fractions was found. However, other epitopes, such as these specific for arabinan side chains of rhamnogalacturonan I or homogalacturonan with a high degree of esterification, seemed to be not affected. In conclusion, the early modifications occurring in maize cell walls as a consequence of DCB-habituation involved quantitative and qualitative changes of arabinoxylans, but also other polysaccharides. Thereby some of the changes that took place in the cell walls in order to compensate for the lack of cellulose differed according to the DCB-habituation level, and illustrate the ability of plant cells to adopt appropriate coping strategies depending on the herbicide concentration and length of exposure time.
Collapse
Affiliation(s)
- María de Castro
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain.
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| | - Jesús Miguel Alvarez
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| | - José Luis Acebes
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| |
Collapse
|
318
|
Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. THE ARABIDOPSIS BOOK 2014; 12:e0169. [PMID: 24465174 PMCID: PMC3894906 DOI: 10.1199/tab.0169] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1-4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis.
Collapse
Affiliation(s)
- Shundai Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Logan Bashline
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lei Lei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Address correspondence to
| |
Collapse
|
319
|
Smirnova AV, Matveyeva NP, Yermakov IP. Reactive oxygen species are involved in regulation of pollen wall cytomechanics. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:252-7. [PMID: 23574420 DOI: 10.1111/plb.12004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/21/2012] [Indexed: 05/05/2023]
Abstract
Production and scavenging of reactive oxygen species (ROS) in somatic plant cells is developmentally regulated and plays an important role in the modification of cell wall mechanical properties. Here we show that H2O2 and the hydroxyl radical ((•)OH) can regulate germination of tobacco pollen by modifying the mechanical properties of the pollen intine (inner layer of the pollen wall). Pollen germination was affected by addition of exogenous H2O2, (•)OH, and by antioxidants scavenging endogenous ROS: superoxide dismutase, superoxide dismutase/catalase mimic Mn-5,10,15,20-tetrakis(1-methyl-4-pyridyl)21H, 23H-porphin, or a spin-trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone, which eliminates (•)OH. The inhibiting concentrations of exogenous H2O2 and (•)OH did not decrease pollen viability, but influenced the mechanical properties of the wall. The latter were estimated by studying the resistance of pollen to hypo-osmotic shock. (•)OH caused excess loosening of the intine all over the surface of the pollen grain, disrupting polar growth induction. In contrast, H2O2, as well as partial removal of endogenous (•)OH, over-tightened the wall, impeding pollen tube emergence. Feruloyl esterase (FAE) was used as a tool to examine whether H2O2-inducible inter-polymer cross-linking is involved in the intine tightening. FAE treatment caused loosening of the intine and stimulated pollen germination and pollen tube growth, revealing ferulate cross-links in the intine. Taken together, the data suggest that pollen intine properties can be regulated differentially by ROS. (•)OH is involved in local loosening of the intine in the germination pore region, while H2O2 is necessary for intine strengthening in the rest of the wall through oxidative coupling of feruloyl polysaccharides.
Collapse
Affiliation(s)
- A V Smirnova
- Department of Plant Physiology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N P Matveyeva
- Department of Plant Physiology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - I P Yermakov
- Department of Plant Physiology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
320
|
Tenhaken R. Cell wall remodeling under abiotic stress. FRONTIERS IN PLANT SCIENCE 2014; 5:771. [PMID: 25709610 PMCID: PMC4285730 DOI: 10.3389/fpls.2014.00771] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 05/18/2023]
Abstract
Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs.
Collapse
Affiliation(s)
- Raimund Tenhaken
- *Correspondence: Raimund Tenhaken, Department of Cell Biology, Plant Physiology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria e-mail:
| |
Collapse
|
321
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
Affiliation(s)
- Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
- *Correspondence: Antonio Molina, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica Madrid, Campus Montegancedo, M40 (Km. 38), Pozuelo de Alarcón, Madrid 28223, Spain e-mail:
| |
Collapse
|
322
|
Paque S, Mouille G, Grandont L, Alabadí D, Gaertner C, Goyallon A, Muller P, Primard-Brisset C, Sormani R, Blázquez MA, Perrot-Rechenmann C. AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling, and cell expansion in arabidopsis. THE PLANT CELL 2014; 26:280-95. [PMID: 24424095 PMCID: PMC3963575 DOI: 10.1105/tpc.113.120048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall-related genes, especially cell wall remodeling genes, mainly via an SCF(TIR/AFB)-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion.
Collapse
Affiliation(s)
- Sébastien Paque
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Laurie Grandont
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Planta, Consejo Superior de Investigaciones Científicas, Universitat Politécnica de Valencia, 46022 Valencia, Spain
| | - Cyril Gaertner
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Arnaud Goyallon
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Philippe Muller
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Catherine Primard-Brisset
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Rodnay Sormani
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Planta, Consejo Superior de Investigaciones Científicas, Universitat Politécnica de Valencia, 46022 Valencia, Spain
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
- Address correspondence to
| |
Collapse
|
323
|
Hernández-Hernández V, Rueda D, Caballero L, Alvarez-Buylla ER, Benítez M. Mechanical forces as information: an integrated approach to plant and animal development. FRONTIERS IN PLANT SCIENCE 2014; 5:265. [PMID: 24959170 PMCID: PMC4051191 DOI: 10.3389/fpls.2014.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/21/2014] [Indexed: 05/04/2023]
Abstract
Mechanical forces such as tension and compression act throughout growth and development of multicellular organisms. These forces not only affect the size and shape of the cells and tissues but are capable of modifying the expression of genes and the localization of molecular components within the cell, in the plasma membrane, and in the plant cell wall. The magnitude and direction of these physical forces change with cellular and tissue properties such as elasticity. Thus, mechanical forces and the mesoscopic fields that emerge from their local action constitute important sources of positional information. Moreover, physical and biochemical processes interact in non-linear ways during tissue and organ growth in plants and animals. In this review we discuss how such mechanical forces are generated, transmitted, and sensed in these two lineages of multicellular organisms to yield long-range positional information. In order to do so we first outline a potentially common basis for studying patterning and mechanosensing that relies on the structural principle of tensegrity, and discuss how tensegral structures might arise in plants and animals. We then provide some examples of morphogenesis in which mechanical forces appear to act as positional information during development, offering a possible explanation for ubiquitous processes, such as the formation of periodic structures. Such examples, we argue, can be interpreted in terms of tensegral phenomena. Finally, we discuss the hypothesis of mechanically isotropic points as a potentially generic mechanism for the localization and maintenance of stem-cell niches in multicellular organisms. This comparative approach aims to help uncovering generic mechanisms of morphogenesis and thus reach a better understanding of the evolution and development of multicellular phenotypes, focusing on the role of physical forces in these processes.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Denisse Rueda
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Lorena Caballero
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Elena R. Alvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Mariana Benítez
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- *Correspondence: Mariana Benítez, Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, México City 04350, Mexico e-mail:
| |
Collapse
|
324
|
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. FRONTIERS IN PLANT SCIENCE 2014; 5:470. [PMID: 25278948 PMCID: PMC4165286 DOI: 10.3389/fpls.2014.00470] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/28/2014] [Indexed: 05/19/2023]
Abstract
Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e., the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin, and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
Collapse
Affiliation(s)
| | | | | | - Felice Cervone
- *Correspondence: Felice Cervone, Department of Biology and Biotechnology “Charles Darwin”, Sapienza–University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy e-mail:
| |
Collapse
|
325
|
Hann CT, Bequette CJ, Dombrowski JE, Stratmann JW. Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns. FRONTIERS IN PLANT SCIENCE 2014; 5:550. [PMID: 25360141 PMCID: PMC4197774 DOI: 10.3389/fpls.2014.00550] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/25/2014] [Indexed: 05/15/2023]
Abstract
Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Molecular mechanisms that explain how methanol affects plant defenses are poorly understood. Here we show that exogenously supplied methanol alone has weak effects on defense signaling in three dicot species, however, it profoundly alters signaling responses to danger- and microbe-associated molecular patterns (DAMPs, MAMPs) such as the alarm hormone systemin, the bacterial flagellum-derived flg22 peptide, and the fungal cell wall-derived oligosaccharide chitosan. In the presence of methanol the kinetics and amplitudes of DAMP/MAMP-induced MAP kinase (MAPK) activity and oxidative burst are altered in tobacco and tomato suspension-cultured cells, in Arabidopsis seedlings and tomato leaf tissue. As a possible consequence of altered DAMP/MAMP signaling, methanol suppressed the expression of the defense genes PR-1 and PI-1 in tomato. In cell cultures of the grass tall fescue (Festuca arundinacea, Poaceae, Monocots), methanol alone activates MAPKs and increases chitosan-induced MAPK activity, and in the darnel grass Lolium temulentum (Poaceae), it alters wound-induced MAPK signaling. We propose that methanol can be recognized by plants as a sign of the damaged self. In dicots, methanol functions as a DAMP-like alarm signal with little elicitor activity on its own, whereas it appears to function as an elicitor-active DAMP in monocot grasses. Ethanol had been implicated in plant stress responses, although the source of ethanol in plants is not well established. We found that it has a similar effect as methanol on responses to MAMPs and DAMPs.
Collapse
Affiliation(s)
- Claire T. Hann
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
| | - Carlton J. Bequette
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
| | - James E. Dombrowski
- National Forage Seed Production Research Center, United States Department of Agriculture – Agricultural Research ServiceCorvallis, OR, USA
| | - Johannes W. Stratmann
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
- *Correspondence: Johannes W. Stratmann, Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA e-mail:
| |
Collapse
|
326
|
Ellinger D, Voigt CA. The use of nanoscale fluorescence microscopic to decipher cell wall modifications during fungal penetration. FRONTIERS IN PLANT SCIENCE 2014; 5:270. [PMID: 24995012 PMCID: PMC4061529 DOI: 10.3389/fpls.2014.00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/25/2014] [Indexed: 05/08/2023]
Abstract
Plant diseases are one of the most studied subjects in the field of plant science due to their impact on crop yield and food security. Our increased understanding of plant-pathogen interactions was mainly driven by the development of new techniques that facilitated analyses on a subcellular and molecular level. The development of labeling technologies, which allowed the visualization and localization of cellular structures and proteins in live cell imaging, promoted the use of fluorescence and laser-scanning microscopy in the field of plant-pathogen interactions. Recent advances in new microscopic technologies opened their application in plant science and in the investigation of plant diseases. In this regard, in planta Förster/Fluorescence resonance energy transfer has demonstrated to facilitate the measurement of protein-protein interactions within the living tissue, supporting the analysis of regulatory pathways involved in plant immunity and putative host-pathogen interactions on a nanoscale level. Localization microscopy, an emerging, non-invasive microscopic technology, will allow investigations with a nanoscale resolution leading to new possibilities in the understanding of molecular processes.
Collapse
Affiliation(s)
| | - Christian A. Voigt
- *Correspondence: Christian A. Voigt, Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany e-mail:
| |
Collapse
|
327
|
Peyronnet R, Tran D, Girault T, Frachisse JM. Mechanosensitive channels: feeling tension in a world under pressure. FRONTIERS IN PLANT SCIENCE 2014; 5:558. [PMID: 25374575 PMCID: PMC4204436 DOI: 10.3389/fpls.2014.00558] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/29/2014] [Indexed: 05/02/2023]
Abstract
Plants, like other organisms, are facing multiple mechanical constraints generated both in their tissues and by the surrounding environments. They need to sense and adapt to these forces throughout their lifetimes. To do so, different mechanisms devoted to force transduction have emerged. Here we focus on fascinating proteins: the mechanosensitive (MS) channels. Mechanosensing in plants has been described for centuries but the molecular identification of MS channels occurred only recently. This review is aimed at plant biologists and plant biomechanists who want to be introduced to MS channel identity, how they work and what they might do in planta? In this review, electrophysiological properties, regulations, and functions of well-characterized MS channels belonging to bacteria and animals are compared with those of plants. Common and specific properties are discussed. We deduce which tools and concepts from animal and bacterial fields could be helpful for improving our understanding of plant mechanotransduction. MS channels embedded in their plasma membrane are sandwiched between the cell wall and the cytoskeleton. The consequences of this peculiar situation are analyzed and discussed. We also stress how important it is to probe mechanical forces at cellular and subcellular levels in planta in order to reveal the intimate relationship linking the membrane with MS channel activity. Finally we will propose new tracks to help to reveal their physiological functions at tissue and plant levels.
Collapse
Affiliation(s)
- Rémi Peyronnet
- National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - Daniel Tran
- Institut des Sciences du Végétal – Centre National de la Recherche Scientifique, Saclay Plant SciencesGif-sur-Yvette, France
| | - Tiffanie Girault
- Institut des Sciences du Végétal – Centre National de la Recherche Scientifique, Saclay Plant SciencesGif-sur-Yvette, France
| | - Jean-Marie Frachisse
- Institut des Sciences du Végétal – Centre National de la Recherche Scientifique, Saclay Plant SciencesGif-sur-Yvette, France
- *Correspondence: Jean-Marie Frachisse, Institut des Sciences du Végétal – Centre National de la Recherche Scientifique, Saclay Plant Sciences, Bat 22-23A, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France e-mail:
| |
Collapse
|
328
|
Abstract
Plant stature and development are governed by cell proliferation and directed cell growth. These parameters are determined largely by cell wall characteristics. Cellulose microfibrils, composed of hydrogen-bonded β-1,4 glucans, are key components for anisotropic growth in plants. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes. In higher plants, these complexes are assembled into hexameric rosettes in intracellular compartments and secreted to the plasma membrane. Here, the complexes typically track along cortical microtubules, which may guide cellulose synthesis, until the complexes are inactivated and/or internalized. Determining the regulatory aspects that control the behavior of cellulose synthase complexes is vital to understanding directed cell and plant growth and to tailoring cell wall content for industrial products, including paper, textiles, and fuel. In this review, we summarize and discuss cellulose synthesis and regulatory aspects of the cellulose synthase complex, focusing on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada;
| | | | | |
Collapse
|
329
|
Kalve S, De Vos D, Beemster GTS. Leaf development: a cellular perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:362. [PMID: 25132838 PMCID: PMC4116805 DOI: 10.3389/fpls.2014.00362] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shweta Kalve
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| | - Dirk De Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium ; Department of Mathematics and Computer Science, University of Antwerp Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| |
Collapse
|
330
|
Doblin MS, Johnson KL, Humphries J, Newbigin EJ, Bacic A. Are designer plant cell walls a realistic aspiration or will the plasticity of the plant's metabolism win out? Curr Opin Biotechnol 2013; 26:108-14. [PMID: 24679266 DOI: 10.1016/j.copbio.2013.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/15/2013] [Accepted: 11/28/2013] [Indexed: 01/28/2023]
Abstract
Plants have been redesigned by humans since the advent of modern agriculture some 10000 years ago, to provide ever increasing benefits to society. The phenomenal success of the green revolution in converting biomass from vegetative tissues into grain yield has sustained a growing population. At the dawn of the 21st century the need to further optimise plant biomass (largely plant walls) for a sustainable future is increasingly evident as our supply of fossil fuels is finite and the quality of our crop-based foods (functional foods; also determined by the composition of walls) are critical to maintaining a healthy lifestyle. Our capacity to engineer 'designer walls' suited to particular purposes is challenging plant breeders and biotechnologists in unprecedented ways. In this review we provide an overview of the critical steps in the assembly and remodelling of walls, the success (or otherwise) of such approaches and highlight another complex network, the cell surface, as a cell wall integrity (CWI) sensor that exerts control over wall composition and will need to be considered in any future modification of walls for agro-industrial purposes.
Collapse
Affiliation(s)
- Monika S Doblin
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Kim L Johnson
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - John Humphries
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Ed J Newbigin
- School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Antony Bacic
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia.
| |
Collapse
|
331
|
How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 2013; 11:648-55. [PMID: 23949603 DOI: 10.1038/nrmicro3090] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In budding yeast, the neck that connects the mother and daughter cell is the site of essential functions such as organelle trafficking, septum formation and cytokinesis. Therefore, the morphology of this region, which depends on the surrounding cell wall, must be maintained throughout the cell cycle. Growth at the neck is prevented, redundantly, by a septin ring inside the cell membrane and a chitin ring in the cell wall. Here, we describe recent work supporting the hypothesis that attachment of the chitin ring, which forms at the mother-bud neck during budding, to β-1,3-glucan in the cell wall is necessary to stop growth at the neck. Thus, in this scenario, chemistry controls morphogenesis.
Collapse
|
332
|
Knoch E, Dilokpimol A, Tryfona T, Poulsen CP, Xiong G, Harholt J, Petersen BL, Ulvskov P, Hadi MZ, Kotake T, Tsumuraya Y, Pauly M, Dupree P, Geshi N. A β-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:1016-29. [PMID: 24128328 DOI: 10.1111/tpj.12353] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
We have characterized a β-glucuronosyltransferase (AtGlcAT14A) from Arabidopsis thaliana that is involved in the biosynthesis of type II arabinogalactan (AG). This enzyme belongs to the Carbohydrate Active Enzyme database glycosyltransferase family 14 (GT14). The protein was localized to the Golgi apparatus when transiently expressed in Nicotiana benthamiana. The soluble catalytic domain expressed in Pichia pastoris transferred glucuronic acid (GlcA) to β-1,6-galactooligosaccharides with degrees of polymerization (DP) ranging from 3-11, and to β-1,3-galactooligosaccharides of DP5 and 7, indicating that the enzyme is a glucuronosyltransferase that modifies both the β-1,6- and β-1,3-galactan present in type II AG. Two allelic T-DNA insertion mutant lines showed 20-35% enhanced cell elongation during seedling growth compared to wild-type. Analyses of AG isolated from the mutants revealed a reduction of GlcA substitution on Gal-β-1,6-Gal and β-1,3-Gal, indicating an in vivo role of AtGlcAT14A in synthesis of those structures in type II AG. Moreover, a relative increase in the levels of 3-, 6- and 3,6-linked galactose (Gal) and reduced levels of 3-, 2- and 2,5-linked arabinose (Ara) were seen, suggesting that the mutation in AtGlcAT14A results in a relative increase of the longer and branched β-1,3- and β-1,6-galactans. This increase of galactosylation in the mutants is most likely caused by increased availability of the O6 position of Gal, which is a shared acceptor site for AtGlcAT14A and galactosyltransferases in synthesis of type II AG, and thus addition of GlcA may terminate Gal chain extension. We discuss a role for the glucuronosyltransferase in the biosynthesis of type II AG, with a biological role during seedling growth.
Collapse
Affiliation(s)
- Eva Knoch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U. ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 2013; 11:e1001719. [PMID: 24302886 PMCID: PMC3841104 DOI: 10.1371/journal.pbio.1001719] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Pollen tubes grow extremely rapidly to effect fertilization in plants. ANXUR receptor-like kinases facilitate this growth by linking the intracellular growth machinery of pollen tubes to the status of the extracellular matrix via H2O2 and Ca2+ signaling. It has become increasingly apparent that the extracellular matrix (ECM), which in plants corresponds to the cell wall, can influence intracellular activities in ways that go far beyond their supposedly passive mechanical support. In plants, growing cells use mechanisms sensing cell wall integrity to coordinate cell wall performance with the internal growth machinery to avoid growth cessation or loss of integrity. How this coordination precisely works is unknown. Previously, we reported that in the tip-growing pollen tube the ANXUR receptor-like kinases (RLKs) of the CrRLK1L subfamily are essential to sustain growth without loss of cell wall integrity in Arabidopsis. Here, we show that over-expression of the ANXUR RLKs inhibits growth by over-activating exocytosis and the over-accumulation of secreted cell wall material. Moreover, the characterization of mutations in two partially redundant pollen-expressed NADPH oxidases coupled with genetic interaction studies demonstrate that the ANXUR RLKs function upstream of these NADPH oxidases. Using the H2O2-sensitive HyPer and the Ca2+-sensitive YC3.60 sensors in NADPH oxidase-deficient mutants, we reveal that NADPH oxidases generate tip-localized, pulsating H2O2 production that functions, possibly through Ca2+ channel activation, to maintain a steady tip-focused Ca2+ gradient during growth. Our findings support a model where ECM-sensing receptors regulate reactive oxygen species production, Ca2+ homeostasis, and exocytosis to coordinate ECM-performance with the internal growth machinery. Tip-growing cells, such as plant root hairs and pollen tubes or fungal hyphae, are characterized by a tip-focused Ca2+ gradient. These tip-growing cells tightly coordinate the loosening and pressure-driven deformation of their extracellular matrix (ECM)—the cell wall in plant cells—by locally adding new membrane and cell wall materials. In pollen tubes, which grow at amazing speeds to effect fertilization in plants, a class of kinases called the ANXUR receptor-like kinases (RLKs) sense perturbations in cell wall integrity, and their loss leads to pollen tube rupture. Here, we gain new insights into the mechanism of cell wall surveillance by these RLKs in the model plant Arabidopsis. We show that over-expressing ANXUR RLKs over-activates exocytosis, causing an over-accumulation of secreted cell wall material that eventually leads to growth arrest. Moreover, we find that the ANXUR RLKs function upstream of NADPH oxidases, which are membrane-anchored enzymes that produce reactive oxygen species (ROS). Using H2O2- and Ca2+-sensitive reporters, we show that NADPH oxidases generate tip-localized H2O2 production, which is required to maintain a steady, tip-focused Ca2+ gradient that is essential for pollen tube growth. We postulate that ECM-sensing receptors, such as the ANXUR RLKs, regulate ROS production, Ca2+ homeostasis, and exocytosis to coordinate the status of the ECM with the cell's internal growth machinery.
Collapse
Affiliation(s)
- Aurélien Boisson-Dernier
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland
- Zürich-Basel Plant Science Center, ETH Zürich, Zürich, Switzerland
- * E-mail: (ABD); (UG)
| | - Dmytro S. Lituiev
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland
- Zürich-Basel Plant Science Center, ETH Zürich, Zürich, Switzerland
| | - Anna Nestorova
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland
- Zürich-Basel Plant Science Center, ETH Zürich, Zürich, Switzerland
| | - Christina Maria Franck
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland
- Zürich-Basel Plant Science Center, ETH Zürich, Zürich, Switzerland
| | - Sharme Thirugnanarajah
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland
- Zürich-Basel Plant Science Center, ETH Zürich, Zürich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland
- Zürich-Basel Plant Science Center, ETH Zürich, Zürich, Switzerland
- * E-mail: (ABD); (UG)
| |
Collapse
|
334
|
Burton RA, Fincher GB. Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 2013; 26:79-84. [PMID: 24679262 DOI: 10.1016/j.copbio.2013.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/02/2013] [Indexed: 01/18/2023]
Abstract
Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production.
Collapse
Affiliation(s)
- Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
335
|
Monshausen GB, Haswell ES. A force of nature: molecular mechanisms of mechanoperception in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4663-80. [PMID: 23913953 PMCID: PMC3817949 DOI: 10.1093/jxb/ert204] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The ability to sense and respond to a wide variety of mechanical stimuli-gravity, touch, osmotic pressure, or the resistance of the cell wall-is a critical feature of every plant cell, whether or not it is specialized for mechanotransduction. Mechanoperceptive events are an essential part of plant life, required for normal growth and development at the cell, tissue, and whole-plant level and for the proper response to an array of biotic and abiotic stresses. One current challenge for plant mechanobiologists is to link these physiological responses to specific mechanoreceptors and signal transduction pathways. Here, we describe recent progress in the identification and characterization of two classes of putative mechanoreceptors, ion channels and receptor-like kinases. We also discuss how the secondary messenger Ca(2+) operates at the centre of many of these mechanical signal transduction pathways.
Collapse
Affiliation(s)
| | - Elizabeth S. Haswell
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
336
|
Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. FRONTIERS IN PLANT SCIENCE 2013; 4:354. [PMID: 24106493 PMCID: PMC3788588 DOI: 10.3389/fpls.2013.00354] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/22/2013] [Indexed: 05/17/2023]
Abstract
Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of BonnBonn, Germany
| | - Stefano Mancuso
- LINV – DiSPAA, Department of Agri-Food and Environmental Science, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
337
|
Weber M, Deinlein U, Fischer S, Rogowski M, Geimer S, Tenhaken R, Clemens S. A mutation in the Arabidopsis thaliana cell wall biosynthesis gene pectin methylesterase 3 as well as its aberrant expression cause hypersensitivity specifically to Zn. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:151-64. [PMID: 23826687 DOI: 10.1111/tpj.12279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/21/2013] [Accepted: 07/02/2013] [Indexed: 05/24/2023]
Abstract
Defects in metal homeostasis factors are often accompanied by the loss of metal tolerance. Therefore, we screened for mutants with compromised growth in the presence of excess Zn(2+) in order to identify factors involved in Zn biology in plants. Here we report the isolation of six ozs (overly Zn sensitive) ethyl methanesulfonate Arabidopsis thaliana mutants with contrasting patterns of metal sensitivity, and the molecular characterization of two mutants hypersensitive specifically to Zn(2+) . Mutant ozs1 represents a non-functional allele of the vacuolar Zn transporter AtMTP1, providing additional genetic evidence for its major role in Zn(2+) tolerance in seedlings. Mutant ozs2 carries a semi-dominant mutation in the gene encoding pectin methylesterase 3 (AtPME3), an enzyme catalyzing demethylesterification of pectin. The mutation results in impaired proteolytic processing of AtPME3. Ectopic expression of AtPME3 causes strong Zn(2+) hypersensitivity that is tightly correlated with transcript abundance. Together these observations suggest detrimental effects on Golgi-localized processes. The ozs2 but not the ozs1 phenotype can be suppressed by extra Ca(2+) , indicating changes in apoplastic cation-binding capacity. However, we did not detect any changes in bulk metal-binding capacity, overall pectin methylesterification status or cell wall ultrastructure in ozs2, leading us to hypothesize that the ozs2 mutation causes hypersensitivity towards the specific interference of Zn ions with cell wall-controlled growth processes.
Collapse
Affiliation(s)
- Michael Weber
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
338
|
Giannoutsou E, Sotiriou P, Apostolakos P, Galatis B. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays. ANNALS OF BOTANY 2013; 112:1067-81. [PMID: 23969761 PMCID: PMC3783239 DOI: 10.1093/aob/mct175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. METHODS Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. RESULTS Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. CONCLUSIONS The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.
Collapse
Affiliation(s)
| | | | | | - B. Galatis
- Department of Botany, Faculty of Biology, University of Athens, Athens 15784, Greece
| |
Collapse
|
339
|
Hamant O. Widespread mechanosensing controls the structure behind the architecture in plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:654-60. [PMID: 23830994 DOI: 10.1016/j.pbi.2013.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 05/22/2023]
Abstract
Mechanical forces play an instructing role for many aspects of animal cell biology, such as division, polarity and fate. Although the associated mechanoperception pathways still remain largely elusive in plants, physical cues have long been thought to guide development in parallel to biochemical factors. With the development of new imaging techniques, micromechanics tools and modeling approaches, the role of mechanical signals in plant development is now re-examined and fully integrated with modern cell biology. Using recent examples from the literature, I propose to use a multiscale perspective, from the whole plant down to the cell wall, to fully appreciate the diversity of developmental processes that depend on mechanical signals. Incidentally, this also illustrates how conceptually rich this field is.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB, Lyon 1, France; Laboratoire Joliot Curie, CNRS, ENS Lyon, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France.
| |
Collapse
|
340
|
Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci U S A 2013; 110:E3631-9. [PMID: 24003150 DOI: 10.1073/pnas.1305848110] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the function of silicon (Si) in plant physiology has long been debated, its beneficial effects on plant resistance against abiotic and biotic stresses, including insect herbivory, have been well documented. In addition, the jasmonate (JA) signaling pathway plays a crucial role in mediating antiherbivore defense responses in plants. However, potential interactions between JA and Si in response to insect attack have not been examined directly. To explore the role JA may play in Si-enhanced resistance, we silenced the expression of allene oxide synthase (OsAOS; active in JA biosynthesis) and CORONATINE INSENSITIVE1 (OsCOI1; active in JA perception) genes in transgenic rice plants via RNAi and examined resulting changes in Si accumulation and defense responses against caterpillar Cnaphalocrocis medinalis (rice leaffolder, LF) infestation. Si pretreatment increased rice resistance against LF larvae in wild-type plants but not in OsAOS and OsCOI1 RNAi lines. Upon LF attack, wild-type plants subjected to Si pretreatment exhibited enhanced defense responses relative to untreated controls, including higher levels of JA accumulation; increased levels of transcripts encoding defense marker genes; and elevated activities of peroxidase, polyphenol oxidase, and trypsin protease inhibitor. Additionally, reduced Si deposition and Si cell expansion were observed in leaves of OsAOS and OsCOI1 RNAi plants in comparison with wild-type plants, and reduced steady-state transcript levels of the Si transporters OsLsi1, OsLsi2, and OsLsi6 were observed in Si-pretreated plants after LF attack. These results suggest a strong interaction between Si and JA in defense against insect herbivores involving priming of JA-mediated defense responses by Si and the promotion of Si accumulation by JA.
Collapse
|
341
|
Gendre D, McFarlane HE, Johnson E, Mouille G, Sjödin A, Oh J, Levesque-Tremblay G, Watanabe Y, Samuels L, Bhalerao RP. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. THE PLANT CELL 2013; 25:2633-46. [PMID: 23832588 PMCID: PMC3753388 DOI: 10.1105/tpc.113.112482] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The secretion of cell wall polysaccharides through the trans-Golgi network (TGN) is required for plant cell elongation. However, the components mediating the post-Golgi secretion of pectin and hemicellulose, the two major cell wall polysaccharides, are largely unknown. We identified evolutionarily conserved YPT/RAB GTPase Interacting Protein 4a (YIP4a) and YIP4b (formerly YIP2), which form a TGN-localized complex with ECHIDNA (ECH) in Arabidopsis thaliana. The localization of YIP4 and ECH proteins at the TGN is interdependent and influences the localization of VHA-a1 and SYP61, which are key components of the TGN. YIP4a and YIP4b act redundantly, and the yip4a yip4b double mutants have a cell elongation defect. Genetic, biochemical, and cell biological analyses demonstrate that the ECH/YIP4 complex plays a key role in TGN-mediated secretion of pectin and hemicellulose to the cell wall in dark-grown hypocotyls and in secretory cells of the seed coat. In keeping with these observations, Fourier transform infrared microspectroscopy analysis revealed that the ech and yip4a yip4b mutants exhibit changes in their cell wall composition. Overall, our results reveal a TGN subdomain defined by ECH/YIP4 that is required for the secretion of pectin and hemicellulose and distinguishes the role of the TGN in secretion from its roles in endocytic and vacuolar trafficking.
Collapse
Affiliation(s)
- Delphine Gendre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Heather E. McFarlane
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Errin Johnson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Andreas Sjödin
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Jaesung Oh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | | | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
- Address correspondence to
| |
Collapse
|
342
|
Chanroj S, Padmanaban S, Czerny DD, Jauh GY, Sze H. K+ transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system: role in reproduction and seed set. MOLECULAR PLANT 2013; 6:1226-46. [PMID: 23430044 DOI: 10.1093/mp/sst032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The importance of sorting proteins and wall materials to their destination is critical for plant growth and development, though the machinery orchestrating membrane trafficking is poorly understood. Transporters that alter the environment across endomembrane compartments are thought to be important players. Using Escherichia coli and yeast, we previously showed that several Arabidopsis Cation/H(+) eXchanger (AtCHX) members were K(+) transporters with a role in pH homeostasis, though their subcellular location and biological roles in plants are unclear. Co-expression of markers with CHX16, CHX17, CHX18, or CHX19 tagged with a fluorescent protein indicated these transporters associated with plasma membrane (PM) and post-Golgi compartments. Under its native promoter, AtCHX17(1-820)-GFP localized to prevacuolar compartment (PVC) and to PM in roots. Brefeldin A diminished AtCHX17-GFP fluorescence at PM, whereas wortmannin caused formation of GFP-labeled ring-like structures, suggesting AtCHX17 trafficked among PVC, vacuole and PM. AtCHX17(1-472) lacking its carboxylic tail did not associate with PVC or PM in plant cells. Single chx17 mutant or higher-order mutants showed normal root growth and vegetative development. However, quadruple (chx16chx17chx18chx19) mutants were reduced in frequency and produced 50%-70% fewer seeds, indicating overlapping roles of several AtCHX17-related transporters in reproduction and/or seed development. Together, our results suggest that successful reproduction and seed development depend on the ability to regulate cation and pH homeostasis by AtCHX17-like transporters on membranes that traffic in the endocytic and/or secretory pathways.
Collapse
Affiliation(s)
- Salil Chanroj
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
343
|
Landrein B, Hamant O. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:324-38. [PMID: 23551516 DOI: 10.1111/tpj.12188] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 05/19/2023]
Abstract
Microtubules have a key role in plant morphogenesis, as they control the oriented deposition of cellulose in the cell wall, and thus growth anisotropy. The idea that mechanical stress could be one of the main determinants behind the orientation of microtubules in plant cells emerged very soon after their discovery. The cause of mechanical stress in plant cells is turgor pressure, which can build up to 1 MPa and is restrained by cell wall stiffness. On the tissue scale, this can lead to regional patterns of tension, in particular in the epidermis of aerial organs, which resist the stress generated by cells in internal tissues. Here we summarize more than 50 years of work on the contribution of mechanical stress in guiding microtubule behavior, and the resulting impact on growth anisotropy and growth heterogeneity. We propose a conceptual model on microtubule dynamics and their ability to self-organize in bundles parallel to the direction of maximal stress, as well as a synthetic representation of the putative mechanotransducers at play.
Collapse
Affiliation(s)
- Benoît Landrein
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, 46 Allee d'Italie, Lyon, Cedex 07 69364, France
| | | |
Collapse
|
344
|
Christmann A, Grill E, Huang J. Hydraulic signals in long-distance signaling. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:293-300. [PMID: 23545219 DOI: 10.1016/j.pbi.2013.02.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 05/18/2023]
Abstract
Higher plants are sessile organisms that continuously adapt their metabolism and development in response to a changing environment. Control of water uptake and the maintenance of water status are key for the survival and optimal growth of plants. Environmental factors such as radiation, air temperature, rainfall, and humidity have a high impact on plant water relations. Hence, plants require a coordinated and timely response in above-ground and below-ground organs to cope with the changing need to take up and preserve water. In this review we will focus on changes in plant water availability and on how information on the water status is communicated to remote plant organs. We will summarize the current knowledge of long-distance signaling by hydraulic cues and of potential sensors required to convert a physical signal into a chemical messenger, namely the plant hormone abscisic acid (ABA).
Collapse
Affiliation(s)
- Alexander Christmann
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Strasse 4, D-85354 Freising, Germany.
| | | | | |
Collapse
|
345
|
Fernandes JC, García-Angulo P, Goulao LF, Acebes JL, Amâncio S. Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:111-20. [PMID: 23498868 DOI: 10.1016/j.plantsci.2013.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/15/2013] [Accepted: 01/19/2013] [Indexed: 05/06/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most economically important fruit crops in the world. Deficit in nitrogen, phosphorus and sulfur nutrition impairs essential metabolic pathways. The influence of mineral stress in the composition of the plant cell wall (CW) has received residual attention. Using grapevine callus as a model system, 6 weeks deficiency of those elements caused a significant decrease in growth. Callus CWs were analyzed by Fourier transform infrared spectroscopy (FT-IR), by quantification of CW components and by immunolocalization of CW epitopes with monoclonal antibodies. PCA analysis of FT-IR data suggested changes in the main components of the CW in response to individual mineral stress. Decreased cellulose, modifications in pectin methyl esterification and increase of structural proteins were among the events disclosed by FT-IR analysis. Chemical analyses supported some of the assumptions and further disclosed an increase in lignin content under nitrogen deficiency, suggesting a compensation of cellulose by lignin. Moreover, polysaccharides of callus under mineral deficiency showed to be more tightly bonded to the CW, probably due to a more extensive cross-linking of the cellulose-hemicellulose network. Our work showed that mineral stress impacts the CW at different extents according to the withdrawn mineral element, and that the modifications in a given CW component are compensated by the synthesis and/or alternative linking between polymers. The overall results here described for the first time pinpoint the CW of Vitis callus different strategies to overcome mineral stress, depending on how essential they are to cell growth and plant development.
Collapse
Affiliation(s)
- João C Fernandes
- DRAT/CBAA, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
346
|
Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi M, Whitham SA, Bogdanove AJ, Bellincampi D, Zabotina OA. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. PLANT PHYSIOLOGY 2013; 162:9-23. [PMID: 23463782 PMCID: PMC3641233 DOI: 10.1104/pp.113.214460] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/03/2013] [Indexed: 05/17/2023]
Abstract
The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens.
Collapse
|
347
|
Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sánchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC. Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. PLANT PHYSIOLOGY 2013; 161:1615-33. [PMID: 23391577 PMCID: PMC3613443 DOI: 10.1104/pp.112.208694] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Grass cell wall properties influence food, feed, and biofuel feedstock usage efficiency. The glucuronoarabinoxylan of grass cell walls is esterified with the phenylpropanoid-derived hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA). Feruloyl esters undergo oxidative coupling with neighboring phenylpropanoids on glucuronoarabinoxylan and lignin. Examination of rice (Oryza sativa) mutants in a grass-expanded and -diverged clade of BAHD acyl-coenzyme A-utilizing transferases identified four mutants with altered cell wall FA or p-CA contents. Here, we report on the effects of overexpressing one of these genes, OsAt10 (LOC_Os06g39390), in rice. An activation-tagged line, OsAT10-D1, shows a 60% reduction in matrix polysaccharide-bound FA and an approximately 300% increase in p-CA in young leaf tissue but no discernible phenotypic alterations in vegetative development, lignin content, or lignin composition. Two additional independent OsAt10 overexpression lines show similar changes in FA and p-CA content. Cell wall fractionation and liquid chromatography-mass spectrometry experiments isolate the cell wall alterations in the mutant to ester conjugates of a five-carbon sugar with p-CA and FA. These results suggest that OsAT10 is a p-coumaroyl coenzyme A transferase involved in glucuronoarabinoxylan modification. Biomass from OsAT10-D1 exhibits a 20% to 40% increase in saccharification yield depending on the assay. Thus, OsAt10 is an attractive target for improving grass cell wall quality for fuel and animal feed.
Collapse
Affiliation(s)
- Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Domozych DS, Fujimoto C, LaRue T. Polar Expansion Dynamics in the Plant Kingdom: A Diverse and Multifunctional Journey on the Path to Pollen Tubes. PLANTS (BASEL, SWITZERLAND) 2013; 2:148-73. [PMID: 27137370 PMCID: PMC4844288 DOI: 10.3390/plants2010148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/24/2013] [Accepted: 03/01/2013] [Indexed: 12/18/2022]
Abstract
Polar expansion is a widespread phenomenon in plants spanning all taxonomic groups from the Charophycean Green Algae to pollen tubes in Angiosperms and Gymnosperms. Current data strongly suggests that many common features are shared amongst cells displaying polar growth mechanics including changes to the structural features of localized regions of the cell wall, mobilization of targeted secretion mechanisms, employment of the actin cytoskeleton for directing secretion and in many cases, endocytosis and coordinated interaction of multiple signal transduction mechanisms prompted by external biotic and abiotic cues. The products of polar expansion perform diverse functions including delivery of male gametes to the egg, absorption, anchorage, adhesion and photo-absorption efficacy. A comparative analysis of polar expansion dynamics is provided with special emphasis on those found in early divergent plants.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| | - Chelsea Fujimoto
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| | - Therese LaRue
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| |
Collapse
|
349
|
Vellosillo T, Aguilera V, Marcos R, Bartsch M, Vicente J, Cascón T, Hamberg M, Castresana C. Defense activated by 9-lipoxygenase-derived oxylipins requires specific mitochondrial proteins. PLANT PHYSIOLOGY 2013; 161:617-27. [PMID: 23370715 PMCID: PMC3561008 DOI: 10.1104/pp.112.207514] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
9-Lipoxygenases (9-LOXs) initiate fatty acid oxygenation, resulting in the formation of oxylipins activating plant defense against hemibiotrophic pathogenic bacteria. Previous studies using nonresponding to oxylipins (noxy), a series of Arabidopsis (Arabidopsis thaliana) mutants insensitive to the 9-LOX product 9-hydroxy-10,12,15-octadecatrienoic acid (9-HOT), have demonstrated the importance of cell wall modifications as a component of 9-LOX-induced defense. Here, we show that a majority (71%) of 41 studied noxy mutants have an added insensitivity to isoxaben, an herbicide inhibiting cellulose synthesis and altering the cell wall. The specific mutants noxy2, noxy15, and noxy38, insensitive to both 9-HOT and isoxaben, displayed enhanced susceptibility to Pseudomonas syringae DC3000 as well as reduced activation of salicylic acid-responding genes. Map-based cloning identified the mutation in noxy2 as At5g11630 encoding an uncharacterized mitochondrial protein, designated NOXY2. Moreover, noxy15 and noxy38 were mapped at the DYNAMIN RELATED PROTEIN3A and FRIENDLY MITOCHONDRIA loci, respectively. Fluorescence microscopy and molecular analyses revealed that the three noxy mutants characterized exhibit mitochondrial dysfunction and that 9-HOT added to wild-type Arabidopsis causes mitochondrial aggregation and loss of mitochondrial membrane potential. The results suggest that the defensive responses and cell wall modifications caused by 9-HOT are under mitochondrial retrograde control and that mitochondria play a fundamental role in innate immunity signaling.
Collapse
Affiliation(s)
- Tamara Vellosillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
350
|
Kaewthai N, Gendre D, Eklöf JM, Ibatullin FM, Ezcurra I, Bhalerao RP, Brumer H. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. PLANT PHYSIOLOGY 2013; 161:440-54. [PMID: 23104861 PMCID: PMC3532273 DOI: 10.1104/pp.112.207308] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/25/2012] [Indexed: 05/05/2023]
Abstract
The molecular basis of primary wall extension endures as one of the central enigmas in plant cell morphogenesis. Classical cell wall models suggest that xyloglucan endo-transglycosylase activity is the primary catalyst (together with expansins) of controlled cell wall loosening through the transient cleavage and religation of xyloglucan-cellulose cross links. The genome of Arabidopsis (Arabidopsis thaliana) contains 33 phylogenetically diverse XYLOGLUCAN ENDO-TRANSGLYCOSYLASE/HYDROLASE (XTH) gene products, two of which were predicted to be predominant xyloglucan endohydrolases due to clustering into group III-A. Enzyme kinetic analysis of recombinant AtXTH31 confirmed this prediction and indicated that this enzyme had similar catalytic properties to the nasturtium (Tropaeolum majus) xyloglucanase1 responsible for storage xyloglucan hydrolysis during germination. Global analysis of Genevestigator data indicated that AtXTH31 and the paralogous AtXTH32 were abundantly expressed in expanding tissues. Microscopy analysis, utilizing the resorufin β-glycoside of the xyloglucan oligosaccharide XXXG as an in situ probe, indicated significant xyloglucan endohydrolase activity in specific regions of both roots and hypocotyls, in good correlation with transcriptomic data. Moreover, this hydrolytic activity was essentially completely eliminated in AtXTH31/AtXTH32 double knockout lines. However, single and double knockout lines, as well as individual overexpressing lines, of AtXTH31 and AtXTH32 did not demonstrate significant growth or developmental phenotypes. These results suggest that although xyloglucan polysaccharide hydrolysis occurs in parallel with primary wall expansion, morphological effects are subtle or may be compensated by other mechanisms. We hypothesize that there is likely to be an interplay between these xyloglucan endohydrolases and recently discovered apoplastic exo-glycosidases in the hydrolytic modification of matrix xyloglucans.
Collapse
Affiliation(s)
| | | | - Jens M. Eklöf
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Farid M. Ibatullin
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Ines Ezcurra
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Rishikesh P. Bhalerao
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| |
Collapse
|